JP2013213806A - Radiation measurement sample container - Google Patents

Radiation measurement sample container Download PDF

Info

Publication number
JP2013213806A
JP2013213806A JP2012244463A JP2012244463A JP2013213806A JP 2013213806 A JP2013213806 A JP 2013213806A JP 2012244463 A JP2012244463 A JP 2012244463A JP 2012244463 A JP2012244463 A JP 2012244463A JP 2013213806 A JP2013213806 A JP 2013213806A
Authority
JP
Japan
Prior art keywords
container body
container
main body
container main
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012244463A
Other languages
Japanese (ja)
Inventor
Eisuke Itatsu
英輔 板津
Toshiro Abe
敬朗 阿部
Yukitsugu Takahashi
幸嗣 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko EG&G Co Ltd
Original Assignee
Seiko EG&G Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko EG&G Co Ltd filed Critical Seiko EG&G Co Ltd
Priority to JP2012244463A priority Critical patent/JP2013213806A/en
Publication of JP2013213806A publication Critical patent/JP2013213806A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure desired detection efficiency with respect to a plurality of radiation detectors having various types of shapes that are frequently used for environmental radiation measurement.SOLUTION: A radiation measurement sample container 10 comprises: a bottomed cylindrical type container main body 11; and a cylindrical recessed portion 12 provided coaxially with a central axis of the container main body 11 on a bottom surface 11A of the container main body 11. A diameter of an inner peripheral wall surface 11C of the container main body 11 ranges from 130.6 mm to 139 mm, a diameter of a cylindrical portion 14 provided inside the container main body 11 corresponding to the cylindrical recessed portion 12 ranges from 81 mm to 95 mm, a distance from an inner bottom surface 11B of the container main body 11 to an accommodation end 13 of a radiation measurement sample provided on the inner peripheral wall surface 11C ranges from 90 mm to 129 mm, a distance from the inner bottom surface 11B of the container main body 11 to a leading end surface 14A of the cylindrical portion 14 ranges from 79 mm to 100 mm and an interior volume from the inner bottom surface 11B of the container main body 11 to the accommodation end is 1 liter.

Description

この発明は、放射能測定用試料容器に関する。   The present invention relates to a sample container for measuring radioactivity.

従来、例えば各種の放射能測定用試料を内部に収容可能な放射能測定用試料容器として、0.7リットルまたは2リットルの内容積を有する所定寸法のマリネリ容器が知られている(例えば、非特許文献1参照)。
また、従来、例えば所定形状のゲルマニウム半導体検出器に対して各種の内容積のマリネリ容器の最適形状(つまり、マリネリ容器内に収容された測定試料から放出されるγ線の検出効率が最大となる形状)を、モンテカルロ法のシミュレーションにより算出する方法が知られている(例えば、非特許文献2参照)。
Conventionally, for example, a marinelli container of a predetermined size having an internal volume of 0.7 liters or 2 liters is known as a radioactive measurement sample container capable of accommodating various radioactive measurement samples inside (for example, non-radioactive measurement sample containers). Patent Document 1).
Conventionally, for example, a germanium semiconductor detector having a predetermined shape has an optimum shape of a marinelli container with various internal volumes (that is, the detection efficiency of γ rays emitted from a measurement sample stored in the marinelli container is maximized). There is known a method of calculating (shape) by Monte Carlo simulation (for example, see Non-Patent Document 2).

「放射能測定法シリーズ 7 ゲルマニウム半導体検出器によるガンマ線スペクトロメトリー」、文部科学省、平成4年、p.97−104"Radioactivity measurement series 7 Gamma-ray spectrometry using germanium semiconductor detector", Ministry of Education, Culture, Sports, Science and Technology, 1992, p.97-104 「ニュークリア インスツルメント アンド メソッド イン フィジックス リサーチ エー 第610巻(2009年) p.718−723(Nuclear Instruments and Methods in Physics Research A 610 (2009) 718-723)“Nuclear Instruments and Methods in Physics Research A 610 (2009) 718-723”, “Nuclear Instruments and Methods in Physics Research A 610 (2009) 718-723”

ところで、上記従来技術に係るマリネリ容器においては、各種の形状を有する放射線検出器に対して最適形状を有しているか否かは明らかではなく、特に、環境放射能の測定に多用される各種の形状の放射線検出器に対して所望の検出効率を確保するような形状を有する放射能測定用試料容器が望まれている。   By the way, in the marinellier container according to the above-mentioned prior art, it is not clear whether or not it has an optimum shape for radiation detectors having various shapes, and in particular, various types frequently used for measurement of environmental radioactivity. There is a demand for a sample container for radioactivity measurement having a shape that ensures a desired detection efficiency for a radiation detector having a shape.

本発明は上記事情に鑑みてなされたもので、環境放射能の測定に多用される複数の各種の形状を有する放射線検出器に対して所望の検出効率を確保することが可能な放射能測定用試料容器を提供することを目的としている。   The present invention has been made in view of the above circumstances, and for radioactivity measurement capable of ensuring a desired detection efficiency for a radiation detector having a plurality of various shapes frequently used for measurement of environmental radioactivity. The object is to provide a sample container.

上記課題を解決して係る目的を達成するために、本発明の請求項1に係る放射能測定用試料容器は、有底円筒型の容器本体(例えば、実施の形態での容器本体11)と、該容器本体の中心軸に同軸に前記容器本体の底面(例えば、実施の形態での底面11A)上に設けられた円柱状凹部(例えば、実施の形態での円柱状凹部12)と、を備え、前記容器本体の内部に放射能測定用試料を収容可能な放射能測定用試料容器であって、前記容器本体の内周壁面(例えば、実施の形態での内周壁面11C)の直径は130.6mm〜139mm、かつ前記円柱状凹部に応じて前記容器本体の内部に設けられる円柱状部(例えば、実施の形態での円柱状部14)の直径は81mm〜95mm、かつ前記容器本体の内底面(例えば、実施の形態での内底面11B)から前記内周壁面上に設けられた前記放射能測定用試料の収容端(例えば、実施の形態での収容端13)までの距離は90mm〜129mm、かつ前記容器本体の内底面から前記円柱状部の先端面(例えば、実施の形態での先端面14A)までの距離は79mm〜100mm、かつ前記容器本体の内底面から前記収容端までの内容積は1リットルである。   In order to solve the above-described problems and achieve the object, a radioactivity measurement sample container according to claim 1 of the present invention is a bottomed cylindrical container body (for example, the container body 11 in the embodiment). A cylindrical recess (for example, the cylindrical recess 12 in the embodiment) provided on the bottom surface of the container body (for example, the bottom surface 11A in the embodiment) coaxially with the central axis of the container body, A radioactivity measurement sample container capable of accommodating a radioactivity measurement sample in the container body, wherein the inner peripheral wall surface of the container main body (for example, the inner peripheral wall surface 11C in the embodiment) has a diameter of 130.6 mm to 139 mm, and the diameter of the columnar portion (for example, the columnar portion 14 in the embodiment) provided inside the container body according to the columnar recess is 81 mm to 95 mm, and the container body Inner bottom surface (for example, inner bottom in the embodiment) 11B) to the accommodation end (for example, the accommodation end 13 in the embodiment) of the radioactivity measurement sample provided on the inner peripheral wall surface, and the distance from 90 mm to 129 mm, and from the inner bottom surface of the container body The distance to the front end surface (for example, front end surface 14A in the embodiment) of the columnar portion is 79 mm to 100 mm, and the internal volume from the inner bottom surface of the container body to the accommodation end is 1 liter.

さらに、本発明の請求項2に係る放射能測定用試料容器では、前記円柱状凹部は、20%〜40%の相対効率値を有する放射線検出器のエンドキャップを収容可能であり、前記放射線検出器の結晶の直径は48mm〜60mm、かつ前記結晶の長さは30mm〜70mmである。   Furthermore, in the sample container for radioactivity measurement according to claim 2 of the present invention, the cylindrical recess can accommodate an end cap of a radiation detector having a relative efficiency value of 20% to 40%, and the radiation detection The diameter of the crystal of the vessel is 48 mm to 60 mm, and the length of the crystal is 30 mm to 70 mm.

本発明の放射能測定用試料容器によれば、各直径および各距離の寸法範囲は、例えば、20%〜40%の相対効率値を有する複数の放射線検出器に対して、放射能測定用試料容器の各直径および各距離を適宜に変化させた所定の演算によって設定されている。
この所定の演算は、環境放射能の測定に多用される複数の放射線検出器に対して系統的に実行され、例えば、放射線の輸送をシミュレーションにより演算して、この演算結果に基づいて放射線検出器の検出効率を算出するものなどである。
これにより、複数の放射線検出器、特に環境放射能の測定に多用される20%〜40%の相対効率値を有する複数の放射線検出器に対して、所望の検出効率を容易に確保することができる。
According to the sample container for measuring radioactivity of the present invention, the size range of each diameter and each distance is, for example, for a plurality of radiation detectors having a relative efficiency value of 20% to 40%. Each diameter and each distance of the container are set by a predetermined calculation that is appropriately changed.
This predetermined calculation is systematically executed for a plurality of radiation detectors frequently used for measurement of environmental radioactivity. For example, the radiation transport is calculated by simulation, and the radiation detector is calculated based on the calculation result. Or the like that calculates the detection efficiency.
Thereby, it is possible to easily ensure a desired detection efficiency for a plurality of radiation detectors, particularly a plurality of radiation detectors having a relative efficiency value of 20% to 40%, which is frequently used for measurement of environmental radioactivity. it can.

本発明の実施の形態に係る放射能測定用試料容器の断面図である。It is sectional drawing of the sample container for radioactivity measurement which concerns on embodiment of this invention. 本発明の実施の形態に係る放射能測定用試料容器の断面図である。It is sectional drawing of the sample container for radioactivity measurement which concerns on embodiment of this invention. 本発明の実施の形態に係る放射能測定用試料容器に収容される放射線検出器の構成図である。It is a block diagram of the radiation detector accommodated in the sample container for radioactivity measurement which concerns on embodiment of this invention. 本発明の実施の形態に係る放射能測定用試料容器の直径D1に応じた全吸収ピーク効率の変化を、結晶寸法が異なる3つの放射線検出器に対して示すグラフ図である。It is a graph which shows the change of the total absorption peak efficiency according to the diameter D1 of the sample container for radioactivity measurement which concerns on embodiment of this invention with respect to three radiation detectors from which a crystal size differs.

以下、本発明の一実施形態に係る放射能測定用試料容器について添付図面を参照しながら説明する。   Hereinafter, a sample container for measuring radioactivity according to an embodiment of the present invention will be described with reference to the accompanying drawings.

本実施の形態による放射能測定用試料容器10は、例えば図1に示すように、いわゆるマリネリ容器であって、有底円筒型の容器本体11と、容器本体11の中心軸Oに同軸に容器本体11の底面11A上に設けられた円柱状凹部12と、を備え、容器本体11の内部に試料を収容可能である。   A radioactivity measurement sample container 10 according to the present embodiment is a so-called marinelli container as shown in FIG. 1, for example, and is a container having a bottomed cylindrical container body 11 and a container coaxially with a central axis O of the container body 11. A cylindrical recess 12 provided on the bottom surface 11 </ b> A of the main body 11, and a sample can be accommodated inside the container main body 11.

放射能測定用試料容器10は、例えば図2に示すように、容器本体11の内底面11Bから内周壁面11C上に設けられた試料の収容端13までの内容積は1リットルである。
そして、容器本体11の内周壁面11Cの直径D1は130.6mm〜139mm、かつ円柱状凹部12に応じて容器本体11の内部に設けられる円柱状部14の直径D2は81mm〜95mmとされ、例えば直径D1=135mmかつ直径D2=89mmである。
さらに、容器本体11の内底面11Bから収容端13までの距離L1は90mm〜129mm、かつ容器本体11の内底面11Bから円柱状部14の先端面14Aまでの距離L2は79mm〜100mmとされ、例えば距離L1=104.18mmかつ距離L2=79mmである。
For example, as shown in FIG. 2, the sample container 10 for measuring radioactivity has an internal volume of 1 liter from the inner bottom surface 11B of the container body 11 to the sample storage end 13 provided on the inner peripheral wall surface 11C.
The diameter D1 of the inner peripheral wall surface 11C of the container body 11 is 130.6 mm to 139 mm, and the diameter D2 of the columnar portion 14 provided inside the container body 11 according to the columnar recess 12 is 81 mm to 95 mm. For example, the diameter D1 = 135 mm and the diameter D2 = 89 mm.
Furthermore, the distance L1 from the inner bottom surface 11B of the container body 11 to the receiving end 13 is 90 mm to 129 mm, and the distance L2 from the inner bottom surface 11B of the container body 11 to the tip surface 14A of the cylindrical portion 14 is 79 mm to 100 mm. For example, the distance L1 = 104.18 mm and the distance L2 = 79 mm.

そして、放射能測定用試料容器10の円柱状凹部12は、20%〜40%の相対効率値を有する放射線検出器のエンドキャップ、例えば図3に示す放射線検出器20のエンドキャップハウジング31を収容可能に形成されている。   And the cylindrical recessed part 12 of the sample container 10 for radioactivity measurement accommodates the end cap of the radiation detector which has a relative efficiency value of 20%-40%, for example, the end cap housing 31 of the radiation detector 20 shown in FIG. It is made possible.

なお、放射線検出器20は、例えばクローズドエンド同軸型のゲルマニウム半導体検出器であって、ゲルマニウム結晶30と、エンドキャップハウジング31と、エンドキャップハウジング31内部の真空領域32と、真空領域32内にてゲルマニウム結晶30を保持するクリスタルホルダ33と、クリスタルホルダ33に設けられた樹脂フィルム34とを備えて構成されている。   The radiation detector 20 is, for example, a closed-end coaxial germanium semiconductor detector, and includes a germanium crystal 30, an end cap housing 31, a vacuum region 32 inside the end cap housing 31, and a vacuum region 32. A crystal holder 33 for holding the germanium crystal 30 and a resin film 34 provided on the crystal holder 33 are provided.

そして、放射線検出器20は、例えば20%〜40%の相対効率値を有している。
有底の円筒形に形成されたゲルマニウム結晶30は、放射線に対する有感領域35と表面不感層36とを備えている。
クリスタルホルダ33により保持されたゲルマニウム結晶30は、例えば放射線の入射窓(図示略)を有するエンドキャップハウジング31の内部に収容され、このエンドキャップハウジング31の内部は真空状態とされている。
The radiation detector 20 has a relative efficiency value of 20% to 40%, for example.
The germanium crystal 30 formed in a bottomed cylindrical shape includes a sensitive region 35 and a surface insensitive layer 36 for radiation.
The germanium crystal 30 held by the crystal holder 33 is accommodated in an end cap housing 31 having, for example, a radiation incident window (not shown), and the inside of the end cap housing 31 is in a vacuum state.

そして、例えば、ゲルマニウム結晶30の直径Aは48mm〜60mm、かつゲルマニウム結晶30の長さBは30mm〜70mmとされている。   For example, the diameter A of the germanium crystal 30 is 48 mm to 60 mm, and the length B of the germanium crystal 30 is 30 mm to 70 mm.

クリスタルホルダ33は開口部を有する箱型に形成され、クリスタルホルダ33の内部にゲルマニウム結晶30が収容された状態で、開口部は樹脂フィルム34により閉塞されている。
そして、樹脂フィルム34により閉塞された開口部がエンドキャップハウジング31の入射窓に臨んで対向するようにして配置されている。
The crystal holder 33 is formed in a box shape having an opening, and the opening is closed by a resin film 34 in a state where the germanium crystal 30 is accommodated in the crystal holder 33.
The opening portion closed by the resin film 34 is disposed so as to face the incident window of the end cap housing 31.

この放射能測定用試料容器10の各直径D1,D2および各距離L1,L2の寸法範囲は、例えば、20%〜40%の相対効率値を有する複数の放射線検出器に対して、放射能測定用試料容器10の各直径D1,D2および各距離L1,L2を適宜に変化させた所定の演算によって設定されている。
この所定の演算は、環境放射能の測定に多用される複数の放射線検出器に対して系統的に実行され、例えば、γ線の輸送をモンテカルロ法などのシミュレーションにより演算して、この演算結果に基づいて放射線検出器のγ線に対する全吸収ピーク効率を算出するものなどである。
そして、放射能測定用試料容器10の各直径D1,D2および各距離L1,L2の寸法範囲は、複数の放射線検出器、特に環境放射能の測定に多用される20%〜40%の相対効率値を有する複数の放射線検出器に対して、所望の検出効率を確保するようにして設定されている。
The size ranges of the diameters D1 and D2 and the distances L1 and L2 of the sample container 10 for measuring radioactivity are, for example, for a plurality of radiation detectors having a relative efficiency value of 20% to 40%. The diameters D1 and D2 and the distances L1 and L2 of the sample container 10 are set by predetermined calculations that are appropriately changed.
This predetermined calculation is systematically executed for a plurality of radiation detectors frequently used for measuring the environmental radioactivity. For example, the transport of γ rays is calculated by a simulation such as a Monte Carlo method, and the calculation result is calculated. Based on this, the total absorption peak efficiency with respect to γ rays of the radiation detector is calculated.
The size ranges of the diameters D1 and D2 and the distances L1 and L2 of the sample container 10 for measuring radioactivity are 20% to 40% relative efficiency frequently used for measurement of a plurality of radiation detectors, particularly environmental radioactivity. It is set so as to ensure a desired detection efficiency for a plurality of radiation detectors having values.

例えば図4においては、ゲルマニウム結晶30の結晶寸法の直径Dおよび長さLの組み合わせが異なる3つの放射線検出器(例えば、D/L=0.8,1.0,1.4の3つの放射線検出器)の661keVのγ線に対する全吸収ピーク効率と、放射能測定用試料容器10の直径D1との対応関係を示した。
各放射線検出器に対して、放射能測定用試料容器10の直径D1(x)に応じた全吸収ピーク効率(y)の変化を2次式で近似した場合に、各直径D1=139.0mm,136.0mm,130.6mmにおいて全吸収ピーク効率が極大になることが認められる。
これによって、環境放射能の測定に多用される20%〜40%の相対効率値を有する放射線検出器に対して、結晶寸法の直径Dおよび長さLの組み合わせの範囲をD/L=0.8〜1.4とすれば、放射能測定用試料容器10の直径D1は130.6mm〜139mmとなり、より好ましくは、ほぼ中央値の直径D1=135mmである。
For example, in FIG. 4, three radiation detectors having different combinations of the diameter D and the length L of the crystal dimensions of the germanium crystal 30 (for example, three radiations with D / L = 0.8, 1.0, 1.4). The correlation between the total absorption peak efficiency of the detector) for 661 keV γ rays and the diameter D1 of the sample container 10 for radioactivity measurement is shown.
When the change in the total absorption peak efficiency (y) corresponding to the diameter D1 (x) of the radioactivity measurement sample container 10 is approximated by a quadratic equation for each radiation detector, each diameter D1 = 139.0 mm , 136.0 mm, and 130.6 mm, it is recognized that the total absorption peak efficiency is maximized.
Thus, for a radiation detector having a relative efficiency value of 20% to 40%, which is frequently used for measurement of environmental radioactivity, the range of the combination of the crystal dimension diameter D and length L is D / L = 0. If it is set to 8-1.4, the diameter D1 of the sample container 10 for radioactivity measurement will be 130.6 mm-139 mm, More preferably, it is a substantially median diameter D1 = 135 mm.

上述したように、本実施の形態による放射能測定用試料容器10によれば、各直径D1,D2および各距離L1,L2の寸法範囲は、例えば、20%〜40%の相対効率値を有する複数の放射線検出器に対して、放射能測定用試料容器10の各直径D1,D2および各距離L1,L2を適宜に変化させた所定の演算によって設定されている。
これにより、複数の放射線検出器、特に環境放射能の測定に多用される20%〜40%の相対効率値を有する複数の放射線検出器に対して、所望の検出効率を容易に確保することができる。
As described above, according to the radioactivity measurement sample container 10 according to the present embodiment, the dimension ranges of the diameters D1 and D2 and the distances L1 and L2 have a relative efficiency value of 20% to 40%, for example. For each of the plurality of radiation detectors, the diameters D1 and D2 and the distances L1 and L2 of the radioactivity measurement sample container 10 are set by predetermined calculations.
Thereby, it is possible to easily ensure a desired detection efficiency for a plurality of radiation detectors, particularly a plurality of radiation detectors having a relative efficiency value of 20% to 40%, which is frequently used for measurement of environmental radioactivity. it can.

なお、上述した実施の形態において、放射線検出器20をゲルマニウム半導体検出器としたが、これに限定されず、他の検出器であってもよい。   In the above-described embodiment, the radiation detector 20 is a germanium semiconductor detector. However, the present invention is not limited to this, and another detector may be used.

10…放射能測定用試料容器 11…容器本体 11A…底面 11B…内底面 11C…内周壁面 12…円柱状凹部 13…収容端 14…円柱状部 14A…先端面 DESCRIPTION OF SYMBOLS 10 ... Sample container for a radioactivity measurement 11 ... Container main body 11A ... Bottom surface 11B ... Inner bottom surface 11C ... Inner peripheral wall surface 12 ... Cylindrical recessed part 13 ... Storage end 14 ... Cylindrical part 14A ... Tip surface

Claims (2)

有底円筒型の容器本体と、該容器本体の中心軸に同軸に前記容器本体の底面上に設けられた円柱状凹部と、を備え、前記容器本体の内部に放射能測定用試料を収容可能な放射能測定用試料容器であって、
前記容器本体の内周壁面の直径は130.6mm〜139mm、かつ前記円柱状凹部に応じて前記容器本体の内部に設けられる円柱状部の直径は81mm〜95mm、かつ前記容器本体の内底面から前記内周壁面上に設けられた前記放射能測定用試料の収容端までの距離は90mm〜129mm、かつ前記容器本体の内底面から前記円柱状部の先端面までの距離は79mm〜100mm、かつ前記容器本体の内底面から前記収容端までの内容積は1リットルであることを特徴とする放射能測定用試料容器。
A bottomed cylindrical container body, and a cylindrical recess provided on the bottom surface of the container body coaxially with the central axis of the container body, the sample for measuring radioactivity can be accommodated inside the container body A sample container for measuring radioactivity,
The diameter of the inner peripheral wall surface of the container body is 130.6 mm to 139 mm, and the diameter of the columnar portion provided inside the container body according to the columnar recess is 81 mm to 95 mm, and from the inner bottom surface of the container body The distance from the receiving end of the radioactivity measurement sample provided on the inner peripheral wall surface is 90 mm to 129 mm, and the distance from the inner bottom surface of the container body to the tip surface of the cylindrical portion is 79 mm to 100 mm, and A sample container for measuring radioactivity, wherein an inner volume from an inner bottom surface of the container body to the accommodation end is 1 liter.
前記円柱状凹部は、20%〜40%の相対効率値を有する放射線検出器のエンドキャップを収容可能であり、
前記放射線検出器の結晶の直径は48mm〜60mm、かつ前記結晶の長さは30mm〜70mmであることを特徴とする請求項1に記載の放射能測定用試料容器。
The cylindrical recess can accommodate an end cap of a radiation detector having a relative efficiency value of 20% to 40%,
The radioactivity measurement sample container according to claim 1, wherein the radiation detector has a crystal diameter of 48 mm to 60 mm and a length of the crystal of 30 mm to 70 mm.
JP2012244463A 2012-03-09 2012-11-06 Radiation measurement sample container Pending JP2013213806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012244463A JP2013213806A (en) 2012-03-09 2012-11-06 Radiation measurement sample container

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012053057 2012-03-09
JP2012053057 2012-03-09
JP2012244463A JP2013213806A (en) 2012-03-09 2012-11-06 Radiation measurement sample container

Publications (1)

Publication Number Publication Date
JP2013213806A true JP2013213806A (en) 2013-10-17

Family

ID=49587214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012244463A Pending JP2013213806A (en) 2012-03-09 2012-11-06 Radiation measurement sample container

Country Status (1)

Country Link
JP (1) JP2013213806A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098768A (en) * 2000-09-25 2002-04-05 Japan Atom Energy Res Inst Method for measuring radioactivity in volumetric samples with a germanium semiconductor detector
JP2008083037A (en) * 2006-08-30 2008-04-10 Seiko Eg & G Co Ltd Radiation detection apparatus and efficiency calibration method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098768A (en) * 2000-09-25 2002-04-05 Japan Atom Energy Res Inst Method for measuring radioactivity in volumetric samples with a germanium semiconductor detector
JP2008083037A (en) * 2006-08-30 2008-04-10 Seiko Eg & G Co Ltd Radiation detection apparatus and efficiency calibration method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014037523; 文部科学省: ゲルマニウム半導体検出器によるガンマ線スペクトロメトリー 平成4年改訂、第7刷, 20040730, 102-104頁, 財団法人日本分析センター *
JPN6014037525; Asm Sabbir Ahmed, et al.: 'Optimization of geometric parameters for Marinelli beaker to maximize the detection efficiency of an' Nuclear Instruments & Methods in Physics Research Vol. 610, Issue 3, 20091111, 718-723 *

Similar Documents

Publication Publication Date Title
JP5702762B2 (en) Radioactivity measuring device
ATLAS Collaboration atlas. publications@ cern. ch et al. Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at s=7~TeV with the ATLAS detector
Rapetti et al. A combined measurement of cosmic growth and expansion from clusters of galaxies, the CMB and galaxy clustering
CN103135122A (en) Mixed nuclide gamma point source volume sample efficiency calibration method
Duerr et al. Gamma-ray excess and the minimal dark matter model
JP2016003892A (en) Gamma-ray counting device and gamma-ray counting method
Kamali et al. Radio continuum of galaxies with H2O megamaser disks: 33 GHz VLA data
JP2013213806A (en) Radiation measurement sample container
Xu et al. Cosmic constraint to DGP brane model: Geometrical and dynamical perspectives
EP3236291B1 (en) Marinelli beaker correction container for stable radionuclide analysis
EP3327466B1 (en) Marinelli beaker correction container for stable radionuclide analysis
JP2017156172A (en) Radioactivity measuring device and radioactivity measuring method
Furci et al. Self-shielding corrections in cylindrical samples in gamma spectrometry with germanium well-type detectors
US20140246587A1 (en) Adaptors for radiation detectors
JP6443987B2 (en) Radiation shielding ability test method and container used therefor
Ismail Study of change in the efficiency of CR-39 after storage for different product companies by using TRACK_TEST program
El-Khatib et al. Calculation of full-energy peak efficiency of NaI (Tl) detectors by new analytical approach for parallelepiped sources
Badawi et al. NaI (Tl) detector efficiency computation using radioactive parallelepiped sources based on efficiency transfer principle
Eakins et al. A novel design of survey instrument for neutrons
Schwadron et al. Dose spectra from energetic particles and neutrons
Cabrita Diffuse Reflectance Studies in a Liquid Interface: With Application to Noble Liquid Detectors
Zhang et al. Modelling of a single-channel beta–gamma coincidence phoswich detector using GEANT4 for the conversion electron energy peak resolution and beta–gamma coincidence efficiency improvement
Strigari Astrophysical interplay in dark matter searches
Ye et al. Study of a method for theoretical calculation of the efficiency of a LaBr3 (Ce) for detecting gamma-rays from point sources
Xu Cosmological model-independent Gamma-ray bursts calibration and its cosmological constraint to dark energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202