JP2013217382A - Engine - Google Patents

Engine Download PDF

Info

Publication number
JP2013217382A
JP2013217382A JP2013158329A JP2013158329A JP2013217382A JP 2013217382 A JP2013217382 A JP 2013217382A JP 2013158329 A JP2013158329 A JP 2013158329A JP 2013158329 A JP2013158329 A JP 2013158329A JP 2013217382 A JP2013217382 A JP 2013217382A
Authority
JP
Japan
Prior art keywords
pressure
supercharger
turbo
ecu
boost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013158329A
Other languages
Japanese (ja)
Other versions
JP5665930B2 (en
Inventor
Takashi Takahashi
岳志 高橋
Hidehira Nomura
英均 野村
Kazuki Maetani
一樹 前谷
Terumitsu Takahata
輝光 高畑
Takao Kawabe
隆夫 河辺
Kazuhiro Takenaka
一博 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2013158329A priority Critical patent/JP5665930B2/en
Publication of JP2013217382A publication Critical patent/JP2013217382A/en
Application granted granted Critical
Publication of JP5665930B2 publication Critical patent/JP5665930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide an engine capable of precisely controlling a multistage variable supercharging system.SOLUTION: When a first condition 11 and a second condition 12 are satisfied, an ECU 60 determines that a current high-pressure turbo rotation speed Nta_hp is a supercharger rotation speed of a high-pressure supercharger at which a multistage variable supercharging system 20 operates most efficiently and a boost pressure Bpa is a supercharging pressure optimizing an engine combustion state. When the first condition 11 or the second condition 12 is not satisfied, the ECU determines that the current high-pressure turbo rotation speed Nta_hp is not the supercharger rotation speed of the high-pressure supercharger at which the multistage variable supercharging system 20 operates most efficiently or the boost pressure Bpa is not the supercharging pressure optimizing the engine combustion state, and adjusts a vane opening of a movable vane 25 until the first condition 11 is satisfied, and then adjusts the vane opening of the movable vane 25 until the second condition 12 is satisfied.

Description

本発明は、多段可変系過給システムを備えるエンジンの技術に関する。   The present invention relates to an engine technology including a multistage variable supercharging system.

従来、高圧過給機と低圧過給機とが直列に配置される過給システムは公知である。また、排気ガスの流量を変化させて加給効果を高める可変容量手段を備える過給機も公知である。ここで、2つの過給機を直列に配置し、かつ、過給機のうち少なくとも一つが可変容量手段を備えるような過給システムを、多段可変系過給システムと定義する。例えば、特許文献1は、多段可変系過給システムを備えるエンジンを開示している。   Conventionally, a supercharging system in which a high-pressure supercharger and a low-pressure supercharger are arranged in series is known. Also known is a supercharger comprising variable capacity means for increasing the charging effect by changing the flow rate of the exhaust gas. Here, a supercharging system in which two superchargers are arranged in series and at least one of the superchargers includes variable capacity means is defined as a multistage variable system supercharging system. For example, patent document 1 is disclosing the engine provided with a multistage variable supercharging system.

従来、例えば可変容量手段等の過給機の制御手段は、ブーストセンサーによって検出される過給圧をフィードバック値としていた。しかし、過給圧は、過給機の作動に対し間接的な物理量であるため、過給圧をフィードバック値とする過給機の制御手段では、過給機を精度良く制御できない点で不利であった。特に、多段可変系過給システムを備えるエンジンでは、過給圧をフィードバック値とする制御手段では、過給システムを精度良く制御できない点で不利であった。   Conventionally, for example, a control unit for a supercharger such as a variable capacity unit has used a boost pressure detected by a boost sensor as a feedback value. However, since the supercharging pressure is an indirect physical quantity with respect to the operation of the supercharger, the supercharger control means using the supercharging pressure as a feedback value is disadvantageous in that the supercharger cannot be controlled accurately. there were. In particular, an engine having a multistage variable supercharging system is disadvantageous in that the supercharging system cannot be controlled with high accuracy by the control means using the supercharging pressure as a feedback value.

特開2006−29110号公報JP 2006-29110 A

本発明は、エンジンの燃焼状態を最適にする過給圧となるように、高圧過給機の作動と直接的な関係にある高圧過給機の高圧過給機回転数をフィードバック値として制御することによって、高圧過給機と低圧過給機とが直列に配置された多段可変系過給システムを精度良く制御できるエンジンを提供することを課題とする。   The present invention controls the high-pressure supercharger rotation speed of the high-pressure supercharger that is directly related to the operation of the high-pressure supercharger as a feedback value so that the supercharging pressure that optimizes the combustion state of the engine is obtained. Accordingly, an object of the present invention is to provide an engine that can accurately control a multistage variable system supercharging system in which a high-pressure supercharger and a low-pressure supercharger are arranged in series.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

請求項1においては、高圧コンプレッサ(21)と高圧ターボ(22)とからなる高圧過給機と、低圧コンプレッサ(31)と低圧ターボ(32)とからなる低圧過給機とが直列に配置される多段可変系過給システム(20)と、吸気マニホールド(12)におけるブースト圧を検出するブーストセンサー(62)と、前記高圧コンプレッサ(21)に設けられ、高圧ターボ(22)の回転数を検出する高圧ターボセンサー(61)と、前記高圧ターボ(22)の容量を調整する可動ベーン(25)と、前記可動ベーン(25)の開度を調整する制御手段であるECU(60)とを具備し、前記ECU(60)は、前記ブーストセンサー(62)にて検出されるブースト圧と高圧ターボセンサー(61)にて検出される高圧ターボ回転数に基づいて、前記可動ベーン(25)のベーン開度を調整するものである。   In Claim 1, the high-pressure supercharger which consists of a high-pressure compressor (21) and a high-pressure turbo (22), and the low-pressure supercharger which consists of a low-pressure compressor (31) and a low-pressure turbo (32) are arrange | positioned in series. The multistage variable system supercharging system (20), the boost sensor (62) for detecting the boost pressure in the intake manifold (12), and the high pressure compressor (21) are provided to detect the rotational speed of the high pressure turbo (22). A high-pressure turbo sensor (61), a movable vane (25) that adjusts the capacity of the high-pressure turbo (22), and an ECU (60) that is a control means for adjusting the opening of the movable vane (25). The ECU (60) is based on the boost pressure detected by the boost sensor (62) and the high-pressure turbo rotational speed detected by the high-pressure turbo sensor (61). There are, and adjusts the vane opening of the movable vanes (25).

請求項1においては、高圧コンプレッサ(21)と高圧ターボ(22)とからなる高圧過給機と、低圧コンプレッサ(31)と低圧ターボ(32)とからなる低圧過給機とが直列に配置される多段可変系過給システム(20)と、吸気マニホールド(12)におけるブースト圧を検出するブーストセンサー(62)と、前記高圧コンプレッサ(21)に設けられ、高圧ターボ(22)の回転数を検出する高圧ターボセンサー(61)と、前記高圧ターボ(22)の容量を調整する可動ベーン(25)と、前記可動ベーン(25)の開度を調整する制御手段であるECU(60)とを具備し、前記ECU(60)は、エンジン(100)が低回転数かつ低負荷であるとき、高圧過給機が最も効率良く作動する目標高圧ターボ回転数(ωctrg_hp)、及びエンジン(100)の燃焼状態を最適にする過給圧としての目標ブースト圧(Bpatrg)を、予めECU60に記憶されているマップから算出し、前記ECU(60)は、第一の条件(11)として、前記高圧ターボセンサー(61)によって検出される高圧ターボ回転数(Nta_hp)と、目標高圧ターボ回転数(ωctrg_hp)との差の絶対値が、第一の所定値(α11)より小さいかどうかについて判断し、前記ECU(60)は、第二の条件(12)として、前記ブーストセンサー(62)によって検出されるブースト圧(Bpa)と、目標ブースト圧(Bpatrg)との差の絶対値が、第二の所定値(α12)より小さいかどうかについて判断し、前記ECU(60)は、第一の条件(11)及び第二の条件(12)を満足する場合は、現在の高圧ターボ回転数(Nta_hp)が多段可変系過給システム(20)が最も効率良く作動する高圧過給機の過給機回転数であって、ブースト圧(Bpa)がエンジン(100)の燃焼状態を最適にする過給圧であると判断し、前記ECU(60)は、第一の条件(11)又は第二の条件(12)を満足しない場合は、現在の高圧ターボ回転数(Nta_hp)が多段可変系過給システム(20)が最も効率良く作動する高圧過給機の過給機回転数ではない、或いは、ブースト圧(Bpa)がエンジン(100)の燃焼状態を最適にする過給圧ではないと判断し、前記ECU(60)は、第一の条件(11)を満足するまで可動ベーン(25)のベーン開度を調整し、次に、前記ECU(60)は、第二の条件(12)を満足するまで可動ベーン(25)のベーン開度を調整するものである。   In Claim 1, the high-pressure supercharger which consists of a high-pressure compressor (21) and a high-pressure turbo (22), and the low-pressure supercharger which consists of a low-pressure compressor (31) and a low-pressure turbo (32) are arrange | positioned in series. The multistage variable system supercharging system (20), the boost sensor (62) for detecting the boost pressure in the intake manifold (12), and the high pressure compressor (21) are provided to detect the rotational speed of the high pressure turbo (22). A high-pressure turbo sensor (61), a movable vane (25) that adjusts the capacity of the high-pressure turbo (22), and an ECU (60) that is a control means for adjusting the opening of the movable vane (25). When the engine (100) has a low rotation speed and a low load, the ECU (60) performs a target high-pressure turbo rotation speed (ωctrg) at which the high-pressure supercharger operates most efficiently. hp) and a target boost pressure (Bpatrg) as a supercharging pressure that optimizes the combustion state of the engine (100) are calculated from a map stored in advance in the ECU 60, and the ECU (60) As a condition (11), the absolute value of the difference between the high-pressure turbo rotational speed (Nta_hp) detected by the high-pressure turbo sensor (61) and the target high-pressure turbo rotational speed (ωctrg_hp) is a first predetermined value (α11). The ECU (60) determines whether or not the difference is smaller than the boost pressure (Bpa) detected by the boost sensor (62) and the target boost pressure (Bpatrg) as the second condition (12). Is determined whether the absolute value is smaller than a second predetermined value (α12), and the ECU (60) determines whether the first condition (11) and the second condition are satisfied. If the condition (12) is satisfied, the current high-pressure turbo rotational speed (Nta_hp) is the turbocharger speed of the high-pressure supercharger in which the multistage variable turbocharger system (20) operates most efficiently, and boost The pressure (Bpa) is determined to be a supercharging pressure that optimizes the combustion state of the engine (100), and the ECU (60) does not satisfy the first condition (11) or the second condition (12). In this case, the current high-pressure turbo speed (Nta_hp) is not the supercharger speed of the high-pressure supercharger in which the multistage variable system supercharging system (20) operates most efficiently, or the boost pressure (Bpa) is the engine The ECU (60) determines that the combustion pressure of (100) is not optimal, and the ECU (60) adjusts the vane opening of the movable vane (25) until the first condition (11) is satisfied, Next, the ECU (60) And adjusts the vane opening of the movable vanes (25) to satisfy the condition (12).

請求項1によれば、高圧過給機と低圧過給機とが直列に配置された多段可変系過給システムを精度良く制御できるエンジンを構成することができる。   According to the first aspect of the present invention, it is possible to configure an engine that can accurately control a multistage variable system supercharging system in which a high pressure supercharger and a low pressure supercharger are arranged in series.

請求項2によれば、ECU(60)は、第一の条件(11)又は第二の条件(12)を満足しない場合は、現在の高圧ターボ回転数(Nta_hp)は、多段可変系過給システム(20)が最も効率良く作動する高圧過給機の過給機回転数ではない、或いは、ブースト圧(Bpa)は、エンジン(100)の燃焼状態を最適にする過給圧ではないと判断し、ECU(60)は、第一の条件(11)を満足するまで可動ベーン(25)のベーン開度を調整し、次に、ECU(60)は、第二の条件(12)を満足するまで可動ベーン(25)のベーン開度を調整する制御することによって、多段可変系過給システムを精度良く制御することができ、エンジン(100)の燃焼状態が最適となるように制御することができるのである。   According to claim 2, when the ECU (60) does not satisfy the first condition (11) or the second condition (12), the current high-pressure turbo rotational speed (Nta_hp) is determined by the multistage variable system supercharging. It is determined that the system (20) is not the turbocharger speed of the high-pressure turbocharger that operates most efficiently, or the boost pressure (Bpa) is not the boost pressure that optimizes the combustion state of the engine (100). The ECU (60) adjusts the vane opening of the movable vane (25) until the first condition (11) is satisfied, and then the ECU (60) satisfies the second condition (12). By controlling to adjust the vane opening degree of the movable vane (25), the multistage variable system supercharging system can be accurately controlled, and the combustion state of the engine (100) is controlled to be optimum. Can do it.

本発明の実施形態1に係るエンジンの全体的な構成を示す構成図。1 is a configuration diagram showing an overall configuration of an engine according to Embodiment 1 of the present invention. 同じく過給機制御のフローを示すフロー図。The flowchart which similarly shows the flow of supercharger control. 同じく別の過給機制御のフローを示すフロー図。The flowchart which similarly shows the flow of another supercharger control. 本発明の実施形態2に係るエンジンの全体的な構成を示す構成図。The block diagram which shows the whole structure of the engine which concerns on Embodiment 2 of this invention. 同じく過給機制御のフローを示すフロー図。The flowchart which similarly shows the flow of supercharger control. 同じく別の過給機制御のフローを示すフロー図。The flowchart which similarly shows the flow of another supercharger control. 本発明の実施形態3に係るエンジンの全体的な構成を示す構成図。The block diagram which shows the whole structure of the engine which concerns on Embodiment 3 of this invention.

次に、発明の実施形態について説明する。   Next, embodiments of the invention will be described.

図1は実施例としての形態1に係るエンジンの全体的な構成を示す構成図、図2は同じく過給機制御のフローを示すフロー図、図3は同じく構成冷としてのの過給機制御のフローを示すフロー図である。図4は構成形態1に係るエンジンの全体的な構成を示す構成図、図5は同じく過給機制御のフローを示すフロー図である。図6は同じく別の過給機制御のフローを示すフロー図である。図7は構成形態2に係るエンジンの全体的な構成を示す構成図である。図1を用いて、構成例としての形態1であるエンジン100の構成について説明する。エンジン100は、直噴式6気筒ディーゼルエンジンであって、吸気経路2が接続される吸気マニホールド12と、排気経路3が接続される排気マニホールド13と、コモンレールに蓄圧された燃料をインジェクタによって各気筒に噴射するコモンレール式燃料噴射装置(以下、燃料噴射装置)15と、を備えている。   FIG. 1 is a block diagram showing the overall configuration of an engine according to Embodiment 1 as an embodiment, FIG. 2 is a flow diagram showing a flow of supercharger control, and FIG. 3 is a turbocharger control as a configuration cold. It is a flowchart which shows this flow. FIG. 4 is a block diagram showing the overall configuration of the engine according to configuration form 1, and FIG. 5 is a flowchart showing the flow of the supercharger control. FIG. 6 is a flowchart showing another supercharger control flow. FIG. 7 is a configuration diagram showing the overall configuration of the engine according to Configuration Mode 2. With reference to FIG. 1, a configuration of an engine 100 that is the first embodiment as a configuration example will be described. The engine 100 is a direct injection 6-cylinder diesel engine, and includes an intake manifold 12 to which an intake path 2 is connected, an exhaust manifold 13 to which an exhaust path 3 is connected, and fuel accumulated in a common rail to each cylinder by an injector. And a common rail fuel injection device (hereinafter referred to as a fuel injection device) 15 for injection.

また、エンジン100は、過給システム20を備えている。過給システム20は、高圧コンプレッサ21と高圧ターボ22とからなる高圧過給機と、低圧コンプレッサ31と低圧ターボ32とからなる低圧過給機と、を直列に配置して備えている。   The engine 100 includes a supercharging system 20. The supercharging system 20 includes a high pressure supercharger composed of a high pressure compressor 21 and a high pressure turbo 22 and a low pressure supercharger composed of a low pressure compressor 31 and a low pressure turbo 32 arranged in series.

高圧過給機は、可変容量手段を備える過給機である。可変容量手段とは、高圧ターボ22の上流側に設けられる可動ベーン25のベーン開度を調整し、高圧過給機を通過する排気流量を調整し、高圧過給機の容量、すなわち加給効率を調整する手段である。以下では、本構成例としての形態のように、2つの過給機を直列に配置し、かつ、過給機のうち少なくとも一つが可変容量手段を備えるような過給システムを、多段可変系過給システムと定義する。   The high-pressure supercharger is a supercharger that includes variable capacity means. The variable capacity means adjusts the vane opening degree of the movable vane 25 provided on the upstream side of the high-pressure turbo 22, adjusts the exhaust flow rate passing through the high-pressure supercharger, and controls the capacity of the high-pressure supercharger, that is, the charging efficiency. It is a means to adjust. In the following, a supercharging system in which two superchargers are arranged in series and at least one of the superchargers is provided with variable capacity means as in the configuration example will be described. Defined as the supply system.

吸気経路2は、上流側(外気側)から吸気マニホールド12に向かって、低圧コンプレッサ31と、低圧コンプレッサ31で過給される空気を冷却するインタークーラー33と、高圧コンプレッサ21と、高圧コンプレッサ21で過給される空気を冷却するインタークーラー23と、を備えている。   The intake path 2 passes through the intake manifold 12 from the upstream side (outside air side), the intercooler 33 that cools the air supercharged by the low pressure compressor 31, the high pressure compressor 21, and the high pressure compressor 21. And an intercooler 23 for cooling the supplied air.

排気経路3は、排気マニホールド13から下流側(外気側)に向かって、高圧ターボ22と、高圧ターボ22を短絡するバイパス経路4と、バイパス経路4のバイパス流量を調整するバイパス流量調製手段としてのバイパス弁24と、低圧ターボ32と、を備えている。   The exhaust path 3 is a high-pressure turbo 22, a bypass path 4 that short-circuits the high-pressure turbo 22, and a bypass flow rate adjusting unit that adjusts the bypass flow rate of the bypass path 4 from the exhaust manifold 13 toward the downstream side (outside air side). A bypass valve 24 and a low-pressure turbo 32 are provided.

制御手段としてのEngine Control Unit(以下、ECU)60は、アンプ65を介して高圧コンプレッサ21に設けられる高圧ターボセンサー61と、吸気マニホールド12に設けられるブーストセンサー62と、バイパス弁24と、燃料噴射装置15と、可動ベーン25と、を接続して構成されている。以下では、ECU60による可動ベーン25のベーン開度の調整と、バイパス弁24の開度の調整とを、過給機制御と定義する。   An engine control unit (hereinafter referred to as ECU) 60 as a control means includes a high pressure turbo sensor 61 provided in the high pressure compressor 21 via an amplifier 65, a boost sensor 62 provided in the intake manifold 12, a bypass valve 24, and fuel injection. The apparatus 15 and the movable vane 25 are connected to each other. Hereinafter, the adjustment of the vane opening of the movable vane 25 and the adjustment of the opening of the bypass valve 24 by the ECU 60 are defined as supercharger control.

図2を用いて、エンジン100の過給機制御について説明する。ECU60は、制御手段として、エンジン100が低回転数かつ低負荷であるとき、高圧過給機が最も効率良く作動する高圧過給機回転数と、エンジン100の燃焼状態を最適にする過給圧と、なるように可動ベーン25のベーン開度を調整する機能を有する。まず、ECU60は、目標高圧ターボ回転数ωctrg_hp及び目標ブースト圧Bpatrgを算出する(S110)。目標高圧ターボ回転数ωctrg_hpは、高圧過給機について、最も効率良く作動する過給機回転数として、指令噴射量、エンジン回転数、及びブースト圧Bpaに基づいて、予めECU60に記憶されているマップ(図示略)から算出される。目標ブースト圧Bpatrgは、エンジン100の燃焼状態を最適にする過給圧として、指令噴射量、エンジン回転数、及び高圧ターボ回転数Nta_hpに基づいて、予めECU60に記憶されているマップ(図示略)から算出される。   The supercharger control of the engine 100 will be described with reference to FIG. As a control means, the ECU 60 controls the high-pressure supercharger speed at which the high-pressure supercharger operates most efficiently and the supercharging pressure that optimizes the combustion state of the engine 100 when the engine 100 is at a low speed and a low load. And has a function of adjusting the vane opening of the movable vane 25 so as to become. First, the ECU 60 calculates the target high-pressure turbo rotational speed ωctrg_hp and the target boost pressure Bpatrg (S110). The target high-pressure turbo speed ωctrg_hp is a map stored in the ECU 60 in advance based on the command injection amount, the engine speed, and the boost pressure Bpa as the supercharger speed that operates most efficiently for the high-pressure supercharger. (Not shown). The target boost pressure Bpatrg is a map (not shown) stored in advance in the ECU 60 as a supercharging pressure that optimizes the combustion state of the engine 100 based on the command injection amount, the engine speed, and the high-pressure turbo speed Nta_hp. Is calculated from

ECU60は、第一の条件(11)として、高圧ターボセンサー61によって検出される高圧ターボ回転数Nta_hpと目標高圧ターボ回転数ωctrg_hpとの差の絶対値が、第一の所定値α11より小さいかどうか、第二の条件(12)として、ブーストセンサー62によって検出されるブースト圧Bpaと目標ブースト圧Bpatrgとの差の絶対値が第二の所定値α12より小さいかどうか、について判断する(S120)。   As a first condition (11), the ECU 60 determines whether the absolute value of the difference between the high-pressure turbo rotation speed Nta_hp detected by the high-pressure turbo sensor 61 and the target high-pressure turbo rotation speed ωctrg_hp is smaller than a first predetermined value α11. As a second condition (12), it is determined whether or not the absolute value of the difference between the boost pressure Bpa detected by the boost sensor 62 and the target boost pressure Bpatrg is smaller than a second predetermined value α12 (S120).

ECU60は、S120において、第一の条件(11)及び第二の条件(12)を満足する場合は、現在、高圧ターボ回転数Nta_hpは、過給システム20が最も効率良く作動する高圧過給機の過給機回転数であって、ブースト圧Bpaは、エンジン100の燃焼状態を最適にする過給圧であると判断する。   When the ECU 60 satisfies the first condition (11) and the second condition (12) in S120, the high pressure turbo rotation speed Nta_hp is currently set to the high pressure supercharger at which the supercharging system 20 operates most efficiently. And the boost pressure Bpa is determined to be a supercharging pressure that optimizes the combustion state of the engine 100.

一方、ECU60は、S120において、第一の条件(11)又は第二の条件(12)を満足しない場合は、現在、高圧ターボ回転数Nta_hpは、過給システム20が最も効率良く作動する高圧過給機の過給機回転数ではない、或いは、ブースト圧Bpaは、エンジン100の燃焼状態を最適にする過給圧ではない、と判断する。   On the other hand, if the ECU 60 does not satisfy the first condition (11) or the second condition (12) in S120, the high-pressure turbo rotational speed Nta_hp is currently set to a high-pressure excess value at which the supercharging system 20 operates most efficiently. It is determined that it is not the supercharger rotation speed of the charger, or the boost pressure Bpa is not a boost pressure that optimizes the combustion state of the engine 100.

そこで、ECU60は、第一の条件(11)を満足するまで可動ベーン25のベーン開度を調整する(S140)。次に、ECU60は、第二の条件(12)を満足するまで可動ベーン25のベーン開度を調整する(S150)。   Therefore, the ECU 60 adjusts the vane opening of the movable vane 25 until the first condition (11) is satisfied (S140). Next, the ECU 60 adjusts the vane opening degree of the movable vane 25 until the second condition (12) is satisfied (S150).

図3を用いて、エンジン100の別の過給機制御について説明する。ECU60は、制御手段として、エンジン100の回転数及び負荷が増加するとき、高圧過給機が最も効率良く作動する高圧過給機回転数と、エンジン100の燃焼状態を最適にする過給圧と、なるように高圧バイパス弁24の開度を調整する機能を有する。ECU60は、目標高圧ターボ回転数ωctrg_hp及び目標ブースト圧Bpatrgを算出する(S210)。目標高圧ターボ回転数ωctrg_hpは、高圧過給機について、最も効率良く作動する過給機回転数として、指令噴射量、エンジン回転数、ブースト圧Bpaに基づいて、予めECU60に記憶されているマップから算出される。目標ブースト圧Bpatrgは、エンジン100の燃焼状態を最適にする過給圧として、指令噴射量、エンジン回転数、及び高圧ターボ回転数Nta_hpに基づいて、予めECU60に記憶されているマップから算出される。   With reference to FIG. 3, another supercharger control of the engine 100 will be described. As a control means, the ECU 60 controls the high-pressure supercharger speed at which the high-pressure supercharger operates most efficiently when the engine speed and load of the engine 100 increase, and the supercharging pressure that optimizes the combustion state of the engine 100. The function of adjusting the opening of the high-pressure bypass valve 24 is as follows. The ECU 60 calculates the target high-pressure turbo rotational speed ωctrg_hp and the target boost pressure Bpatrg (S210). The target high-pressure turbo speed ωctrg_hp is obtained from a map stored in advance in the ECU 60 based on the command injection amount, the engine speed, and the boost pressure Bpa as the supercharger speed that operates most efficiently for the high-pressure supercharger. Calculated. The target boost pressure Bpatrg is calculated from a map stored in advance in the ECU 60 as a supercharging pressure that optimizes the combustion state of the engine 100 based on the command injection amount, the engine speed, and the high-pressure turbo speed Nta_hp. .

ECU60は、条件(13)として、高圧ターボセンサー61によって検出される高圧ターボ回転数Nta_hpと目標高圧ターボ回転数ωctrg_hpとの差の絶対値が所定値α13より小さいかどうか、条件(14)として、ブーストセンサー62によって検出されるブースト圧Bpaと目標ブースト圧Bpatrgとの差の絶対値が所定値α14より小さいかどうか、について判断する(S220)。   As a condition (13), the ECU 60 determines whether the absolute value of the difference between the high-pressure turbo rotation speed Nta_hp detected by the high-pressure turbo sensor 61 and the target high-pressure turbo rotation speed ωctrg_hp is smaller than a predetermined value α13. It is determined whether or not the absolute value of the difference between the boost pressure Bpa detected by the boost sensor 62 and the target boost pressure Bpatrg is smaller than a predetermined value α14 (S220).

ECU60は、S220において、条件(13)及び条件(14)を満足する場合は、現在、高圧ターボ回転数Nta_hpは、過給システム20が最も効率良く作動する高圧過給機の過給機回転数とであって、ブースト圧Bpaは、エンジン100の燃焼状態を最適にする過給圧であると判断する。   When the ECU 60 satisfies the condition (13) and the condition (14) in S220, the high-pressure turbo rotation speed Nta_hp is currently set to the supercharger rotation speed of the high-pressure supercharger in which the supercharging system 20 operates most efficiently. Thus, boost pressure Bpa is determined to be a supercharging pressure that optimizes the combustion state of engine 100.

一方、ECU60は、S220において、条件(13)又は条件(14)を満足しない場合は、現在、高圧ターボ回転数Nta_hpは、過給システム20が最も効率良く作動する高圧過給機の過給機回転数ではない、或いは、ブースト圧Bpaは、エンジン100の燃焼状態を最適にする過給圧ではない、と判断する。   On the other hand, if the ECU 60 does not satisfy the condition (13) or the condition (14) in S220, the high-pressure turbo rotational speed Nta_hp is currently set to the supercharger of the high-pressure supercharger in which the supercharging system 20 operates most efficiently. It is determined that the engine speed is not the engine speed or the boost pressure Bpa is not the boost pressure that optimizes the combustion state of the engine 100.

そこで、ECU60は、条件(13)を満足するまでバイパス弁24の開度を調整する(S240)。次に、ECU60は、条件(14)を満足するまでバイパス弁24の開度を調整する(S250)。   Therefore, the ECU 60 adjusts the opening degree of the bypass valve 24 until the condition (13) is satisfied (S240). Next, the ECU 60 adjusts the opening degree of the bypass valve 24 until the condition (14) is satisfied (S250).

このようにして、高圧ターボ回転数Nta_hp及びブースト圧Bpaをフィードバック値として、可動ベーン25のベーン開度を調整し、高圧ターボ回転数Nta_hp及びブースト圧Bpaをフィードバック値として、バイパス弁24の開度を調整するため、多段可変系過給システムを精度良く制御できる。すなわち、高圧過給機の作動とは直接的な関係にある高圧ターボ回転数Nta_hpをフィードバック値とするため、過給機制御におけるタイムラグを減少させ、吸気系と排気系との応答遅れ(ターボラグ)を減少させ、ブースト圧Bpaのオーバーシュート及びアンダーシュートの発生を極端に減少させることができる。また、高圧過給機の作動とは直接的な関係にある高圧ターボ回転数Nta_hpをフィードバック値とするため、高圧過給機の機械的なバラツキを考慮することなく、精度良く制御できる。   In this way, the opening degree of the bypass valve 24 is adjusted by adjusting the vane opening degree of the movable vane 25 using the high pressure turbo speed Nta_hp and the boost pressure Bpa as feedback values, and using the high pressure turbo speed Nta_hp and the boost pressure Bpa as feedback values. Therefore, the multistage variable supercharging system can be controlled with high accuracy. That is, since the high-pressure turbo rotation speed Nta_hp that is directly related to the operation of the high-pressure supercharger is used as a feedback value, the time lag in the supercharger control is reduced and the response delay between the intake system and the exhaust system (turbo lag) And the occurrence of overshoot and undershoot of the boost pressure Bpa can be extremely reduced. In addition, since the high-pressure turbo rotation speed Nta_hp, which is directly related to the operation of the high-pressure supercharger, is used as a feedback value, the control can be performed with high accuracy without considering the mechanical variation of the high-pressure supercharger.

また、それぞれの過給機は、閾値として最高回転数を有している。従来の過給システムでは、ブースト値又は燃料噴射量によって、間接的に最高回転数を決定していたため、安全率を見込んだオフセット値が存在していた。そこで、高圧過給機の作動とは直接的な関係にある高圧ターボ回転数Nta_hpを検出できるため、従来のような安全率を見込んだオフセット値は不要となって、効率良く過給機を作動できる。同時に、従来の過給システムのように、安全装置としてのウェイストゲート又は吸気側のバイパス弁等も不要とすることができ、簡素化及び低コスト化できる。   Moreover, each supercharger has the highest rotation speed as a threshold value. In the conventional supercharging system, since the maximum rotation speed is indirectly determined by the boost value or the fuel injection amount, there is an offset value that allows for a safety factor. Therefore, since the high-pressure turbo rotation speed Nta_hp, which is directly related to the operation of the high-pressure supercharger, can be detected, the offset value considering the safety factor is unnecessary and the turbocharger operates efficiently. it can. At the same time, a wastegate as a safety device or a bypass valve on the intake side can be eliminated as in the conventional supercharging system, and simplification and cost reduction can be achieved.

さらに、従来の可変ノズルターボでは、排気慣性によるオーバースピン(過回転)が問題となっていた。通常、過給システムでは、過回転とならないように燃料噴射量を制限していたため、効率良く最大ブーストで過給機を作動させることができなかった。そこで、高圧過給機の作動とは直接的な関係にある高圧ターボ回転数Nta_hpを検出し、可動ベーン25のベーン開度を減少する、或いはバイパス弁24の開度を増加することによって過回転を防止でき、効率良く過給機を作動できる。   Further, in the conventional variable nozzle turbo, overspin (overspeed) due to exhaust inertia has been a problem. Normally, in the supercharging system, the fuel injection amount is limited so as not to overspeed, so the supercharger cannot be operated efficiently with the maximum boost. Therefore, the high speed turbo rotation speed Nta_hp, which is directly related to the operation of the high pressure supercharger, is detected, and the rotational speed is reduced by decreasing the vane opening degree of the movable vane 25 or increasing the opening degree of the bypass valve 24. Can be prevented and the turbocharger can be operated efficiently.

図4を用いて、本発明の実施形態1であるエンジン200の構成について説明する。エンジン200は、直噴式6気筒ディーゼルエンジンであって、吸気経路2が接続される吸気マニホールド12と、排気経路3が接続される排気マニホールド13と、コモンレールに蓄圧された燃料をインジェクタによって各気筒に噴射するコモンレール式燃料噴射装置(以下、燃料噴射装置)15と、を備えている。   The configuration of the engine 200 according to the first embodiment of the present invention will be described with reference to FIG. The engine 200 is a direct-injection 6-cylinder diesel engine, and includes an intake manifold 12 to which an intake passage 2 is connected, an exhaust manifold 13 to which an exhaust passage 3 is connected, and fuel accumulated in a common rail to each cylinder by an injector. And a common rail fuel injection device (hereinafter referred to as a fuel injection device) 15 for injection.

また、エンジン200は、過給システム70を備えている。過給システム70は、高圧コンプレッサ21と高圧ターボ22とからなる高圧過給機と、低圧コンプレッサ31と低圧ターボ32とからなる低圧過給機と、を直列に配置して備えている。上述したように過給システム70を、多段可変系過給システムと定義する。   The engine 200 is provided with a supercharging system 70. The supercharging system 70 includes a high pressure supercharger composed of a high pressure compressor 21 and a high pressure turbo 22 and a low pressure supercharger composed of a low pressure compressor 31 and a low pressure turbo 32 arranged in series. As described above, the supercharging system 70 is defined as a multistage variable system supercharging system.

低圧過給機は、可変容量手段を備える過給機である。可変容量手段とは、低圧ターボ32の上流側に設けられる可動ベーン35のベーン開度を調整し、低圧過給機を通過する排気流量を調整し、低圧過給機の容量、すなわち加給効率を調整する手段である。   The low-pressure supercharger is a supercharger provided with variable capacity means. The variable capacity means adjusts the vane opening degree of the movable vane 35 provided on the upstream side of the low-pressure turbo 32, adjusts the exhaust flow rate passing through the low-pressure supercharger, and controls the capacity of the low-pressure supercharger, that is, the charging efficiency. It is a means to adjust.

吸気経路2及び排気経路3は、構成例としての形態1であるエンジン100と同様であるため説明を省略する。   Since the intake path 2 and the exhaust path 3 are the same as those of the engine 100 according to the first embodiment as the configuration example, the description thereof is omitted.

制御手段としてのEngine Control Unit(以下、ECU)60は、アンプ65を介して低圧コンプレッサ31に設けられる低圧ターボセンサー66と、吸気マニホールド12に設けられるブーストセンサー62と、バイパス弁24と、燃料噴射装置15と、可動ベーン35と、を接続して構成されている。上述したように、ECU60による可動ベーン35のベーン開度の調整と、バイパス弁24の開度の調整とを、過給機制御と定義する。   An engine control unit (hereinafter referred to as ECU) 60 as a control means includes a low pressure turbo sensor 66 provided in the low pressure compressor 31 via an amplifier 65, a boost sensor 62 provided in the intake manifold 12, a bypass valve 24, and fuel injection. The apparatus 15 and the movable vane 35 are connected to each other. As described above, the adjustment of the vane opening of the movable vane 35 and the adjustment of the opening of the bypass valve 24 by the ECU 60 are defined as supercharger control.

図5を用いて、エンジン200の過給機制御について説明する。ECU60は、エンジン200が低回転数かつ低負荷であるとき、低圧過給機が最も効率良く作動する低圧過給機回転数と、エンジン200の燃焼状態を最適にする過給圧と、なるように可動ベーン35のベーン開度を調整する機能を有する。ECU60は、目標低圧ターボ回転数ωctrg_lp及び目標ブースト圧Bpatrgを算出する(S310)。目標低圧ターボ回転数ωctrg_lpは、低圧過給機について、最も効率良く作動する過給機回転数として、指令噴射量、エンジン回転数、及びブースト圧Bpa基づいて、予めECU60に記憶されているマップから算出される。目標ブースト圧Bpatrgは、エンジン200の燃焼状態を最適にする過給圧として、指令噴射量、エンジン回転数、及び目標低圧ターボ回転数ωctrg_lpに基づいて、予めECU60に記憶されているマップから算出される。   The supercharger control of the engine 200 will be described using FIG. The ECU 60 has a low-pressure supercharger speed at which the low-pressure supercharger operates most efficiently and a supercharging pressure that optimizes the combustion state of the engine 200 when the engine 200 has a low speed and a low load. And has a function of adjusting the vane opening degree of the movable vane 35. The ECU 60 calculates the target low-pressure turbo speed ωctrg_lp and the target boost pressure Bpatrg (S310). The target low-pressure turbo rotational speed ωctrg_lp is obtained from a map stored in advance in the ECU 60 based on the command injection amount, the engine rotational speed, and the boost pressure Bpa as the supercharger rotational speed that operates most efficiently for the low-pressure supercharger. Calculated. The target boost pressure Bpatrg is calculated as a supercharging pressure that optimizes the combustion state of the engine 200 from a map stored in the ECU 60 in advance based on the command injection amount, the engine speed, and the target low-pressure turbo speed ωctrg_lp. The

ECU60は、条件(21)として、低圧ターボセンサー66によって検出される低圧ターボ回転数Nta_lpと目標低圧ターボ回転数ωctrg_lpとの差の絶対値が所定値α21より小さいかどうか、条件(22)として、ブーストセンサー62によって検出されるブースト圧Bpaと目標ブースト圧Bpatrgとの差の絶対値が所定値α22より小さいかどうか、について判断する(S320)。   The ECU 60 determines whether the absolute value of the difference between the low-pressure turbo rotational speed Nta_lp detected by the low-pressure turbo sensor 66 and the target low-pressure turbo rotational speed ωctrg_lp is smaller than a predetermined value α21 as the condition (21). It is determined whether or not the absolute value of the difference between the boost pressure Bpa detected by the boost sensor 62 and the target boost pressure Bpatrg is smaller than a predetermined value α22 (S320).

ECU60は、S320において、条件(21)及び条件(22)を満足する場合は、現在、低圧ターボ回転数Nta_lpは、過給システム70が最も効率良く作動する低圧過給機の過給機回転数であって、ブースト圧Bpaは、エンジン200の燃焼状態を最適にする過給圧であると判断する。   If the ECU 60 satisfies the condition (21) and the condition (22) in S320, the low-pressure turbo rotational speed Nta_lp is currently set to the supercharger rotational speed of the low-pressure supercharger in which the supercharging system 70 operates most efficiently. The boost pressure Bpa is determined to be a supercharging pressure that optimizes the combustion state of the engine 200.

一方、ECU60は、S320において、条件(21)又は条件(22)を満足しない場合は、現在、低圧ターボ回転数Nta_lpは、過給システム70が最も効率良く作動する低圧過給機の過給機回転数ではない、或いは、ブースト圧Bpaは、エンジン200の燃焼状態を最適にする過給圧ではない、と判断する。   On the other hand, if the ECU 60 does not satisfy the condition (21) or the condition (22) in S320, the low-pressure turbo rotation speed Nta_lp is currently set to the supercharger of the low-pressure supercharger in which the supercharging system 70 operates most efficiently. It is determined that the engine speed is not the engine speed or the boost pressure Bpa is not the supercharging pressure that optimizes the combustion state of the engine 200.

そこで、ECU60は、条件(21)を満足するまで可動ベーン35のベーン開度を調整する(S340)。次に、ECU60は、条件(22)を満足するまで可動ベーン35のベーン開度を調整する(S350)。   Therefore, the ECU 60 adjusts the vane opening degree of the movable vane 35 until the condition (21) is satisfied (S340). Next, the ECU 60 adjusts the vane opening degree of the movable vane 35 until the condition (22) is satisfied (S350).

図6を用いて、エンジン200の別の過給機制御について説明する。ECU60は、エンジン200の回転数及び負荷が増加するとき、低圧過給機が最も効率良く作動する過給機回転数と、エンジン200の燃焼状態を最適にする過給圧と、なるようにバイパス弁24の開度を調整する機能を有する。ECU60は、目標低圧ターボ回転数ωctrg_lp及び目標ブースト圧Bpatrgを算出する(S410)。目標低圧ターボ回転数ωctrg_lpは、低圧過給機について、最も効率良く作動する過給機回転数として、指令噴射量、エンジン回転数、及びブースト圧Bpaに基づいて予めECU60に記憶されているマップから算出される。目標ブースト圧Bpatrgは、エンジン200の燃焼状態を最適にする過給圧として、指令噴射量、エンジン回転数、及び目標低圧ターボ回転数ωctrg_lpに基づいて、予めECU60に記憶されているマップから算出される。   Another supercharger control of the engine 200 will be described with reference to FIG. The ECU 60 bypasses the turbocharger so that the low-pressure supercharger operates most efficiently and the supercharging pressure that optimizes the combustion state of the engine 200 when the rotational speed and load of the engine 200 increase. It has a function of adjusting the opening degree of the valve 24. The ECU 60 calculates the target low-pressure turbo speed ωctrg_lp and the target boost pressure Bpatrg (S410). The target low-pressure turbo rotational speed ωctrg_lp is a map stored in the ECU 60 in advance based on the command injection amount, the engine rotational speed, and the boost pressure Bpa as the supercharger rotational speed that operates most efficiently for the low-pressure supercharger. Calculated. The target boost pressure Bpatrg is calculated as a supercharging pressure that optimizes the combustion state of the engine 200 from a map stored in the ECU 60 in advance based on the command injection amount, the engine speed, and the target low-pressure turbo speed ωctrg_lp. The

ECU60は、条件(23)として、低圧ターボセンサー66によって検出される低圧ターボ回転数Nta_lpと目標低圧ターボ回転数ωctrg_lpとの差の絶対値が所定値α23より小さいかどうか、条件(24)として、ブーストセンサー62によって検出されるブースト圧Bpaと目標ブースト圧Bpatrgとの差の絶対値が所定値α24より小さいかどうか、について判断する(S420)。   The ECU 60 determines whether the absolute value of the difference between the low-pressure turbo rotational speed Nta_lp detected by the low-pressure turbo sensor 66 and the target low-pressure turbo rotational speed ωctrg_lp is smaller than a predetermined value α23 as the condition (23). It is determined whether or not the absolute value of the difference between the boost pressure Bpa detected by the boost sensor 62 and the target boost pressure Bpatrg is smaller than a predetermined value α24 (S420).

ECU60は、S420において、条件(23)及び条件(24)を満足する場合は、現在、低圧ターボ回転数Nta_lpは、過給システム70が最も効率良く作動する低圧過給機の過給機回転数とであって、ブースト圧Bpaは、エンジン200の燃焼状態を最適にする過給圧であると判断する。   If the ECU 60 satisfies the condition (23) and the condition (24) in S420, the low-pressure turbo rotation speed Nta_lp is currently set to the supercharger rotation speed of the low-pressure supercharger in which the supercharging system 70 operates most efficiently. Therefore, it is determined that the boost pressure Bpa is a supercharging pressure that optimizes the combustion state of the engine 200.

一方、ECU60は、S420において、条件(23)又は条件(24)を満足しない場合は、現在、低圧ターボ回転数Nta_lpは、過給システム70が最も効率良く作動する低圧過給機の過給機回転数ではない、或いは、ブースト圧Bpaは、エンジン200の燃焼状態を最適にする過給圧ではない、と判断する。   On the other hand, if the ECU 60 does not satisfy the condition (23) or the condition (24) in S420, the low-pressure turbo rotational speed Nta_lp is currently set to the supercharger of the low-pressure supercharger in which the supercharging system 70 operates most efficiently. It is determined that the engine speed is not the engine speed or the boost pressure Bpa is not the supercharging pressure that optimizes the combustion state of the engine 200.

そこで、ECU60は、条件(23)を満足するまでバイパス弁24の開度を調整する(S440)。次に、ECU60は、条件(24)を満足するまでバイパス弁24の開度を調整する(S450)。   Therefore, the ECU 60 adjusts the opening degree of the bypass valve 24 until the condition (23) is satisfied (S440). Next, the ECU 60 adjusts the opening degree of the bypass valve 24 until the condition (24) is satisfied (S450).

このようにして、低圧ターボ回転数Nta_lp及びブースト圧Bpaをフィードバック値として、可動ベーン35のベーン開度を調整し、ブースト圧Bpa及び低圧ターボ回転数Nta_lpをフィードバック値として、バイパス弁24の開度を調整するため、多段可変系過給システムを精度良く制御できる。その他の効果は構成例としての形態1のエンジン100と同様であるため、説明を省略する。   In this way, the opening degree of the bypass valve 24 is adjusted by adjusting the vane opening degree of the movable vane 35 using the low pressure turbo speed Nta_lp and the boost pressure Bpa as feedback values, and using the boost pressure Bpa and the low pressure turbo speed Nta_lp as feedback values. Therefore, the multistage variable supercharging system can be controlled with high accuracy. Since other effects are the same as those of the engine 100 of the first embodiment as the configuration example, the description is omitted.

図7を用いて、構成例としての形態2であるエンジン300の構成について説明する。エンジン300は、直噴式6気筒ディーゼルエンジンであって、吸気経路2が接続される吸気マニホールド12と、排気経路3が接続される排気マニホールド13と、コモンレールに蓄圧された燃料をインジェクタによって各気筒に噴射するコモンレール式燃料噴射装置(以下、燃料噴射装置)15と、を備えている。   With reference to FIG. 7, the configuration of engine 300 that is the second embodiment as a configuration example will be described. The engine 300 is a direct-injection 6-cylinder diesel engine, and includes an intake manifold 12 to which an intake path 2 is connected, an exhaust manifold 13 to which an exhaust path 3 is connected, and fuel accumulated in a common rail to each cylinder by an injector. And a common rail fuel injection device (hereinafter referred to as a fuel injection device) 15 for injection.

また、エンジン300は、過給システム80を備えている。過給システム80は、高圧コンプレッサ21と高圧ターボ22とからなる高圧過給機と、低圧コンプレッサ31と低圧ターボ32とからなる低圧過給機と、を直列に配置して備えている。   The engine 300 includes a supercharging system 80. The supercharging system 80 includes a high pressure supercharger composed of the high pressure compressor 21 and the high pressure turbo 22 and a low pressure supercharger composed of the low pressure compressor 31 and the low pressure turbo 32 arranged in series.

ここで、高圧過給機は、可変容量手段を備える過給機である。可変容量手段は、高圧ターボ22の上流側に設けられる可動ベーン25の開度を調整し、高圧過給機を通過する排気流量を調整し、高圧過給機の容量、すなわち加給効率を調整する手段である。また、低圧過給機は、可変容量手段を備える過給機である。可変容量手段は、低圧ターボ32の上流側に設けられる可動ベーン35の開度を調整し、低圧過給機を通過する排気流量を調整し、低圧過給機の容量、すなわち加給効率を調整する手段である。   Here, the high pressure supercharger is a supercharger provided with variable capacity means. The variable capacity means adjusts the opening degree of the movable vane 25 provided on the upstream side of the high-pressure turbo 22, adjusts the exhaust flow rate passing through the high-pressure supercharger, and adjusts the capacity of the high-pressure supercharger, that is, the charging efficiency. Means. The low-pressure supercharger is a supercharger that includes variable capacity means. The variable capacity means adjusts the opening degree of the movable vane 35 provided on the upstream side of the low-pressure turbo 32, adjusts the exhaust flow rate passing through the low-pressure supercharger, and adjusts the capacity of the low-pressure supercharger, that is, the charging efficiency. Means.

吸気経路2及び排気経路3は、構成例としての形態1であるエンジン100と同様であるため説明を省略する。   Since the intake path 2 and the exhaust path 3 are the same as those of the engine 100 according to the first embodiment as the configuration example, the description thereof is omitted.

EGR装置50は、排気ガスの一部をEGR量として吸気側へ再循環させる装置である。また、EGR装置50は、排気マニホールド13と吸気マニホールド12とを短絡するEGR経路5において、排気マニホールド13から吸気マニホールド12に向かって、排気ガスを冷却するEGRクーラー53と、EGR量を調整するEGR弁51と、を接続して構成されている。   The EGR device 50 is a device that recirculates a part of the exhaust gas to the intake side as an EGR amount. Further, the EGR device 50 includes an EGR cooler 53 that cools exhaust gas from the exhaust manifold 13 toward the intake manifold 12 and an EGR that adjusts the EGR amount in the EGR path 5 that short-circuits the exhaust manifold 13 and the intake manifold 12. The valve 51 is connected.

制御手段としてのEngine Control Unit(以下、ECU)60は、アンプ65を介して高圧コンプレッサ21に設けられる高圧ターボセンサー61と、アンプ65を介して低圧コンプレッサ31に設けられる低圧ターボセンサー66と、吸気マニホールド12に設けられるブーストセンサー62と、バイパス弁24と、燃料噴射装置15と、EGR弁51と、可動ベーン25と、可動ベーン35と、を接続して構成されている。   An engine control unit (hereinafter referred to as ECU) 60 as a control means includes a high-pressure turbo sensor 61 provided in the high-pressure compressor 21 via an amplifier 65, a low-pressure turbo sensor 66 provided in the low-pressure compressor 31 via an amplifier 65, and an intake air The boost sensor 62 provided in the manifold 12, the bypass valve 24, the fuel injection device 15, the EGR valve 51, the movable vane 25, and the movable vane 35 are connected to each other.

ここで、エンジン300のEGR制御について説明する。ECU60は、制御手段として、適正なEGR量が吸気側へ再循環するようにEGR弁51の開度を調整する機能を有する。そのため、ECU60は、制御手段として、現在のEGR量を算出する機能を有する。このとき、ECU60は、EGR弁51が全閉のときの高圧過給機回転数及び低圧過給機回転数と、現在の高圧過給機回転数及び低圧過給機回転数とを比較することで、正確なEGR量を算出することができる。   Here, the EGR control of the engine 300 will be described. The ECU 60 has a function of adjusting the opening degree of the EGR valve 51 as a control means so that an appropriate EGR amount is recirculated to the intake side. Therefore, the ECU 60 has a function of calculating the current EGR amount as a control means. At this time, the ECU 60 compares the high-pressure supercharger speed and the low-pressure supercharger speed when the EGR valve 51 is fully closed with the current high-pressure supercharger speed and low-pressure supercharger speed. Thus, an accurate EGR amount can be calculated.

このようにして、高圧過給機回転数と低圧過給機回転数とを用いて、EGR量を精度良く算出できる。ひいては、算出したEGR量をフィードバック値として、EGR弁51を精度良く調整できる。   In this manner, the EGR amount can be accurately calculated using the high-pressure supercharger rotation speed and the low-pressure supercharger rotation speed. As a result, the EGR valve 51 can be accurately adjusted using the calculated EGR amount as a feedback value.

さらに、エンジン300の過給機制御について説明する。ECU60は、制御手段として、過給システム80が最も効率良く作動する過給機回転数となるようにバイパス弁24を調整するため、現在のバイパス量を算出する機能を有する。このとき、ECU60は、高圧過給機回転数と低圧過給機回転数との差を用いて、現在の正確なバイパス量を算出することができる。ひいては、算出したバイパス量をフィードバック値として、バイパス弁24を精度良く調整できる。   Furthermore, the supercharger control of the engine 300 will be described. The ECU 60 has a function of calculating the current bypass amount as a control means in order to adjust the bypass valve 24 so that the turbocharger rotation speed at which the supercharging system 80 operates most efficiently is achieved. At this time, the ECU 60 can calculate the current accurate bypass amount by using the difference between the high-pressure supercharger speed and the low-pressure supercharger speed. As a result, the bypass valve 24 can be accurately adjusted using the calculated bypass amount as a feedback value.

3 排気経路
4 バイパス経路
12 吸気マニホールド
13 排気マニホールド
15 燃料噴射装置
20 過給システム
21 高圧コンプレッサ
22 高圧ターボ
24 バイパス弁
25 可動ベーン
31 低圧コンプレッサ
32 低圧ターボ
35 可動ベーン
50 EGR装置
60 Engine Control Unit
61 高圧ターボセンサー
62 ブーストセンサー
66 低圧ターボセンサー
70 過給システム
80 過給システム
100 エンジン
200 エンジン
300 エンジン
Bpa ブースト圧
Bpatrg 目標ブースト圧
Nta_hp 高圧ターボ回転数
ωctrg_hp 目標高圧ターボ回転数
Nta_lp 低圧ターボ回転数
ωctrg_lp 目標低圧ターボ回転数
DESCRIPTION OF SYMBOLS 3 Exhaust path 4 Bypass path 12 Intake manifold 13 Exhaust manifold 15 Fuel injection device 20 Supercharging system 21 High pressure compressor 22 High pressure turbo 24 Bypass valve 25 Movable vane 31 Low pressure compressor 32 Low pressure turbo 35 Movable vane 50 EGR device 60 Engine Control Unit
61 High-pressure turbo sensor 62 Boost sensor 66 Low-pressure turbo sensor 70 Supercharging system 80 Supercharging system 100 Engine 200 Engine 300 Engine Bpa Boost pressure Bpatrg Target boost pressure Nta_hp High-pressure turbo speed ωctrg_hp Target high-pressure turbo speed Nta_lp Low-pressure turbo speed ωc Low pressure turbo speed

Claims (2)

高圧コンプレッサ(21)と高圧ターボ(22)とからなる高圧過給機と、低圧コンプレッサ(31)と低圧ターボ(32)とからなる低圧過給機とが直列に配置される多段可変系過給システム(20)と、
吸気マニホールド(12)におけるブースト圧を検出するブーストセンサー(62)と、
前記高圧コンプレッサ(21)に設けられ、高圧ターボ(22)の回転数を検出する高圧ターボセンサー(61)と、
前記高圧ターボ(22)の容量を調整する可動ベーン(25)と、
前記可動ベーン(25)の開度を調整する制御手段であるECU(60)とを具備し、
前記ECU(60)は、前記ブーストセンサー(62)にて検出されるブースト圧と高圧ターボセンサー(61)にて検出される高圧ターボ回転数に基づいて、前記可動ベーン(25)のベーン開度を調整する
ことを特徴とするエンジン。
A multistage variable turbocharger in which a high-pressure supercharger comprising a high-pressure compressor (21) and a high-pressure turbo (22) and a low-pressure supercharger comprising a low-pressure compressor (31) and a low-pressure turbo (32) are arranged in series. A system (20);
A boost sensor (62) for detecting boost pressure in the intake manifold (12);
A high-pressure turbo sensor (61) provided in the high-pressure compressor (21) for detecting the rotational speed of the high-pressure turbo (22);
A movable vane (25) for adjusting the capacity of the high-pressure turbo (22);
ECU (60) which is a control means which adjusts the opening of the movable vane (25),
Based on the boost pressure detected by the boost sensor (62) and the high-pressure turbo rotational speed detected by the high-pressure turbo sensor (61), the ECU (60) opens the vane opening of the movable vane (25). An engine characterized by adjusting.
高圧コンプレッサ(21)と高圧ターボ(22)とからなる高圧過給機と、低圧コンプレッサ(31)と低圧ターボ(32)とからなる低圧過給機とが直列に配置される多段可変系過給システム(20)と、
吸気マニホールド(12)におけるブースト圧を検出するブーストセンサー(62)と、
前記高圧コンプレッサ(21)に設けられ、高圧ターボ(22)の回転数を検出する高圧ターボセンサー(61)と、
前記高圧ターボ(22)の容量を調整する可動ベーン(25)と、
前記可動ベーン(25)の開度を調整する制御手段であるECU(60)とを具備し、
前記ECU(60)は、エンジン(100)が低回転数かつ低負荷であるとき、高圧過給機が最も効率良く作動する目標高圧ターボ回転数(ωctrg_hp)、及びエンジン(100)の燃焼状態を最適にする過給圧としての目標ブースト圧(Bpatrg)を、予めECU60に記憶されているマップから算出し、
前記ECU(60)は、第一の条件(11)として、前記高圧ターボセンサー(61)によって検出される高圧ターボ回転数(Nta_hp)と、目標高圧ターボ回転数(ωctrg_hp)との差の絶対値が、第一の所定値(α11)より小さいかどうかについて判断し、
前記ECU(60)は、第二の条件(12)として、前記ブーストセンサー(62)によって検出されるブースト圧(Bpa)と、目標ブースト圧(Bpatrg)との差の絶対値が、第二の所定値(α12)より小さいかどうかについて判断し、
前記ECU(60)は、第一の条件(11)及び第二の条件(12)を満足する場合は、現在の高圧ターボ回転数(Nta_hp)が多段可変系過給システム(20)が最も効率良く作動する高圧過給機の過給機回転数であって、ブースト圧(Bpa)がエンジン(100)の燃焼状態を最適にする過給圧であると判断し、
前記ECU(60)は、第一の条件(11)又は第二の条件(12)を満足しない場合は、現在の高圧ターボ回転数(Nta_hp)が多段可変系過給システム(20)が最も効率良く作動する高圧過給機の過給機回転数ではない、或いは、ブースト圧(Bpa)がエンジン(100)の燃焼状態を最適にする過給圧ではないと判断し、
前記ECU(60)は、第一の条件(11)を満足するまで可動ベーン(25)のベーン開度を調整し、
次に、前記ECU(60)は、第二の条件(12)を満足するまで可動ベーン(25)のベーン開度を調整する
ことを特徴とするエンジン。
A multistage variable turbocharger in which a high-pressure supercharger comprising a high-pressure compressor (21) and a high-pressure turbo (22) and a low-pressure supercharger comprising a low-pressure compressor (31) and a low-pressure turbo (32) are arranged in series. A system (20);
A boost sensor (62) for detecting boost pressure in the intake manifold (12);
A high-pressure turbo sensor (61) provided in the high-pressure compressor (21) for detecting the rotational speed of the high-pressure turbo (22);
A movable vane (25) for adjusting the capacity of the high-pressure turbo (22);
ECU (60) which is a control means which adjusts the opening of the movable vane (25),
The ECU (60) determines the target high-pressure turbo rotational speed (ωctrg_hp) at which the high-pressure supercharger operates most efficiently and the combustion state of the engine (100) when the engine (100) has a low rotational speed and a low load. A target boost pressure (Bpatrg) as a boost pressure to be optimized is calculated from a map stored in advance in the ECU 60,
As the first condition (11), the ECU (60) determines the absolute value of the difference between the high-pressure turbo rotational speed (Nta_hp) detected by the high-pressure turbo sensor (61) and the target high-pressure turbo rotational speed (ωctrg_hp). Is less than the first predetermined value (α11),
The ECU (60) determines that the absolute value of the difference between the boost pressure (Bpa) detected by the boost sensor (62) and the target boost pressure (Bpatrg) is the second condition (12). Judge whether it is less than the predetermined value (α12),
When the ECU (60) satisfies the first condition (11) and the second condition (12), the current high-pressure turbo rotation speed (Nta_hp) is most efficient in the multistage variable turbocharging system (20). It is the supercharger rotation speed of the high-pressure supercharger that operates well, and the boost pressure (Bpa) is determined to be the supercharging pressure that optimizes the combustion state of the engine (100),
When the ECU (60) does not satisfy the first condition (11) or the second condition (12), the current high-pressure turbo rotation speed (Nta_hp) is most efficient when the multistage variable turbocharging system (20) is used. It is determined that it is not the supercharger speed of the high-pressure supercharger that operates well, or that the boost pressure (Bpa) is not the supercharging pressure that optimizes the combustion state of the engine (100)
The ECU (60) adjusts the vane opening of the movable vane (25) until the first condition (11) is satisfied,
Next, the ECU (60) adjusts the vane opening degree of the movable vane (25) until the second condition (12) is satisfied.
JP2013158329A 2013-07-30 2013-07-30 engine Active JP5665930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013158329A JP5665930B2 (en) 2013-07-30 2013-07-30 engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158329A JP5665930B2 (en) 2013-07-30 2013-07-30 engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008260868A Division JP5335358B2 (en) 2008-10-07 2008-10-07 engine

Publications (2)

Publication Number Publication Date
JP2013217382A true JP2013217382A (en) 2013-10-24
JP5665930B2 JP5665930B2 (en) 2015-02-04

Family

ID=49589729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158329A Active JP5665930B2 (en) 2013-07-30 2013-07-30 engine

Country Status (1)

Country Link
JP (1) JP5665930B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108329A (en) * 2013-12-04 2015-06-11 三菱重工業株式会社 Supercharger system control device
JP2017507268A (en) * 2013-12-19 2017-03-16 ボルボ トラック コーポレイション Internal combustion engine system
US9903296B2 (en) 2013-12-04 2018-02-27 Mitsubishi Heavy Industries, Ltd. Control device for turbocharger
US10006348B2 (en) 2013-12-04 2018-06-26 Mitsubishi Heavy Industries, Ltd. Turbocharger device
US10047666B2 (en) 2013-12-04 2018-08-14 Mitsubishi Heavy Industries, Ltd. Control system for turbo-compound system
US10428748B2 (en) 2013-12-04 2019-10-01 Mitsubishi Heavy Industries, Ltd. Control device for supercharging system
CN111663994A (en) * 2020-06-17 2020-09-15 中车大连机车研究所有限公司 Control method of adjustable nozzle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315163A (en) * 2004-04-28 2005-11-10 Toyota Motor Corp Multi-stage supercharging system for internal combustion engine
JP2005330811A (en) * 2004-05-18 2005-12-02 Toyota Motor Corp Multi-stage supercharging system for internal combustion engine, and method for setting the same
JP2006266216A (en) * 2005-03-25 2006-10-05 Isuzu Motors Ltd Intake/exhaust device for diesel engine
JP2008008202A (en) * 2006-06-29 2008-01-17 Hino Motors Ltd Turbine protection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315163A (en) * 2004-04-28 2005-11-10 Toyota Motor Corp Multi-stage supercharging system for internal combustion engine
JP2005330811A (en) * 2004-05-18 2005-12-02 Toyota Motor Corp Multi-stage supercharging system for internal combustion engine, and method for setting the same
JP2006266216A (en) * 2005-03-25 2006-10-05 Isuzu Motors Ltd Intake/exhaust device for diesel engine
JP2008008202A (en) * 2006-06-29 2008-01-17 Hino Motors Ltd Turbine protection device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108329A (en) * 2013-12-04 2015-06-11 三菱重工業株式会社 Supercharger system control device
WO2015083611A1 (en) * 2013-12-04 2015-06-11 三菱重工業株式会社 Control device for supercharging system
US9903296B2 (en) 2013-12-04 2018-02-27 Mitsubishi Heavy Industries, Ltd. Control device for turbocharger
US10006348B2 (en) 2013-12-04 2018-06-26 Mitsubishi Heavy Industries, Ltd. Turbocharger device
US10047666B2 (en) 2013-12-04 2018-08-14 Mitsubishi Heavy Industries, Ltd. Control system for turbo-compound system
US10197003B2 (en) 2013-12-04 2019-02-05 Mitsubishi Heavy Industries, Ltd. Control device for supercharging system
US10428748B2 (en) 2013-12-04 2019-10-01 Mitsubishi Heavy Industries, Ltd. Control device for supercharging system
JP2017507268A (en) * 2013-12-19 2017-03-16 ボルボ トラック コーポレイション Internal combustion engine system
US10161300B2 (en) 2013-12-19 2018-12-25 Volvo Truck Corporation Internal combustion engine system
CN111663994A (en) * 2020-06-17 2020-09-15 中车大连机车研究所有限公司 Control method of adjustable nozzle

Also Published As

Publication number Publication date
JP5665930B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5335358B2 (en) engine
JP5665930B2 (en) engine
JP4741678B2 (en) Diesel engine with supercharger
US10197003B2 (en) Control device for supercharging system
US9181861B2 (en) Internal combustion engine control apparatus
JP4534514B2 (en) Diesel engine control device
JP5164737B2 (en) engine
US8096123B2 (en) System and method for mode transition for a two-stage series sequential turbocharger
JP5331435B2 (en) engine
JP2012017730A (en) Method of controlling exhaust gas recirculation in turbocharged engine system
JP6090088B2 (en) Engine exhaust gas recirculation control device
KR101563831B1 (en) Control apparatus for internal combustion engine
US20190128196A1 (en) Robust low pressure exhaust gas recirculation system control for a trbocharged gasoline engine
US8925316B2 (en) Control systems and methods for super turbo-charged engines
US10145297B2 (en) Control device for engine equipped with turbo-supercharger
JP2008255896A (en) Control device for variable valve gear
JP2007205265A (en) Two stage supercharging system for diesel engine
US20170356332A1 (en) Supercharging system of internal combustion engine and method of controlling supercharging system
JP2014231821A (en) Controller for internal combustion engine equipped with supercharger
JP6317649B2 (en) Supercharging system
US10634100B2 (en) Control device for internal combustion engine
JP2017227134A (en) Control device of internal combustion engine
JP2013253532A (en) Egr device for supercharged engine
JP2018135769A (en) Internal combustion engine
JP2005330861A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5665930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350