JP2013220406A - Apparatus for treating cleaning wastewater, and method for treating cleaning wastewater - Google Patents

Apparatus for treating cleaning wastewater, and method for treating cleaning wastewater Download PDF

Info

Publication number
JP2013220406A
JP2013220406A JP2012095364A JP2012095364A JP2013220406A JP 2013220406 A JP2013220406 A JP 2013220406A JP 2012095364 A JP2012095364 A JP 2012095364A JP 2012095364 A JP2012095364 A JP 2012095364A JP 2013220406 A JP2013220406 A JP 2013220406A
Authority
JP
Japan
Prior art keywords
water
cleaning
recovered
facility
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012095364A
Other languages
Japanese (ja)
Other versions
JP5982165B2 (en
Inventor
Hiroaki Meguro
裕章 目黒
Hiroo Yokota
浩雄 横田
Keiichiro Fukumizu
圭一郎 福水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2012095364A priority Critical patent/JP5982165B2/en
Publication of JP2013220406A publication Critical patent/JP2013220406A/en
Application granted granted Critical
Publication of JP5982165B2 publication Critical patent/JP5982165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for treating cleaning wastewater in which the condensation of organic substances in the apparatus for treating wastewater are suppressed at a low cost, and the recovery rate of wastewater is high.SOLUTION: An apparatus 1 for treating cleaning wastewater which treats cleaning wastewater containing organic acids and organic substances drained from a cleaning device 34 in a water usage device 32 having a plurality of devices which use desalination water obtained by desalinating raw water by a desalination device 30 includes: a reduction device 10 for reducing the organic acids in the cleaning water; an ion constituent-removing device 12 for removing ion constituents contained in the reduction-treated water; and a recovered water feeding-pipe 24 for feeding at least one part of the recovered water, which is recovered by ion constituent removal treatment, to a more upstream side than the desalination device 30.

Description

本発明は、洗浄排水の処理装置および処理方法に関し、特に飲料製品等の充填前のペットボトル等の容器等を洗浄、殺菌した際に発生する洗浄排水の処理装置および処理方法に関する。   The present invention relates to a treatment apparatus and a treatment method for washing wastewater, and more particularly, to a treatment apparatus and treatment method for washing wastewater generated when a container such as a PET bottle before filling a beverage product or the like is washed and sterilized.

食品工場等においては、井戸水等を原水として、砂ろ過、加圧浮上、精密ろ過等を用いた微粒子除去工程、RO膜処理等の脱塩工程等によって処理した精製水を、工場内の数多くの設備で利用している。その設備の一つとして洗浄設備(リンサー設備)がある。   In food factories, etc., purified water that has been treated by fine water removal using sand filtration, pressurized flotation, microfiltration, etc., and desalination processes such as RO membrane treatment, etc. using well water, etc. We use in facilities. One of the facilities is a cleaning facility (rinser facility).

食品工場等において、製品を容器へ無菌充填しようとする場合、容器を滅菌するために通常、殺菌剤が使用される。殺菌剤としては、酢酸、過酢酸および過酸化水素が混合された洗浄液がオキソニアと呼ばれ、広く利用されている。滅菌された容器は、付着した殺菌剤を洗い流すため洗浄設備に導入される。洗浄設備では、多量の水を使って容器に付着した殺菌剤を洗浄し、排水されている。このため、食品工場等における水資源の節減が望まれる昨今、この排水を洗浄排水処理装置(リンサー排水処理装置)により回収して再び洗浄設備で再利用する、排水の回収方法が多く提案されている(例えば、特許文献1,2参照)。   When a product is aseptically filled into a container in a food factory or the like, a disinfectant is usually used to sterilize the container. As a disinfectant, a cleaning liquid in which acetic acid, peracetic acid and hydrogen peroxide are mixed is called oxonia and is widely used. The sterilized container is introduced into a cleaning facility in order to wash away the attached disinfectant. In the cleaning facility, a large amount of water is used to clean and drain the disinfectant adhering to the container. For this reason, in recent years when it is desired to reduce water resources in food factories, etc., many wastewater recovery methods have been proposed in which this wastewater is recovered by a cleaning wastewater treatment device (rinser wastewater treatment device) and reused in a cleaning facility. (For example, see Patent Documents 1 and 2).

洗浄排水(リンサー排水)の処理、回収方法としては、特許文献1に記載のように、含有する過酸化水素および過酢酸を活性炭等の触媒により酢酸にまで分解し、その後、アニオン交換樹脂を用いて酢酸を吸着し、得られた処理水を洗浄設備で再利用する方法が代表的である。また、この工程において、洗浄排水処理装置内での雑菌の繁殖を防ぐため、熱水殺菌、次亜塩素酸を用いた殺菌、UVを用いた殺菌等の殺菌処理が併用されることがある。   As described in Patent Document 1, hydrogen peroxide and peracetic acid are decomposed into acetic acid using a catalyst such as activated carbon, and then an anion exchange resin is used as a treatment and recovery method for washing waste water (rinser waste water). A typical method is to adsorb acetic acid and reuse the resulting treated water in a washing facility. Moreover, in this process, in order to prevent propagation of various germs in the washing waste water treatment apparatus, sterilization treatment such as hot water sterilization, sterilization using hypochlorous acid, and sterilization using UV may be used in combination.

一方で、このような洗浄排水処理装置を運転するとアルデヒド類等の有機物が洗浄排水処理装置内で検出されることがある。アルデヒド類等の有機物の溶出または生成メカニズムは明らかになっていないが、洗浄排水処理装置におけるいずれかの工程からの溶出か、またはリンスされている製品容器からの溶出等が想定される。アルデヒド類は、ホルムアルデヒドが水道水質基準で0.08mg/L、アセトアルデヒドについては要検討項目として挙げられており(2011年1月25日現在)、容器に残存する可能性があるリンス水が水道水質基準を超過しないことが望ましい。   On the other hand, when such a cleaning wastewater treatment apparatus is operated, organic substances such as aldehydes may be detected in the cleaning wastewater treatment apparatus. Although the elution or generation mechanism of organic substances such as aldehydes has not been clarified, elution from any step in the washing waste water treatment apparatus or elution from a rinsed product container is assumed. As for aldehydes, formaldehyde is 0.08 mg / L on the basis of tap water quality, and acetaldehyde is listed as an item to be examined (as of January 25, 2011). It is desirable not to exceed the standard.

洗浄排水の処理、回収においては、洗浄排水を精製して新たに洗浄水(リンサー水)として供給できる方法があるものの、洗浄設備から洗浄排水処理装置においてアルデヒド類等の有機物が溶出または生成してしまい、例えばホルムアルデヒドの水道水基準0.08mg/Lを超過してしまう場合があった。特許文献3にはアルデヒド類を含む被処理水中からアルデヒド類を除去する方法が提案されているものの、被処理水中の2ppmのホルムアルデヒドを1.1ppmまで除去する程度にとどまっており、その除去性能は乏しい。したがって、比較的高濃度のアルデヒド類を除去するためには、酸化処理設備など、多大な設備投資が必要となってしまう。   In the treatment and recovery of washing wastewater, there is a method that can be used to purify the washing wastewater and supply it as washing water (rinser water). However, organic substances such as aldehydes are eluted or generated from the washing equipment in the washing wastewater treatment equipment. For example, the formaldehyde tap water standard of 0.08 mg / L may be exceeded. Patent Document 3 proposes a method for removing aldehydes from the water to be treated containing aldehydes, but only 2 ppm of formaldehyde in the water to be treated is removed to 1.1 ppm. poor. Therefore, in order to remove a relatively high concentration of aldehydes, a great investment in equipment such as an oxidation treatment facility is required.

特開2001−129564号公報JP 2001-129564 A 特開2008−093511号公報JP 2008-093511 A 特開2010−247009号公報JP 2010-247909 A

本発明の目的は、低コストで洗浄排水処理装置内での有機物の濃縮を抑制し、かつ排水の回収率が高い洗浄排水の処理装置および洗浄排水の処理方法を提供することにある。   An object of the present invention is to provide a cleaning wastewater treatment device and a cleaning wastewater treatment method that suppresses the concentration of organic substances in the washing wastewater treatment device at a low cost and has a high wastewater recovery rate.

本発明は、原水を脱塩処理した脱塩処理水を使用する複数の設備を有する水使用設備における洗浄設備から排出される有機酸および有機物を含有する洗浄排水を処理する洗浄排水の処理装置であって、前記洗浄排水中の前記有機酸を還元処理する還元手段と、前記還元手段で処理された還元処理水に含まれるイオン成分を除去するイオン成分除去手段と、前記イオン成分除去手段で処理されて回収された回収水の少なくとも一部を前記脱塩処理よりも上流側に供給する回収水供給手段と、を備える洗浄排水の処理装置である。   The present invention is a treatment apparatus for washing wastewater for treating washing wastewater containing organic acids and organic matter discharged from washing equipment in a water use facility having a plurality of facilities using desalted treated water obtained by desalting raw water. A reduction means for reducing the organic acid in the washing waste water, an ionic component removal means for removing ionic components contained in the reduction treated water treated by the reduction means, and a treatment by the ionic component removal means And a recovered water supply means for supplying at least a part of the recovered water recovered to the upstream side of the desalting process.

また、本発明は、原水を脱塩処理した脱塩処理水を使用する複数の設備を有する水使用設備における洗浄設備から排出される有機酸および有機物を含有する洗浄排水を処理する洗浄排水の処理方法であって、前記洗浄排水中の前記有機酸を還元処理する還元工程と、前記還元工程で処理された還元処理水に含まれるイオン成分を除去するイオン成分除去工程と、前記イオン成分除去工程で処理されて回収された回収水の少なくとも一部を前記脱塩処理よりも上流側に供給する回収水供給工程と、を含む洗浄排水の処理方法である。   In addition, the present invention is a treatment of washing wastewater that treats washing wastewater containing organic acids and organic matter discharged from washing equipment in a water use facility having a plurality of facilities that use desalted treated water obtained by desalting raw water. A reduction process for reducing the organic acid in the washing waste water, an ionic component removal process for removing ionic components contained in the reduced water treated in the reduction process, and the ionic component removal process And a recovered water supply step of supplying at least a part of the recovered water that has been processed and recovered to the upstream side of the desalting process.

本発明では、原水を脱塩処理した脱塩処理水を使用する複数の設備を有する水使用設備における洗浄設備から排出される有機酸および有機物を含有する洗浄排水を処理する洗浄排水の処理において、還元処理およびイオン成分除去処理されて回収された回収水の少なくとも一部を脱塩処理よりも上流側に供給することにより、低コストで洗浄排水処理装置内での有機物の濃縮を抑制し、かつ排水の回収率が高い洗浄排水の処理装置および洗浄排水の処理方法を提供することができる。   In the present invention, in the treatment of washing wastewater for treating washing wastewater containing organic acids and organic matter discharged from washing equipment in a water use facility having a plurality of facilities using desalted treated water obtained by desalting raw water, By supplying at least a part of the recovered water recovered by the reduction treatment and the ionic component removal treatment to the upstream side of the desalting treatment, the concentration of organic substances in the washing waste water treatment apparatus is suppressed at a low cost, and A wastewater treatment apparatus and a wastewater treatment method having a high wastewater recovery rate can be provided.

本発明の実施形態に係る洗浄排水処理装置の一例を示す概略構成図である。It is a schematic structure figure showing an example of the washing drainage processing device concerning the embodiment of the present invention. 実施例で用いた洗浄排水処理装置を示す概略構成図である。It is a schematic block diagram which shows the washing | cleaning waste water treatment apparatus used in the Example. 本発明の実施例における水バランスを示す図である。It is a figure which shows the water balance in the Example of this invention. 実施例で用いたろ過装置を示す概略構成図である。It is a schematic block diagram which shows the filtration apparatus used in the Example.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

本発明者らは、洗浄設備から洗浄排水処理装置の工程におけるアルデヒド類等の有機物の生成量について検討を行った。その結果、洗浄設備から洗浄排水処理装置を一度通過しただけではアルデヒド類等の有機物がほとんど検出されないこと、洗浄排水処理装置を循環して通過するのに比例してアルデヒド類等の有機物の濃度が上昇し、やがて検出可能な濃度レベルを超えることを明らかにした。このことはつまり、洗浄排水処理装置を用いて排水を処理、回収し、洗浄水として再び利用する場合、洗浄排水処理装置における排水の回収率を高めれば高めるほど、アルデヒド類等の有機物の濃度が高濃度となることを意味する。   The inventors of the present invention examined the amount of organic substances such as aldehydes in the process of the cleaning wastewater treatment apparatus from the cleaning equipment. As a result, organic substances such as aldehydes are hardly detected by only passing through the cleaning wastewater treatment apparatus once from the cleaning facility, and the concentration of organic substances such as aldehydes is proportional to the circulation through the cleaning wastewater treatment apparatus. It was revealed that it rose and eventually exceeded a detectable concentration level. This means that when wastewater is treated and recovered using a cleaning wastewater treatment device and reused as cleaning water, the higher the wastewater recovery rate in the cleaning wastewater treatment device, the higher the concentration of organic substances such as aldehydes. Means high concentration.

一方で本発明者らは、洗浄設備等に導入される原水を脱塩処理するRO設備等の脱塩処理設備ではアルデヒド類等の有機物がほとんど濃縮しないことを明らかにした。そこで、本実施形態においては、洗浄排水処理装置で回収された回収水の少なくとも一部を、洗浄設備よりもさらに上流の脱塩処理設備における脱塩工程より上流側へ送水することで、RO膜処理工程等の脱塩処理工程でアルデヒド類等の有機物がほとんど濃縮されることなく、洗浄排水処理装置で回収された回収水を洗浄水として再び利用する場合におけるアルデヒド類等の有機物の濃縮が抑制され、高価な付帯設備を用いなくても、排水の回収率が高い、洗浄排水の処理システムおよび洗浄排水の処理方法を提供するものである。これにより、低コストで洗浄排水処理装置内でのアルデヒド類等の有機物の濃縮を抑制し、かつ水資源を節減することができる。   On the other hand, the present inventors have clarified that organic substances such as aldehydes are hardly concentrated in a desalination treatment facility such as an RO facility that desalinates raw water introduced into a cleaning facility or the like. Therefore, in the present embodiment, at least a part of the recovered water recovered by the cleaning wastewater treatment apparatus is sent to the upstream side of the desalination step in the desalination processing facility further upstream than the cleaning facility, thereby the RO membrane. Organic substances such as aldehydes are hardly concentrated in the desalination process such as treatment process, and the concentration of organic substances such as aldehydes is suppressed when the recovered water collected by the washing wastewater treatment equipment is reused as washing water. Therefore, the present invention provides a washing wastewater treatment system and a washing wastewater treatment method that have a high wastewater recovery rate without using expensive incidental facilities. Thereby, concentration of organic substances, such as aldehydes, in the washing waste water treatment apparatus can be suppressed at low cost, and water resources can be saved.

本発明の実施形態に係る洗浄排水処理装置の一例の概略を図1に示し、その構成について説明する。洗浄排水処理装置1は、還元手段として還元装置10と、イオン成分除去手段としてイオン成分除去装置12とを備える。洗浄排水処理装置1は、殺菌手段として殺菌装置14を備えてもよく、殺菌装置14の後段に回収水貯槽(図示せず)を備えてもよい。   An outline of an example of a cleaning wastewater treatment apparatus according to an embodiment of the present invention is shown in FIG. The cleaning waste water treatment apparatus 1 includes a reduction device 10 as a reduction unit and an ion component removal device 12 as an ion component removal unit. The cleaning waste water treatment apparatus 1 may include a sterilization device 14 as a sterilization unit, and may include a recovered water storage tank (not shown) in the subsequent stage of the sterilization device 14.

図1の洗浄排水処理装置1において、水を使用する複数の設備を有する水使用設備32における洗浄設備34からの洗浄排水配管16が還元装置10の入口に接続され、還元装置10の出口とイオン成分除去装置12の入口とが還元処理水配管18により接続され、イオン成分除去装置12の出口と殺菌装置14の入口とがイオン成分除去処理水配管20により接続され、殺菌装置14の出口は、殺菌処理水配管22により洗浄設備34の洗浄水入口に接続されている。また、殺菌処理水配管22は、原水槽26へ殺菌処理水の少なくとも一部を回収水として供給する回収水供給手段としての回収水供給配管24により原水槽26と接続されている。原水槽26の出口と微粒子除去装置28の入口とが原水配管36により接続され、微粒子除去装置28の出口と脱塩装置30の入口とが微粒子除去処理水配管38により接続され、脱塩装置30の出口は、洗浄設備34を含む水使用設備32へ脱塩処理水の少なくとも一部を供給する脱塩処理水供給手段としての脱塩処理水供給配管40により水使用設備32と接続されている。水使用設備32には、排水を排出するための排水配管42が接続されている。   In the cleaning wastewater treatment apparatus 1 of FIG. 1, the cleaning drainage pipe 16 from the cleaning facility 34 in the water use facility 32 having a plurality of facilities that use water is connected to the inlet of the reduction device 10, and the outlet of the reduction device 10 and the ions The inlet of the component removal device 12 is connected by a reduction treatment water pipe 18, the outlet of the ionic component removal device 12 and the inlet of the sterilization device 14 are connected by an ionic component removal treatment water pipe 20, and the outlet of the sterilization device 14 is The sterilization water pipe 22 is connected to the cleaning water inlet of the cleaning facility 34. The sterilized water pipe 22 is connected to the raw water tank 26 by a recovered water supply pipe 24 as a recovered water supply means for supplying at least a part of the sterilized water to the raw water tank 26 as recovered water. The outlet of the raw water tank 26 and the inlet of the particulate removing device 28 are connected by a raw water pipe 36, and the outlet of the particulate removing device 28 and the inlet of the desalting device 30 are connected by a particulate removing treated water piping 38. Is connected to the water use facility 32 by a desalinized water supply pipe 40 as a desalinized water supply means for supplying at least a part of the desalinized water to the water use facility 32 including the cleaning facility 34. . A drainage pipe 42 for discharging the wastewater is connected to the water use facility 32.

本実施形態に係る洗浄排水の処理方法および洗浄排水処理装置1の動作について説明する。   The cleaning wastewater treatment method and the operation of the cleaning wastewater treatment apparatus 1 according to the present embodiment will be described.

水使用設備32で使用される原水は、原水槽26に貯留された後、原水配管36を通して微粒子除去装置28へ送液され、微粒子除去装置28において原水に含まれる微粒子等が除去される(微粒子除去工程)。微粒子が除去された微粒子除去処理水は、微粒子除去処理水配管38を通して脱塩装置30へ送液され、脱塩装置30において脱塩処理されて微粒子除去処理水に含まれる塩分等が除去される(脱塩工程)。脱塩処理された脱塩処理水は、脱塩処理水供給配管40を通して水使用設備32に供給され、水使用設備32における洗浄設備34を含む複数の設備において脱塩処理水が使用される。水使用設備32からの排水の少なくとも一部は排水配管42を通して排出される。なお、原水の性状等に応じて、微粒子除去工程を省略してもよい。   The raw water used in the water use facility 32 is stored in the raw water tank 26 and then sent to the fine particle removing device 28 through the raw water pipe 36, and the fine particles contained in the raw water are removed in the fine particle removing device 28 (fine particles). Removal step). The fine particle removal treated water from which the fine particles have been removed is sent to the desalination apparatus 30 through the fine particle removal treatment water pipe 38, and is desalted in the desalination apparatus 30 to remove salt and the like contained in the fine particle removal treatment water. (Desalting step). The desalted treated water that has been desalted is supplied to the water use facility 32 through the desalted treated water supply pipe 40, and the desalted treated water is used in a plurality of facilities including the cleaning facility 34 in the water use facility 32. At least a part of the waste water from the water use facility 32 is discharged through the drain pipe 42. The fine particle removal step may be omitted depending on the properties of the raw water.

洗浄、殺菌用の有機酸が脱塩処理水に添加された有機酸含有洗浄水が洗浄設備34へ供給され、洗浄設備34において、例えば、飲料製品の充填前のペットボトル等の容器が洗浄、殺菌される。洗浄、殺菌の後、容器に残留した有機酸等が洗浄水で流される。洗浄設備34において発生した有機酸等を含む洗浄排水(リンサー排水)の少なくとも一部は、洗浄排水配管16を通して洗浄排水処理装置1の還元装置10へ送液され、還元装置10において還元処理される(還元工程)。還元装置10で処理された還元処理水は、還元処理水配管18を通してイオン成分除去装置12へ送液され、含まれるイオン成分が除去される(イオン成分除去工程)。イオン成分除去装置12で処理されたイオン成分除去処理水は、イオン成分除去処理水配管20を通して殺菌装置14へ送液され、殺菌処理される(殺菌工程)。殺菌装置14で処理された殺菌処理水の少なくとも一部は、殺菌処理水配管22を通して洗浄設備34へ循環され、洗浄水として再び利用される。また、殺菌処理水の少なくとも一部は、回収水として回収水供給配管24を通して脱塩装置30よりも上流側である原水槽26へ供給される。回収水は、原水槽26において原水と混合され、再利用される。   Organic acid-containing cleaning water in which an organic acid for cleaning and sterilization is added to desalted water is supplied to the cleaning facility 34. In the cleaning facility 34, for example, containers such as PET bottles before filling of beverage products are cleaned. Sterilized. After washing and sterilization, the organic acid remaining in the container is washed away with washing water. At least a part of the cleaning wastewater (rinser wastewater) containing organic acid and the like generated in the cleaning equipment 34 is sent to the reduction device 10 of the cleaning wastewater treatment device 1 through the cleaning drainage pipe 16 and reduced in the reduction device 10. (Reduction process). The reduced treated water treated by the reducing device 10 is sent to the ionic component removing device 12 through the reduced treated water pipe 18 and the contained ionic components are removed (ionic component removing step). The ionic component removal treated water treated by the ionic component removal device 12 is sent to the sterilizer 14 through the ionic component removal treated water pipe 20 and sterilized (sterilization process). At least a portion of the sterilized water treated by the sterilizer 14 is circulated to the cleaning facility 34 through the sterilized water pipe 22 and reused as the cleaning water. Further, at least a part of the sterilized water is supplied as recovered water to the raw water tank 26 that is upstream of the desalting apparatus 30 through the recovered water supply pipe 24. The recovered water is mixed with the raw water in the raw water tank 26 and reused.

殺菌処理水の少なくとも一部は、回収水として脱塩装置30よりも上流側に供給されればよく、原水槽26へ送液される他に、原水配管36や微粒子除去処理水配管38へ供給されてもよい。   At least a part of the sterilized water may be supplied to the upstream side of the desalting apparatus 30 as recovered water. In addition to being fed to the raw water tank 26, it is supplied to the raw water pipe 36 and the particulate removal treated water pipe 38. May be.

水使用設備32の一部にある洗浄設備34では、一般的に、水使用設備32で使用される脱塩処理水全体の1/10程度の水が使用される。洗浄設備34では、例えば、容器の殺菌等が行われ、その後、容器に残留した有機酸等が洗浄水(リンサー水)で流される。この洗浄排水には、有機酸および有機物等が含まれる。有機酸としては、酢酸、過酢酸等が挙げられ、殺菌剤としてオキソニア(酢酸、過酢酸、過酸化水素の混合物)が用いられた場合は、有機酸の他に過酸化水素が含まれていてもよい。洗浄設備34で発生した有機酸および有機物を含む洗浄排水の少なくとも一部は、上記の通り、洗浄排水処理システム1において処理される。   In the cleaning facility 34 in a part of the water use facility 32, generally, about 1/10 of the total desalted water used in the water use facility 32 is used. In the cleaning facility 34, for example, the container is sterilized, and then the organic acid remaining in the container is flushed with cleaning water (rincer water). This washing waste water contains organic acids and organic substances. Examples of organic acids include acetic acid and peracetic acid. When oxonia (a mixture of acetic acid, peracetic acid, and hydrogen peroxide) is used as a disinfectant, hydrogen peroxide is included in addition to the organic acid. Also good. As described above, at least a part of the cleaning wastewater containing the organic acid and organic matter generated in the cleaning facility 34 is processed in the cleaning wastewater treatment system 1.

この回収水には、例えば、ホルムアルデヒド、アセトアルデヒド等のアルデヒド類、アルコール類、有機塩素化合物に代表される有機溶剤等の有機物を含むことがある。この回収水を洗浄設備34の原水槽等へ返送すると、洗浄設備34内でアルデヒド類等の有機物の除去機構がないことから、系内でアルデヒド類等の有機物の濃縮が起こり、例えばホルムアルデヒドについて水道水基準である0.08mg/Lを超過してしまうことがある。   The recovered water may contain, for example, aldehydes such as formaldehyde and acetaldehyde, alcohols, and organic substances such as organic solvents represented by organic chlorine compounds. When this recovered water is returned to the raw water tank or the like of the cleaning facility 34, there is no mechanism for removing organic substances such as aldehydes in the cleaning facility 34. Therefore, concentration of organic substances such as aldehydes occurs in the system. The water standard of 0.08 mg / L may be exceeded.

本実施形態では、回収水の全量もしくは一部を、水使用設備32全体の原水槽26へと返送することで、系内でのアルデヒド類等の有機物の濃縮を抑制することが可能となる。   In the present embodiment, it is possible to suppress the concentration of organic substances such as aldehydes in the system by returning all or part of the recovered water to the raw water tank 26 of the entire water use facility 32.

水使用設備32全体の原水槽26へ返送された回収水中のアルデヒド類等の有機物は、水使用設備32の使用水量に対する洗浄設備34での使用水量に応じて希釈されることで、ほとんど検出限界以下まで濃度が低下することになる。原水槽26から微粒子除去工程を経て脱塩工程において、RO膜処理工程等がある場合でも、後述する実施例に示すように、RO膜処理工程等で非意図的に濃縮されることはほとんどない。   Organic matter such as aldehydes in the recovered water returned to the raw water tank 26 of the entire water use facility 32 is almost detected by being diluted according to the amount of water used in the cleaning facility 34 with respect to the amount of water used in the water use facility 32. The concentration will decrease to: Even if there is an RO membrane treatment step in the desalting step from the raw water tank 26 through the fine particle removal step, it is rarely unintentionally concentrated in the RO membrane treatment step, etc., as shown in the examples described later. .

このようにして、再び洗浄設備34へ供給される水はアルデヒド類等の有機物をほとんど含まない。一方で、洗浄排水は回収水としてほとんど全てを水使用設備32全体の原水槽26にて回収することができ、それに応じて井戸水、工水、上水等の原水の使用量を低減することができる。   In this way, the water supplied again to the cleaning facility 34 contains almost no organic matter such as aldehydes. On the other hand, almost all of the washing waste water can be recovered as recovered water in the raw water tank 26 of the entire water use facility 32, and the amount of raw water used such as well water, industrial water, and clean water can be reduced accordingly. it can.

洗浄排水処理装置内での有機物の濃縮を抑制するためには、水使用設備32の使用水量に対する洗浄設備34での使用水量の割合はできるだけ小さい方がよいが、例えば、水使用設備32の使用水量に対する洗浄設備34での使用水量の割合は、60%以下程度が好ましく、54%以下がより好ましい。また、洗浄排水処理装置1で処理された処理水(例えば、殺菌処理水)の量に対する原水槽26への回収水の供給量の割合は、処理水量中の有機物量等に応じて決めればよく、例えば、35%以下程度であればよい。   In order to suppress the concentration of organic matter in the cleaning wastewater treatment apparatus, the ratio of the amount of water used in the cleaning facility 34 to the amount of water used in the water using facility 32 is preferably as small as possible. The ratio of the amount of water used in the cleaning facility 34 to the amount of water is preferably about 60% or less, and more preferably 54% or less. Moreover, the ratio of the supply amount of the recovered water to the raw water tank 26 with respect to the amount of treated water (for example, sterilized treated water) treated by the cleaning wastewater treatment apparatus 1 may be determined according to the amount of organic matter in the treated water amount. For example, it may be about 35% or less.

還元装置10としては、少なくとも有機酸を還元処理するものであればよく、特に限定されない。還元装置10としては、例えば、活性炭を充填した装置、触媒を充填した装置等が挙げられ、費用対効果等の点から、活性炭を充填した装置が好ましい。   The reducing device 10 is not particularly limited as long as it can reduce at least an organic acid. Examples of the reducing device 10 include a device filled with activated carbon, a device filled with a catalyst, and the like. From the viewpoint of cost effectiveness, a device filled with activated carbon is preferable.

イオン成分除去装置12としては、過酢酸等が還元装置で分解されて発生した酢酸イオン等のイオン成分を少なくとも除去するものであればよく、特に限定されない。イオン成分除去装置12としては、例えば、イオン交換樹脂を充填したイオン交換装置、RO膜を備えたろ過装置等が挙げられ、水回収率等の点から、イオン交換樹脂を充填したイオン交換装置が好ましい。イオン交換樹脂としては、カチオン交換樹脂、アニオン交換樹脂、カチオン交換樹脂およびアニオン交換樹脂の混床等が用いられる。   The ion component removing device 12 is not particularly limited as long as it removes at least ion components such as acetate ions generated by decomposition of peracetic acid or the like by a reducing device. Examples of the ion component removal device 12 include an ion exchange device filled with an ion exchange resin, a filtration device equipped with an RO membrane, and the ion exchange device filled with an ion exchange resin in terms of water recovery rate. preferable. As the ion exchange resin, a cation exchange resin, an anion exchange resin, a mixed bed of a cation exchange resin and an anion exchange resin, or the like is used.

殺菌装置14としては、少なくとも殺菌するものであればよく、特に限定されない。殺菌装置14としては、例えば、塩素殺菌装置、熱水殺菌装置、UV殺菌装置等が挙げられるが、連続性および装置のコンパクトさ、添加物を要しない等の点からUV殺菌装置が好ましい。また、設備全体を停止して熱水殺菌を2〜3日の間隔で行うことで、さらなる殺菌効果を上げることができる。   The sterilizer 14 is not particularly limited as long as it can sterilize at least. Examples of the sterilization device 14 include a chlorine sterilization device, a hot water sterilization device, and a UV sterilization device, but a UV sterilization device is preferable in terms of continuity, compactness of the device, and no need for additives. Moreover, the further sterilization effect can be improved by stopping the whole equipment and performing hot water sterilization at intervals of 2-3 days.

殺菌装置14は、少なくとも254nmの波長の紫外線を照射するものであればよい。紫外線を照射する装置には、185〜254nmの紫外線を発光するものや、185nmがカットされて発光するもの等がある。殺菌装置14としては、例えば、185〜254nmの紫外線を発光するUVランプを備え、波長185nmがフィルタによりカットされているUV酸化装置を使用すればよい。   The sterilizer 14 may be anything that irradiates ultraviolet rays having a wavelength of at least 254 nm. As an apparatus for irradiating ultraviolet rays, there are an apparatus that emits ultraviolet rays of 185 to 254 nm, an apparatus that emits light by cutting 185 nm, and the like. As the sterilization apparatus 14, for example, a UV oxidation apparatus that includes a UV lamp that emits ultraviolet rays of 185 to 254 nm and has a wavelength of 185 nm cut by a filter may be used.

水使用設備32全体の原水槽26へは、井戸水、工水、上水等から少なくとも一つ以上選ばれる原水が供給される。   The raw water tank 26 of the entire water use facility 32 is supplied with raw water selected from at least one of well water, industrial water, clean water and the like.

微粒子除去装置28としては、砂ろ過装置、加圧浮上装置、膜ろ過装置等が主に用いられる。   As the fine particle removing device 28, a sand filtration device, a pressure levitation device, a membrane filtration device or the like is mainly used.

脱塩装置30としては、RO膜処理装置やイオン交換樹脂を含むイオン交換装置等が挙げられる。RO膜は主に超低圧膜が好ましく使用される。また、原水がシリカを多く含む水の場合は、アルカリ性にしてRO膜へ通水したり、イオン交換樹脂塔を併用したり、イオン交換樹脂単独で脱塩処理してもよい。   Examples of the desalting apparatus 30 include an RO membrane treatment apparatus and an ion exchange apparatus including an ion exchange resin. The RO membrane is preferably an ultra-low pressure membrane. In addition, when the raw water contains a lot of silica, it may be made alkaline and passed through the RO membrane, or an ion exchange resin tower may be used in combination, or the ion exchange resin alone may be desalted.

脱塩処理された脱塩処理水は、水使用設備32において、ボトリング水(製品製造)や洗浄水等として利用される。そのうち、比較的清浄な水は必要に応じて膜処理等を行った後、再利用されてもよい。   The desalted water that has been desalted is used as bottling water (product manufacturing), washing water, and the like in the water use facility 32. Among them, relatively clean water may be reused after performing membrane treatment or the like as necessary.

水使用設備32としては、例えば、飲料産業における飲料製品の充填前のペットボトル等の容器の洗浄を行う洗浄設備、製品充填後の缶製品を殺菌する洗浄設備等を含む水使用設備が挙げられる。   Examples of the water use facility 32 include water use facilities including a cleaning facility for cleaning containers such as PET bottles before filling of beverage products in the beverage industry, and a cleaning facility for sterilizing can products after product filling. .

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

<実施例1>
洗浄設備から洗浄排水処理装置の工程を模擬し、アルデヒド類の溶出量の確認試験を行った。実験装置図を図2に示す。図2の洗浄排水処理装置において、還元装置10の出口とイオン成分除去装置12の入口とを還元処理水配管18により接続し、イオン成分除去装置12の出口と殺菌装置14の入口とをイオン成分除去処理水配管20により接続し、還元装置10の前段に原水槽44を設置し、殺菌装置14の出口を、回収水供給配管24により原水槽44と接続し、原水槽44の出口と還元装置10の入口とを原水配管48により接続した。原水配管48にはポンプ46を設置した。
<Example 1>
The process of the washing waste water treatment equipment was simulated from the washing equipment, and a confirmation test of the amount of aldehydes eluted was conducted. An experimental apparatus diagram is shown in FIG. 2, the outlet of the reducing device 10 and the inlet of the ionic component removing device 12 are connected by a reducing water pipe 18, and the outlet of the ionic component removing device 12 and the inlet of the sterilizing device 14 are connected. Connected by the removal treated water pipe 20, the raw water tank 44 is installed in the preceding stage of the reducing device 10, the outlet of the sterilizer 14 is connected to the raw water tank 44 by the recovered water supply pipe 24, and the outlet of the raw water tank 44 and the reducing device Ten inlets were connected by raw water piping 48. A pump 46 is installed in the raw water pipe 48.

各装置としては以下のものを使用した。
還元装置:活性炭充填(1L)
イオン成分除去装置:カチオンおよびアニオン交換樹脂の混床式(カチオン:800mL、アニオン:1600mL)
殺菌装置:UV照射装置(UVランプ:ニッポ電機社製、型式SGL−500T4U)
なお、UVランプは、185〜254nmの紫外線を発光するものであり、波長185nmがフィルタによりカットされているものである。UV照射量は50mJ/cmである。
The following devices were used as each device.
Reduction device: Activated carbon filling (1L)
Ion component removal device: mixed bed type of cation and anion exchange resin (cation: 800 mL, anion: 1600 mL)
Sterilizer: UV irradiation device (UV lamp: manufactured by Nippon Electric Co., Ltd., model SGL-500T4U)
The UV lamp emits ultraviolet light having a wavelength of 185 to 254 nm, and has a wavelength of 185 nm cut by a filter. The UV irradiation amount is 50 mJ / cm 2 .

[実験条件]
・原水:純水(イオン交換樹脂により脱塩処理したもの)+オキソニア(エコラボ社製オキソニアアクティブ90)
・オキソニア濃度:1,000mg/L
・原水流量:10L/h
・装置内全保有水合計量(原水流量に比例で実機サイズを模擬):10L
[Experimental conditions]
・ Raw water: Pure water (demineralized with ion exchange resin) + Oxonia (Oxonia Active 90 manufactured by Ecolab)
Oxonia concentration: 1,000 mg / L
・ Raw water flow rate: 10L / h
・ Total amount of water held in the device (simulating actual machine size in proportion to raw water flow rate): 10L

実験条件より、洗浄排水処理装置内の保有水が装置全体を循環するのにかかる時間は1hである。循環回数毎に殺菌装置出口で回収水をサンプリングし、厚生労働省告示第261号別表第19に準拠してホルムアルデヒドを分析した結果を表1に示す。   From the experimental conditions, the time required for the retained water in the cleaning wastewater treatment apparatus to circulate the entire apparatus is 1 h. Table 1 shows the results of sampling the collected water at the outlet of the sterilizer for each circulation and analyzing the formaldehyde according to Schedule 19 of the Ministry of Health, Labor and Welfare Notification No. 261.

表1より、洗浄排水を回収して再利用し続けることで、ホルムアルデヒド濃度が洗浄排水処理装置内で水道水水質基準である0.08mg/Lを超えることがわかる。洗浄設備から洗浄排水処理装置の工程において、洗浄設備内での水の回収率(再利用率)が例えば90%であるとすると、1/(1−0.9)=10回、系内で水が循環することとなる。このとき、表1よりホルムアルデヒド濃度が0.22mg/Lとなることがわかる。このように、洗浄設備から洗浄排水処理装置の工程において、系内でホルムアルデヒド等の有機物が溶出または生成することがある場合、水の回収率を高めようとすると系内濃縮するため、回収水として適切な水質が得られにくいことがわかる。   From Table 1, it can be seen that the formaldehyde concentration exceeds 0.08 mg / L, which is the quality standard for tap water in the cleaning wastewater treatment apparatus, by continuously recovering and recycling the cleaning wastewater. If the recovery rate (reuse rate) of water in the cleaning facility is 90% in the process from the cleaning facility to the cleaning wastewater treatment device, for example, 1 / (1-0.9) = 10 times in the system. Water will circulate. At this time, it can be seen from Table 1 that the formaldehyde concentration is 0.22 mg / L. In this way, when organic substances such as formaldehyde may elute or form in the system in the process of the cleaning wastewater treatment equipment from the cleaning facility, if the recovery rate of water is increased in the system, it will be concentrated in the system. It turns out that appropriate water quality is difficult to obtain.

一方で、本実験における循環1回の水質はホルムアルデヒド濃度0.01mg/Lであり、水道水基準を満たす水質であった。この水質の水を洗浄設備の上流で脱塩処理よりも上流側にあたる原水槽へ返送した場合を考える。想定として、原水の脱塩装置(ここではRO設備)による回収率Xを85%、水使用設備から排出された水の脱塩装置(ここではRO設備)による回収率Yを60%、水使用設備内における洗浄設備の水使用率Sを供給量の10%とした。このとき、原水槽から原水の脱塩装置に流入する水量を1としたときの水バランスを図3に示す。   On the other hand, the water quality of one circulation in this experiment was a water quality satisfying the tap water standard with a formaldehyde concentration of 0.01 mg / L. Consider the case where this water is returned to the raw water tank upstream from the desalination treatment upstream of the washing equipment. Assuming that the recovery rate X of the raw water demineralizer (here RO equipment) is 85%, the recovery rate Y of the water discharged from the water using equipment (here RO equipment) is 60%, water usage The water usage rate S of the cleaning equipment in the equipment was 10% of the supply amount. At this time, FIG. 3 shows the water balance when the amount of water flowing from the raw water tank to the raw water desalting apparatus is 1.

(1)図3で示した水バランスにおいて、原水槽での洗浄設備からの希釈倍率を計算すると次式となる。

[1]
X:原水のRO設備回収率
Y:水使用設備から排出された水のRO設備による回収率
S:水使用設備内における洗浄設備の水使用率
R:原水槽での洗浄設備からの希釈倍率
式[1]より、今回のケースでは、X=0.85、Y=0.60、S=0.1を代入すると、R≒5.4となる。
(2)原水槽では、洗浄設備に供給されるホルムアルデヒド濃度をZmg/Lとすると、1/0.1848=5.4倍に希釈された濃度であると考えられる。
(0.01+Z)/5.4[mg/L]・・・[2]
(3)式[2]=Zmg/Lであるので、Z=(0.01+Z)/5.4の方程式を解くと、Z≒0.0023mg/Lとなる。
(1) In the water balance shown in FIG. 3, when the dilution rate from the cleaning equipment in the raw water tank is calculated, the following equation is obtained.

[1]
X: RO facility recovery rate of raw water Y: Recovery rate by RO facility of water discharged from water usage facility S: Water usage rate of cleaning facility in water usage facility R: Dilution ratio from cleaning facility in raw water tank From [1], in this case, when X = 0.85, Y = 0.60, and S = 0.1 are substituted, R≈5.4.
(2) In the raw water tank, if the concentration of formaldehyde supplied to the cleaning facility is Zmg / L, it is considered that the concentration is 1 / 0.1848 = 5.4 times diluted.
(0.01 + Z) /5.4 [mg / L] ... [2]
(3) Since Equation [2] = Zmg / L, when Z = (0.01 + Z) /5.4 is solved, Z≈0.0023 mg / L.

以上より、洗浄排水処理装置でホルムアルデヒドが0.01mg/L発生したとして、回収水の全量を原水槽に返送すると、洗浄設備内での回収率は100%となり、各設備における水質は表2に示すようになると計算される。   From the above, assuming that 0.01 mg / L of formaldehyde is generated in the cleaning wastewater treatment device, when the entire amount of recovered water is returned to the raw water tank, the recovery rate in the cleaning facility is 100%, and the water quality in each facility is shown in Table 2. Calculated as shown.

表2より、本実施例によれば、水使用設備全体の原水槽へ回収水を返送することで、設備全体の水質を基準値以下に保ちつつ、洗浄設備で使用された水のほぼ全量が回収可能となることがわかる。   From Table 2, according to the present example, by returning the recovered water to the raw water tank of the entire water-using facility, the water quality of the entire facility is kept below the reference value, and almost the total amount of water used in the cleaning facility is It can be seen that it can be collected.

図3において前段のRO設備をイオン交換樹脂に変更して回収率を挙げた場合X=1を式[1]に代入することで、希釈倍率を求めることができる。後段のRO設備を設置しない場合、Y=0を式[1]に代入することで希釈倍率を求めることができる。また、式[1]においてR<1を示す場合は、系内濃縮が起こっていることを意味する。   In FIG. 3, when the RO equipment in the previous stage is changed to an ion exchange resin and the recovery rate is given, the dilution ratio can be obtained by substituting X = 1 into the equation [1]. When the downstream RO equipment is not installed, the dilution factor can be obtained by substituting Y = 0 into the equation [1]. Further, when R <1 in the formula [1], it means that the system is concentrated.

図3において、ホルムアルデヒドの溶出濃度が0.01mg/L以上であるとき、X=1として最大の回収率とし、Y=0.85としてRO膜の最大の回収率とした場合、洗浄設備に供給される水が水使用設備全体の54%を超えると、確実に全量を原水槽へ返送したとしても水道基準値である0.08mg/Lを超過してしまう。したがって、洗浄設備に供給される水は、水使用設備全体の54%以下が望ましい。   In FIG. 3, when the elution concentration of formaldehyde is 0.01 mg / L or more, X = 1 is the maximum recovery rate, and Y = 0.85 is the maximum RO membrane recovery rate. If the amount of water used exceeds 54% of the entire water use facility, even if the entire amount is surely returned to the raw water tank, it will exceed the water supply standard value of 0.08 mg / L. Therefore, it is desirable that the water supplied to the cleaning facility is 54% or less of the entire water use facility.

[RO膜によるホルムアルデヒドの濃縮]
図4に示すようなRO膜52(超低圧膜:オルガノ製、OFR−140HJ8)を備えるろ過装置50を用いて、純水中にホルムアルデヒドを添加した試料液を上部に充填し、窒素ガスで圧力をかけ、2mL/minでRO膜を介して試料の50%を透過させ、透過液のアルデヒド類の濃度を測定した。結果を表3に示す。
[Concentration of formaldehyde by RO membrane]
Using a filtration device 50 equipped with an RO membrane 52 (ultra-low pressure membrane: made by Organo, OFR-140HJ8) as shown in FIG. 50% of the sample was permeated through the RO membrane at 2 mL / min, and the concentration of aldehydes in the permeate was measured. The results are shown in Table 3.

表3より、RO膜はホルムアルデヒドをほとんど濃縮しないことがわかる。   Table 3 shows that the RO membrane hardly concentrates formaldehyde.

1 洗浄排水処理装置、10 還元装置、12 イオン成分除去装置、14 殺菌装置、16 洗浄排水配管、18 還元処理水配管、20 イオン成分除去処理水配管、22 殺菌処理水配管、24 回収水供給配管、26,44 原水槽、28 微粒子除去装置、30 脱塩装置、32 水使用設備、34 洗浄設備、36,48 原水配管、38 微粒子除去処理水配管、40 脱塩処理水供給配管、42 排水配管、46 ポンプ、50 ろ過装置、52 RO膜。   DESCRIPTION OF SYMBOLS 1 Washing wastewater treatment apparatus, 10 Reduction | restoration apparatus, 12 Ion component removal apparatus, 14 Sterilization apparatus, 16 Washing drain piping, 18 Reduction processing water piping, 20 Ion component removal processing water piping, 22 Sterilization processing water piping, 24 Recovery water supply piping , 26, 44 Raw water tank, 28 Fine particle removal device, 30 Desalination device, 32 Water use facility, 34 Cleaning facility, 36,48 Raw water piping, 38 Fine particle removal treated water piping, 40 Desalinated treated water supply piping, 42 Drainage piping , 46 pump, 50 filtration device, 52 RO membrane.

Claims (2)

原水を脱塩処理した脱塩処理水を使用する複数の設備を有する水使用設備における洗浄設備から排出される有機酸および有機物を含有する洗浄排水を処理する洗浄排水の処理装置であって、
前記洗浄排水中の前記有機酸を還元処理する還元手段と、
前記還元手段で処理された還元処理水に含まれるイオン成分を除去するイオン成分除去手段と、
前記イオン成分除去手段で処理されて回収された回収水の少なくとも一部を前記脱塩処理よりも上流側に供給する回収水供給手段と、
を備えることを特徴とする洗浄排水の処理装置。
A wastewater treatment apparatus for treating wastewater containing organic acids and organic matter discharged from a washing facility in a water-using facility having a plurality of facilities that use desalted treated water obtained by desalting raw water,
Reducing means for reducing the organic acid in the washing waste water;
Ionic component removal means for removing ionic components contained in the reduced treated water treated by the reduction means;
Recovered water supply means for supplying at least a part of recovered water treated and recovered by the ion component removing means to the upstream side of the desalting treatment;
A cleaning wastewater treatment apparatus comprising:
原水を脱塩処理した脱塩処理水を使用する複数の設備を有する水使用設備における洗浄設備から排出される有機酸および有機物を含有する洗浄排水を処理する洗浄排水の処理方法であって、
前記洗浄排水中の前記有機酸を還元処理する還元工程と、
前記還元工程で処理された還元処理水に含まれるイオン成分を除去するイオン成分除去工程と、
前記イオン成分除去工程で処理されて回収された回収水の少なくとも一部を前記脱塩処理よりも上流側に供給する回収水供給工程と、
を含むことを特徴とする洗浄排水の処理方法。
A treatment method for washing wastewater for treating washing wastewater containing organic acids and organic matter discharged from washing equipment in a water-using facility having a plurality of facilities using desalted treated water obtained by desalting raw water,
A reduction step of reducing the organic acid in the washing waste water;
An ionic component removal step of removing an ionic component contained in the reduced treated water treated in the reduction step;
A recovered water supply step of supplying at least a portion of the recovered water that has been processed and recovered in the ion component removing step to the upstream side of the desalting treatment;
A method for treating cleaning wastewater, comprising:
JP2012095364A 2012-04-19 2012-04-19 Washing wastewater treatment apparatus and washing wastewater treatment method Active JP5982165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012095364A JP5982165B2 (en) 2012-04-19 2012-04-19 Washing wastewater treatment apparatus and washing wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012095364A JP5982165B2 (en) 2012-04-19 2012-04-19 Washing wastewater treatment apparatus and washing wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2013220406A true JP2013220406A (en) 2013-10-28
JP5982165B2 JP5982165B2 (en) 2016-08-31

Family

ID=49591779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095364A Active JP5982165B2 (en) 2012-04-19 2012-04-19 Washing wastewater treatment apparatus and washing wastewater treatment method

Country Status (1)

Country Link
JP (1) JP5982165B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013233489A (en) * 2012-05-07 2013-11-21 Miura Co Ltd Water treatment method, and water treatment system
JP2014166607A (en) * 2013-02-28 2014-09-11 Japan Organo Co Ltd Apparatus and method for treatment of drain water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265855A (en) * 1994-03-30 1995-10-17 Japan Organo Co Ltd Production of ultrapure water
JP2004181364A (en) * 2002-12-03 2004-07-02 Nomura Micro Sci Co Ltd Ultrapure water making method and apparatus therefor
JP2006247576A (en) * 2005-03-11 2006-09-21 Nippon Rensui Co Ltd Method for treating waste water containing surfactant and waste water treatment system
JP2007313445A (en) * 2006-05-26 2007-12-06 Nippon Rensui Co Ltd Wastewater treatment method, wastewater treatment apparatus, and wastewater recovery system
JP2011177708A (en) * 2011-03-29 2011-09-15 Nippon Rensui Co Ltd Apparatus for treating rinser waste water and method of sterilizing apparatus for treating rinser waste water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265855A (en) * 1994-03-30 1995-10-17 Japan Organo Co Ltd Production of ultrapure water
JP2004181364A (en) * 2002-12-03 2004-07-02 Nomura Micro Sci Co Ltd Ultrapure water making method and apparatus therefor
JP2006247576A (en) * 2005-03-11 2006-09-21 Nippon Rensui Co Ltd Method for treating waste water containing surfactant and waste water treatment system
JP2007313445A (en) * 2006-05-26 2007-12-06 Nippon Rensui Co Ltd Wastewater treatment method, wastewater treatment apparatus, and wastewater recovery system
JP2011177708A (en) * 2011-03-29 2011-09-15 Nippon Rensui Co Ltd Apparatus for treating rinser waste water and method of sterilizing apparatus for treating rinser waste water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013233489A (en) * 2012-05-07 2013-11-21 Miura Co Ltd Water treatment method, and water treatment system
JP2014166607A (en) * 2013-02-28 2014-09-11 Japan Organo Co Ltd Apparatus and method for treatment of drain water

Also Published As

Publication number Publication date
JP5982165B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5000856B2 (en) Rincer drainage recovery device and Rincer drainage recovery system
KR100976903B1 (en) Method and apparatus for fluid treatment by reverse osmosis under acidic conditions
JP4754657B1 (en) Rincer waste water treatment device and sterilization method of Rincer waste water treatment device
JP7090376B2 (en) Washing water treatment equipment and washing water treatment method
JP2007237062A (en) Artificial dialysis water manufacturing method and its manufacturing apparatus
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JP4738942B2 (en) Rincer drainage collection system
JP5982165B2 (en) Washing wastewater treatment apparatus and washing wastewater treatment method
JP5667122B2 (en) Water treatment method and water treatment apparatus
JP5184425B2 (en) Aldehyde removal method, aldehyde removal device, container sterilization waste water recovery device, soft drink manufacturing device and drinking water manufacturing device
JP5826667B2 (en) Washing wastewater treatment apparatus and washing wastewater treatment method
JP5962135B2 (en) Ultrapure water production equipment
JP2006247576A (en) Method for treating waste water containing surfactant and waste water treatment system
JP5829931B2 (en) Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus
JP6036011B2 (en) Method and apparatus for treating wastewater containing formaldehyde
JP2012035196A (en) Treatment method for acetic-acid containing wastewater and apparatus
JP5865473B2 (en) Water treatment method and water treatment apparatus
JP2018089598A (en) Water treating device
JP6066769B2 (en) Waste water treatment apparatus and waste water treatment method
JP6138558B2 (en) Waste water treatment apparatus and waste water treatment method
JP2004202313A (en) Method and apparatus for treating washing wastewater
GB2197860A (en) Apparatus for and the method of water purification
JP2021171678A (en) Wastewater treatment method, ultrapure water production method, and wastewater treatment device
JP7236313B2 (en) Membrane deaerator cleaning method and ultrapure water production system
JP6151500B2 (en) Formaldehyde-containing wastewater treatment method and formaldehyde-containing wastewater treatment equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R150 Certificate of patent or registration of utility model

Ref document number: 5982165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250