JP2013228045A - Fluid-filled vibration damping device - Google Patents

Fluid-filled vibration damping device Download PDF

Info

Publication number
JP2013228045A
JP2013228045A JP2012100599A JP2012100599A JP2013228045A JP 2013228045 A JP2013228045 A JP 2013228045A JP 2012100599 A JP2012100599 A JP 2012100599A JP 2012100599 A JP2012100599 A JP 2012100599A JP 2013228045 A JP2013228045 A JP 2013228045A
Authority
JP
Japan
Prior art keywords
receiving chamber
pressure receiving
peripheral wall
movable rubber
partition member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012100599A
Other languages
Japanese (ja)
Other versions
JP5926108B2 (en
Inventor
Eiji Tanaka
栄治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2012100599A priority Critical patent/JP5926108B2/en
Publication of JP2013228045A publication Critical patent/JP2013228045A/en
Application granted granted Critical
Publication of JP5926108B2 publication Critical patent/JP5926108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fluid-filled vibration damping device having a novel structure, in which switching of vibration damping characteristics corresponding to input vibrations from a vehicle can be carried out without using an external driving mechanism, and which can be achieved in a compact and lightweight manner, without increasing the number of components.SOLUTION: A cylindrical peripheral wall part 76 extending toward an equilibrium chamber 44 is disposed on the outer peripheral edge of a movable rubber membrane 74; the peripheral wall part 76 is brought into tight contact with the inner peripheral wall part 65 of a partition member 36; an opening window 58 is covered with the peripheral wall part 76; and an end part 80 on the equilibrium chamber side of the peripheral wall part 76 is fixed to the partition member 36, while an end part 78 on the pressure-receiving chamber side of the peripheral wall part 76 is deformable to fall to the inner peripheral side of a hole 64 accompanying elastic deformation of the movable rubber membrane 74 toward the equilibrium chamber 46. When a pressure variation equal to or higher than a prescribed value occurs in the pressure-receiving chamber 44, the end part 78 on the pressure-receiving chamber side of the peripheral wall part 76 of the movable rubber membrane 74 falls to the inner peripheral side of the hole 64 to deform, and a first orifice passage 62 is made to communicate with the pressure-receiving chamber 44 via the opening window 58.

Description

本発明は、受圧室と平衡室を連通するオリフィス通路を通じての流体の流動作用により防振効果を得るようにした流体封入式防振装置に係り、特に、入力される振動に応じて防振特性を切り換えることの出来る流体封入式防振装置に関するものである。   The present invention relates to a fluid-filled vibration isolator that obtains an anti-vibration effect by a fluid flow action through an orifice passage that communicates between a pressure receiving chamber and an equilibrium chamber, and in particular, an anti-vibration characteristic according to input vibration. The present invention relates to a fluid filled type vibration isolator capable of switching between the two.

従来から、振動伝達系を構成する部材間に介装されて、それら振動伝達系を構成する部材を相互に防振連結乃至は防振支持する防振装置の一種として、内部に封入された非圧縮性流体の共振作用等の流動作用に基づき防振効果を得るようにした流体封入式防振装置が知られており、自動車用のエンジンマウント等として広く採用されている。この流体封入式防振装置は、第1の取付部材と第2の取付部材を本体ゴム弾性体で弾性連結すると共に、第2の取付部材によって支持された仕切部材を挟んだ両側に非圧縮性流体を封入された受圧室と平衡室の各一方を形成し、更にそれら受圧室と平衡室の間の流体流動を許容するオリフィス通路を形成した構造を備えている。そして、振動入力時には、受圧室と平衡室の間に惹起される相対的な圧力変動に伴うオリフィス通路を通じての流体の流動作用に基づいて、防振効果が発揮されるようになっている。   Conventionally, as a type of vibration isolator that is interposed between members constituting a vibration transmission system and mutually anti-vibration-couples or supports the vibration transmission system, the non-encapsulated inside 2. Description of the Related Art A fluid-filled vibration isolator that obtains an anti-vibration effect based on a fluid action such as a resonance action of a compressible fluid is known, and is widely used as an engine mount for automobiles. In this fluid filled type vibration isolator, the first mounting member and the second mounting member are elastically connected by the main rubber elastic body, and incompressible on both sides of the partition member supported by the second mounting member. Each of the pressure receiving chamber and the equilibrium chamber in which fluid is sealed is formed, and an orifice passage that allows fluid flow between the pressure receiving chamber and the equilibrium chamber is formed. At the time of vibration input, an anti-vibration effect is exhibited based on the fluid flow action through the orifice passage caused by the relative pressure fluctuation caused between the pressure receiving chamber and the equilibrium chamber.

ところで、自動車用エンジンマウント等においては、車両走行状況等に応じて入力される周波数や振幅の異なる複数種類の振動に対して、それぞれ、防振効果が要求されることとなるが、オリフィス通路を通じての流体の流動作用に基づく防振効果が有効に発揮される周波数域は狭いために、単一のオリフィス通路によって要求される防振特性を充分に達成することが難しい場合が多い。そこで、所定の周波数域にチューニングした第1のオリフィス通路と、より高周波数域にチューニングした第2のオリフィス通路の二つのオリフィス通路を受圧室と平衡室の間に並列的に形成し、それら二つのオリフィス通路を空気圧式や電磁式の外部の駆動機構を用いて作動される切換弁で選択的に連通/遮断させることによって、複数の乃至は広い周波数域の振動に対して防振効果を得るようにした流体封入式防振装置が提案されている。例えば、特開平9−310732号公報(特許文献1)に記載のものがそれである。   By the way, in an engine mount for automobiles, etc., an anti-vibration effect is required for each of a plurality of types of vibrations having different frequencies and amplitudes that are input according to vehicle running conditions, etc. Since the frequency range in which the vibration-proofing effect based on the fluid flow action is effectively exhibited is narrow, it is often difficult to sufficiently achieve the vibration-proofing property required by the single orifice passage. Therefore, two orifice passages, a first orifice passage tuned to a predetermined frequency range and a second orifice passage tuned to a higher frequency range, are formed in parallel between the pressure receiving chamber and the equilibrium chamber, and the two By selectively communicating / blocking the two orifice passages with a switching valve that is operated using a pneumatic or electromagnetic external drive mechanism, a vibration-proofing effect is obtained against vibrations in a plurality of or a wide frequency range. There has been proposed a fluid-filled vibration isolator as described above. For example, those described in Japanese Patent Application Laid-Open No. 9-310732 (Patent Document 1).

ところが、このような従来構造の流体封入式防振装置においては、複数のオリフィス通路の連通/遮断状態を変更して防振特性を切り換えるために、外部の駆動機構が必要となると共に、走行状態に応じた駆動機構による切換を制御するための制御システムも必要となり、装置の大型化・複雑化や、それに伴う製造コストの増大が避けられない状況であった。   However, in such a fluid-filled vibration isolator having a conventional structure, an external drive mechanism is required to change the communication / blocking state of the plurality of orifice passages to switch the vibration isolating characteristics, and the running state Therefore, a control system for controlling the switching by the drive mechanism according to the need is also required, and it is inevitable that the apparatus becomes larger and more complicated and the manufacturing cost is increased accordingly.

特に、近年の自動車への小型化、軽量化の要求に対しては、外部の駆動機構による防振特性の切り換え構造では対応が困難であり、防振特性の切換えをコンパクト且つ軽量に実現することができる改良された流体封入式防振装置の提供が望まれていたのである。   In particular, it is difficult to meet the recent demands for miniaturization and weight reduction of automobiles with a structure for switching vibration isolation characteristics by an external drive mechanism, and to realize switching of vibration isolation characteristics in a compact and lightweight manner. Therefore, it has been desired to provide an improved fluid-filled vibration isolator capable of satisfying the requirements.

特開平9−310732号公報Japanese Patent Laid-Open No. 9-310732

本発明は、上述の事情を背景に為されたものであって、その解決課題は、外部の駆動機構を用いることなく、車両からの入力振動に応じた防振特性の切り換えを、部品点数の増加を伴うことなくコンパクト且つ軽量に実現することができる、新規な構造の流体封入式防振装置を提供することにある。   The present invention has been made in the background of the above-mentioned circumstances, and the problem to be solved is to switch the vibration-proof characteristics according to the input vibration from the vehicle without using an external drive mechanism. It is an object of the present invention to provide a fluid-filled vibration isolator having a novel structure that can be realized in a compact and lightweight manner without an increase.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意な組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.

すなわち、本発明に従う構造とされた流体封入式防振装置の第一の態様は、本体ゴム弾性体で弾性連結された第1の取付部材および第2の取付部材と、前記第2の取付部材によって支持された仕切部材と、前記仕切部材を挟んだ一方の側に位置して壁部の一部が該本体ゴム弾性体によって構成されて非圧縮性流体が封入された受圧室と、前記仕切部材を挟んだ他方の側に位置して壁部の一部が可撓性膜で構成されて前記非圧縮性流体が封入された平衡室と、前記仕切部材の外周部分を周方向に延びて前記受圧室と前記平衡室の間の流体流動を許容する第1のオリフィス通路と、前記仕切部材の中央部分に設けられた透孔に配設されて前記受圧室と前記平衡室の圧力が両側面に及ぼされる可動ゴム膜と、を備えている流体封入式防振装置において、前記仕切部材の前記透孔を画成する内周壁部には、前記第1のオリフィス通路を前記受圧室に連通する開口窓が貫設されている一方、前記可動ゴム膜の外周縁部には、前記平衡室側に向かって延びる筒状の周壁部が設けられており、該周壁部が前記仕切部材の前記内周壁部に密接されて前記開口窓が該周壁部により覆蓋されると共に、該周壁部の平衡室側端部が該仕切部材に固定されている一方、該周壁部の受圧室側端部が該可動ゴム膜の平衡室側への弾性変形に伴い該透孔の内周側に倒れ変形可能とされており、前記受圧室に所定値以上の圧力変動が生じた際に、前記可動ゴム膜の前記周壁部の受圧室側端部が前記透孔の内周側に倒れ変形して前記第1のオリフィス通路が前記開口窓を通じて前記受圧室に連通されるようになっているものである。   That is, the first aspect of the fluid-filled vibration isolator having a structure according to the present invention includes a first mounting member and a second mounting member elastically connected by a main rubber elastic body, and the second mounting member. A partition member supported by the pressure sensor, a pressure receiving chamber which is located on one side of the partition member and in which a part of the wall portion is configured by the main rubber elastic body and in which an incompressible fluid is sealed, and the partition An equilibrium chamber in which a part of the wall portion is formed of a flexible film and is filled with the incompressible fluid, and the outer peripheral portion of the partition member is extended in the circumferential direction. The first orifice passage allowing fluid flow between the pressure receiving chamber and the equilibrium chamber, and the through hole provided in the central portion of the partition member are arranged so that the pressure in the pressure receiving chamber and the equilibrium chamber is on both sides. In a fluid-filled vibration isolator having a movable rubber film exerted on the surface The inner peripheral wall portion defining the through hole of the partition member is provided with an opening window through which the first orifice passage communicates with the pressure receiving chamber, and on the outer peripheral edge portion of the movable rubber film. Is provided with a cylindrical peripheral wall portion extending toward the equilibrium chamber side, the peripheral wall portion is in close contact with the inner peripheral wall portion of the partition member, and the opening window is covered with the peripheral wall portion, The end of the peripheral wall on the side of the equilibrium chamber is fixed to the partition member, while the end of the peripheral wall on the side of the pressure receiving chamber is elastically deformed toward the equilibrium chamber of the movable rubber film. The pressure-receiving chamber side end of the peripheral wall portion of the movable rubber film falls to the inner peripheral side of the through-hole when a pressure fluctuation of a predetermined value or more occurs in the pressure-receiving chamber. The first orifice passage is deformed so as to communicate with the pressure receiving chamber through the opening window. Than is.

本態様によれば、受圧室の圧力変動に基づく可動ゴム膜の弾性変形を利用して、流体封入式防振装置の防振特性を切り替えることができる。具体的には、比較的振幅差の小さい高周波小振幅振動の入力時には、受圧室の圧力変動が所定値よりも小さいことから、可動ゴム膜の周壁部の受圧室側端部が仕切部材の内周壁部に密接したままとなり、開口窓が閉塞状態に維持される。従って、第1のオリフィス通路の開口窓を通じての受圧室への連通は発現されない。一方、比較的振幅差の大きな低周波大振幅振動の入力時には、受圧室の圧力変動が所定値以上となることから、可動ゴム膜の周壁部の受圧室側端部が透孔の内周側に倒れ変形して、第1のオリフィス通路の開口窓を通じた受圧室への連通が発現される。   According to this aspect, the vibration isolation characteristics of the fluid filled type vibration damping device can be switched using the elastic deformation of the movable rubber film based on the pressure fluctuation in the pressure receiving chamber. Specifically, when high-frequency small-amplitude vibration with a relatively small amplitude difference is input, the pressure fluctuation in the pressure-receiving chamber is smaller than a predetermined value. It remains in close contact with the peripheral wall and the open window is kept closed. Therefore, the communication to the pressure receiving chamber through the opening window of the first orifice passage is not manifested. On the other hand, when a low frequency large amplitude vibration with a relatively large amplitude difference is input, the pressure fluctuation of the pressure receiving chamber becomes a predetermined value or more. By falling down and deforming, communication with the pressure receiving chamber through the opening window of the first orifice passage is developed.

例えば、第1のオリフィス通路の受圧室への連通を開口窓を通じてのみ実現するようにすれば、走行こもり音やアイドリング振動等の高周波小振幅の振動入力時には、第1のオリフィス通路は発現せず、可動ゴム膜の中央部分の受圧室側および平衡室側への弾性変形に基づき、それらの振動を吸収して低動ばねによる防振効果を発揮することができる。また、エンジンシェイク等の低周波大振幅の振動入力時には、可動ゴム膜の周壁部の受圧室側端部が倒れ変形して開口窓を通じて第1のオリフィス通路が受圧室側へ連通される。これにより、第1のオリフィス通路を通じた流体流動に基づく高減衰性能を発現することができる。   For example, if the communication of the first orifice passage to the pressure receiving chamber is realized only through the opening window, the first orifice passage does not appear at the time of high-frequency small-amplitude vibration input such as traveling noise and idling vibration. Based on the elastic deformation of the central portion of the movable rubber film toward the pressure receiving chamber side and the equilibrium chamber side, these vibrations can be absorbed and the vibration isolation effect by the low dynamic spring can be exhibited. In addition, at the time of low-frequency and large-amplitude vibration input such as engine shake, the end portion of the movable rubber film on the pressure receiving chamber side of the peripheral wall portion collapses and deforms, and the first orifice passage communicates with the pressure receiving chamber side through the opening window. Thereby, the high attenuation | damping performance based on the fluid flow through a 1st orifice channel | path can be expressed.

或いは、第1のオリフィス通路に開口窓以外に常時受圧室と連通する開口部を設けると共に、開口部を通じて受圧室に開口する第1のオリフィス通路の流路長さよりも開口窓を通じて受圧室に開口する第1のオリフィス通路の長さを短く設定することも可能である。この場合には、開口部を通じた第1のオリフィス通路の流体流動をアイドリング振動の一次モード振動(低次振動)にチューニングして、一次モード振動の入力時に、開口部を通じた第1のオリフィス通路の流体流動に基づき低動ばねによる防振効果を発現するようにする。そして、アイドリング振動の二次モード振動(高次振動)の入力時には、開口部を通じた長い第1のオリフィス通路の流動抵抗が大きくなることにより、受圧室の圧力変動が所定値以上となり、可動ゴム膜の周壁部の受圧室側端部が倒れ変形して開口窓を通じて第1のオリフィス通路が受圧室側へ連通される。これにより、開口窓を通じた第1のオリフィス通路、即ち、オリフィス長さが短く流動抵抗が小さくされた第1のオリフィス通路を通じた流体流動に基づく二次モード振動に対する低動ばねによる防振効果を発現するようにすることも可能である。   Alternatively, in addition to the opening window, the first orifice passage is provided with an opening that communicates with the pressure receiving chamber at all times, and the opening is opened to the pressure receiving chamber through the opening window rather than the flow path length of the first orifice passage that opens to the pressure receiving chamber through the opening. It is also possible to set the length of the first orifice passage to be short. In this case, the fluid flow of the first orifice passage through the opening is tuned to the primary mode vibration (low order vibration) of idling vibration, and the first orifice passage through the opening is input when the primary mode vibration is input. The anti-vibration effect by the low dynamic spring is developed based on the fluid flow. When the secondary mode vibration (high-order vibration) of idling vibration is input, the flow resistance of the long first orifice passage through the opening increases, so that the pressure fluctuation in the pressure receiving chamber becomes a predetermined value or more, and the movable rubber The pressure receiving chamber side end of the peripheral wall portion of the membrane collapses and deforms, and the first orifice passage communicates with the pressure receiving chamber side through the opening window. Thereby, the vibration-proofing effect by the low dynamic spring against the secondary mode vibration based on the fluid flow through the first orifice passage through the opening window, that is, the first orifice passage having a short orifice length and a small flow resistance is obtained. It is also possible to express it.

このように、本態様においては、受圧室の圧力変動に基づく可動ゴム膜の弾性変形を利用して、入力振動に応じた流体封入式防振装置の防振特性を切り替えることができる。従って、従来の如き、アクチュエータ等の外部機構を用いずに防振特性を切り替えることができ、広い周波数に対応した優れた防振効果を発現できる流体封入式防振装置を簡単な構造により軽量、コンパクト且つ低コストで実現できるのである。   As described above, in this aspect, it is possible to switch the vibration isolating characteristics of the fluid filled type vibration isolator according to the input vibration by using the elastic deformation of the movable rubber film based on the pressure fluctuation in the pressure receiving chamber. Therefore, as in the past, the vibration-insulating characteristics can be switched without using an external mechanism such as an actuator, and a fluid-filled vibration-proof device capable of expressing an excellent vibration-proofing effect corresponding to a wide frequency is lightweight with a simple structure. It can be realized in a compact and low cost.

なお、受圧室の圧力変動による可動ゴム膜の倒れ変形の程度をオリフィスの流動抵抗やチューニング周波等、目的とする防振特性を考慮して適宜に設定することが可能である。また、上述の例示からも明らかなように、第1のオリフィス通路は、受圧室に対して常時開口する開口部を通じて連通されているものや、開口窓を通じてのみ受圧室に連通されるものの、何れにおいても本発明の可動ゴム膜の弾性変形を利用した防振特性の切換え効果は発現可能であり、それらの何れの態様も本発明に含まれることは言うまでもない。   It should be noted that the degree of the deformation of the movable rubber film due to the pressure fluctuation in the pressure receiving chamber can be appropriately set in consideration of the desired vibration isolation characteristics such as the flow resistance of the orifice and the tuning frequency. Further, as is clear from the above-described examples, the first orifice passage is communicated with the pressure receiving chamber through the opening that is always open to the pressure receiving chamber, or communicated with the pressure receiving chamber only through the opening window. However, it is obvious that the effect of switching the anti-vibration characteristics using the elastic deformation of the movable rubber film of the present invention can be expressed, and any aspect thereof is included in the present invention.

本発明の第二の態様は、前記第一の態様に記載の流体封入式防振装置において、前記仕切部材が、前記仕切部材の前記透孔を前記受圧室側および前記平衡室側の少なくとも一方から覆い、前記可動ゴム膜に対して隙間を隔てて対向配置されるカバー壁部を有しており、該カバー壁部に貫設された貫通孔により第2のオリフィス通路が形成されていると共に、該第2のオリフィス通路を通じて前記可動ゴム膜に対して前記受圧室および平衡室の少なくとも一方の圧力が及ぼされるようになっているものである。   According to a second aspect of the present invention, in the fluid-filled vibration isolator according to the first aspect, the partition member has at least one of the through hole of the partition member on the pressure receiving chamber side and the equilibrium chamber side. And having a cover wall portion disposed opposite to the movable rubber film with a gap, and a second orifice passage is formed by a through-hole penetrating the cover wall portion. The pressure of at least one of the pressure receiving chamber and the equilibrium chamber is applied to the movable rubber film through the second orifice passage.

本態様によれば、可動ゴム膜の弾性変形に伴い、第2のオリフィス通路を通じての流体流動が生ぜしめられることから、第2のオリフィス通路の径や長さを調節することにより、防振性能の設定を任意に行うことができる。   According to this aspect, the fluid flow through the second orifice passage is caused by the elastic deformation of the movable rubber film. Therefore, by adjusting the diameter and length of the second orifice passage, the vibration proof performance is achieved. Can be arbitrarily set.

本発明の第三の態様は、前記第二の態様に記載の流体封入式防振装置において、前記仕切部材が、前記仕切部材の前記透孔を前記平衡室側から覆い、前記可動ゴム膜に対して隙間を隔てて対向配置される平衡室側カバー壁部を有しており、該平衡室側カバー壁部には、前記可動ゴム膜の前記周壁部の前記平衡室側端部が嵌め入れられて固定される嵌合溝が形成されている一方、該可動ゴム膜には、前記平衡室側カバー壁部に向かって突出するストッパ突起が設けられているものである。   According to a third aspect of the present invention, in the fluid filled type vibration damping device according to the second aspect, the partition member covers the through hole of the partition member from the equilibrium chamber side, and the movable rubber film is formed on the movable rubber film. An equilibration chamber side cover wall portion that is disposed opposite to and spaced from the clearance chamber, and the equilibration chamber side end portion of the peripheral wall portion of the movable rubber film is fitted into the equilibration chamber side cover wall portion. While the fitting groove is formed and fixed, the movable rubber film is provided with a stopper protrusion that protrudes toward the equilibrium chamber side cover wall.

本態様によれば、平衡室側カバー壁部に嵌合溝を設け、そこに可動ゴム膜の周壁部の平衡室側端部を嵌め入れるだけで、可動ゴム膜の周壁部の平衡室側端部を仕切部材に簡単に固定することができる。しかも、可動ゴム膜にストッパ突起が設けられていることから、可動ゴム膜の弾性変形に際して、ストッパ突起が平衡室側カバー壁部に当接することにより、可動ゴム膜の周壁部の過大な倒れ変形が阻止されて、可動ゴム膜の嵌合溝からの離脱を防止して、可動ゴム膜を透孔内に安定して位置決め保持できる。このように、本態様においては、受圧室の圧力変動に基づく可動ゴム膜の弾性変形を利用して、入力振動に応じた流体封入式防振装置の防振特性を切り替えることができる。従って、従来の如き、アクチュエータ等の外部機構を用いずに防振特性を切り替えることができ、広い周波数に対応した優れた防振効果を発現できる流体封入式防振装置を簡単な構造により軽量、コンパクト且つ低コストで実現できるのである。   According to this aspect, the equilibration chamber side end of the peripheral wall portion of the movable rubber film can be obtained by providing the fitting groove in the equilibrium chamber side cover wall portion, and only fitting the equilibrium chamber side end portion of the peripheral wall portion of the movable rubber film therein. The part can be easily fixed to the partition member. Moreover, since the movable rubber film is provided with a stopper projection, when the movable rubber film is elastically deformed, the stopper projection abuts against the equilibrium chamber side cover wall portion, so that the peripheral wall portion of the movable rubber film is excessively deformed. Is prevented, the movable rubber film is prevented from being detached from the fitting groove, and the movable rubber film can be stably positioned and held in the through hole. As described above, in this aspect, it is possible to switch the vibration isolating characteristics of the fluid filled type vibration isolator according to the input vibration by using the elastic deformation of the movable rubber film based on the pressure fluctuation in the pressure receiving chamber. Therefore, as in the past, the vibration-insulating characteristics can be switched without using an external mechanism such as an actuator, and a fluid-filled vibration-proof device capable of expressing an excellent vibration-proofing effect corresponding to a wide frequency is lightweight with a simple structure. It can be realized in a compact and low cost.

本発明の流体封入式防振装置によれば、比較的振幅差の小さい高周波小振幅振動の入力時には、第1のオリフィス通路は発現せず、可動ゴム膜の中央部分の受圧室側および平衡室側への弾性変形に基づき、低動ばねによる防振効果を発揮することができる。また、エンジンシェイク等の低周波大振幅の振動入力時には、可動ゴム膜の周壁部の受圧室側端部が倒れ変形して開口窓を通じて第1のオリフィス通路が受圧室側へ連通され、流体流動に基づく高減衰性能を発現することができる。このように、アクチュエータ等の外部機構を用いずに防振特性を切り替えることができるので、広い周波数に対応した優れた防振効果を発現できる流体封入式防振装置を簡単な構造により軽量、コンパクト且つ低コストで実現できるのである。   According to the fluid-filled vibration isolator of the present invention, the first orifice passage does not appear when high-frequency small-amplitude vibration having a relatively small amplitude difference is input, and the pressure-receiving chamber side and the equilibrium chamber in the central portion of the movable rubber film Based on the elastic deformation to the side, the vibration-proofing effect by the low dynamic spring can be exhibited. Further, when vibration of low frequency and large amplitude such as an engine shake is input, the end of the movable rubber film on the side of the pressure receiving chamber falls down and deforms, and the first orifice passage is communicated with the pressure receiving chamber through the opening window. High attenuation performance based on can be expressed. In this way, the vibration isolation characteristics can be switched without using an external mechanism such as an actuator. Therefore, a fluid-filled vibration isolation device capable of producing an excellent vibration isolation effect corresponding to a wide frequency is lightweight and compact with a simple structure. And it can be realized at low cost.

本発明の第一の実施形態としての自動車用エンジンマウントの縦断面図であって、図3におけるI−I断面図。It is a longitudinal cross-sectional view of the engine mount for motor vehicles as 1st embodiment of this invention, Comprising: II sectional drawing in FIG. 図1に示された自動車用エンジンマウントにおいて第1のオリフィス通路の発現状態を示す説明図。Explanatory drawing which shows the expression state of the 1st orifice channel | path in the engine mount for motor vehicles shown by FIG. 図1におけるIII−III断面図。III-III sectional drawing in FIG. 本発明の第二の実施形態としての自動車用エンジンマウントの縦断面図であって、図6におけるIV−IV断面図。It is a longitudinal cross-sectional view of the engine mount for motor vehicles as 2nd embodiment of this invention, Comprising: IV-IV sectional drawing in FIG. 図6におけるV−V断面図であって、本発明の第二の実施形態において第1のオリフィス通路の発現状態を示す説明図。It is VV sectional drawing in FIG. 6, Comprising: Explanatory drawing which shows the expression state of the 1st orifice channel | path in 2nd embodiment of this invention. 図4におけるVI−VI断面図。VI-VI sectional drawing in FIG. 本発明の第二の実施形態における防振特性の切り替え手段を説明するための模式図。The schematic diagram for demonstrating the switching means of the vibration proof characteristic in 2nd embodiment of this invention.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、図1〜3には、本発明の流体封入式防振装置に係る第一の実施形態としての自動車用エンジンマウント10が示されている。この自動車用エンジンマウント10は、金属製の第1の取付部材12と金属製の第2の取付部材14が本体ゴム弾性体16で連結された構造とされている。また、自動車用エンジンマウント10は、第1の取付部材12がパワーユニット側に取り付けられる一方、第2の取付部材14がボデー側に取り付けられることにより、パワーユニットをボデーに対して、他の図示しないエンジンマウント等と協働して防振支持せしめるようになっている。かかる装着状態下、自動車用エンジンマウント10には、パワーユニットの分担荷重の入力により本体ゴム弾性体16が弾性変形することに伴って、第1の取付部材12と第2の取付部材14が図1中の上下方向に所定量だけ接近して相対変位せしめられると共に、防振すべき主たる振動が、第1の取付部材12と第2の取付部材14の間に、図1中の略上下方向に入力されることとなる。なお、本実施形態の自動車用エンジンマウント10は、その装着状態下で、図1に示すように、マウント中心軸(第1及び第2の取付部材12,14の中心軸)が略鉛直方向とされることから、以下の説明中において、特に断りのない限り、図1中の上下方向を、上下方向とする。   First, FIGS. 1 to 3 show an automobile engine mount 10 as a first embodiment according to a fluid-filled vibration isolator of the present invention. The engine mount 10 for an automobile has a structure in which a metal first mounting member 12 and a metal second mounting member 14 are connected by a main rubber elastic body 16. Further, the engine mount 10 for an automobile has a first mounting member 12 attached to the power unit side, while a second mounting member 14 is attached to the body side, so that the power unit is mounted on the body to another engine (not shown). It is designed to support vibration isolation in cooperation with the mount. Under such a mounted state, the first mounting member 12 and the second mounting member 14 are attached to the engine mount 10 for an automobile as the main rubber elastic body 16 is elastically deformed by the input of the shared load of the power unit. The main vibration to be vibrated is moved between the first mounting member 12 and the second mounting member 14 in a substantially vertical direction in FIG. Will be entered. As shown in FIG. 1, the automobile engine mount 10 of the present embodiment has a mount center axis (center axes of the first and second mounting members 12 and 14) in a substantially vertical direction, as shown in FIG. 1. Therefore, in the following description, unless otherwise specified, the vertical direction in FIG. 1 is the vertical direction.

より詳細には、第1の取付部材12は、略逆円錐台のブロック形状を有していると共に、大径側端面から中心軸上に穿設されたねじ穴18を備えている。このねじ穴18に螺着される図示しない固定ボルトにより、第1の取付部材12が、図示しないパワーユニットに固定されるようになっている。   More specifically, the first mounting member 12 has a substantially inverted truncated cone block shape, and includes a screw hole 18 drilled on the central axis from the large-diameter end face. The first mounting member 12 is fixed to a power unit (not shown) by a fixing bolt (not shown) screwed into the screw hole 18.

一方、第2の取付部材14は、大径円筒形状を有する筒状部22を備えており、筒状部22の上側開口部には、屈曲等して、径方向内方に突出するくびれ部24が形成されていると共に、かかるくびれ部24の開口周縁部には、径方向外方に広がるフランジ状部26が一体形成されている。   On the other hand, the second mounting member 14 includes a cylindrical portion 22 having a large-diameter cylindrical shape, and a constricted portion that protrudes radially inward by bending or the like in the upper opening of the cylindrical portion 22. 24 is formed, and a flange-like portion 26 that extends outward in the radial direction is integrally formed at the opening periphery of the constricted portion 24.

そして、第1の取付部材12は、第2の取付部材14の軸方向上方に所定距離を隔てて略同一中心軸上に配設されており、これら第1の取付部材12と第2の取付部材14が、本体ゴム弾性体16によって弾性連結されている。   The first mounting member 12 is disposed on substantially the same central axis at a predetermined distance above the second mounting member 14 in the axial direction. The first mounting member 12 and the second mounting member 12 The member 14 is elastically connected by the main rubber elastic body 16.

かかる本体ゴム弾性体16は、略円錐台形状とされており、軸方向上方に向かって次第に小径化するテーパ状の外周面を有している。そして、本体ゴム弾性体16に対して、その小径側端面から軸方向下方へ差し込まれた状態で、第1の取付部材12が加硫接着されている。また、本体ゴム弾性体16の大径側端部外周面には、第2の取付部材14の上端部内周面が加硫接着されている。要するに、本実施形態では、本体ゴム弾性体16が、第1の取付部材12の外周面と第2の取付部材14の内周面に対して、それぞれ加硫接着された一体加硫成形品とされている。   The main rubber elastic body 16 has a substantially frustoconical shape, and has a tapered outer peripheral surface that gradually decreases in diameter toward the upper side in the axial direction. The first mounting member 12 is vulcanized and bonded to the main rubber elastic body 16 in a state of being inserted downward in the axial direction from the end surface on the small diameter side. Further, the inner peripheral surface of the upper end portion of the second mounting member 14 is vulcanized and bonded to the outer peripheral surface of the large-diameter side end portion of the main rubber elastic body 16. In short, in the present embodiment, the main rubber elastic body 16 is an integrally vulcanized molded product that is vulcanized and bonded to the outer peripheral surface of the first mounting member 12 and the inner peripheral surface of the second mounting member 14, respectively. Has been.

而して、かかる本体ゴム弾性体16の一体加硫成形品においては、第2の取付部材14の軸方向上側の開口部が本体ゴム弾性体16で流体密に閉塞されており、軸方向下方に向かって開口する内部凹所30が形成されている。また、第2の取付部材14の筒状部22の内周面には、その略全面を覆うシールゴム層32が、本体ゴム弾性体16から一体的に延び出して形成されている。   Thus, in the integrally vulcanized molded product of the main rubber elastic body 16, the axially upper opening of the second mounting member 14 is fluid-tightly closed by the main rubber elastic body 16, and the lower part in the axial direction. An internal recess 30 is formed that opens toward the front. Further, a seal rubber layer 32 that covers substantially the entire surface is formed on the inner peripheral surface of the cylindrical portion 22 of the second mounting member 14 so as to extend integrally from the main rubber elastic body 16.

さらに、この本体ゴム弾性体16の一体加硫成形品における内部凹所30には、軸方向下方の開口部から、仕切部材36と、可撓性膜としてのダイヤフラム40が嵌め入れられて組み付けられて支持されている。そして、内部凹所30の開口(第2の取付部材14の下側開口)がダイヤフラム40で流体密に閉塞されて、本体ゴム弾性体16とダイヤフラム40の軸方向対向面間に流体室42が画成されている。また、かかる流体室42が仕切部材36で仕切られて二分されており、仕切部材36の上方には、壁部の一部が本体ゴム弾性体16で構成された受圧室44が形成されていると共に、仕切部材36の下方には、壁部の一部がダイヤフラム40で構成された平衡室46が形成されている。   Furthermore, a partition member 36 and a diaphragm 40 as a flexible film are fitted and assembled into the internal recess 30 in the integrally vulcanized molded product of the main rubber elastic body 16 from the opening portion in the axial direction lower side. It is supported. The opening of the internal recess 30 (the lower opening of the second mounting member 14) is fluid-tightly closed by the diaphragm 40, and the fluid chamber 42 is formed between the axially opposing surfaces of the main rubber elastic body 16 and the diaphragm 40. It is defined. Further, the fluid chamber 42 is divided into two parts by being partitioned by a partition member 36, and a pressure receiving chamber 44 in which a part of the wall portion is configured by the main rubber elastic body 16 is formed above the partition member 36. In addition, below the partition member 36, an equilibrium chamber 46 is formed in which a part of the wall portion is constituted by the diaphragm 40.

ここにおいて、ダイヤフラム40は、変形容易なように弛みを持たせた薄肉円板形状のゴム膜で構成されており、その外周縁部には、略円環板形状を有するリング金具50が加硫接着されている。そして、このリング金具50が第2の取付部材14の下端開口部に内挿されてかしめ固定されることにより、ダイヤフラム40が第2の取付部材14に固着されて、第2の取付部材14の軸方向下方の開口部が流体密に閉塞されて流体室42が形成されている。また、この流体室42には、水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等の非圧縮性流体が封入されている。なお、封入流体として、好適には、0.1Pa・s以下の低粘性流体が採用される。   Here, the diaphragm 40 is composed of a thin disk-shaped rubber film that is slack so that it can be easily deformed, and a ring metal fitting 50 having a substantially annular plate shape is vulcanized on the outer peripheral edge thereof. It is glued. The ring fitting 50 is inserted into the lower end opening of the second mounting member 14 and fixed by caulking, whereby the diaphragm 40 is fixed to the second mounting member 14 and the second mounting member 14 is fixed. A fluid chamber 42 is formed by fluidly closing the axially lower opening. The fluid chamber 42 is filled with an incompressible fluid such as water, alkylene glycol, polyalkylene glycol, or silicone oil. Note that a low-viscosity fluid of 0.1 Pa · s or less is preferably used as the sealed fluid.

また、仕切部材36は、図1に示されているように、薄肉円環板形状の本体仕切板52に対して、上面側に薄肉円板形状の受圧室側カバー壁部54が重ね合わされて固定された複合構造を有している。なお、これら本体仕切板52と受圧室側カバー壁部54は、合成樹脂材料や金属材料等の硬質材で形成することが出来る。   Further, as shown in FIG. 1, the partition member 36 has a thin annular plate-shaped pressure receiving chamber side cover wall portion 54 superimposed on the upper surface side of the thin annular plate-shaped main body partition plate 52. It has a fixed composite structure. The main body partition plate 52 and the pressure receiving chamber side cover wall portion 54 can be formed of a hard material such as a synthetic resin material or a metal material.

また、本体仕切板52の外周縁部には、外周面に開口して周方向に一周以下の長さで連続して延びる周溝56が形成されている。この周溝56の外周面への開口は、第2の取付部材14への組付状態下において筒状部22で覆蓋されている。また、周溝56の周方向一方の端部において、仕切部材36の後述する透孔64を画成する内周壁部65には、後述する透孔64および貫通孔90を通じて受圧室44に開口する開口窓58が貫設されていると共に、周溝56の周方向他方の端部には、平衡室46側に開口する連通孔60が形成されている。これにより、仕切部材36の外周部分を周方向に延びて受圧室44と平衡室46を相互に連通し得る第1のオリフィス通路62が形成されている。なお、第1のオリフィス通路62の通路長さや断面積等は、第1のオリフィス通路62の内部を流動せしめられる流体の共振周波数が、防振すべきエンジンシェイクに相当する低周波数域となるようにチューニングされている。   In addition, a circumferential groove 56 that is open to the outer peripheral surface and continuously extends in the circumferential direction with a length of one round or less is formed in the outer peripheral edge portion of the main body partition plate 52. The opening to the outer peripheral surface of the circumferential groove 56 is covered with the cylindrical portion 22 in the assembled state to the second mounting member 14. Further, at one end in the circumferential direction of the circumferential groove 56, an inner peripheral wall portion 65 that defines a later-described through-hole 64 of the partition member 36 opens into the pressure receiving chamber 44 through a later-described through-hole 64 and a through-hole 90. An opening window 58 is provided therethrough, and a communication hole 60 that opens to the equilibrium chamber 46 side is formed at the other circumferential end of the circumferential groove 56. Thus, a first orifice passage 62 is formed that extends in the circumferential direction of the outer peripheral portion of the partition member 36 and can communicate the pressure receiving chamber 44 and the equilibrium chamber 46 with each other. It should be noted that the passage length, the cross-sectional area, etc. of the first orifice passage 62 are such that the resonance frequency of the fluid that flows inside the first orifice passage 62 is in a low frequency region corresponding to the engine shake to be damped. It has been tuned to.

また、本体仕切板52の中央部分には、受圧室44側に開口する円形の透孔64が形成されている。また透孔64の底部には、透孔64を平衡室46側から覆う平衡室側カバー壁部66が、本体仕切板52から延び出して一体的に形成されている。また平衡室側カバー壁部66には、複数の貫通孔68が板厚方向に貫設されており、本実施形態においては、各貫通孔68の形状や配置等は受圧室側カバー壁部54に設けられた後述する貫通孔88と同形状とされている。さらに平衡室側カバー壁部66の受圧室44側の外周縁部には、後述する可動ゴム膜74の周壁部76の平衡室側端部80が嵌め入れられて固定される嵌合溝70が全周に亘って連続して設けられている。   A circular through hole 64 that opens to the pressure receiving chamber 44 side is formed in the central portion of the main body partition plate 52. Further, an equilibrium chamber side cover wall portion 66 that covers the through hole 64 from the equilibrium chamber 46 side is formed integrally with the bottom of the through hole 64 so as to extend from the main body partition plate 52. The equilibrium chamber side cover wall portion 66 is provided with a plurality of through holes 68 extending in the plate thickness direction. In the present embodiment, the shape and arrangement of each through hole 68 are the pressure receiving chamber side cover wall portion 54. It has the same shape as a later-described through-hole 88 provided in. Further, a fitting groove 70 in which an equilibrium chamber side end portion 80 of a peripheral wall portion 76 of the movable rubber film 74 described later is fitted and fixed to the outer peripheral edge portion of the equilibrium chamber side cover wall portion 66 on the pressure receiving chamber 44 side. It is provided continuously over the entire circumference.

さらに、本体仕切板52の透孔64と平衡室側カバー壁部66に囲まれた収容凹所72には、可動ゴム膜74が収容配置されている。かかる可動ゴム膜74は、全体として円板形状を有しており、特に本実施形態では、外周縁部の全周に亘って縦長の矩形断面で連続して延びる筒状の周壁部76が一体形成されている。この周壁部76は、可動ゴム膜74の外周縁部の受圧室44側および平衡室46側の両側に向って突設されており、受圧室側端部78よりも平衡室側端部80においてその突出高さが大きくされている。また可動ゴム膜74の中心部にも、受圧室側カバー壁部54に向かって突出する中央突起82と平衡室側カバー壁部66に向かって突出するストッパ突起84が形成されており、中央突起82は受圧室側端部78よりも、またストッパ突起84は平衡室側端部80よりもその突出高さが小さくされている。   Further, a movable rubber film 74 is accommodated in the accommodation recess 72 surrounded by the through hole 64 of the main body partition plate 52 and the equilibrium chamber side cover wall 66. The movable rubber film 74 has a disk shape as a whole, and in this embodiment, in particular, a cylindrical peripheral wall 76 that extends continuously in a vertically long rectangular cross section over the entire periphery of the outer peripheral edge is integrated. Is formed. The peripheral wall portion 76 protrudes toward both sides of the outer peripheral edge of the movable rubber film 74 on the pressure receiving chamber 44 side and the equilibrium chamber 46 side, and in the equilibrium chamber side end portion 80 rather than the pressure receiving chamber side end portion 78. The protruding height is increased. Further, a central projection 82 projecting toward the pressure receiving chamber side cover wall portion 54 and a stopper projection 84 projecting toward the equilibrium chamber side cover wall portion 66 are formed at the central portion of the movable rubber film 74. The protrusion height of 82 is smaller than the end portion 78 on the pressure receiving chamber side, and the protrusion height of the stopper projection 84 is smaller than that of the end portion 80 on the equilibrium chamber side.

そして、可動ゴム膜74は、軸直角方向に広がるようにして収容凹所72に組み付けられており、可動ゴム膜74の周壁部76の平衡室側端部80が、平衡室側カバー壁部66の嵌合溝70に対して全周に亘って嵌め入れられて固定されている。そして、この組付状態下において、受圧室側カバー壁部54および本体仕切板52の平衡室側カバー壁部66が、可動ゴム膜74に対して隙間を隔てて対向配置されている。   The movable rubber film 74 is assembled in the housing recess 72 so as to spread in the direction perpendicular to the axis, and the equilibrium chamber side end 80 of the peripheral wall 76 of the movable rubber film 74 is connected to the equilibrium chamber side cover wall 66. The fitting groove 70 is fitted and fixed over the entire circumference. In this assembled state, the pressure receiving chamber side cover wall portion 54 and the equilibrium chamber side cover wall portion 66 of the main body partition plate 52 are arranged to face the movable rubber film 74 with a gap.

一方、受圧室側カバー壁部54は、薄肉の略円板形状を有しており、中央部分には、円形状を有する浅底の凹み部86が形成されている。そして、かかる凹み部86の底部には、複数(本実施形態においては、4つ)の貫通孔88が板厚方向に貫設されている。各貫通孔88は、略1/4周に亘って広がる略円弧形状とされており、4つの貫通孔88が、凹み部86の底部の周方向で略等しい間隔をもって配設されている。また、受圧室側カバー壁部54の外周縁部内方には、透孔64の周縁部を開口し且つ周方向に延びる略円弧形状の貫通孔90が形成されている。このような構成とされた受圧室側カバー壁部54は、本体仕切板52に対して重ね合わされ固定されて、仕切部材36を構成するようになっている。   On the other hand, the pressure receiving chamber side cover wall portion 54 has a thin, substantially disk shape, and a shallow concave portion 86 having a circular shape is formed in the center portion. A plurality (four in this embodiment) of through-holes 88 are provided in the bottom of the recess 86 in the thickness direction. Each through-hole 88 has a substantially arc shape that extends over substantially ¼ circumference, and four through-holes 88 are arranged at substantially equal intervals in the circumferential direction of the bottom of the recess 86. A substantially arc-shaped through-hole 90 is formed in the outer peripheral edge of the pressure receiving chamber side cover wall 54 so as to open the peripheral edge of the through hole 64 and extend in the circumferential direction. The pressure receiving chamber side cover wall portion 54 configured as described above is overlapped and fixed to the main body partition plate 52 to form the partition member 36.

この受圧室側カバー壁部54が本体仕切板52に組み付けられた状態下で、可動ゴム膜74の周壁部76が、本体仕切板52側の嵌合溝70に嵌め入れられて係合保持されていると共に、受圧室側カバー壁部54と僅かな隙間を隔てて対向配置されている。これにより、可動ゴム膜74の周壁部76は、平衡室側端部80が仕切部材36に固定されている一方、受圧室側端部78が透孔64の内周側に倒れ変形可能とされた状態で、仕切部材36に有利に保持されている。特に、本実施形態では、本体仕切板52の透孔64を画成する内周壁部65においても当接保持されていることにより、一層強固に仕切部材36に保持できるのである。また、これにより、可動ゴム膜74の周壁部76が仕切部材36の内周壁部65に密接されて、内周壁部65に貫設された開口窓58が可動ゴム膜74の周壁部76により覆蓋されて、周壁部76が内周側に倒れ変形しない限り、受圧室44と平衡室46を相互に連通する第1のオリフィス通路62が発現されないようになっている。   In a state where the pressure receiving chamber side cover wall portion 54 is assembled to the main body partition plate 52, the peripheral wall portion 76 of the movable rubber film 74 is fitted into the fitting groove 70 on the main body partition plate 52 side to be engaged and held. In addition, the pressure receiving chamber side cover wall portion 54 is disposed to face the pressure receiving chamber side cover wall 54 with a slight gap therebetween. Thereby, the peripheral wall portion 76 of the movable rubber film 74 has the equilibrium chamber side end portion 80 fixed to the partition member 36, while the pressure receiving chamber side end portion 78 falls to the inner peripheral side of the through hole 64 and can be deformed. In this state, the partition member 36 is advantageously held. In particular, in the present embodiment, the inner peripheral wall portion 65 that defines the through hole 64 of the main body partition plate 52 is also held in contact with the partition member 36, so that the partition member 36 can be more firmly held. Further, as a result, the peripheral wall portion 76 of the movable rubber film 74 is brought into close contact with the inner peripheral wall portion 65 of the partition member 36, and the opening window 58 penetrating the inner peripheral wall portion 65 is covered with the peripheral wall portion 76 of the movable rubber film 74. Thus, the first orifice passage 62 that communicates the pressure receiving chamber 44 and the equilibrium chamber 46 with each other is prevented from appearing unless the peripheral wall portion 76 falls and deforms toward the inner peripheral side.

そして、可動ゴム膜74は、その上面が、受圧室側カバー壁部54に形成された貫通孔88を通じて受圧室44に露呈されており、この貫通孔88を通じての露呈面に対して受圧室44の圧力が直接的に及ぼされるようになっている。また、可動ゴム膜74の下面は、本体仕切板52の平衡室側カバー壁部66に形成された貫通孔68を通じて平衡室46に露呈されており、この貫通孔68を通じての露呈面に対して平衡室46の圧力が直接的に及ぼされるようになっている。   The upper surface of the movable rubber film 74 is exposed to the pressure receiving chamber 44 through a through hole 88 formed in the pressure receiving chamber side cover wall portion 54, and the pressure receiving chamber 44 is exposed to the exposed surface through the through hole 88. The pressure is directly applied. Further, the lower surface of the movable rubber film 74 is exposed to the equilibrium chamber 46 through a through hole 68 formed in the equilibrium chamber side cover wall 66 of the main body partition plate 52, and is exposed to the exposed surface through the through hole 68. The pressure in the equilibrium chamber 46 is directly exerted.

このような構造とされた本実施形態の自動車用エンジンマウント10によれば、例えばアイドリング振動や走行こもり音等の高周波小振幅振動が入力された場合には、第1のオリフィス通路62は閉塞されていることから、受圧室44と平衡室46から可動ゴム膜74の上下面に及ぼされる圧力差に基づいて上下方向に対して弾性変形される。すなわち、受圧室側カバー壁部54に貫設された貫通孔88により形成された受圧室側の第2のオリフィス通路92および平衡室側カバー壁部66に貫設された貫通孔68により形成された平衡室側の第2のオリフィス通路94を通じて、可動ゴム膜74に対して受圧室44および平衡室46の圧力が及ぼされるようになっており、可動ゴム膜74の上下方向に対する弾性変形により、受圧室44に生じる所定値よりも小さな圧力変動を平衡室46で吸収するようになっている。その結果、高周波小振幅振動の入力時における防振性能の向上が図られることとなる。   According to the automobile engine mount 10 of the present embodiment having such a structure, the first orifice passage 62 is closed when, for example, high-frequency small-amplitude vibration such as idling vibration or running-over noise is input. Therefore, the elastic deformation is performed in the vertical direction based on the pressure difference exerted on the upper and lower surfaces of the movable rubber film 74 from the pressure receiving chamber 44 and the equilibrium chamber 46. That is, it is formed by the second orifice passage 92 on the pressure receiving chamber side formed by the through hole 88 penetrating the pressure receiving chamber side cover wall portion 54 and the through hole 68 penetrating the equilibrium chamber side cover wall portion 66. The pressure of the pressure receiving chamber 44 and the equilibrium chamber 46 is applied to the movable rubber film 74 through the second orifice passage 94 on the equilibrium chamber side. Due to the elastic deformation of the movable rubber film 74 in the vertical direction, A pressure fluctuation smaller than a predetermined value generated in the pressure receiving chamber 44 is absorbed by the equilibrium chamber 46. As a result, the anti-vibration performance at the time of inputting high frequency small amplitude vibration is improved.

また一方、例えばエンジンシェイク等の低周波大振幅の振動が入力されることに伴い、受圧室44に所定値以上の圧力変動が生ぜしめられた際には、受圧室44と平衡室46の圧力差に基づいてより大きな圧力が可動ゴム膜74に及ぼされ、可動ゴム膜74の中心部が平衡室46側に大きく膨らむように弾性変形される。その結果、図2に示されているように、可動ゴム膜74の周壁部76の受圧室側端部78が透孔64の内周側となる可動ゴム膜74の中心方向に倒れ込むような弾性変形が許容されることとなり、それに伴って開口窓58が貫通孔90を通じて受圧室44に連通されて、第1のオリフィス通路62が発現される。   On the other hand, when a pressure fluctuation exceeding a predetermined value is generated in the pressure receiving chamber 44 due to the input of low-frequency large-amplitude vibration such as engine shake, for example, the pressure in the pressure receiving chamber 44 and the equilibrium chamber 46 is increased. Based on the difference, a larger pressure is applied to the movable rubber film 74, and the central portion of the movable rubber film 74 is elastically deformed so as to swell greatly toward the equilibrium chamber 46 side. As a result, as shown in FIG. 2, the pressure receiving chamber side end portion 78 of the peripheral wall portion 76 of the movable rubber film 74 is elastic so that it falls down toward the center of the movable rubber film 74 on the inner peripheral side of the through hole 64. Accordingly, the opening window 58 is communicated with the pressure receiving chamber 44 through the through hole 90 and the first orifice passage 62 is developed.

この第1のオリフィス通路62が発現すると、受圧室44から平衡室46への直接の流体流動が許容されることとなるから、第1のオリフィス通路62を通じた流体流動に基づく低周波大振幅振動に対する高減衰効果が発揮される。なお、図2からも明らかなように、可動ゴム膜74の周壁部76の過度の倒れ変形は、周壁部76の受圧室側端部78と受圧室側カバー壁部54の凹み部86への当接によって規制されるようになっている。   When the first orifice passage 62 is developed, direct fluid flow from the pressure receiving chamber 44 to the equilibrium chamber 46 is allowed. Therefore, low-frequency large-amplitude vibration based on fluid flow through the first orifice passage 62 is allowed. High damping effect is exhibited. As is clear from FIG. 2, excessive falling deformation of the peripheral wall portion 76 of the movable rubber film 74 is caused by the pressure receiving chamber side end portion 78 of the peripheral wall portion 76 and the recess portion 86 of the pressure receiving chamber side cover wall portion 54. It is regulated by contact.

以上述べてきたように、本実施形態によれば、受圧室44の圧力変動に基づく可動ゴム膜74の弾性変形を利用して、自動車用エンジンマウント10の防振特性を切り替えることができる。具体的には、走行こもり音やアイドリング振動等の高周波小振幅の振動入力時には、受圧室44の圧力変動が所定値よりも小さいことから、可動ゴム膜74の周壁部76の外周縁部が仕切部材36の収容凹所72の内周壁部65に密接したままとなり、開口窓58が閉塞状態に維持される。従って、第1のオリフィス通路62の貫通孔90を通じての受圧室44への連通は発現されず、可動ゴム膜74の中央部分の受圧室44側および平衡室46側への弾性変形に基づき、それらの振動を吸収して低動ばねによる防振効果を発揮することができる。一方、エンジンシェイク等の低周波大振幅の振動入力時には、受圧室44の圧力変動が所定値以上となることから、可動ゴム膜74の周壁部76の受圧室側端部78が可動ゴム膜74の平衡室46側への弾性変形に伴い透孔64の内周側に倒れ変形して、第1のオリフィス通路62の開口窓58を通じた受圧室44への連通が発現される。これにより、第1のオリフィス通路62を通じた流体流動に基づく高減衰性能を発現することができる。   As described above, according to the present embodiment, the vibration isolation characteristics of the automobile engine mount 10 can be switched using the elastic deformation of the movable rubber film 74 based on the pressure fluctuation of the pressure receiving chamber 44. Specifically, when a high-frequency small-amplitude vibration such as a running-over sound or idling vibration is input, the pressure fluctuation of the pressure receiving chamber 44 is smaller than a predetermined value, so that the outer peripheral edge of the peripheral wall 76 of the movable rubber film 74 is partitioned. It remains in close contact with the inner peripheral wall 65 of the housing recess 72 of the member 36, and the opening window 58 is maintained in the closed state. Therefore, the communication to the pressure receiving chamber 44 through the through hole 90 of the first orifice passage 62 is not expressed, and based on the elastic deformation of the central portion of the movable rubber film 74 toward the pressure receiving chamber 44 side and the equilibrium chamber 46 side, Therefore, the vibration-proofing effect of the low dynamic spring can be exhibited. On the other hand, at the time of low-frequency large-amplitude vibration input such as engine shake, the pressure fluctuation in the pressure-receiving chamber 44 becomes a predetermined value or more, and therefore the pressure-receiving chamber side end portion 78 of the peripheral wall portion 76 of the movable rubber film 74 is movable rubber film 74. With the elastic deformation toward the equilibrium chamber 46 side, it falls down and deforms toward the inner peripheral side of the through hole 64, and communication with the pressure receiving chamber 44 through the opening window 58 of the first orifice passage 62 is developed. Thereby, high damping performance based on fluid flow through the first orifice passage 62 can be exhibited.

このように、本実施形態では、受圧室44の圧力変動に基づく可動ゴム膜74の弾性変形を利用して、入力振動に応じた自動車用エンジンマウント10の防振特性を切り替えることができる。従って、従来の如き、アクチュエータ等の外部機構を用いずに防振特性を切り替えることができ、広い周波数に対応した優れた防振効果を発現できる流体封入式防振装置を簡単な構造により軽量、コンパクト且つ低コストで実現できるのである。   As described above, in this embodiment, the vibration isolation characteristics of the automotive engine mount 10 according to the input vibration can be switched using the elastic deformation of the movable rubber film 74 based on the pressure fluctuation in the pressure receiving chamber 44. Therefore, as in the past, the vibration-insulating characteristics can be switched without using an external mechanism such as an actuator, and a fluid-filled vibration-proof device capable of expressing an excellent vibration-proofing effect corresponding to a wide frequency is lightweight with a simple structure. It can be realized in a compact and low cost.

また、本実施形態では、可動ゴム膜74の弾性変形に伴い、第2のオリフィス通路92,94を通じての流体流動が生ぜしめられることから、第2のオリフィス通路92,94の大きさや形状を調節することにより、防振性能の設定を任意に行うことができる。   In the present embodiment, the fluid flow through the second orifice passages 92 and 94 is caused by the elastic deformation of the movable rubber film 74, so that the size and shape of the second orifice passages 92 and 94 are adjusted. By doing so, the vibration proof performance can be arbitrarily set.

さらに、本実施形態では、平衡室側カバー壁部66に嵌合溝70を設け、そこに可動ゴム膜74の周壁部76の平衡室側端部80を嵌め入れるだけで、可動ゴム膜74の周壁部76の平衡室側端部80を仕切部材36に簡単に固定することができる。しかも、可動ゴム膜74にストッパ突起84が設けられていることから、可動ゴム膜74の弾性変形に際して、ストッパ突起84が平衡室側カバー壁部66に当接することにより、可動ゴム膜74の周壁部76の過大な倒れ変形が阻止されて、可動ゴム膜74の嵌合溝70からの離脱を防止して、可動ゴム膜74を透孔64内に安定して位置決め保持できる。   Further, in the present embodiment, the fitting groove 70 is provided in the equilibrium chamber side cover wall portion 66, and the equilibrium chamber side end portion 80 of the peripheral wall portion 76 of the movable rubber film 74 is fitted into the fitting groove 70. The equilibrium chamber side end 80 of the peripheral wall 76 can be easily fixed to the partition member 36. In addition, since the movable rubber film 74 is provided with the stopper protrusions 84, when the movable rubber film 74 is elastically deformed, the stopper protrusions 84 come into contact with the equilibrium chamber side cover wall portion 66, so that the peripheral wall of the movable rubber film 74. The excessive falling deformation of the portion 76 is prevented, and the movable rubber film 74 is prevented from being detached from the fitting groove 70, so that the movable rubber film 74 can be stably positioned and held in the through hole 64.

次に、本発明の流体封入式防振装置に係る第二の実施形態としての自動車用エンジンマウント100を例示するが、以下に挙げる実施形態において、第一の実施形態と同様な構造とされた部材および部位については、図中に、第一の実施形態と同一の符号を付することにより、それらの詳細な説明を省略する。   Next, an automotive engine mount 100 as a second embodiment according to the fluid filled type vibration damping device of the present invention is illustrated. In the following embodiment, the structure is the same as that of the first embodiment. About a member and a site | part, the detailed description is abbreviate | omitted by attaching | subjecting the code | symbol same as 1st embodiment in a figure.

すなわち、図4〜6には、本発明の第二の実施形態としての自動車用エンジンマウント100が示されている。かかる自動車用エンジンマウント100は、(i)第1のオリフィス通路62に開口窓58以外に常時受圧室44と連通する開口部102を設けられている点と、(ii)開口部102を通じて受圧室44に開口する第1のオリフィス通路62の流路長さ:L1よりも貫通孔90を通じて受圧室44に開口する第1のオリフィス通路62の流路長さ:L2を短く設定されている点に関して、第一の実施形態と異なる実施形態を示すものである。   That is, FIGS. 4 to 6 show an automobile engine mount 100 as a second embodiment of the present invention. The automotive engine mount 100 includes (i) a first orifice passage 62 provided with an opening 102 that is always in communication with the pressure receiving chamber 44 in addition to the opening window 58, and (ii) a pressure receiving chamber through the opening 102. The length of the first orifice passage 62 that opens to the pressure receiving chamber 44 through the through-hole 90: L2 is set shorter than the length of the first orifice passage 62 that opens to the passage 44: L1. The embodiment different from the first embodiment is shown.

より詳細には、第1の実施形態で述べたように、周溝56の周方向一方の端部には、平衡室46側に開口する連通孔60が形成されている一方、周溝56の周方向他方の端部には、連通孔104が設けられている。さらに連通孔104を覆う受圧室側カバー壁部54には略矩形状の開口部102が形成されており、開口部102を介して連通孔104が受圧室44側に常時開口されている。これにより、仕切部材36の外周部分を周方向に延びて受圧室44と平衡室46を相互に常時連通する第1のオリフィス通路62が構成されている。一方、第1の実施形態で述べた、貫通孔90を通じて受圧室44に開口する開口窓58は、本実施形態においては、周溝56の周方向の略中央部分に設けられている(図6参照)。これにより、可動ゴム膜74の弾性変形により周壁部76が内周側に倒れ変形すると、第1のオリフィス通路62は開口窓58を通じて受圧室44に開口することとなり、第1のオリフィス通路62の流路長さが、倒れ変形前のL1に対して略半分程度のL2に短くされる(図7参照)。   More specifically, as described in the first embodiment, one end in the circumferential direction of the circumferential groove 56 is formed with a communication hole 60 that opens to the equilibrium chamber 46 side. A communication hole 104 is provided at the other end in the circumferential direction. Furthermore, a substantially rectangular opening 102 is formed in the pressure receiving chamber side cover wall portion 54 covering the communication hole 104, and the communication hole 104 is always opened to the pressure receiving chamber 44 through the opening 102. As a result, a first orifice passage 62 is formed which extends in the circumferential direction of the outer periphery of the partition member 36 and constantly communicates the pressure receiving chamber 44 and the equilibrium chamber 46 with each other. On the other hand, the opening window 58 that opens to the pressure receiving chamber 44 through the through-hole 90 described in the first embodiment is provided at a substantially central portion in the circumferential direction of the circumferential groove 56 in this embodiment (FIG. 6). reference). As a result, when the peripheral wall portion 76 falls and deforms due to the elastic deformation of the movable rubber film 74, the first orifice passage 62 opens into the pressure receiving chamber 44 through the opening window 58, and the first orifice passage 62 The length of the flow path is shortened to L2 that is approximately half of L1 before the collapse deformation (see FIG. 7).

このように、本発明の第2の実施形態によれば、第1のオリフィス通路62に開口窓58以外に常時受圧室44と連通する開口部102を設けると共に、可動ゴム膜74の周壁部76の倒れ変形を利用して、開口窓58を通じて受圧室44に開口させることにより第1のオリフィス通路62の流路長さを短い寸法:L2に切り替えることができる。このような特性を利用して、例えば、開口部102を通じた長さL1の第1のオリフィス通路62の流体流動をアイドリング振動の一次モード振動(低次振動)にチューニングして、一次モード振動の入力時に、開口部102を通じた第1のオリフィス通路62の流体流動に基づき低動ばねによる防振効果を発現するようにすることができる。そして、アイドリング振動の二次モード振動(高次振動)の入力時には、開口部102を通じた長さL1の第1のオリフィス通路62の流動抵抗が大きくなることにより、受圧室44の圧力変動が所定値以上となり、可動ゴム膜74の周壁部76の受圧室側端部78が透孔64の内周側に倒れ変形して開口窓58が受圧室44に開口する。これにより、開口窓58を通じて受圧室44に開口する長さL2の第1のオリフィス通路62、即ち、オリフィス長さが短く流動抵抗が小さくされた第1のオリフィス通路62が発現され、長さL2の第1のオリフィス通路62を通じた流体流動に基づく二次モード振動に対する低動ばねによる防振効果を発現するようにすることが可能となる。   As described above, according to the second embodiment of the present invention, the first orifice passage 62 is provided with the opening 102 that always communicates with the pressure receiving chamber 44 in addition to the opening window 58, and the peripheral wall 76 of the movable rubber film 74. By utilizing the falling deformation of the first orifice passage 62, the flow passage length of the first orifice passage 62 can be switched to the short dimension L2 by opening the pressure receiving chamber 44 through the opening window 58. By utilizing such characteristics, for example, the fluid flow of the first orifice passage 62 having the length L1 through the opening 102 is tuned to the primary mode vibration (low order vibration) of the idling vibration, and the primary mode vibration At the time of input, the vibration isolation effect by the low dynamic spring can be exhibited based on the fluid flow of the first orifice passage 62 through the opening 102. When the secondary mode vibration (higher order vibration) of idling vibration is input, the flow resistance of the first orifice passage 62 having the length L1 through the opening 102 is increased, whereby the pressure variation in the pressure receiving chamber 44 is predetermined. The pressure receiving chamber side end portion 78 of the peripheral wall portion 76 of the movable rubber film 74 falls and deforms toward the inner peripheral side of the through hole 64 and the opening window 58 opens into the pressure receiving chamber 44. As a result, the first orifice passage 62 having a length L2 that opens to the pressure receiving chamber 44 through the opening window 58, that is, the first orifice passage 62 having a short orifice length and a reduced flow resistance is developed, and the length L2 is generated. It is possible to exhibit a vibration isolation effect by the low dynamic spring against the secondary mode vibration based on the fluid flow through the first orifice passage 62.

以上、本発明の実施形態について詳述してきたが、これらはあくまでも例示であって、本発明は、これら実施形態における具体的な記載によって、何等、限定的に解釈されるものでない。   As mentioned above, although embodiment of this invention was explained in full detail, these are illustration to the last, Comprising: This invention is not limited at all by the specific description in these embodiment.

例えば、開口窓58を開口させる程度に可動ゴム膜74の周壁部76を倒れ変形させるのに必要な受圧室44の圧力変動の所定値の設定は、オリフィス通路62,92,94の流動抵抗やチューニング周波等、目的とする防振特性を考慮して適宜に設定することが可能である。また、上述の例示からも明らかなように、第1のオリフィス通路62は、受圧室44に対して常時開口する開口部102を通じて連通されているものや、開口窓58を通じてのみ受圧室44に連通されるものの、何れにおいても本発明の可動ゴム膜74の弾性変形を利用した防振特性の切換え効果は発現可能であり、それらの何れの態様も本発明に含まれることは言うまでもない。   For example, the predetermined value of the pressure fluctuation in the pressure receiving chamber 44 required for the peripheral wall portion 76 of the movable rubber film 74 to fall and deform to such an extent that the opening window 58 is opened is determined by the flow resistance of the orifice passages 62, 92, and 94 It can be set as appropriate in consideration of the desired anti-vibration characteristics such as the tuning frequency. Further, as is clear from the above example, the first orifice passage 62 communicates with the pressure receiving chamber 44 only through the opening 102 that is always open to the pressure receiving chamber 44 or through the opening window 58. However, in any case, the effect of switching the anti-vibration characteristics using the elastic deformation of the movable rubber film 74 of the present invention can be manifested, and it goes without saying that any of these aspects is also included in the present invention.

また、可動ゴム膜74の中央突起82は、受圧室側カバー壁部54に当接されていたが、隙間を隔てて対向配置されていてもよい。これにより、可動ゴム膜74の中央部での上下方向での微小変形が許容されて、防振効果の向上が期待できる。また、受圧室側カバー壁部54は、中央部分に凹み部86が無い平らな円板形状であってもよい。   Further, although the central protrusion 82 of the movable rubber film 74 is in contact with the pressure receiving chamber side cover wall portion 54, it may be disposed oppositely with a gap. As a result, minute deformation in the vertical direction at the central portion of the movable rubber film 74 is allowed, and an improvement in the anti-vibration effect can be expected. Further, the pressure receiving chamber side cover wall portion 54 may have a flat disk shape without the recessed portion 86 in the central portion.

その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   In addition, although not enumerated one by one, the present invention can be carried out in a mode to which various changes, modifications, improvements and the like are added based on the knowledge of those skilled in the art. It goes without saying that all are included in the scope of the present invention without departing from the spirit of the present invention.

10:自動車用エンジンマウント(流体封入式防振装置)、12:第1の取付部材、14:第2の取付部材、16:本体ゴム弾性体、36:仕切部材、40:ダイヤフラム(可撓性膜)、44:受圧室、46:平衡室、54:受圧室側カバー壁部(カバー壁部)、58:開口窓、62:第1のオリフィス通路、64:透孔、65:内周壁部、66:平衡室側カバー壁部(カバー壁部)、68:貫通孔、70:嵌合溝、74:可動ゴム膜、76:周壁部、78:受圧室側端部、80:平衡室側端部、84:ストッパ突起、88:貫通孔、92:受圧室側の第2のオリフィス通路(第2のオリフィス通路)、94:平衡室側の第2のオリフィス通路(第2のオリフィス通路) 10: Engine mount for automobile (fluid-filled vibration isolator), 12: first mounting member, 14: second mounting member, 16: rubber elastic body of main body, 36: partition member, 40: diaphragm (flexibility Membrane), 44: Pressure receiving chamber, 46: Equilibrium chamber, 54: Pressure receiving chamber side cover wall (cover wall), 58: Opening window, 62: First orifice passage, 64: Through hole, 65: Inner peripheral wall , 66: Equilibrium chamber side cover wall (cover wall), 68: Through hole, 70: Fitting groove, 74: Movable rubber film, 76: Peripheral wall, 78: End of pressure receiving chamber, 80: Equilibrium chamber side End: 84: Stopper projection, 88: Through hole, 92: Second orifice passage on the pressure receiving chamber side (second orifice passage), 94: Second orifice passage on the equilibrium chamber side (second orifice passage)

Claims (3)

本体ゴム弾性体で弾性連結された第1の取付部材および第2の取付部材と、
前記第2の取付部材によって支持された仕切部材と、
前記仕切部材を挟んだ一方の側に位置して壁部の一部が該本体ゴム弾性体によって構成されて非圧縮性流体が封入された受圧室と、
前記仕切部材を挟んだ他方の側に位置して壁部の一部が可撓性膜で構成されて前記非圧縮性流体が封入された平衡室と、
前記仕切部材の外周部分を周方向に延びて前記受圧室と前記平衡室の間の流体流動を許容する第1のオリフィス通路と、
前記仕切部材の中央部分に設けられた透孔に配設されて前記受圧室と前記平衡室の圧力が両側面に及ぼされる可動ゴム膜と、を備えている流体封入式防振装置において、
前記仕切部材の前記透孔を画成する内周壁部には、前記第1のオリフィス通路を前記受圧室に連通する開口窓が貫設されている一方、
前記可動ゴム膜の外周縁部には、前記平衡室側に向かって延びる筒状の周壁部が設けられており、該周壁部が前記仕切部材の前記内周壁部に密接されて前記開口窓が該周壁部により覆蓋されると共に、該周壁部の平衡室側端部が該仕切部材に固定されている一方、該周壁部の受圧室側端部が該可動ゴム膜の平衡室側への弾性変形に伴い該透孔の内周側に倒れ変形可能とされており、
前記受圧室に所定値以上の圧力変動が生じた際に、前記可動ゴム膜の前記周壁部の受圧室側端部が前記透孔の内周側に倒れ変形して前記第1のオリフィス通路が前記開口窓を通じて前記受圧室に連通されるようになっていることを特徴とする流体封入式防振装置。
A first attachment member and a second attachment member elastically connected by a main rubber elastic body;
A partition member supported by the second mounting member;
A pressure receiving chamber in which a part of the wall portion is formed of the main rubber elastic body and in which an incompressible fluid is sealed, located on one side of the partition member;
An equilibrium chamber that is located on the other side of the partition member and in which a part of the wall portion is formed of a flexible film and in which the incompressible fluid is enclosed,
A first orifice passage extending in the circumferential direction of the outer periphery of the partition member to allow fluid flow between the pressure receiving chamber and the equilibrium chamber;
In a fluid-filled vibration isolator provided with a movable rubber film that is disposed in a through hole provided in a central portion of the partition member and that exerts pressure on the pressure receiving chamber and the equilibrium chamber on both side surfaces,
On the inner peripheral wall portion that defines the through hole of the partition member, an opening window that communicates the first orifice passage with the pressure receiving chamber is provided,
The outer peripheral edge of the movable rubber film is provided with a cylindrical peripheral wall extending toward the equilibrium chamber. The peripheral wall is in close contact with the inner peripheral wall of the partition member, and the opening window is The peripheral wall is covered with the peripheral wall, and the end of the peripheral wall on the side of the equilibrium chamber is fixed to the partition member, while the end of the peripheral wall on the pressure receiving chamber is elastic to the side of the equilibrium of the movable rubber film. With the deformation, it is possible to fall and deform to the inner peripheral side of the through hole,
When a pressure fluctuation of a predetermined value or more occurs in the pressure receiving chamber, the pressure receiving chamber side end portion of the peripheral wall portion of the movable rubber film falls to the inner peripheral side of the through hole and the first orifice passage is formed. A fluid-filled vibration isolator that communicates with the pressure receiving chamber through the opening window.
前記仕切部材が、前記仕切部材の前記透孔を前記受圧室側および前記平衡室側の少なくとも一方から覆い、前記可動ゴム膜に対して隙間を隔てて対向配置されるカバー壁部を有しており、該カバー壁部に貫設された貫通孔により第2のオリフィス通路が形成されていると共に、該第2のオリフィス通路を通じて前記可動ゴム膜に対して前記受圧室および平衡室の少なくとも一方の圧力が及ぼされるようになっている請求項1に記載の流体封入式防振装置。   The partition member includes a cover wall portion that covers the through hole of the partition member from at least one of the pressure receiving chamber side and the equilibrium chamber side, and is opposed to the movable rubber film with a gap. A second orifice passage is formed by a through-hole penetrating the cover wall, and at least one of the pressure receiving chamber and the equilibrium chamber with respect to the movable rubber film through the second orifice passage. 2. The fluid filled type vibration damping device according to claim 1, wherein pressure is applied. 前記仕切部材が、前記仕切部材の前記透孔を前記平衡室側から覆い、前記可動ゴム膜に対して隙間を隔てて対向配置される平衡室側カバー壁部を有しており、該平衡室側カバー壁部には、前記可動ゴム膜の前記周壁部の前記平衡室側端部が嵌め入れられて固定される嵌合溝が形成されている一方、該可動ゴム膜には、前記平衡室側カバー壁部に向かって突出するストッパ突起が設けられている請求項2に記載の流体封入式防振装置。   The partition member includes an equilibrium chamber side cover wall portion that covers the through hole of the partition member from the equilibrium chamber side and is disposed to face the movable rubber film with a gap therebetween, and the equilibrium chamber The side cover wall portion is formed with a fitting groove in which the end portion on the side of the equilibrium chamber of the peripheral wall portion of the movable rubber film is fitted and fixed, while the movable rubber film has the equilibrium chamber. The fluid-filled vibration isolator according to claim 2, further comprising a stopper protrusion that protrudes toward the side cover wall.
JP2012100599A 2012-04-26 2012-04-26 Fluid filled vibration isolator Active JP5926108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012100599A JP5926108B2 (en) 2012-04-26 2012-04-26 Fluid filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100599A JP5926108B2 (en) 2012-04-26 2012-04-26 Fluid filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2013228045A true JP2013228045A (en) 2013-11-07
JP5926108B2 JP5926108B2 (en) 2016-05-25

Family

ID=49675864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100599A Active JP5926108B2 (en) 2012-04-26 2012-04-26 Fluid filled vibration isolator

Country Status (1)

Country Link
JP (1) JP5926108B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414845U (en) * 1990-05-30 1992-02-06
JPH06307491A (en) * 1993-04-26 1994-11-01 Tokai Rubber Ind Ltd Liquid enclosed type vibration proofing mount
JPH09310732A (en) * 1996-05-23 1997-12-02 Tokai Rubber Ind Ltd Fluid-sealed type mount device
JP2000193015A (en) * 1998-12-24 2000-07-14 Tokai Rubber Ind Ltd Fluid sealing type vibration control device
JP2005273684A (en) * 2004-03-22 2005-10-06 Tokai Rubber Ind Ltd Fluid filled type vibration isolation device
JP2007177875A (en) * 2005-12-27 2007-07-12 Toyo Tire & Rubber Co Ltd Liquid-filled vibration isolator
JP2008138855A (en) * 2006-12-05 2008-06-19 Yamashita Rubber Co Ltd Liquid seal vibration control device
JP2009210061A (en) * 2008-03-05 2009-09-17 Kurashiki Kako Co Ltd Liquid sealed vibration absorbing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414845U (en) * 1990-05-30 1992-02-06
JPH06307491A (en) * 1993-04-26 1994-11-01 Tokai Rubber Ind Ltd Liquid enclosed type vibration proofing mount
JPH09310732A (en) * 1996-05-23 1997-12-02 Tokai Rubber Ind Ltd Fluid-sealed type mount device
JP2000193015A (en) * 1998-12-24 2000-07-14 Tokai Rubber Ind Ltd Fluid sealing type vibration control device
JP2005273684A (en) * 2004-03-22 2005-10-06 Tokai Rubber Ind Ltd Fluid filled type vibration isolation device
JP2007177875A (en) * 2005-12-27 2007-07-12 Toyo Tire & Rubber Co Ltd Liquid-filled vibration isolator
JP2008138855A (en) * 2006-12-05 2008-06-19 Yamashita Rubber Co Ltd Liquid seal vibration control device
JP2009210061A (en) * 2008-03-05 2009-09-17 Kurashiki Kako Co Ltd Liquid sealed vibration absorbing device

Also Published As

Publication number Publication date
JP5926108B2 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
JP4820792B2 (en) Fluid filled vibration isolator
JP4842086B2 (en) Fluid filled vibration isolator
JP2005273684A (en) Fluid filled type vibration isolation device
JPWO2010013465A1 (en) Fluid filled vibration isolator
JP5977141B2 (en) Fluid filled vibration isolator
WO2015041056A1 (en) Vibration-damping device
JP3849534B2 (en) Fluid filled vibration isolator
JP2010031989A (en) Fluid-sealed vibration control device
JP3729107B2 (en) Fluid filled vibration isolator
JP2007085523A (en) Fluid-enclosed type vibration isolator
JP2009243510A (en) Fluid-filled type engine mount for automobile
JP2015145701A (en) Fluid sealed vibration control device
JP5431982B2 (en) Liquid-filled vibration isolator
JP6240482B2 (en) Fluid filled vibration isolator
JP2011256930A (en) Fluid-sealed anti-vibration device
JP4158110B2 (en) Pneumatic switching type fluid-filled engine mount
JP4075066B2 (en) Fluid filled engine mount
JP4871902B2 (en) Fluid filled vibration isolator
JP2006177530A (en) Fluid sealed vibration isolator
JP2018017304A (en) Fluid sealed type vibration-proof device
JP5926108B2 (en) Fluid filled vibration isolator
JP2013160265A (en) Fluid-sealed vibration-damping device
JP4158108B2 (en) Pneumatic switching type fluid-filled engine mount
JP5899039B2 (en) Fluid filled vibration isolator
JPH11101294A (en) Fluid-filled mount device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160421

R150 Certificate of patent or registration of utility model

Ref document number: 5926108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150