JP2013219019A - Static-electricity countermeasure element - Google Patents

Static-electricity countermeasure element Download PDF

Info

Publication number
JP2013219019A
JP2013219019A JP2013034612A JP2013034612A JP2013219019A JP 2013219019 A JP2013219019 A JP 2013219019A JP 2013034612 A JP2013034612 A JP 2013034612A JP 2013034612 A JP2013034612 A JP 2013034612A JP 2013219019 A JP2013219019 A JP 2013219019A
Authority
JP
Japan
Prior art keywords
discharge
inducing
insulating
insulating substrate
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013034612A
Other languages
Japanese (ja)
Inventor
Kiyoshi Hatanaka
潔 畑中
Shingo Suzuki
真吾 鈴木
Kensaku Asakura
健作 朝倉
Takahiro Fujimori
敬洋 藤森
Original Assignee
Tdk Corp
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012055924 priority Critical
Priority to JP2012055924 priority
Application filed by Tdk Corp, Tdk株式会社 filed Critical Tdk Corp
Priority to JP2013034612A priority patent/JP2013219019A/en
Publication of JP2013219019A publication Critical patent/JP2013219019A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/20Means for starting arc or facilitating ignition of spark gap
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • H01T4/12Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed

Abstract

PROBLEM TO BE SOLVED: To provide a static-electricity countermeasure element causing no separation of a discharge electrode, suppressed in an initial short-circuit fault, less in variation of peak voltage, and further excellent in productivity.SOLUTION: A static-electricity countermeasure element 100 includes: an insulating laminated body 11; discharge electrodes 12, 13 arranged facing each other while separated from each other, in the insulating laminated body 11; and a discharge inducing section 14 disposed in the vicinity of an area including a region between the discharge electrodes 12, 13. In the static-electricity countermeasure element 100, a material that is not sintered at the temperature at which the insulating laminated body 11 is fired is used as an insulating inorganic material in the discharge inducing section.

Description

本発明は、静電気対策素子に関し、特に、高速伝送系での使用やコモンモードフィルタとの複合化において有用な静電気対策素子に関する。   The present invention relates to an anti-static element, and more particularly to an anti-static element useful for use in a high-speed transmission system or in combination with a common mode filter.
近年、電子機器の小型化及び高性能化が急速に進展している。また、USB2.0やS−ATA2、HDMI等の高速伝送系に代表されるように、伝送速度の高速化(1GHzを超える高周波数化)並びに低駆動電圧化の進展が著しい。その反面、電子機器の小型化や低駆動電圧化にともなって、電子機器に用いられる電子部品の耐電圧は低下する。したがって、人体と電子機器の端子が接触した際に発生する静電気パルスに代表される過電圧からの電子部品の保護が、重要な技術課題となっている。   In recent years, electronic devices have been rapidly reduced in size and performance. In addition, as represented by high-speed transmission systems such as USB 2.0, S-ATA2, and HDMI, the progress of transmission speed (higher frequency exceeding 1 GHz) and lower drive voltage are remarkable. On the other hand, the withstand voltage of the electronic components used in the electronic device is reduced as the electronic device is downsized and the drive voltage is reduced. Therefore, protection of electronic components from overvoltage typified by electrostatic pulses generated when the human body and terminals of the electronic device come into contact has become an important technical issue.
従来においては、このような静電気パルスへの対策として静電気が入るラインとグランド間にバリスタ等の静電気対策部品(素子)を設ける方法がとられているが、近年では信号ラインの伝送速度の高速化が進んでおり、前記した静電気対策部品の浮遊容量が大きい場合には信号品質が劣る為、数百Mbps以上の伝送速度になると1pF以下の低静電容量の対策部品が必要になってくる。またアンテナ回路、RFモジュールには静電容量の大きい静電気保護部品は用いることができなかった。   Conventionally, as countermeasures against such electrostatic pulses, a method of providing antistatic components (elements) such as varistors between the line where static electricity enters and the ground has been used, but in recent years the transmission speed of signal lines has been increased. Since the signal quality is inferior when the stray capacitance of the above-mentioned electrostatic countermeasure component is large, a countermeasure component with a low capacitance of 1 pF or less is required at a transmission speed of several hundred Mbps or more. Moreover, an electrostatic protection component having a large electrostatic capacity could not be used for the antenna circuit and the RF module.
一方、低静電容量の静電気対策部品としては、特許文献1のようにセラミック多層基板内に空洞部が形成され、外部電極と導通した放電電極が空洞部内に対向配置され、放電電極間で絶縁破壊を起こす電圧が印加されると、放電電極間で放電が起こり、その放電により過剰な電圧をグランドへ導き、後段の回路を保護することができるものが提案されている。特許文献1では、焼成時におけるセラミック多層基板と放電電極との収縮挙動の差に起因する放電電極間隔ばらつきを少なくし、結果として放電開始電圧ばらつきを減少させることを主目的として、放電電極の対向部下面に、焼成時の収縮挙動が放電電極の対向部の材料と同一又は類似である金属材料と、焼成時の収縮挙動がセラミック多層基板の材料と同一又は類似であるセラミック材料とを含む混合部が配置されることで、放電電極の対向部とセラミック多層基板との収縮挙動の差を混合部で緩和し、放電電極の対向部間の間隔バラツキを小さくすることができ、それに伴って放電開始電圧のバラツキも小さくすることができる静電気対策部品が開示されている。特許文献2ではショート不良が発生しにくい静電気対策部品として、絶縁基板の上面に形成されたギャップを隔てて対向する一対の下部電極と、ギャップを覆うように形成された過電圧保護材料層と、この過電圧保護材料層を覆うとともに前記一対の下部電極のいずれか一方と電気的に接続するように形成された上部電極とを備え、前記過電圧保護材料層を前記一対の下部電極間に形成されたギャップを覆う第1の過電圧保護材料層と、この第1の過電圧保護材料層上に重なるように形成された第2の過電圧保護材料層とにより構成され、かつ前記第1の過電圧保護材料層に含まれる導電性粒子の濃度を第2の過電圧保護材料層に含まれる導電性粒子の濃度よりも高くしたものが開示されている。ショート不良を抑制するため、2種類の過電圧保護材料層にはガラス粉末、バリスタ粉末、導電性粒子の焼成体が用いられている。特許文献3では放電を誘発する過電圧保護材料層に金属粉とシリコーン系樹脂の混合物を用い、且つ部品上面の平滑性を確保し、実装品質を高めるために、複数の保護膜を形成した静電気対策部品が開示されている。   On the other hand, as an electrostatic countermeasure component with a low capacitance, a hollow portion is formed in a ceramic multilayer substrate as in Patent Document 1, and a discharge electrode that is electrically connected to an external electrode is disposed oppositely in the hollow portion to insulate between the discharge electrodes. When a voltage that causes breakdown is applied, a discharge occurs between the discharge electrodes, and the discharge can lead to an excessive voltage to the ground, thereby protecting a subsequent circuit. In Patent Document 1, the discharge electrode spacing variation due to the difference in the contraction behavior between the ceramic multilayer substrate and the discharge electrode during firing is reduced, and as a result, the discharge start voltage variation is reduced. A mixture containing a metal material whose shrinkage behavior during firing is the same or similar to the material of the opposing portion of the discharge electrode and a ceramic material whose shrinkage behavior during firing is the same or similar to that of the ceramic multilayer substrate on the lower surface of the part By disposing the part, the difference in shrinkage behavior between the opposing part of the discharge electrode and the ceramic multilayer substrate can be reduced by the mixing part, and the variation in the distance between the opposing parts of the discharge electrode can be reduced. An anti-static component that can reduce variations in the starting voltage is disclosed. In Patent Document 2, as a countermeasure against static electricity that is unlikely to cause a short-circuit failure, a pair of lower electrodes facing each other with a gap formed on the upper surface of an insulating substrate, an overvoltage protection material layer formed so as to cover the gap, An upper electrode formed to cover the overvoltage protection material layer and to be electrically connected to one of the pair of lower electrodes, and the overvoltage protection material layer is formed between the pair of lower electrodes. A first overvoltage protection material layer covering the first overvoltage protection material layer, and a second overvoltage protection material layer formed so as to overlap the first overvoltage protection material layer, and included in the first overvoltage protection material layer The concentration of the conductive particles to be produced is higher than the concentration of the conductive particles contained in the second overvoltage protection material layer. In order to suppress short-circuit defects, glass powder, varistor powder, and fired bodies of conductive particles are used for the two types of overvoltage protection material layers. In Patent Document 3, a mixture of metal powder and silicone resin is used for the overvoltage protection material layer that induces discharge, and a plurality of protective films are formed to ensure the smoothness of the upper surface of the component and improve the mounting quality. Parts are disclosed.
特許第4247581号公報Japanese Patent No. 4,247,581 特開2010−153719号公報JP 2010-153719 A 特開2009−117735号公報JP 2009-117735 A
しかしながら、特許文献1に記載の静電気対策部品は、混合部の焼成時の収縮挙動が、対向する放電電極の収縮挙動とセラミック多層基板の収縮挙動との中間状態になるようにすることによって、放電電極とセラミック多層基板との収縮挙動の差を混合部で緩和するが、混合部が焼成収縮することには変わりなく、焼成収縮ばらつきにより対向する放電電極部を精度よく作ることが難しく、そのため放電特性がばらつくおそれがあった。又、焼成収縮に伴い、混合部内の金属材料が凝集してショート不良を発生させるおそれがあった。特許文献2に記載の静電気対策部品は、ショート不良抑制のための前記過電圧保護材料層がガラス粉末、バリスタ粉末、導電性粒子の焼成体で構成されており、焼成過程で軟化流動するガラス成分が含有されていること、且つガラス粉末の含有割合が37〜43重量%と多いことから、焼成過程でガラス成分の軟化流動に伴い、導電性粒子の凝集が発生し易く、ショート不良を格段に抑制することは困難である。又、工法も煩雑であること、および複数の層を凹凸面上に形成することから静電気対策部品を精度良く作製することも難しい。特許文献3に記載の静電気対策部品は過電圧保護材料層に金属粉とシリコーン系樹脂の混合物を用いているが、高電圧の静電気パルスが印加された時、シリコーン系樹脂は過電圧保護材料中に含まれる金属粉間で生じる放電による発熱に対して耐熱性が不十分であるため絶縁劣化し、過電圧保護材料層が破壊されるおそれがあった。又、部品上面の平滑性を確保して実装品質を高めるために、複数の保護膜を形成するため簡便な工法ではない。   However, the anti-static component described in Patent Document 1 is such that the shrinkage behavior during firing of the mixing portion is in an intermediate state between the shrinkage behavior of the opposing discharge electrode and the shrinkage behavior of the ceramic multilayer substrate. The difference in the shrinkage behavior between the electrode and the ceramic multilayer substrate is mitigated at the mixing part, but the mixed part does not change in firing shrinkage, and it is difficult to accurately produce the opposing discharge electrode part due to firing shrinkage variation. There was a risk that the characteristics would vary. Further, with firing shrinkage, the metal material in the mixing portion may aggregate and cause a short circuit failure. In the anti-static component described in Patent Document 2, the overvoltage protection material layer for suppressing short-circuit failure is composed of a sintered body of glass powder, varistor powder, and conductive particles, and a glass component that softens and flows during the firing process has a glass component. Because it is contained and the glass powder content is as high as 37 to 43% by weight, agglomeration of conductive particles is likely to occur with the softening flow of the glass component during the firing process, and short-circuit defects are greatly suppressed. It is difficult to do. In addition, since the construction method is complicated and a plurality of layers are formed on the concavo-convex surface, it is difficult to accurately produce an antistatic component. The antistatic component described in Patent Document 3 uses a mixture of metal powder and silicone resin in the overvoltage protection material layer, but when a high voltage electrostatic pulse is applied, the silicone resin is included in the overvoltage protection material. Insufficient heat resistance to the heat generated by the discharge generated between the metal powders may cause insulation deterioration and destruction of the overvoltage protection material layer. Further, it is not a simple method for forming a plurality of protective films in order to ensure the smoothness of the upper surface of the component and improve the mounting quality.
本発明は、かかる実情に鑑みてなされたものであり、その目的は、対向する放電電極部及び素子外形を、寸法精度よく作製し、その結果、放電ばらつきが小さく、ショート不良を防止でき、実装性のよい静電気対策を提供することである。   The present invention has been made in view of such circumstances, and the object thereof is to produce opposing discharge electrode portions and element outlines with high dimensional accuracy, and as a result, discharge variation is small, short-circuit defects can be prevented, and mounting is achieved. Is to provide good static electricity countermeasures.
上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、本発明を完成するに至った。本発明の静電気対策部品は絶縁性基板と、該絶縁性基板上において相互に離間して対向配置された電極と、該電極間に配置された放電誘発部とを有し、前記放電誘発部は、少なくとも1種の未焼結の絶縁性無機材料のマトリックス中に、少なくとも1種の導電性無機材料が分散したコンポジットであることを特徴とする、静電気対策素子である。
前記絶縁性無機材料に、前記絶縁性基板を焼成する温度では焼結しない絶縁性無機材料を用いる。尚、本明細書において、導電性無機材料が分散したコンポジットとは、絶縁性無機材料のマトリックス中に導電性無機材料が一様に或いはランダムに分散した状態のみならず、絶縁性無機材料のマトリックス中に導電性無機材料の集合体が分散した状態、すなわち一般に海島構造と呼ばれる状態を含む概念である。
絶縁性無機材料としてはトリジマイト、ジルコニア、アルミナ、シリカ、マグネシア、窒化アルミニウム、フォルステライト等が挙げられる。導電性無機材料としてはC、Ni、Al、Fe、Cu、Ti、Cr、Au、Ag、Pd及びPt或いは、これらの合金が好ましい。また、導電性無機材料の含有率が10〜80体積%である。
In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result, completed the present invention. The antistatic component of the present invention includes an insulating substrate, electrodes disposed opposite to each other on the insulating substrate, and a discharge inducing portion disposed between the electrodes, the discharge inducing portion including: An anti-static element, which is a composite in which at least one conductive inorganic material is dispersed in a matrix of at least one unsintered insulating inorganic material.
An insulating inorganic material that does not sinter at the temperature at which the insulating substrate is fired is used as the insulating inorganic material. In this specification, the composite in which the conductive inorganic material is dispersed is not only a state in which the conductive inorganic material is uniformly or randomly dispersed in the matrix of the insulating inorganic material, but also the matrix of the insulating inorganic material. This is a concept including a state in which aggregates of conductive inorganic materials are dispersed therein, that is, a state generally called a sea-island structure.
Examples of the insulating inorganic material include tridymite, zirconia, alumina, silica, magnesia, aluminum nitride, forsterite and the like. As the conductive inorganic material, C, Ni, Al, Fe, Cu, Ti, Cr, Au, Ag, Pd and Pt, or alloys thereof are preferable. Moreover, the content rate of an electroconductive inorganic material is 10-80 volume%.
本発明によれば、前記放電誘発部内の絶縁性無機材料は、前記絶縁性基板が焼結する温度では焼結せず、粉末状態であるため、焼成収縮が生じない。前記放電誘発部の絶縁性無機材料は焼結せず流動性を有しないため、焼成過程における前記放電誘発部の絶縁性無機材料内に分散する導電性無機材料の凝集が抑制され、焼成前の分散状態に近い状態が焼成後も維持される。このことにより、初期ショート不良の発生も抑制できる。
更には放電誘発部の絶縁性無機材料のマトリックスを構成する材料として、絶縁性基板を焼成する温度では焼結しない高融点の材料を用いるため、耐熱性も確保でき、放電誘発部が破壊に至ることもない。
According to the present invention, the insulating inorganic material in the discharge inducing portion does not sinter at the temperature at which the insulating substrate sinters, and is in a powder state, and thus does not undergo firing shrinkage. Since the insulating inorganic material of the discharge inducing portion is not sintered and does not have fluidity, aggregation of the conductive inorganic material dispersed in the insulating inorganic material of the discharge inducing portion in the firing process is suppressed, and before firing. A state close to a dispersed state is maintained even after firing. As a result, the occurrence of initial short-circuit failure can also be suppressed.
Furthermore, since the high melting point material that does not sinter at the temperature at which the insulating substrate is baked is used as the material constituting the matrix of the insulating inorganic material of the discharge inducing portion, heat resistance can be secured, and the discharge inducing portion can be destroyed. There is nothing.
前記放電誘発部は、対向配置された放電電極先端部の一部に重なるように配置され、且つ電極間を埋める構造である。
また絶縁性基板の主面に平行な面内において、素子短辺長さbと、素子短辺と同一方向の放電電極先端辺長さc、および素子短辺と同一方向の放電誘発部長さaとした場合、c≦a≦0.7bであることが好ましい。絶縁性基板の主面側から透視した場合、放電誘発部で重なり覆われている箇所は、絶縁性基板主面に平行な面内の焼成収縮が抑制される。しかし、放電誘発部の埋設されていない部分は焼成収縮する。
aが0.7bを超えた場合、対向配置された放電電極先端部の寸法精度は確保できるが、焼成収縮しない放電誘発部の影響が大きくなり、放電誘発部に近い素子長辺側が素子の外側に膨らむように変形する。また、aが、c未満の場合、放電電極先端部で、放電誘発部と重ならない部分が焼成収縮し、放電電極先端部が変形し、対向する放電電極間の寸法精度が低下する。
上記関係式を満たすことにより、対向配置された放電電極部の寸法精度が確保できると同時に、所望の素子外形寸法が実現でき、出荷形態のテーピングにおける素子のピックアップ不良、及びエンボス内挿入不良の不具合もなく、且つ実装性も良好となる。
The discharge inducing portion is arranged so as to overlap a part of the tip portion of the discharge electrode arranged opposite to each other, and has a structure filling the space between the electrodes.
Further, in a plane parallel to the main surface of the insulating substrate, the element short side length b, the discharge electrode tip side length c in the same direction as the element short side, and the discharge inducing portion length a in the same direction as the element short side are provided. In this case, it is preferable that c ≦ a ≦ 0.7b. When seen through from the main surface side of the insulating substrate, firing shrinkage in a plane parallel to the main surface of the insulating substrate is suppressed at a portion that is overlapped and covered by the discharge inducing portion. However, the portion where the discharge inducing portion is not embedded shrinks by firing.
When a exceeds 0.7b, the dimensional accuracy of the oppositely disposed discharge electrode tips can be ensured, but the influence of the discharge inducing portion that does not shrink by firing increases, and the element long side near the discharge inducing portion is outside the device. Deforms to swell. When a is less than c, the portion of the discharge electrode that does not overlap the discharge inducing portion is baked and contracted, the tip of the discharge electrode is deformed, and the dimensional accuracy between the opposing discharge electrodes is reduced.
By satisfying the above relational expression, it is possible to ensure the dimensional accuracy of the discharge electrode portions disposed opposite to each other, and at the same time, to realize a desired element outer dimension, and the defect of the element pick-up failure and the embossing improper insertion defect in the taping of the shipping form. In addition, the mountability is also improved.
また、前記絶縁性基板は焼成する温度で、軟化するガラス成分を含有することが好ましい。ガラス成分を含有する場合、焼成時にこのガラス成分が隣接する放電誘発部にごくわずか浸透し、放電誘発部と密着する。
前記絶縁性基板の放電誘発部に隣接する部分の焼成収縮が抑制され、放電電極先端部の寸法精度を向上させることができる。
また、収縮抑制効果をより高めるために、放電誘発部内の絶縁性無機材料は、前記絶縁性基板を構成する成分であり、ガラス成分を除く、絶縁性基板を焼成する温度で焼結しない絶縁性無機材料であることが好ましい。その場合、放電誘発部に、ごく僅か浸透する前記絶縁性基板のガラス成分と、放電誘発部内の絶縁性無機材料がより密着し、固着強度を高めることでき、収縮抑制効果を更に高めることができる。
放電誘発部が焼成温度で軟化する、ガラス成分を含有する場合、焼成時に放電誘発部が焼成収縮し、対向する放電電極先端部の寸法精度を確保できないと同時に、ガラス成分の軟化流動で放電誘発部の絶縁性無機材料内に分散する導電性無機材料の凝集が生じ、初期ショート不良が発生する。ガラス成分は放電誘発部と隣接する絶縁性基板との界面に存在することが必要である。
The insulating substrate preferably contains a glass component that softens at a firing temperature. When the glass component is contained, the glass component penetrates slightly into the adjacent discharge inducing portion at the time of firing, and is in close contact with the discharge inducing portion.
The firing shrinkage of the portion adjacent to the discharge inducing portion of the insulating substrate is suppressed, and the dimensional accuracy of the discharge electrode tip can be improved.
In order to further enhance the shrinkage suppression effect, the insulating inorganic material in the discharge inducing portion is a component that constitutes the insulating substrate, and does not sinter at the temperature at which the insulating substrate is fired, excluding the glass component. An inorganic material is preferred. In that case, the glass component of the insulating substrate that penetrates very slightly into the discharge inducing portion and the insulating inorganic material in the discharge inducing portion are more closely adhered, the fixing strength can be increased, and the shrinkage suppressing effect can be further enhanced. .
When the discharge inducing part contains a glass component that softens at the firing temperature, the discharge inducing part shrinks during firing, and the dimensional accuracy of the opposite discharge electrode tip cannot be ensured. Aggregation of the conductive inorganic material dispersed in the insulating inorganic material of the portion occurs, and an initial short circuit defect occurs. The glass component needs to be present at the interface between the discharge inducing portion and the adjacent insulating substrate.
また、対向配置された放電電極は、絶縁性基板を焼成する温度で軟化するガラス成分を含むことが好ましい。ガラス成分を含有する場合、焼成時にこのガラス成分が隣接する放電誘発部に極わずか浸透し、放電誘発部と密着し、その結果、放電誘発部に接する放電電極先端部の焼成収縮が抑制され、放電電極先端部の寸法精度をより向上できる。ガラス成分の例としてはホウケイ酸ガラス、ホウケイ酸バリウムガラス、ホウケイ酸ストロンチウムガラス、ホウケイ酸亜鉛ガラス、ホウケイ酸カリウムガラス等を挙げることができる。   Moreover, it is preferable that the discharge electrode arranged oppositely contains the glass component which softens at the temperature which bakes an insulating board | substrate. When the glass component is contained, the glass component penetrates slightly into the adjacent discharge inducing part at the time of firing, and is in close contact with the discharge inducing part, and as a result, the firing shrinkage of the discharge electrode tip part in contact with the discharge inducing part is suppressed, The dimensional accuracy of the distal end portion of the discharge electrode can be further improved. Examples of the glass component include borosilicate glass, barium borosilicate glass, strontium borosilicate glass, zinc borosilicate glass, and potassium borosilicate glass.
本発明によれば、対向する放電誘発部の絶縁性無機材料として、絶縁性基板が焼結する温度では焼結しない絶縁性無機材料を用いることで、対向する放電電極部の寸法精度を向上させることができ、それに伴い放電特性ばらつきを低減でき、尚かつ初期ショート不良も防止できる静電気対策素子が実現できる。又、素子外形寸法精度、及び実装性も良い。   According to the present invention, the insulating inorganic material that does not sinter at the temperature at which the insulating substrate sinters is used as the insulating inorganic material of the opposing discharge inducing portion, thereby improving the dimensional accuracy of the opposing discharge electrode portion. Accordingly, it is possible to realize an anti-static element that can reduce variations in discharge characteristics and can prevent an initial short circuit defect. In addition, the device outer dimension accuracy and mountability are good.
本発明の一実施形態の静電気対策素子100を概略的に示す断面図である。1 is a cross-sectional view schematically showing an antistatic element 100 according to an embodiment of the present invention. 本発明の一実施形態の静電気対策素子100を絶縁性基板主面から透視した概略的模式図である。1 is a schematic schematic view of an electrostatic protection element 100 according to an embodiment of the present invention seen through from an insulating substrate main surface. 本発明の他の実施形態の静電気対策素子200を概略的に示す断面図である。It is sectional drawing which shows schematically the antistatic element 200 of other embodiment of this invention. 静電気放電試験における回路図である。It is a circuit diagram in an electrostatic discharge test.
以下、本発明の実施の形態について、図面を参照して説明する。なお、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は、図示の比率に限定されるものではない。また、以下の実施の形態は、本発明を説明するための例示であり、本発明をその実施の形態のみに限定する趣旨ではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The positional relationship such as up, down, left, and right is based on the positional relationship shown in the drawings unless otherwise specified. Furthermore, the dimensional ratios in the drawings are not limited to the illustrated ratios. Further, the following embodiments are exemplifications for explaining the present invention, and are not intended to limit the present invention only to the embodiments.
図1、2は、本実施形態の静電気対策素子を概略的に示す断面図である。
図2は、図1の静電気対策素子を絶縁性基板主面から透視した概略図である。
静電気対策素子100は、絶縁性基板11と、この絶縁性基板11の同一平面内で相互に離間して対向配置された一対の矩形状の放電電極12、13と、これら放電電極12、13の対向する先端部と放電電極12、13の間に位置する絶縁性基板11に隣接するように配設された放電誘発部14と、放電電極12、13と電気的に接続された端子電極(図示せず)とを備える。この静電気対策素子100は、積層工法により作製されており、一対の放電電極12、13と放電誘発部14が絶縁性基板11中に埋設された態様となっている。そして、この静電気対策素子100においては、放電電極12、13が端子電極を介して外部回路と電気的に接続され、放電誘発部14が比較的に低い電圧でも放電可能な静電気保護材料として機能することにより、静電気などの過電圧が外部から印加された際に放電誘発部14を介して放電電極12、13間で放電するように構成されている。
1 and 2 are cross-sectional views schematically showing the antistatic element of the present embodiment.
FIG. 2 is a schematic view of the antistatic element of FIG. 1 seen through from the main surface of the insulating substrate.
The electrostatic protection element 100 includes an insulating substrate 11, a pair of rectangular discharge electrodes 12 and 13 that are disposed opposite to each other in the same plane of the insulating substrate 11, and the discharge electrodes 12 and 13. A discharge inducing portion 14 disposed so as to be adjacent to the insulating substrate 11 positioned between the opposed tip portion and the discharge electrodes 12 and 13, and a terminal electrode electrically connected to the discharge electrodes 12 and 13 (see FIG. Not shown). The electrostatic protection element 100 is manufactured by a lamination method, and has a mode in which a pair of discharge electrodes 12 and 13 and a discharge inducing portion 14 are embedded in the insulating substrate 11. In the electrostatic protection element 100, the discharge electrodes 12 and 13 are electrically connected to an external circuit via the terminal electrodes, and the discharge inducing portion 14 functions as an electrostatic protection material capable of discharging even at a relatively low voltage. Thus, when an overvoltage such as static electricity is applied from the outside, a discharge is caused between the discharge electrodes 12 and 13 via the discharge inducing portion 14.
絶縁性基板11は、少なくとも放電電極12、13及び放電誘発部14を支持可能なものであれば、その寸法形状や絶縁性基板11の積層数は特に制限されない。   As long as the insulating substrate 11 can support at least the discharge electrodes 12 and 13 and the discharge inducing portion 14, the size and shape of the insulating substrate 11 and the number of stacked insulating substrates 11 are not particularly limited.
絶縁性基板11の具体例としては、例えば、アルミナ、シリカ、マグネシア、窒化アルミニウム、フォルステライト等のセラミック基板、好ましくはガラス成分を含有するガラスセラミック基板が挙げられる。ガラス成分としては、任意のガラスを使用することが可能である。例示するならば、ホウケイ酸ガラス、ホウケイ酸バリウムガラス、ホウケイ酸ストロンチウムガラス、ホウケイ酸亜鉛ガラス、ホウケイ酸カリウムガラス等を挙げることができる。   Specific examples of the insulating substrate 11 include a ceramic substrate such as alumina, silica, magnesia, aluminum nitride, and forsterite, preferably a glass ceramic substrate containing a glass component. Any glass can be used as the glass component. Examples include borosilicate glass, borosilicate barium glass, strontium borosilicate glass, zinc borosilicate glass, potassium borosilicate glass, and the like.
放電電極12、13を構成する材料としては、例えば、C、Ni、Al、Fe、Cu、Ti、Cr、Au、Ag、Pd及びPtから選ばれる少なくとも一種類の金属、或いはこれらの合金等が挙げられるが、これらに前記絶縁性基板11を焼成する温度で軟化するガラス成分を加えて放電電極12、13を形成することが好ましい。ガラス成分としては、任意のガラスを使用することが可能であるが、ホウケイ酸ガラス、ホウケイ酸バリウムガラス、ホウケイ酸ストロンチウムガラス、ホウケイ酸亜鉛ガラス、ホウケイ酸カリウムガラス等を挙げることができる。なお、本実施形態では、放電電極12,13は、平面視で矩形状に形成されているが、その形状は特に限定されず、例えば、櫛歯状、或いは、鋸状に形成されていてもよい。   Examples of the material constituting the discharge electrodes 12 and 13 include at least one metal selected from C, Ni, Al, Fe, Cu, Ti, Cr, Au, Ag, Pd, and Pt, or alloys thereof. The discharge electrodes 12 and 13 are preferably formed by adding a glass component that softens at a temperature at which the insulating substrate 11 is fired. Any glass can be used as the glass component, and examples thereof include borosilicate glass, barium borosilicate glass, strontium borosilicate glass, zinc borosilicate glass, and potassium borosilicate glass. In the present embodiment, the discharge electrodes 12 and 13 are formed in a rectangular shape in plan view, but the shape thereof is not particularly limited. For example, the discharge electrodes 12 and 13 may be formed in a comb shape or a saw shape. Good.
放電電極12、13間の距離は、所望の放電特性を考慮して適宜設定すればよく、特に限定されないが、通常、1〜50μm程度であり、低電圧で放電するという観点から、より好ましくは5〜40μm程度、さらに好ましくは8〜30μm程度である。なお、放電電極12、13の厚みは、適宜設定することができ、特に限定されないが、通常、1〜20μm程度である。   The distance between the discharge electrodes 12 and 13 may be appropriately set in consideration of desired discharge characteristics, and is not particularly limited, but is usually about 1 to 50 μm, more preferably from the viewpoint of discharging at a low voltage. It is about 5-40 micrometers, More preferably, it is about 8-30 micrometers. The thickness of the discharge electrodes 12 and 13 can be appropriately set and is not particularly limited, but is usually about 1 to 20 μm.
放電電極12、13の形成方法は、特に限定されず、公知の手法を適宜選択することができる。具体的には、例えば、塗布、転写、電解めっき、無電解めっき、蒸着或いはスパッタリング等により、絶縁性基板11上に所望の厚みを有する電極層をパターン形成する方法が挙げられる。また、例えばイオンミリングやエッチング等の公知の手法を用いて、放電電極12,13の大きさや対向する放電電極間を加工することもできる。あるいは、絶縁物より構成されるグリーンシート上にスクリーン印刷により放電電極12、13を形成したものを用い、積層工法により素子形成を行ってもよい。また、金属或いは合金の前駆体、例えば、電極ペーストを塗布後に、レーザー加工等により放電電極12、13の間のギャップ部を形成してもよい。   The formation method of the discharge electrodes 12 and 13 is not specifically limited, A well-known method can be selected suitably. Specifically, for example, there is a method of patterning an electrode layer having a desired thickness on the insulating substrate 11 by coating, transferring, electrolytic plating, electroless plating, vapor deposition, sputtering, or the like. Further, for example, the size of the discharge electrodes 12 and 13 and the space between the opposing discharge electrodes can be processed using a known method such as ion milling or etching. Or you may perform element formation by the lamination method using what formed the discharge electrodes 12 and 13 by screen printing on the green sheet comprised from an insulator. Further, after applying a metal or alloy precursor, for example, an electrode paste, a gap between the discharge electrodes 12 and 13 may be formed by laser processing or the like.
対向する放電電極12、13の相対的な配置(位置関係)は特に限定されない。位置関係としては、例えば図1に示すような対向する双方の放電電極が同一平面の絶縁性基板上に配置され、さらに先端部にて対向する場合が挙げられる。また、双方の放電電極が異なる平面の絶縁性基板上に存在する場合、図3に示す斜め上下方向での対向や、一方の放電電極の底面と他方の放電電極の上面との対向(図示せず)であってもよい。放電誘発部14は前記対向配置された電極主面に重なるように配置され、且つ電極間を埋めるように形成されることが好ましい。対向する双方の放電電極が同一平面の絶縁性基板上に配置される場合、対向配置された電極主面とは、絶縁性積層体主面に平行な方向の電極面を意味する。双方の放電電極が異なる平面の絶縁性基板上に配置される場合は、双方の放電電極が重なる方向から投影した時、対向方向の双方の放電電極面を主面とする。   The relative arrangement (positional relationship) of the opposing discharge electrodes 12 and 13 is not particularly limited. As the positional relationship, for example, the case where both opposing discharge electrodes as shown in FIG. 1 are arranged on the same planar insulating substrate and further opposed at the tip portion can be mentioned. Further, when both discharge electrodes are present on insulating substrates of different planes, they face each other in the diagonally up and down direction shown in FIG. 3, or face the bottom face of one discharge electrode and the top face of the other discharge electrode (not shown). )). It is preferable that the discharge inducing portion 14 is disposed so as to overlap with the opposed electrode main surfaces, and is formed so as to fill the space between the electrodes. When both opposing discharge electrodes are disposed on the same insulating substrate, the opposing electrode main surface means an electrode surface in a direction parallel to the insulating laminate main surface. When both discharge electrodes are arranged on different planar insulating substrates, when both discharge electrodes are projected from the overlapping direction, both discharge electrode surfaces in the opposite direction are the main surfaces.
放電誘発部14は、絶縁性無機材料のマトリックス中に、導電性無機材料が分散したコンポジットである。かかるコンポジットを放電誘発部14として採用することにより、静電対策素子の低静電容量化を図ることができる。前記絶縁性無機材料としては絶縁性基板11を焼成する温度では焼結しない絶縁性無機材料を用いる。前記絶縁性無機材料は絶縁性積層体11を焼成する温度では焼結しないため、焼成収縮を伴わない。このことにより放電誘発部に隣接する放電電極12,13、および対向する放電電極12と13の間の絶縁性基板11のそれぞれ絶縁性基板主面に平行な面方向の焼成収縮を抑制し、対向する放電電極部を精度よく作製することができ、放電特性ばらつきを小さくできる。又、前記放電誘発部の絶縁性無機材料が焼成収縮しないため、導電性無機材料の焼成時に於ける凝集が抑制され、ショート不良も防止できる。尚、放電誘発部は前述のコンポジットであり、対向する放電電極近傍の焼成収縮を抑制する構造である限り、その内部に中空部分、多孔質部分を有しても構わない。   The discharge inducing portion 14 is a composite in which a conductive inorganic material is dispersed in a matrix of an insulating inorganic material. By adopting such a composite as the discharge inducing portion 14, it is possible to reduce the electrostatic capacity of the electrostatic countermeasure element. As the insulating inorganic material, an insulating inorganic material that is not sintered at the temperature at which the insulating substrate 11 is fired is used. Since the insulating inorganic material does not sinter at the temperature at which the insulating laminate 11 is fired, it does not cause firing shrinkage. This suppresses firing shrinkage in the plane direction parallel to the main surface of the insulating substrate 11 between the discharge electrodes 12 and 13 adjacent to the discharge inducing portion and the insulating substrate 11 between the opposing discharge electrodes 12 and 13. The discharge electrode portion to be manufactured can be manufactured with high accuracy, and variation in discharge characteristics can be reduced. In addition, since the insulating inorganic material in the discharge inducing portion does not shrink during firing, aggregation during firing of the conductive inorganic material is suppressed, and short-circuit defects can be prevented. The discharge inducing portion is the above-described composite, and may have a hollow portion and a porous portion inside as long as it has a structure that suppresses firing shrinkage in the vicinity of the opposing discharge electrode.
マトリックスを構成する絶縁性無機材料としては、前記絶縁性基板を焼成する温度で焼結しない材料であれば特に限定されないが、前記絶縁性基板を構成する成分で、ガラス成分を除く前記絶縁性基板を焼成する温度では焼結しない絶縁性無機材料と同成分であることが好ましい。その場合、前記放電誘発部にごくわずか浸透する前記絶縁性基板のガラス成分と、放電誘発部内の絶縁性無機材料がより密着し、固着強度を高めることでき、収縮抑制効果を更に高めることができる。   The insulating inorganic material constituting the matrix is not particularly limited as long as it is a material that does not sinter at the temperature at which the insulating substrate is baked, but the insulating substrate is a component that constitutes the insulating substrate and excludes the glass component. It is preferable that it is the same component as the insulating inorganic material that does not sinter at the temperature at which the material is fired. In that case, the glass component of the insulating substrate that penetrates only slightly into the discharge inducing part and the insulating inorganic material in the discharge inducing part are more closely adhered, the fixing strength can be increased, and the shrinkage suppressing effect can be further enhanced. .
導電性無機材料の具体例としては、例えば、金属、合金、金属酸化物、金属窒化物、金属炭化物、金属ホウ化物等が挙げられるが、これらに特に限定されない。又、前述放電誘発部が絶縁性無機材料の未焼結なマトリックス中に導電性無機材料が分散したコンポジットの状態であるならば、導電性無機材料は前記絶縁性基板を焼成する温度で焼結性を有しても構わない。導電性を考慮すると、C、Ni、Al、Fe、Cu、Ti、Cr、Au、Ag、Pd及びPt或いは、これらの合金が好ましい。   Specific examples of the conductive inorganic material include, but are not particularly limited to, metals, alloys, metal oxides, metal nitrides, metal carbides, metal borides, and the like. Further, if the discharge inducing portion is in a composite state in which the conductive inorganic material is dispersed in an unsintered matrix of the insulating inorganic material, the conductive inorganic material is sintered at a temperature at which the insulating substrate is fired. You may have nature. In consideration of conductivity, C, Ni, Al, Fe, Cu, Ti, Cr, Au, Ag, Pd and Pt, or alloys thereof are preferable.
導電性無機材料と絶縁性無機材料からなる放電誘発部においては、放電特性から、導電性無機材料の含有率が10〜80体積%であることが好ましい。   In the discharge inducing portion composed of the conductive inorganic material and the insulating inorganic material, the content of the conductive inorganic material is preferably 10 to 80% by volume from the discharge characteristics.
放電誘発部14の厚みは、特に限定されるものではなく、適宜設定することができる。具体的には、1μm〜50μmであることが好ましい。   The thickness of the discharge inducing portion 14 is not particularly limited and can be set as appropriate. Specifically, it is preferably 1 μm to 50 μm.
放電誘発部14の形成方法は、特に限定されないが、高性能な放電誘発部14を再現性よく簡便に得る観点から、上述した絶縁性無機材料と導電性無機材料を含有する混合物を塗布した後に焼成する方法が好適である。以下、好ましい放電誘発部14の形成方法について説明する。   The method for forming the discharge inducing portion 14 is not particularly limited, but from the viewpoint of easily obtaining a high performance discharge inducing portion 14 with good reproducibility, after applying the above-described mixture containing the insulating inorganic material and the conductive inorganic material. A firing method is preferred. Hereinafter, a preferable method for forming the discharge inducing portion 14 will be described.
絶縁性無機材料と導電性無機材料を含有する混合物を調製し、この混合物を図2のように放電電極12、13の両先端部間に塗布或いは印刷等により形成した。絶縁性基板の主面に平行な面内において、素子短辺長さbと、素子短辺と同一方向の放電電極先端辺長さc、および素子短辺と同一方向の放電誘発部長さaとした場合、c≦a≦0.7bであることが好ましい。絶縁性基板の主面から透視した場合、放電誘発部と重なる部分は絶縁性基板主面に平行な面内の焼成収縮が抑制されるが、放電誘発部の埋設されていない部分は焼成収縮する。aが0.7bを超えた場合、対向配置された放電電極先端部の寸法精度は確保できるが、焼成収縮しない放電誘発部の影響が大きくなり、放電誘発部に近い素子長辺側が素子の外側に膨らむように変形する。aが、c未満の場合、放電電極先端部で、放電誘発部と重ならない部分が焼成収縮し、放電電極先端部が変形し、対向する放電電極間の寸法精度が低下する。上記関係式を満たすことにより、対向配置された放電電極部の寸法精度が確保できると同時に、所望の素子外形寸法が実現できる。放電誘発部を形成後、必要なグリーンシートを積層し、熱プレスし、焼成する。なお、混合物の調製の際、又は、混合物の塗布或いは印刷の際に、溶剤やバインダー等の各種添加物を配合してもよい。また、焼成時における処理条件は、特に限定されないが、生産性及び経済性を考慮すると、大気雰囲気下、800〜1200℃で10分〜3時間程度が好ましい。   A mixture containing an insulating inorganic material and a conductive inorganic material was prepared, and this mixture was formed by coating or printing between both ends of the discharge electrodes 12 and 13 as shown in FIG. In a plane parallel to the main surface of the insulating substrate, the element short side length b, the discharge electrode tip side length c in the same direction as the element short side, and the discharge inducing portion length a in the same direction as the element short side, In this case, it is preferable that c ≦ a ≦ 0.7b. When seen from the main surface of the insulating substrate, the portion overlapping the discharge inducing portion is suppressed from firing shrinkage in the plane parallel to the main surface of the insulating substrate, but the portion where the discharge inducing portion is not embedded is subject to firing shrinkage. . When a exceeds 0.7b, the dimensional accuracy of the oppositely disposed discharge electrode tips can be ensured, but the influence of the discharge inducing portion that does not shrink by firing increases, and the element long side near the discharge inducing portion is outside the device. Deforms to swell. When a is less than c, the portion of the discharge electrode that does not overlap the discharge inducing portion is baked and contracted, the tip of the discharge electrode is deformed, and the dimensional accuracy between the opposing discharge electrodes is reduced. By satisfying the above relational expression, it is possible to ensure the dimensional accuracy of the discharge electrode portions arranged opposite to each other, and at the same time to realize a desired element outer dimension. After forming the discharge inducing portion, the necessary green sheets are stacked, hot pressed and fired. In addition, you may mix | blend various additives, such as a solvent and a binder, in the case of preparation of a mixture, or the application or printing of a mixture. In addition, the treatment conditions at the time of firing are not particularly limited, but considering productivity and economy, it is preferably about 10 minutes to 3 hours at 800 to 1200 ° C. in an air atmosphere.
本実施形態の静電気対策素子100は、前記絶縁性基板を焼成する温度では焼結しない絶縁性無機材料のマトリックス中に、導電性無機材料が分散したコンポジットである放電誘発部14により、隣接する前記放電電極12,13、および対向する放電電極12と13の間の絶縁性基板11のそれぞれ主面に平行な面方向の焼成収縮が抑制され、対向する放電電極部の精度を向上でき、その結果、放電特性ばらつきを少なくできる。又、放電誘発部の絶縁性無機材料が焼結挙動を示さないため、分散する導電性無機材料の焼成時の凝集が抑制され、ショート不良も防止できる。同時に、素子外形寸法精度も確保でき、簡便な工法で量産を行うことが可能である。   The antistatic element 100 of the present embodiment is adjacent to the discharge inducing portion 14 which is a composite in which a conductive inorganic material is dispersed in a matrix of an insulating inorganic material that is not sintered at a temperature for firing the insulating substrate. The firing shrinkage in the plane direction parallel to the main surface of each of the discharge electrodes 12 and 13 and the insulating substrate 11 between the opposing discharge electrodes 12 and 13 is suppressed, and the accuracy of the opposing discharge electrode portions can be improved. , Discharge characteristic variation can be reduced. In addition, since the insulating inorganic material in the discharge inducing portion does not exhibit sintering behavior, aggregation of the dispersed conductive inorganic material during firing is suppressed, and short-circuit defects can be prevented. At the same time, the device external dimension accuracy can be ensured, and mass production can be performed by a simple construction method.
本発明は、その要旨を逸脱しない限り、さまざまな変形が可能であり、上述した実施形態に限定されない。   The present invention can be variously modified without departing from the gist thereof, and is not limited to the above-described embodiment.
以下、本発明の実施例を、図1〜図4を参照しながら説明する。   Embodiments of the present invention will be described below with reference to FIGS.
まず、放電誘発部の絶縁性無機材料の種類による初期ショート不良の有無、ピーク電圧のばらつき度合を確認した。   First, the presence / absence of an initial short-circuit failure and the degree of variation in peak voltage depending on the type of insulating inorganic material in the discharge inducing portion were confirmed.
(実施例1)
図1に示すように、絶縁性基板11として、主成分がトリジマイトとホウケイ酸ガラスより構成される材料をシート化したグリーンシートを用意した。トリジマイトとホウケイ酸ガラスの比率は30体積%と70体積%とし、有機ビヒクルとともに混合してスラリー状の誘電体ペーストを調製し、ポリエチレンテレフタレートシートの支持体上にドクターブレード法によって形成した。そのグリーンシートの表面に、放電電極ペーストをスクリーン印刷により印刷し、放電電極を形成した。放電電極ペーストはAgを95質量%、ホウケイ酸ガラスを5質量%含有したものを、有機ビヒクルと混練することにより作製した。この放電電極用ペーストを、厚み15μm程度となるように印刷し、対向配置された一対の帯状の放電電極12、13をパターン形成した。放電電極12、13の長さは0.6mm、幅は0.2mm、電極12、13間の距離は20μmとした。
Example 1
As shown in FIG. 1, as the insulating substrate 11, a green sheet in which a material composed mainly of tridymite and borosilicate glass was prepared as a sheet. The ratio of tridymite and borosilicate glass was 30% by volume and 70% by volume, mixed with an organic vehicle to prepare a slurry-like dielectric paste, and formed on a polyethylene terephthalate sheet support by a doctor blade method. A discharge electrode paste was printed on the surface of the green sheet by screen printing to form a discharge electrode. A discharge electrode paste containing 95% by mass of Ag and 5% by mass of borosilicate glass was prepared by kneading with an organic vehicle. This discharge electrode paste was printed so as to have a thickness of about 15 μm, and a pair of strip-like discharge electrodes 12 and 13 arranged to face each other were patterned. The length of the discharge electrodes 12 and 13 was 0.6 mm, the width was 0.2 mm, and the distance between the electrodes 12 and 13 was 20 μm.
次に、上記放電電極12、13の対向する先端部上、および先端間上に、以下の手順で放電誘発部14を形成した。まず、絶縁性無機材料としてトリジマイト粒子を70体積%、導電性無機材料として平均粒径0.5μmのAg粒子を30体積%、となるように秤量し、これらを混合して混合物を得た。そして、バインダーとしてエチルセルロース系樹脂と、溶剤としてのターピネオールとを固形分比率が8質量%となるように混錬して調製したラッカーに、得られた混合物を混合物の固形分比率が60体積%となるように配合し、その混合物を混練することにより、放電誘発部ペーストを作製した。次いで、得られた放電誘発部ペーストを、放電電極12,13の先端部、先端間、および近傍の絶縁性基板11の絶縁性表面を覆うように、スクリーン印刷により塗布し、放電誘発部14を形成した。放電誘発部14を形成する領域として図2に示す放電誘発部長さを0.25mm、これに直交する方向の長さを0.25mmとしたものを作製した。さらに混合物層上にグリーンシートを積層した後、熱プレスを行うことにより、積層体を作製した。その後、得られた積層体を所定の大きさに切断し、個片化を行った。個片化のサイズとしては図2に示す。素子短辺長さを0.59mm、素子長辺長さを1.18mmとした。しかる後、個片化された積層体に200℃で1時間の熱処理(脱バインダー処理)を施し、その後、毎分10℃で昇温し、大気中900℃で30分間保持し、焼成体を得た。なお、焼成後の対向する放電電極12、13間の距離は20μm、放電電極12、13の先端短辺長さcは0.2mm、素子短辺長さbは0.5mm、素子長辺長さは1.0mm程度となる。   Next, the discharge induction part 14 was formed on the front-end | tip part which the said discharge electrodes 12 and 13 oppose, and between front-end | tips with the following procedures. First, 70 volume% of tridymite particles as an insulating inorganic material and 30 volume% of Ag particles having an average particle diameter of 0.5 μm as a conductive inorganic material were weighed and mixed to obtain a mixture. And, to the lacquer prepared by kneading ethyl cellulose resin as a binder and terpineol as a solvent so that the solid content ratio is 8% by mass, the resulting mixture has a solid content ratio of 60% by volume. The discharge induction part paste was produced by mix | blending so that it might become and knead | mixing the mixture. Next, the obtained discharge inducing portion paste is applied by screen printing so as to cover the insulating electrodes 11 of the insulating substrate 11 between the tips of the discharge electrodes 12 and 13 and between the tips, and the discharge inducing portion 14 is applied. Formed. As a region for forming the discharge inducing portion 14, a region in which the length of the discharge inducing portion shown in FIG. 2 was 0.25 mm and the length in the direction perpendicular to the length was 0.25 mm was produced. Further, a green sheet was laminated on the mixture layer, and then a hot press was performed to produce a laminate. Thereafter, the obtained laminate was cut into a predetermined size and separated into pieces. As shown in FIG. The element short side length was 0.59 mm, and the element long side length was 1.18 mm. Thereafter, the individualized laminate is subjected to heat treatment (debinding treatment) at 200 ° C. for 1 hour, and then heated at 10 ° C. per minute and held at 900 ° C. for 30 minutes in the atmosphere. Obtained. The distance between the opposing discharge electrodes 12 and 13 after firing is 20 μm, the tip short side length c of the discharge electrodes 12 and 13 is 0.2 mm, the element short side length b is 0.5 mm, and the element long side length The thickness is about 1.0 mm.
その後、放電電極12、13の外周端部に接続するように、Agを主成分とする端子電極を形成することにより、実施例1の静電気対策素子100を得た。   Then, the antistatic element 100 of Example 1 was obtained by forming the terminal electrode which has Ag as a main component so that it might connect to the outer peripheral edge part of the discharge electrodes 12 and 13. FIG.
(実施例2)
実施例1の放電誘発部の絶縁性無機材料をトリジマイト粒子に代えてジルコニア粒子を70体積%と、Ag粒子を30体積%用いること以外は、実施例1と同様に作製して、実施例2の静電気対策素子100を得た。
(Example 2)
Example 2 was prepared in the same manner as in Example 1 except that 70% by volume of zirconia particles and 30% by volume of Ag particles were used instead of tridymite particles as the insulating inorganic material in the discharge inducing part of Example 1. The anti-static element 100 was obtained.
(実施例3)
実施例1の放電誘発部の絶縁性無機材料として、トリジマイト粒子を70体積%、導電性無機材料としてAg粒子を30体積%に代えて、トリジマイト粒子を50体積%、Ag粒子を50体積%にすること以外は、実施例1と同様に作製して、実施例3の静電気対策素子100を得た。
(Example 3)
As the insulating inorganic material of the discharge inducing portion of Example 1, 70% by volume of tridymite particles and 30% by volume of Ag particles as the conductive inorganic material were changed to 50% by volume of tridymite particles and 50% by volume of Ag particles. Except that, it was fabricated in the same manner as in Example 1, and the antistatic element 100 of Example 3 was obtained.
(実施例4)
実施例2の放電誘発部の絶縁性無機材料として、ジルコニア粒子を70体積%と、導電性無機材料としてAg粒子を30体積%に代えて、ジルコニア粒子を50体積%と、Ag粒子を50体積%にすること以外は、実施例2と同様に作製して、実施例4の静電気対策素子100を得た。
Example 4
As an insulating inorganic material of the discharge inducing portion of Example 2, 70 volume% of zirconia particles and 30 volume% of Ag particles as a conductive inorganic material, 50 volume% of zirconia particles, and 50 volume of Ag particles The antistatic element 100 of Example 4 was obtained in the same manner as in Example 2 except that the percentage was changed to%.
(比較例1)
実施例1の放電誘発部の絶縁性無機材料を900℃焼成では焼結しないトリジマイト粒子に代えて、軟化点が771℃で、900℃で焼結するアルミケイ酸ストロンチウムガラス粉末を用いること以外は、実施例1と同様に作製して、比較例1の静電気対策素子100を得た。
(Comparative Example 1)
The insulating inorganic material of the discharge inducing part of Example 1 is replaced with tridymite particles that are not sintered by firing at 900 ° C., except that strontium aluminum silicate glass powder having a softening point of 771 ° C. and sintered at 900 ° C. is used. Fabricated in the same manner as in Example 1, an electrostatic protection element 100 of Comparative Example 1 was obtained.
(比較例2)
比較例1の放電誘発部の絶縁性無機材料として、アルミケイ酸ストロンチウムガラス粉末を70体積%、導電性無機材料としてAg粒子を30体積%に代えて、アルミケイ酸ストロンチウムガラス粉末を50体積%、Ag粒子を50体積%にすること以外は比較例1と同様に作製して、比較例2の静電気対策素子100を得た。
(Comparative Example 2)
As an insulating inorganic material of the discharge inducing portion of Comparative Example 1, 70% by volume of strontium aluminum silicate glass powder and 30% by volume of Ag particles as a conductive inorganic material, 50% by volume of Ag strontium aluminum silicate glass powder, Ag A static electricity countermeasure element 100 of Comparative Example 2 was obtained in the same manner as in Comparative Example 1 except that the particle content was 50% by volume.
<静電気放電試験>
上記のようにして得られた実施例1〜4及び比較例1、2の静電気対策素子について、図4に示す静電気試験回路を用いて、静電気放電試験を実施した。表1に、試験結果を示す。
<Electrostatic discharge test>
About the electrostatic countermeasure element of Examples 1-4 obtained by the above and Comparative Examples 1 and 2, the electrostatic discharge test was implemented using the electrostatic test circuit shown in FIG. Table 1 shows the test results.
この静電気放電試験は、国際規格IEC61000−4−2の静電気放電イミュニティ試験及びノイズ試験に基づき、人体モデルに準拠(放電抵抗330Ω、放電容量150pF、印加電圧8kV、接触放電)して行った。具体的には、図4の静電気試験回路に示すように、評価対象の静電気対策素子の一方の端子電極をグランドに接地するとともに、他方の端子電極に静電気パルス印加部を接続した後、静電気パルス印加部に放電ガンを接触させて静電気パルスを印加した。なお、静電気放電試験は、各例でサンプルを100個用意して行い、放電試験時のピーク電圧のばらつきを評価した。尚、ピーク電圧は印加電圧を0.4kVから0.2kV間隔で増加させながら行った際に観測される静電気吸収波形において、静電気吸収効果が現れた電圧で最も高い電圧とした。又、ショート不良率に関しては放電電極間の短絡が発生した個数をカウントして発生率を算出した。対向する放電電極12,13先端部を研磨にて露出させた後、走査電子顕微鏡を用いて放電電極間距離を測定してばらつきを評価した。尚、観察個数は各例30個とした。
This electrostatic discharge test was performed in accordance with a human body model (discharge resistance 330Ω, discharge capacity 150 pF, applied voltage 8 kV, contact discharge) based on the electrostatic discharge immunity test and noise test of the international standard IEC61000-4-2. Specifically, as shown in the electrostatic test circuit of FIG. 4, one terminal electrode of the electrostatic countermeasure element to be evaluated is grounded, and an electrostatic pulse applying unit is connected to the other terminal electrode, An electrostatic pulse was applied by bringing a discharge gun into contact with the application section. In addition, the electrostatic discharge test was performed by preparing 100 samples in each example, and the variation in peak voltage during the discharge test was evaluated. The peak voltage was the highest voltage among the electrostatic absorption waveforms observed when the applied voltage was increased from 0.4 kV to 0.2 kV and the electrostatic absorption effect appeared. Further, regarding the short-circuit defect rate, the occurrence rate was calculated by counting the number of short-circuits between the discharge electrodes. After exposing the front ends of the opposing discharge electrodes 12 and 13 by polishing, the distance between the discharge electrodes was measured using a scanning electron microscope to evaluate the variation. The number of observations was 30 for each example.
表1より、実施例1〜4の静電気対策素子は、放電電極間の短絡(ショート)の発生が格段に抑制されていることが確認され、又、ピーク電圧のばらつきも小さいことが確認された。これは前述のように、放電誘発部の絶縁性無機材料が、絶縁性基板11を焼成する温度では、焼結せず、焼成収縮を生じないため、対向する放電電極間距離の精度が表1に示すように良いこと、放電電極間の絶縁性を劣化させるほどの導電性無機材料の凝集が抑制されたためである。   From Table 1, it was confirmed that the occurrence of the short circuit between the discharge electrodes was remarkably suppressed in the electrostatic countermeasure elements of Examples 1 to 4, and the variation in the peak voltage was also small. . As described above, the insulating inorganic material of the discharge inducing portion does not sinter at the temperature at which the insulating substrate 11 is fired, and does not cause firing shrinkage. This is because the aggregation of the conductive inorganic material is suppressed to such an extent that the insulation between the discharge electrodes is deteriorated.
一方、表1より、比較例1、2の静電気対策素子は、放電電極間のショート率、およびピーク電圧安定性に於いて、実施例1〜4に比較して劣ることが確認された。比較例の場合、放電誘発部がガラスのため、絶縁性基板を焼成する過程で軟化流動を生じ、放電誘発部内の導電性無機材料の凝集が進み、絶縁性が落ちる。又、同様な理由で、放電電極先端部の放電電極主面方向に焼成収縮を抑制する力が少ないために、対向する電極間距離がばらつき、ピーク電圧ばらつきが大きくなったものと推測できる。   On the other hand, from Table 1, it was confirmed that the antistatic elements of Comparative Examples 1 and 2 were inferior to Examples 1 to 4 in terms of the short-circuit rate between the discharge electrodes and the peak voltage stability. In the case of the comparative example, since the discharge inducing part is glass, a softening flow is generated in the process of baking the insulating substrate, the aggregation of the conductive inorganic material in the discharge inducing part proceeds, and the insulating property is lowered. For the same reason, it can be presumed that the distance between the electrodes facing each other varies and the peak voltage variation increases because there is little force to suppress firing shrinkage in the direction of the discharge electrode main surface at the tip of the discharge electrode.
次に実施例1の図2に示す放電誘発部長さaの印刷寸法を変更して、素子外形寸法、及び対向する放電電極先端部への影響を確認した。   Next, the printing dimension of the discharge inducing portion length a shown in FIG. 2 of Example 1 was changed, and the external dimensions of the element and the influence on the opposing discharge electrode tip were confirmed.
(実施例5)
実施例1の放電誘発部長さaの印刷寸法を0.25mmから0.15mmに変更すること以外は、実施例1と同様に作製して、比較例3の静電気対策素子100を得た。尚、放電誘発部は絶縁性基板の主面に平行な面方向に焼成収縮しないため、焼成後の寸法は放電誘発部長さaは0.15mm、放電電極先端辺長さcは0.2mm程度となる。
(Example 5)
A static electricity countermeasure element 100 of Comparative Example 3 was obtained in the same manner as in Example 1 except that the printing dimension of the discharge inducing portion length a of Example 1 was changed from 0.25 mm to 0.15 mm. In addition, since the discharge inducing portion is not baked and shrunk in the plane direction parallel to the main surface of the insulating substrate, the dimensions after firing are the discharge inducing portion length a of 0.15 mm and the discharge electrode tip side length c of about 0.2 mm. It becomes.
(実施例6)
実施例1の放電誘発部長さaの印刷寸法を0.25mmから0.20mmに変更すること以外は、実施例1と同様に作製して、実施例6の静電気対策素子100を得た。尚、放電誘発部は絶縁性基板の主面に平行な面方向に焼成収縮しないため、焼成後の寸法は放電誘発部長さaが0.20mm、放電電極先端辺長さcは0.2mm程度となる。
(Example 6)
An ESD protection device 100 of Example 6 was obtained in the same manner as in Example 1 except that the printed dimension of the discharge inducing portion length a of Example 1 was changed from 0.25 mm to 0.20 mm. In addition, since the discharge inducing portion is not fired and contracted in the plane direction parallel to the main surface of the insulating substrate, the dimensions after firing are the discharge inducing portion length a of 0.20 mm and the discharge electrode tip side length c of about 0.2 mm. It becomes.
(実施例7)
実施例1の放電誘発部長さaの印刷寸法を0.25mmから0.35mmに変更すること以外は、実施例1と同様に作製して、実施例7の静電気対策素子100を得た。尚、放電誘発部は絶縁性基板の主面に平行な面方向に焼成収縮しないため、焼成後の寸法は放電誘発部長さaは0.35mm、放電電極先端辺長さcは0.2mm程度となる。
(Example 7)
An ESD protection device 100 of Example 7 was obtained in the same manner as in Example 1 except that the printing dimension of the discharge inducing portion length a of Example 1 was changed from 0.25 mm to 0.35 mm. In addition, since the discharge inducing portion is not fired and contracted in the plane direction parallel to the main surface of the insulating substrate, the dimensions after firing are the discharge inducing portion length a of 0.35 mm and the discharge electrode tip side length c of about 0.2 mm. It becomes.
(実施例8)
実施例1の放電誘発部長さaの印刷寸法を0.25mmから0.40mmに変更すること以外は、実施例1と同様に作製して、比較例4の静電気対策素子100を得た。尚、放電誘発部は絶縁性基板の主面に平行な面方向に焼成収縮しないため、焼成後の寸法は放電誘発部長さaは0.40mm、放電電極先端辺長さcは0.2mm程度となる。
(Example 8)
A static electricity countermeasure element 100 of Comparative Example 4 was obtained in the same manner as in Example 1 except that the printing dimension of the discharge inducing portion length a of Example 1 was changed from 0.25 mm to 0.40 mm. Since the discharge inducing part does not shrink by firing in the plane direction parallel to the main surface of the insulating substrate, the dimensions after firing are the discharge inducing part length a of 0.40 mm and the discharge electrode tip side length c of about 0.2 mm. It becomes.
(実施例9)
実施例1の放電誘発部長さaの印刷寸法を0.25mmから0.45mmに変更すること以外は、実施例1と同様に作製して、比較例5の静電気対策素子100を得た。尚、放電誘発部は絶縁性基板の主面に平行な面方向に焼成収縮しないため、焼成後の寸法は、放電誘発部長さaが0.45mm、放電電極先端辺長さcは0.2mm程度となる。
Example 9
A static electricity countermeasure element 100 of Comparative Example 5 was obtained in the same manner as in Example 1 except that the printed dimension of the discharge inducing portion length a of Example 1 was changed from 0.25 mm to 0.45 mm. In addition, since the discharge inducing portion is not fired and contracted in the plane direction parallel to the main surface of the insulating substrate, the dimensions after firing are the discharge inducing portion length a of 0.45 mm and the discharge electrode tip side length c of 0.2 mm. It will be about.
上記実施例に関して図2に示す部位の寸法測定を行った。aは放電誘発部中央部、bは素子外形短辺、cは対向する放電電極先端部の長さを測定した。表2に結果を示す。尚、測定は各例30個ずつ、放電電極主面に平行に研磨し、測定部位を露出させ、メジャーリングマイクロスコープ(オリンパス株式会社製、型式STM−MJS)を用いて測定した。表中の数値は各例30個の平均値である。
The dimensions of the part shown in FIG. a is the central portion of the discharge inducing portion, b is the short side of the outer shape of the device, and c is the length of the tip of the opposing discharge electrode. Table 2 shows the results. In addition, the measurement was performed by using a measuring microscope (model STM-MJS, manufactured by Olympus Co., Ltd.) by polishing 30 samples in each example in parallel with the main surface of the discharge electrode, exposing the measurement site. The numerical values in the table are average values of 30 examples.
素子長辺直線性は向かい合う素子外形長辺のそれぞれの中央を結ぶ距離からbを引いた数値であり、素子外形長辺側の変形度合を示すものである。   The element long side linearity is a numerical value obtained by subtracting b from the distance between the centers of the element outer long sides facing each other, and indicates the degree of deformation on the element outer long side.
実施例1、6、7はc≦a≦0.7bの関係を満たす例であり、素子長辺直線性も良く、且つ放電電極先端部の変形もないこと確認された。実施例8、9はa>0.7bの例であり、素子長辺直線性が悪化し、素子長辺中央部が素子の外側に向けて膨らむことが確認された。これは絶縁性基板主面に平行な面方向の焼成収縮しない放電誘発部の面積が大きいため、その影響を受けたためである。このような変形が顕著な場合、素子焼成後の前記端子形成、及び出荷形態のテーピング時のエンボステープへの収納、取り出しに問題を生じる。又、その後の実装に於いても問題を生じる。実施例5は放電誘発部の面積が小さく、故にその影響が少なく、素子幅が一定であるが、放電誘発部幅が対向する放電電極先端幅よりも小さいため、焼成収縮挙動が放電誘発部に覆われている部位と覆われていない部位で異なり、放電電極先端部が変形し、電極先端部の寸法精度が劣化する。これらのことから、焼成後の放電誘発部長さaと素子短辺長さb、放電電極先端辺長さcの関係はc≦a≦0.7bであることが好ましい。   Examples 1, 6, and 7 are examples satisfying the relationship of c ≦ a ≦ 0.7b, and it was confirmed that the element long-side linearity was good and the discharge electrode tip portion was not deformed. Examples 8 and 9 are examples in which a> 0.7b, and it was confirmed that the element long-side linearity deteriorated and the center part of the element long side swelled toward the outside of the element. This is because the area of the discharge inducing portion that does not shrink during firing in the plane direction parallel to the main surface of the insulating substrate is large, and thus is affected. When such a deformation is remarkable, there arises a problem in the formation of the terminal after the element is fired and the storing and taking out of the embossed tape at the time of taping in the shipping form. In addition, problems arise in subsequent mounting. In Example 5, the area of the discharge inducing portion is small, and therefore the influence thereof is small, and the element width is constant. However, since the discharge inducing portion width is smaller than the opposed discharge electrode tip width, the firing shrinkage behavior is Unlike the covered part and the uncovered part, the discharge electrode tip part is deformed, and the dimensional accuracy of the electrode tip part deteriorates. For these reasons, it is preferable that the relationship between the discharge inducing portion length a after firing, the element short side length b, and the discharge electrode tip side length c is c ≦ a ≦ 0.7b.
次に放電誘発部の導電性無機材料の含有率を変えたときの初期ショート不良率を確認した。以下に、実施例を示す。   Next, the initial short-circuit defect rate when the content of the conductive inorganic material in the discharge inducing portion was changed was confirmed. Examples are shown below.
(実施例10)
実施例1の放電誘発部14に用いる材料を、絶縁性無機材料のトリジマイトを90体積%と、導電性無機材料の平均粒径0.5μmのAg粒子を10体積%に変えること以外は、実施例1と同様に作製して、実施例10の静電気対策素子100を得た。
(Example 10)
The materials used for the discharge inducing part 14 of Example 1 were changed except that the insulating inorganic material tridymite was changed to 90% by volume and the conductive inorganic material having an average particle diameter of 0.5 μm was changed to 10% by volume. Fabricated in the same manner as in Example 1, the antistatic element 100 of Example 10 was obtained.
(実施例11)
実施例1の放電誘発部14に用いる材料を、絶縁性無機材料のトリジマイトを30体積%と、導電性無機材料の平均粒径0.5μmのAg粒子を70体積%に変えること以外は、実施例1と同様に作製して、実施例11の静電気対策素子100を得た。
(Example 11)
The material used for the discharge inducing portion 14 of Example 1 was changed except that the insulating inorganic material tridymite was changed to 30% by volume and the conductive inorganic material having an average particle diameter of 0.5 μm was changed to 70% by volume. Fabricated in the same manner as in Example 1, the antistatic element 100 of Example 11 was obtained.
(実施例12)
実施例1の放電誘発部14に用いる材料を、絶縁性無機材料のトリジマイトを20体積%と、導電性無機材料の平均粒径0.5μmのAg粒子を80体積%に変えること以外は、実施例1と同様に作製して、実施例12の静電気対策素子100を得た。
(Example 12)
The material used for the discharge inducing portion 14 of Example 1 was changed except that the insulating inorganic material tridymite was changed to 20% by volume and the conductive inorganic material having an average particle diameter of 0.5 μm was changed to 80% by volume. Produced in the same manner as in Example 1, the antistatic device 100 of Example 12 was obtained.
(実施例13)
実施例1の放電誘発部14に用いる材料を、絶縁性無機材料のトリジマイトを10体積%と、導電性無機材料の平均粒径0.5μmのAg粒子を90体積%に変えること以外は、実施例1と同様に作製して、実施例13の静電気対策素子100を得た。
(Example 13)
The material used for the discharge inducing part 14 of Example 1 was changed except that the tridymite of the insulating inorganic material was changed to 10% by volume and the Ag particles having an average particle diameter of 0.5 μm of the conductive inorganic material were changed to 90% by volume. Produced in the same manner as in Example 1, the antistatic device 100 of Example 13 was obtained.
次に、上記のようにして得られた実施例10〜の13初期ショートの有無を各例100個ずつ確認した。尚、表中の実施例1、3は前記実施例1、3の値を記載した。初期ショート不良の有無の確認としてはADVANTEST社 ULTRA HIGH RESISTANCE METERを使用し、5V印加で抵抗値を測定して、短絡の有無を確認した。表3に、試験結果を示す。
Next, the presence or absence of 13 initial shorts in Examples 10 to 10 obtained as described above was confirmed for each 100 pieces. Examples 1 and 3 in the table described the values of Examples 1 and 3. As confirmation of the presence or absence of an initial short circuit defect, the resistance value was measured by applying 5V, and the presence or absence of a short circuit was confirmed using ULTRA HIGH REISTANCE METER by ADVANTEST. Table 3 shows the test results.
表3より、導体量が10〜80体積%では初期ショート不良が発生しないことが確認された。又、前記表1の絶縁体材料がガラスの場合と比較して、格段に初期絶縁性が保たれていることも確認された。   From Table 3, it was confirmed that the initial short-circuit failure does not occur when the conductor amount is 10 to 80% by volume. It was also confirmed that the initial insulation was significantly maintained compared to the case where the insulator material in Table 1 was glass.
以上説明した通り、本発明の静電気対策素子は、放電電極先端部を精度よく作製でき、結果として放電特性バラツキも少なく、且つ初期ショート不良も防止できる素子であると同時に、素子外形寸法精度、実装性も確保できる。さらには、生産性及び経済性もより一層高め得るという特徴を有しているので、これを備える電子・電気デバイス及びそれらを備える各種機器、設備、システム等に広く且つ有効に利用可能である。   As described above, the anti-static element of the present invention is an element that can accurately produce the tip of the discharge electrode, and as a result, has little variation in discharge characteristics and can prevent an initial short circuit defect. Can also be secured. Furthermore, since it has the characteristic that productivity and economical efficiency can be further improved, it can be widely and effectively used for electronic / electrical devices equipped with them and various devices, facilities, systems, etc. equipped with them.
11 絶縁性基板
12,13 放電電極
14 放電誘発部
a 放電誘発部長さ
b 素子短辺長さ
c 放電電極先端辺長さ
100,200 静電気対策素子
11 Insulating substrate 12, 13 Discharge electrode 14 Discharge induction part a Discharge induction part length b Element short side length c Discharge electrode tip side length 100, 200 Antistatic element

Claims (4)

  1. 絶縁性基板と、該絶縁性基板上において相互に離間して対向配置された電極と、該電極間に配置された放電誘発部とを有し、前記放電誘発部は、少なくとも1種の未焼結の絶縁性無機材料のマトリックス中に、少なくとも1種の導電性無機材料が分散したコンポジットであることを特徴とする、静電気対策素子。   An insulating substrate; electrodes disposed opposite to each other on the insulating substrate; and a discharge inducing portion disposed between the electrodes, wherein the discharge inducing portion includes at least one kind of unfired portion. An anti-static element, characterized in that it is a composite in which at least one conductive inorganic material is dispersed in a matrix of insulating inorganic material.
  2. 前記放電誘発部は、前記対向配置された電極主面に重なるように配置され、且つ電極間を埋めることを特徴とする、請求項1に記載の静電気対策素子。   The electrostatic discharge protection device according to claim 1, wherein the discharge inducing portion is disposed so as to overlap the opposed electrode main surfaces and fills a space between the electrodes.
  3. 前記絶縁性基板の主面に平行な面内おいて、素子短辺長さbと、素子短辺と同一方向の放電電極先端辺長さc、および素子短辺と同一方向の放電誘発部長さaとの関係が、c≦a≦0.7bであることを特徴とする、請求項1又は請求項2記載の静電気対策素子。   In a plane parallel to the main surface of the insulating substrate, the element short side length b, the discharge electrode tip side length c in the same direction as the element short side, and the discharge inducing portion length in the same direction as the element short side 3. The electrostatic protection element according to claim 1, wherein a relationship with a is c ≦ a ≦ 0.7b.
  4. 前記絶縁性無機材料は、前記絶縁性基板を構成する成分で、ガラス成分を除き、絶縁性基板を焼成する温度で焼結しない絶縁性無機材料であることを特徴とする、請求項1乃至3のいずれか一項に記載の静電気対策素子。   The insulating inorganic material is an insulating inorganic material which is a component constituting the insulating substrate, excluding a glass component, and which does not sinter at a temperature at which the insulating substrate is fired. The anti-static element as described in any one of.
JP2013034612A 2012-03-13 2013-02-25 Static-electricity countermeasure element Pending JP2013219019A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012055924 2012-03-13
JP2012055924 2012-03-13
JP2013034612A JP2013219019A (en) 2012-03-13 2013-02-25 Static-electricity countermeasure element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013034612A JP2013219019A (en) 2012-03-13 2013-02-25 Static-electricity countermeasure element
PCT/JP2013/055775 WO2013137032A1 (en) 2012-03-13 2013-03-04 Antistatic element

Publications (1)

Publication Number Publication Date
JP2013219019A true JP2013219019A (en) 2013-10-24

Family

ID=49160945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013034612A Pending JP2013219019A (en) 2012-03-13 2013-02-25 Static-electricity countermeasure element

Country Status (2)

Country Link
JP (1) JP2013219019A (en)
WO (1) WO2013137032A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154136A (en) * 2015-01-22 2016-08-25 リテルヒューズ・インク Surface-mountable electrical circuit protection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098944A1 (en) * 2008-02-05 2009-08-13 Murata Manufacturing Co., Ltd. Esd protection device
WO2010061550A1 (en) * 2008-11-26 2010-06-03 株式会社 村田製作所 Esd protection device and manufacturing method thereof
WO2010067503A1 (en) * 2008-12-10 2010-06-17 株式会社 村田製作所 Esd protection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098944A1 (en) * 2008-02-05 2009-08-13 Murata Manufacturing Co., Ltd. Esd protection device
WO2010061550A1 (en) * 2008-11-26 2010-06-03 株式会社 村田製作所 Esd protection device and manufacturing method thereof
WO2010067503A1 (en) * 2008-12-10 2010-06-17 株式会社 村田製作所 Esd protection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154136A (en) * 2015-01-22 2016-08-25 リテルヒューズ・インク Surface-mountable electrical circuit protection device
US10181718B2 (en) 2015-01-22 2019-01-15 Littelfuse, Inc. Surface-mountable electrical circuit protection device

Also Published As

Publication number Publication date
WO2013137032A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
KR101392455B1 (en) Esd protection device and method for manufacturing same
US8934205B2 (en) ESD protection device
WO2013054629A1 (en) Electrostatic surger suppressor
JP5954490B2 (en) Static electricity countermeasure element
JP2012074269A (en) Esd protection device and method of manufacturing the same
JP6075447B2 (en) ESD protection device
JP2013219019A (en) Static-electricity countermeasure element
KR101655747B1 (en) Anti-static element
JP2014036135A (en) Electrostatic protective element and its manufacturing method
JP6107945B2 (en) ESD protection device
US9036317B2 (en) Antistatic device
JP2016042436A (en) Static electricity countermeasure element
JP2010027636A (en) Electrostatic countermeasure component
JP2010028026A (en) Method of manufacturing static electricity countermeasure device
KR101775921B1 (en) Surge protection device, manufacturing method therefor, and electronic component including same
JP6365205B2 (en) Electrostatic countermeasure element
WO2013111711A1 (en) Static-electricity countermeasure element
JP2016058183A (en) Static electricity countermeasure element
JP5614563B2 (en) Manufacturing method of ESD protection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170314