JP2013213592A - Rising control method of binary refrigeration system - Google Patents

Rising control method of binary refrigeration system Download PDF

Info

Publication number
JP2013213592A
JP2013213592A JP2012083360A JP2012083360A JP2013213592A JP 2013213592 A JP2013213592 A JP 2013213592A JP 2012083360 A JP2012083360 A JP 2012083360A JP 2012083360 A JP2012083360 A JP 2012083360A JP 2013213592 A JP2013213592 A JP 2013213592A
Authority
JP
Japan
Prior art keywords
low
pressure
refrigerant circuit
source
source refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012083360A
Other languages
Japanese (ja)
Other versions
JP5279105B1 (en
Inventor
Tatsu Ninomiya
達 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seisakusho KK
Original Assignee
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seisakusho KK filed Critical Toyo Seisakusho KK
Priority to JP2012083360A priority Critical patent/JP5279105B1/en
Application granted granted Critical
Publication of JP5279105B1 publication Critical patent/JP5279105B1/en
Publication of JP2013213592A publication Critical patent/JP2013213592A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rising control method of a binary refrigeration system which can perform smooth rising until usual running without risk from causing both of high pressure abnormality of a low element refrigerant circuit and low pressure abnormality of a high element refrigerant circuit upon rising.SOLUTION: A binary refrigeration system 10 includes: a high element refrigerant circuit 12 in which a high element refrigerant circulates; and at least a low element refrigerant circuit 14 in which the high element refrigerant and a low element refrigerant heat-exchange in an intermediate heat exchanger 16 with using the intermediate heat exchanger 16 as a condensation part. The rising control method of the binary refrigeration system 10 has the steps of: starting the low element refrigerant circuit 14 to set the low element refrigerant to a given first pressure at the degree of a load required early in rising of the high element refrigerant circuit 12 side; pausing the low element refrigerant circuit 14 when the low element refrigerant reaches the given first pressure, and also starting the high element refrigerant circuit 12; and starting the low element refrigerant circuit 14 when the high element refrigerant of the low element refrigerant circuit 14 is depressurized down to a given second pressure.

Description

本発明は、二元冷凍装置の立ち上げ制御方法に関し、より詳細には、立ち上げの際、低元冷媒回路の高圧異常および高元冷媒回路の低圧異常いずれも引き起こす恐れなく、定常運転までの円滑な立上げを可能とする二元冷凍装置の立ち上げ制御方法に関する。   The present invention relates to a start-up control method for a binary refrigeration apparatus, and more specifically, at the time of start-up, there is no risk of causing either a high-pressure abnormality in a low-source refrigerant circuit or a low-pressure abnormality in a high-source refrigerant circuit. The present invention relates to a start-up control method for a binary refrigeration apparatus that enables smooth start-up.

従来から、主に、多段圧縮式冷凍装置における低段側の押しのけ量の増大を解消しつつ、定常運転時での冷媒の凝縮圧力の上昇を防止することにより、耐圧強度の高い装置を不要とする観点から、冷媒の種類を異にする二元冷凍装置が用いられている。
この二元冷凍装置は、たとえば、特許文献1ないし3に開示されているように、圧縮機と、凝縮器と、膨張機構と、中間熱交換器の蒸発部とが順に接続されて構成され、高元冷媒が循環する高元側冷媒回路と、圧縮機と、中間熱交換器の凝縮部と、膨張機構と、蒸発器とが順に接続されて構成され、低元冷媒が循環すると共に、中間熱交換器において高元冷媒と低元冷媒とが熱交換する少なくとも1つの低元側冷媒回路とを備える。
Conventionally, a device with high pressure resistance is not required, mainly by eliminating an increase in the amount of displacement on the low-stage side in a multi-stage compression refrigeration system while preventing an increase in the refrigerant condensing pressure during steady operation. In view of this, a binary refrigeration apparatus having different types of refrigerant is used.
For example, as disclosed in Patent Documents 1 to 3, the binary refrigeration apparatus is configured by sequentially connecting a compressor, a condenser, an expansion mechanism, and an evaporation unit of an intermediate heat exchanger, A high-side refrigerant circuit in which the high-source refrigerant circulates, a compressor, a condensing part of the intermediate heat exchanger, an expansion mechanism, and an evaporator are connected in order, and the low-source refrigerant circulates in the middle The heat exchanger includes at least one low-source side refrigerant circuit that exchanges heat between the high-source refrigerant and the low-source refrigerant.

このような二元冷凍装置は、通常、たとえば、蒸発温度がー60℃以下となるような低温負荷に対応するために用いられ、中間熱交換器におけるカスケード温度が常温より低い状態で、定常運転においては、高元側冷媒回路と低元側冷媒回路との間で安定的に熱バランスを図り、高元側冷媒回路の凝縮器において、放熱したり、低元側冷媒回路の蒸発器において、冷凍庫の冷熱源を得たりすることが可能である。
通常のー60℃の低温用途では、定常時の中間温度が常温より低いので、常温スタートでも十分に負荷量として存在することになり、またそれに適した低沸点冷媒が用いられている。
このような二元冷凍装置の立ち上げ方法について、低元側冷媒回路の低元冷媒として、周囲温度と平衡した起動前の状態でも高元側冷媒回路の立ち上げに十分な負荷を保有するような低沸点冷媒(たとえば、R23あるいはR508A)が採用されることから、高元側冷媒回路を先起動し、それにより低元側冷媒回路を冷却し、低元冷媒圧力が圧力低下してから低元側冷媒回路を起動していた。
しかしながら、このような二元冷凍装置を、たとえば排熱回収用の高温領域で使用する際、従来の二元冷凍装置の立ち上げ方法を採用するとすれば、以下のような技術的問題点が引き起こされる。
すなわち、カスケード温度が常温近傍、あるいはそれより高くなるので、低元側冷媒回路の低元冷媒として、通常の空調用冷媒を採用する必要が生じることから、高元側冷媒回路の立ち上げにとって不十分な負荷であり、低元側冷媒回路および高元側冷媒回路を同時に起動するとすれば、高元側冷媒回路の冷媒循環量が十分に増加できず、高元側冷媒回路が低圧カットに至ったり、または高元側冷媒回路の冷媒循環量が十分に増加できない状態のまま低元側冷媒回路が起動条件に達するとすれば、低元側冷媒回路の立ち上げ速度が高元側冷媒回路のそれを上回り、低元側冷媒回路の高圧カットに至ることがあり、いずれにしても定常運転に至る前に異常停止となる恐れが高い。
特開平7−12439号 特開2001−241789号 特開2009−133539号
Such a binary refrigeration apparatus is usually used to cope with a low temperature load such as an evaporation temperature of −60 ° C. or less, and in a state where the cascade temperature in the intermediate heat exchanger is lower than normal temperature. In, the heat balance between the high-side refrigerant circuit and the low-side refrigerant circuit is stably balanced, and heat is dissipated in the condenser of the high-side refrigerant circuit, or in the evaporator of the low-side refrigerant circuit, It is possible to obtain a cold source of freezer.
In a normal low temperature application of −60 ° C., the intermediate temperature at the steady state is lower than the normal temperature, so that it exists as a sufficient load even at the normal temperature start, and a low boiling point refrigerant suitable for it is used.
About the starting method of such a binary refrigeration apparatus, as a low-source refrigerant of the low-source side refrigerant circuit, a sufficient load for starting up the high-side refrigerant circuit is retained even in a state before starting in equilibrium with the ambient temperature. Since a low-boiling-point refrigerant (for example, R23 or R508A) is employed, the high-side refrigerant circuit is started first, thereby cooling the low-side refrigerant circuit, and the low-side refrigerant pressure is low after the pressure drops. The original refrigerant circuit was activated.
However, when such a binary refrigeration apparatus is used in, for example, a high-temperature region for exhaust heat recovery, if the conventional method for starting up the binary refrigeration apparatus is adopted, the following technical problems are caused. It is.
In other words, since the cascade temperature is near or higher than normal temperature, it is necessary to use a normal air-conditioning refrigerant as the low-source refrigerant in the low-source refrigerant circuit, which is inconvenient for starting up the high-source refrigerant circuit. If the load is sufficient and the low-side refrigerant circuit and the high-side refrigerant circuit are started at the same time, the amount of refrigerant circulating in the high-side refrigerant circuit cannot be increased sufficiently, and the high-side refrigerant circuit reaches a low-pressure cut. If the low-circulation refrigerant circuit reaches the starting condition while the refrigerant circulation amount of the high-generation refrigerant circuit cannot be sufficiently increased, the startup speed of the low-generation refrigerant circuit is Above that, it may lead to high-pressure cut of the low-side refrigerant circuit, and in any case, there is a high risk of abnormal stop before reaching steady operation.
JP 7-12439 A JP 2001-241789 A JP 2009-133539 A

以上の技術的問題点に鑑み、本発明の目的は、立ち上げの際、低元冷媒回路の高圧異常および高元冷媒回路の低圧異常いずれも引き起こす恐れなく、定常運転までの円滑な立上げを可能とする二元冷凍装置の立ち上げ制御方法を提供することにある。   In view of the above technical problems, the object of the present invention is to achieve a smooth start-up until steady operation without causing any high-pressure abnormality of the low-source refrigerant circuit and low-pressure abnormality of the high-source refrigerant circuit at the time of start-up. An object of the present invention is to provide a method for controlling the start-up of a binary refrigeration apparatus.

上記課題を達成するために、本発明の二元冷凍装置の立ち上げ制御方法は、
圧縮機と、凝縮器と、膨張機構と、中間熱交換器の蒸発部とが順に接続されて構成され、高元冷媒が循環する高元側冷媒回路と、圧縮機と、上記中間熱交換器の凝縮部と、膨張機構と、蒸発器とが順に接続されて構成され、高元冷媒より低沸点の低元冷媒が循環すると共に、上記中間熱交換器において高元冷媒と低元冷媒とが熱交換する少なくとも1つの低元側冷媒回路とを備え、カスケード温度が常温近傍、あるいはそれより高い二元冷凍装置の立ち上げ制御方法において、
低元冷媒回路を起動して、低元冷媒を高元冷媒回路側の立ち上げ初期に必要な負荷となる程度の所定第1圧力とする段階と、
低元冷媒が前記所定第1圧力に達したら、低元冷媒回路を停止するとともに、高元冷媒回路を起動する段階と、
低元冷媒回路の低元冷媒が所定第2圧力まで減圧されたら、低元冷媒回路を起動する段階と、
有する構成としている。
In order to achieve the above object, a start-up control method for a binary refrigeration apparatus of the present invention includes:
A compressor, a condenser, an expansion mechanism, and an evaporation unit of an intermediate heat exchanger are connected in order, and a high-side refrigerant circuit in which high-source refrigerant circulates, a compressor, and the intermediate heat exchanger The condensing part, the expansion mechanism, and the evaporator are connected in order, and a low-source refrigerant having a lower boiling point than that of the high-source refrigerant circulates, and in the intermediate heat exchanger, the high-source refrigerant and the low-source refrigerant are In a start-up control method of a binary refrigeration apparatus comprising at least one low-source-side refrigerant circuit for heat exchange, and having a cascade temperature near room temperature or higher,
Activating the low-source refrigerant circuit and setting the low-source refrigerant to a predetermined first pressure that is a required load at the initial startup of the high-source refrigerant circuit;
When the low-source refrigerant reaches the predetermined first pressure, stopping the low-source refrigerant circuit and starting the high-source refrigerant circuit;
Activating the low-source refrigerant circuit when the low-source refrigerant in the low-source refrigerant circuit is depressurized to a predetermined second pressure;
It has the composition to have.

以上の構成を有する二元冷凍装置の立ち上げ制御方法によれば、中間熱交換器でのカスケード温度が常温近傍、あるいはそれより高い場合に採用する低元冷媒回路の低元冷媒は、たとえば蒸発温度がー60℃以下のような低温負荷に対する二元冷凍装置で採用する低元冷媒回路の低元冷媒に比べて、低沸点冷媒でないことから、周囲(外気)温度と平衡状態の起動前の低元冷媒回路の低元冷媒の高圧では、高元冷媒回路の立ち上げ負荷として不十分となり、低元冷媒回路および高元冷媒回路を同時に起動すれば、高元冷媒回路が低圧カットに至る可能性があるところ、低元冷媒回路を単独で先に起動することにより、高元冷媒回路側の立ち上げ初期に必要な負荷となる程度の所定第1高圧として停止した後に高元冷媒回路を起動することにより、このような高元冷媒回路の低圧カットを防止するとともに、低元冷媒回路の加熱能力が高元冷媒回路側の冷却能力に勝ち過ぎて、逆に低元冷媒回路が高圧カットに至らないように、低元冷媒回路の低元冷媒が所定第2圧力まで減圧された後に、低元冷媒回路を起動しており、以て低元冷媒回路の高圧異常および高元冷媒回路の低圧異常いずれも引き起こす恐れなく、定常運転までの円滑な立上げが可能となる。
本明細書において、定常運転とは、外乱が系に入力されない限り、負荷に応じて収束した安定な運転状態を意味し、立ち上がり運転とは、系の起動からこのような定常運転までの運転状態を意味するものとして用いる。
According to the start-up control method of the binary refrigeration apparatus having the above configuration, the low-source refrigerant of the low-source refrigerant circuit employed when the cascade temperature in the intermediate heat exchanger is near room temperature or higher is, for example, evaporated. Compared with the low-source refrigerant of the low-source refrigerant circuit used in the binary refrigeration system for low-temperature loads such as temperatures below -60 ° C, it is not a low-boiling point refrigerant, so the ambient (outside air) temperature and before the start of the equilibrium state The high pressure of the low-source refrigerant in the low-source refrigerant circuit is insufficient as a startup load for the high-source refrigerant circuit, and if the low-source refrigerant circuit and the high-source refrigerant circuit are started at the same time, the high-source refrigerant circuit can reach a low-pressure cut. However, by starting the low-source refrigerant circuit alone first, the high-source refrigerant circuit is started after stopping at a predetermined first high pressure that is a necessary load at the initial start-up on the high-source refrigerant circuit side. By doing In addition to preventing such a low-pressure cut in the high-source refrigerant circuit, the heating capability of the low-source refrigerant circuit is more than the cooling capability on the high-source refrigerant circuit side, so that the low-source refrigerant circuit does not reach the high-pressure cut. In addition, after the low-source refrigerant in the low-source refrigerant circuit is depressurized to the predetermined second pressure, the low-source refrigerant circuit is activated, and thus both the high-pressure abnormality in the low-source refrigerant circuit and the low-pressure abnormality in the high-source refrigerant circuit It is possible to start up smoothly until steady operation without fear.
In this specification, the steady operation means a stable operation state that converges according to the load unless a disturbance is input to the system, and the rising operation means an operation state from the start of the system to such a steady operation. Is used to mean

さらに、二元冷凍装置の起動前に、低元冷媒回路の低元冷媒の高圧圧力を検出する段階と、
検出した低元冷媒の高圧圧力が所定第3圧力より低ければ、低元冷媒回路を起動し該所定第3圧力と等しい、あるいは前記所定高圧より高ければ、高元冷媒回路を起動する段階とをさらに有するのがよい。
さらにまた、前記所定第3圧力は、前記所定第2圧力より高く、前記所定第1圧より低い。
Furthermore, before starting the binary refrigeration apparatus, detecting the high pressure of the low-source refrigerant in the low-source refrigerant circuit;
Starting the low-source refrigerant circuit if the detected high-pressure pressure of the low-source refrigerant is lower than the predetermined third pressure and starting the high-source refrigerant circuit if the low-source refrigerant circuit is equal to or equal to the predetermined third pressure; Furthermore, it is good to have.
Furthermore, the predetermined third pressure is higher than the predetermined second pressure and lower than the predetermined first pressure.

加えて、前記低元冷媒は、通常の空調用冷媒でもよい。
さらに、前記低元冷媒は、周囲温度と平衡状態の停止中の圧力が、運転中の圧力よりも低いのでもよい。
また、前記低元冷媒は、R134a、前記高元冷媒は、R245faでもよい。

さらに、前記カスケード温度は、10 ℃以上であってもよい。
加えて、前記二元冷凍装置は、前記低元冷媒回路の前記蒸発器を利用して、排熱回収に用いられるのでもよい。
また、前記所定第1圧力、前記所定第2圧力および前記所定第3圧力はそれぞれ、用いる冷媒の種類、圧縮機の回転数および排熱回収温度に基づいて、決定するのがよい。
In addition, the low-source refrigerant may be a normal air-conditioning refrigerant.
Further, the low-source refrigerant may be such that the pressure during stopping in equilibrium with the ambient temperature is lower than the pressure during operation.
The low-source refrigerant may be R134a and the high-source refrigerant may be R245fa.

Further, the cascade temperature may be 10 ° C. or higher.
In addition, the binary refrigeration apparatus may be used for exhaust heat recovery using the evaporator of the low-source refrigerant circuit.
The predetermined first pressure, the predetermined second pressure, and the predetermined third pressure may be determined based on the type of refrigerant used, the rotational speed of the compressor, and the exhaust heat recovery temperature, respectively.

本発明に係る二元冷凍装置10の実施形態を図面を参照しながら、以下に詳細に説明する。
図1において、二元冷凍装置10は、高元側冷媒回路12と低元側冷媒回路14とが中間熱交換器16で接続されている。高元側冷媒としては、たとえば、R245fa、低元側冷媒としては、たとえば、R134aを用いてもよく、通常の空調用冷媒でもよい。低元側冷媒は、周囲温度と平衡状態の停止中の圧力が、運転中の圧力よりも低い。
高元側冷媒回路12は、概略的には、高元側圧縮機18の吐出側に一端が接続された高元側冷媒往管20の他端が、凝縮器22、膨張弁24を介して中間熱交換器16の1次側流路入口に接続され、1次側流路出口に一端が接続された高元側冷媒復管26の他端が、高元側圧縮機18の吸入側に接続され、冷媒回路を構成している。
An embodiment of a binary refrigeration apparatus 10 according to the present invention will be described below in detail with reference to the drawings.
In FIG. 1, a high temperature side refrigerant circuit 12 and a low level refrigerant circuit 14 are connected to each other by an intermediate heat exchanger 16 in a binary refrigeration apparatus 10. For example, R245fa may be used as the high-side refrigerant, and R134a may be used as the low-side refrigerant, for example, and a normal air-conditioning refrigerant may be used. The low source side refrigerant has a lower pressure in operation at equilibrium with the ambient temperature than the operating pressure.
The high-end side refrigerant circuit 12 is schematically configured such that the other end of the high-end side refrigerant outlet pipe 20 whose one end is connected to the discharge side of the high-end side compressor 18 is connected via a condenser 22 and an expansion valve 24. The other end of the high-side refrigerant return pipe 26 connected to the primary-side flow path inlet of the intermediate heat exchanger 16 and connected to one end of the primary-side flow path outlet is connected to the suction side of the high-side compressor 18. Connected to form a refrigerant circuit.

一方、低元側冷媒回路14は、概略的には、低元側圧縮機28の吐出側に一端が接続された低元側冷媒往管30の他端が中間熱交換器16の2次側流路入口に接続され、2次側流路出口に一端が接続された低元側冷媒復管32の他端が、膨張弁34、蒸発器36を介して低元側圧縮機28の吸入側に接続され、冷媒回路を構成している。
中間熱交換器16は、乾式の蒸発器として構成され、中間熱交換器16の内部に高元側冷媒回路12と接続された熱交換管(図示せず)が配設され、胴側に低元側冷媒ガスが充満するようにする。これにより、高元側冷媒と管外の低元側冷媒ガスとが熱交換し、低元側冷媒が凝縮すると共に、中間熱交換器16の出口で高元側冷媒が乾きガスとなって高元側圧縮機18に吸引されるようにしてある。
高元側圧縮機18は、たとえば、容量制御式の往復圧縮機または回転あるいは遠心圧縮機が用いられる。特に、往復式圧縮機であれば、潤滑剤をクランク室等の低圧チャンバーに戻し、スクリュー圧縮機であれば、圧縮機ケーシングの低圧域又は中間圧域に戻すようにする。高元側冷媒回路12における高元側圧縮機18の駆動用モータ38には、インバータ装置40を設けて駆動用モータ38を回転数制御できるようにしてある。
On the other hand, the low-side refrigerant circuit 14 is generally configured such that the other end of the low-side refrigerant outgoing pipe 30 whose one end is connected to the discharge side of the low-side compressor 28 is the secondary side of the intermediate heat exchanger 16. The other end of the low-side refrigerant return pipe 32 connected to the flow path inlet and connected at one end to the secondary flow path outlet is connected to the suction side of the low-side compressor 28 via the expansion valve 34 and the evaporator 36. To form a refrigerant circuit.
The intermediate heat exchanger 16 is configured as a dry evaporator, and a heat exchange pipe (not shown) connected to the high-side refrigerant circuit 12 is disposed inside the intermediate heat exchanger 16, and the intermediate heat exchanger 16 is low on the trunk side. The original refrigerant gas is filled. As a result, heat exchange occurs between the high-side refrigerant and the low-side refrigerant gas outside the tube to condense the low-side refrigerant, and the high-side refrigerant becomes dry gas at the outlet of the intermediate heat exchanger 16. The original compressor 18 is sucked.
As the high-end compressor 18, for example, a capacity-controlled reciprocating compressor or a rotary or centrifugal compressor is used. Particularly, in the case of a reciprocating compressor, the lubricant is returned to a low pressure chamber such as a crank chamber, and in the case of a screw compressor, the lubricant is returned to a low pressure region or an intermediate pressure region of the compressor casing. The drive motor 38 of the high-end compressor 18 in the high-end refrigerant circuit 12 is provided with an inverter device 40 so that the rotation speed of the drive motor 38 can be controlled.

高元側圧縮機18の下流側には油分離器42が設けられ、油分離器42で分離された潤滑剤は高元側圧縮機18に戻される。油分離器42の下流側には、順に凝縮器22及び受液器44が設けられ、受液器44の下流側には、運転の開始時又は停止時に高元側冷媒回路12の開閉を行なう電磁弁(図示せず)と、膨張弁24とが設けられている。凝縮器22は、蒸発式、水冷式又は空冷式でもよい。高元側圧縮機18の上流側の高元側冷媒復管26には、冷媒ガス温度を検出する温度センサ(図示せず)と冷媒ガス圧力を検出する圧力センサ(図示せず)が設けられている。 An oil separator 42 is provided on the downstream side of the high-end compressor 18, and the lubricant separated by the oil separator 42 is returned to the high-end compressor 18. A condenser 22 and a liquid receiver 44 are sequentially provided on the downstream side of the oil separator 42, and the high-side refrigerant circuit 12 is opened and closed on the downstream side of the liquid receiver 44 when the operation is started or stopped. An electromagnetic valve (not shown) and an expansion valve 24 are provided. The condenser 22 may be an evaporation type, a water cooling type, or an air cooling type. A high-side refrigerant return pipe 26 upstream of the high-side compressor 18 is provided with a temperature sensor (not shown) for detecting the refrigerant gas temperature and a pressure sensor (not shown) for detecting the refrigerant gas pressure. ing.

それに対して、低元側冷媒回路14においては、低元側圧縮機28の上流側にアキュムレータ46が設けられ、ここで冷媒中の液滴が除去される。
特に、低元側冷媒回路14において、低元側冷媒がかなりの低温である場合には、低元側冷媒に混入している潤滑剤の粘性が増大していることから、潤滑剤をアキュムレータ46の上流側冷媒流路に戻すと、潤滑剤がアキュムレータ46に付着して、低元側冷媒回路14の圧力損失を増大するか、あるいは低元側冷媒回路14を閉塞するおそれがあるので、高元側圧縮機18と同様に、油分離器を設けて、油分離器により分離された潤滑剤を低元側圧縮機28の低圧域又はアキュムレータ46と低元側圧縮機28間の冷媒流路に戻してもよい。
On the other hand, in the low-side refrigerant circuit 14, an accumulator 46 is provided on the upstream side of the low-side compressor 28, and droplets in the refrigerant are removed here.
In particular, in the low-side refrigerant circuit 14, when the low-side refrigerant is at a considerably low temperature, the viscosity of the lubricant mixed in the low-side refrigerant increases, so the lubricant is added to the accumulator 46. Since the lubricant adheres to the accumulator 46 and increases the pressure loss of the low-side refrigerant circuit 14 or closes the low-side refrigerant circuit 14, the Similar to the former side compressor 18, an oil separator is provided, and the lubricant separated by the oil separator is used as a refrigerant flow path between the low pressure side of the low side compressor 28 or the accumulator 46 and the low side compressor 28. You may return to.

低元側圧縮機28は、高元側圧縮機18と同様に、たとえば、容量制御式の往復圧縮機または回転あるいは遠心圧縮機が用いられている。特に、往復式圧縮機であれば、潤滑剤をクランク室等の低圧チャンバーに戻し、スクリュー圧縮機であれば、圧縮機ケーシングの低圧域又は中間圧域に戻すようにする。 As with the high-source side compressor 18, for example, a capacity-controlled reciprocating compressor or a rotary or centrifugal compressor is used as the low-side compressor 28. Particularly, in the case of a reciprocating compressor, the lubricant is returned to a low pressure chamber such as a crank chamber, and in the case of a screw compressor, the lubricant is returned to a low pressure region or an intermediate pressure region of the compressor casing.

低元側冷媒回路14における低元側圧縮機28の駆動用モータ48には、高元側圧縮機18と同様に、インバータ装置50を設けて回転数制御をできるようにしている。なお、制御部52により、高元側圧縮機18のインバータ装置40と低元側冷媒回路14におけるインバータ装置50とをそれぞれ制御するようにしている。   As with the high-side compressor 18, the drive motor 48 for the low-side compressor 28 in the low-side refrigerant circuit 14 is provided with an inverter device 50 so that the rotational speed can be controlled. Note that the control unit 52 controls the inverter device 40 of the high-source side compressor 18 and the inverter device 50 in the low-side refrigerant circuit 14 respectively.

中間熱交換器16の下流側には、受液器54が設けられ、中間熱交換器16で凝縮した低元側冷媒液は、受液器54に供給される。
低元側冷媒ガスは、低元側冷媒復管32を通って低元側圧縮機28に吸入される。低元側冷媒復管32には、吸入圧力調整弁(図示せず)が設けられ、ここで低元側冷媒ガスの圧縮機吸入圧が調整される。また、低元側冷媒復管32には、圧縮機吸入圧を検出する圧力センサ(図示せず)が設けられている。
低元側冷媒復管32と中間熱交換器16の胴部とを接続するホットガスライン56が設けられ、ホットガスライン56には、ホットガス電動弁(図示せず)と、運転開始時又は停止時にホットガスライン56を開閉するホットガス電磁弁(図示せず)が付設されている。
A liquid receiver 54 is provided on the downstream side of the intermediate heat exchanger 16, and the low-source-side refrigerant liquid condensed in the intermediate heat exchanger 16 is supplied to the liquid receiver 54.
The low-side refrigerant gas is sucked into the low-side compressor 28 through the low-side refrigerant return pipe 32. The low-source-side refrigerant return pipe 32 is provided with a suction pressure adjustment valve (not shown), where the compressor suction pressure of the low-source-side refrigerant gas is adjusted. Further, the low-side refrigerant return pipe 32 is provided with a pressure sensor (not shown) for detecting the compressor suction pressure.
A hot gas line 56 is provided to connect the low-source side refrigerant return pipe 32 and the body portion of the intermediate heat exchanger 16. The hot gas line 56 includes a hot gas motor-operated valve (not shown) and an operation start or A hot gas solenoid valve (not shown) for opening and closing the hot gas line 56 at the time of stopping is attached.

低元側圧縮機28から低元側冷媒往管30に吐出された低元側冷媒ガスは、中間熱交換器16に供給され、中間熱交換器16内で高元冷媒により冷却されて凝縮し、凝縮した低元冷媒液は、さらに過冷却されて膨張弁34に送られる。 The low-side refrigerant gas discharged from the low-side compressor 28 to the low-side refrigerant outgoing pipe 30 is supplied to the intermediate heat exchanger 16 and is cooled and condensed by the high-source refrigerant in the intermediate heat exchanger 16. The condensed low-source refrigerant liquid is further subcooled and sent to the expansion valve 34.

図2に、高元側冷媒と低元側冷媒の温度バランスの一例を示す。図中、高元側冷媒飽和T1が凝縮器22での高元側冷媒の凝縮温度、低元側冷媒飽和T1が中間熱交換器16での低元側冷媒の凝縮温度、高元側冷媒飽和T2が中間熱交換器16での高元側冷媒の蒸発温度、低元側冷媒飽和T2が蒸発器36での低元側冷媒の蒸発温度である。 FIG. 2 shows an example of the temperature balance between the high-side refrigerant and the low-side refrigerant. In the figure, the high-side refrigerant saturation T1 is the condensation temperature of the high-side refrigerant in the condenser 22, the low-side refrigerant saturation T1 is the condensation temperature of the low-side refrigerant in the intermediate heat exchanger 16, and the high-side refrigerant saturation. T2 is the evaporation temperature of the high-side refrigerant in the intermediate heat exchanger 16, and low-side refrigerant saturation T2 is the evaporation temperature of the low-side refrigerant in the evaporator 36.

以上の実施形態において、低元側の蒸発器36に負荷が接続される構成、すなわち冷却運転が行われる場合の他、高元側の凝縮器22に負荷が接続される加熱運転(例えば、暖房や蒸気発生装置として適用する場合など)に用いたり、これらを交互に切り換え可能な構成としたりしてもよい。   In the above-described embodiment, a configuration in which a load is connected to the low-side evaporator 36, that is, a cooling operation is performed, and a heating operation in which a load is connected to the high-side condenser 22 (for example, heating) Or when it is applied as a steam generator, or a configuration in which these can be switched alternately.

中間熱交換器16で、高元側冷媒液または気液混合は低元側冷媒ガスと熱交換されて気化し、高元側冷媒復管26を経て高元側圧縮機18に吸入されるが、その際、液圧縮防止の観点から、運転状態の過熱度が目標過熱度になるように調整している。 In the intermediate heat exchanger 16, the high-side refrigerant liquid or gas-liquid mixture is vaporized by heat exchange with the low-side refrigerant gas, and is sucked into the high-side compressor 18 through the high-side refrigerant return pipe 26. At that time, from the viewpoint of preventing liquid compression, the degree of superheat in the operating state is adjusted to the target degree of superheat.

以上の構成の二元冷凍装置10において、カスケード温度が常温近傍あるいはそれより高い場合には、高元側冷媒のみならず低元側冷媒もそれほど低沸点冷媒でないことから、立ち上げ運転において、低元冷媒回路の高圧カットの発生および高元冷媒回路の低圧カットの発生いずれも防止する観点から、以下のように運転を行っている。     In the binary refrigeration apparatus 10 having the above configuration, when the cascade temperature is close to or higher than the normal temperature, not only the high-side refrigerant but also the low-side refrigerant is not so low boiling point refrigerant. From the viewpoint of preventing both the high pressure cut of the original refrigerant circuit and the low pressure cut of the high original refrigerant circuit, the operation is performed as follows.

図3に示すように、まず、二元冷凍装置10の起動前に、低元冷媒回路14の低元冷媒の高圧圧力を検出する(ステップ1)。検出した低元冷媒の高圧圧力PLが所定圧力P1より低ければ(ステップ2)、低元冷媒回路14を起動し(ステップ3)、P1と等しい、あるいはP1より高ければ、高元冷媒回路12を起動する(ステップ4)。次いで、低元冷媒回路14を起動して、低元冷媒を高元冷媒回路12側の立ち上げ初期に必要な負荷となる程度の所定圧力P2とする。すなわち、低元冷媒圧力がP2に達したら(ステップ5)、低元冷媒回路14を停止する(ステップ6)とともに、高元冷媒回路を起動する(ステップ7)。次いで、低元冷媒回路14の低元冷媒が所定圧力P3まで減圧されたら(ステップ8)、低元冷媒回路14を起動する(ステップ9)。     As shown in FIG. 3, first, before starting the binary refrigeration apparatus 10, the high-pressure pressure of the low-source refrigerant in the low-source refrigerant circuit 14 is detected (step 1). If the detected high-pressure pressure PL of the low-source refrigerant is lower than the predetermined pressure P1 (step 2), the low-source refrigerant circuit 14 is activated (step 3), and if it is equal to P1 or higher than P1, the high-source refrigerant circuit 12 is activated. Start (step 4). Next, the low-source refrigerant circuit 14 is started, and the low-source refrigerant is set to a predetermined pressure P2 that is a load necessary for the initial startup on the high-source refrigerant circuit 12 side. That is, when the low-source refrigerant pressure reaches P2 (Step 5), the low-source refrigerant circuit 14 is stopped (Step 6) and the high-source refrigerant circuit is activated (Step 7). Next, when the low-source refrigerant in the low-source refrigerant circuit 14 is depressurized to a predetermined pressure P3 (step 8), the low-source refrigerant circuit 14 is activated (step 9).

この場合、P1は、P3より高く、P2より低い。P1、P2 およびP3はそれぞれ、用いる冷媒の種類、圧縮機の回転数および排熱回収温度に基づいて、決定するのがよい。
二元冷凍装置は、低元冷媒回路の蒸発器を利用して、排熱回収に用いられるのでもよい。
In this case, P1 is higher than P3 and lower than P2. P1, P2 and P3 are preferably determined based on the type of refrigerant used, the rotational speed of the compressor, and the exhaust heat recovery temperature.
The binary refrigeration apparatus may be used for exhaust heat recovery using an evaporator of a low-source refrigerant circuit.

以上の構成を有する二元冷凍装置10の立ち上げ制御方法によれば、中間熱交換器でのカスケード温度が常温近傍、あるいはそれより高い場合に採用する低元冷媒回路14の低元冷媒は、たとえば蒸発温度がー60℃以下のような低温負荷に対する二元冷凍装置で採用する低元冷媒回路14の低元冷媒に比べて、低沸点冷媒でないことから、周囲(外気)温度と平衡状態の起動前の低元冷媒回路14の低元冷媒の高圧では、高元冷媒回路12の立ち上げ負荷として不十分となり、低元冷媒回路14および高元冷媒回路12を同時に起動すれば、高元冷媒回路12が低圧カットに至る可能性があるところ、低元冷媒回路14を単独で先に起動することにより、高元冷媒回路側12の立ち上げ初期に必要な負荷となる程度の所定第1高圧として停止した後に高元冷媒回路12を起動することにより、このような高元冷媒回路12の低圧カットを防止するとともに、低元冷媒回路14の加熱能力が高元冷媒回路12側の冷却能力に勝ち過ぎて、逆に低元冷媒回路14が高圧カットに至らないように、低元冷媒回路14の低元冷媒が所定第2圧力まで減圧された後に、低元冷媒回路14を起動しており、以て低元冷媒媒回路14の高圧異常および高元冷媒回路12の低圧異常いずれも引き起こす恐れなく、定常運転までの円滑な立上げが可能となる。 According to the start-up control method of the binary refrigeration apparatus 10 having the above configuration, the low-source refrigerant of the low-source refrigerant circuit 14 employed when the cascade temperature in the intermediate heat exchanger is near normal temperature or higher, For example, it is not a low-boiling point refrigerant as compared with the low-source refrigerant of the low-source refrigerant circuit 14 employed in a binary refrigeration apparatus for a low temperature load such as an evaporation temperature of −60 ° C. or lower. The high pressure of the low-source refrigerant in the low-source refrigerant circuit 14 before startup becomes insufficient as a starting load for the high-source refrigerant circuit 12, and if the low-source refrigerant circuit 14 and the high-source refrigerant circuit 12 are started simultaneously, the high-source refrigerant There is a possibility that the circuit 12 may reach a low pressure cut, and by starting the low-source refrigerant circuit 14 alone first, a predetermined first high pressure that is a required load at the initial startup of the high-source refrigerant circuit side 12 is obtained. Stop as Then, by starting the high-source refrigerant circuit 12, the low-pressure cut of the high-source refrigerant circuit 12 is prevented and the heating capability of the low-source refrigerant circuit 14 wins over the cooling capability on the high-source refrigerant circuit 12 side. On the contrary, the low-source refrigerant circuit 14 is activated after the low-source refrigerant in the low-source refrigerant circuit 14 is depressurized to a predetermined second pressure so that the low-source refrigerant circuit 14 does not reach a high-pressure cut. Thus, it is possible to smoothly start up to a steady operation without causing any high pressure abnormality of the low-source refrigerant circuit 14 and low-pressure abnormality of the high-source refrigerant circuit 12.

以上、本発明の実施形態を詳細に説明したが、本発明の範囲から逸脱しない範囲内において、当業者であれば、種々の修正あるいは変更が可能である。
たとえば、本実施形態において、立ち上げ運転の際、低元側冷媒高圧圧力を検出し、所定圧力より低ければ、低元側冷媒回路を先起動し、高ければ高元側冷媒回路を先起動するものとして説明したが、それに限定されることなく、低元側冷媒圧力が十分に低い圧力であることが明らかな場合には、このような低元側冷媒圧力の検出を省略し、すぐに低元側冷媒回路を先起動してもよい。
The embodiments of the present invention have been described in detail above, but various modifications or changes can be made by those skilled in the art without departing from the scope of the present invention.
For example, in the present embodiment, during start-up operation, the low-source-side refrigerant high-pressure is detected. If the pressure is lower than a predetermined pressure, the low-source-side refrigerant circuit is activated first, and if it is high, the high-source-side refrigerant circuit is activated first. However, the present invention is not limited to this, and when it is clear that the low-side refrigerant pressure is sufficiently low, the detection of such low-side refrigerant pressure is omitted and the low-side refrigerant pressure is immediately reduced. The former-side refrigerant circuit may be activated first.

本発明の実施形態に係る二元冷凍装置の全体構成図である。1 is an overall configuration diagram of a binary refrigeration apparatus according to an embodiment of the present invention. 本発明の実施形態に係る二元冷凍装置の温度バランスを示す線図である。It is a diagram which shows the temperature balance of the binary refrigeration apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る二元冷凍装置において、立ち上げ運転の運転フローを示すフロー図である。In the binary refrigeration apparatus concerning the embodiment of the present invention, it is a flow figure showing the operation flow of start-up operation.

10 二元冷凍装置
12 高元側冷媒回路
14 低元側冷媒回路
16 中間熱交換器
18 高元側圧縮機
20 高元側冷媒往管
22 凝縮器
24 膨張弁
26 高元側冷媒復管
28 低元側圧縮機
30 低元側冷媒往管
32 低元側冷媒復管
34 膨張弁
36 蒸発器
38 駆動用モータ
40 インバータ装置
42 油分離器
44 受液器
46 アキュムレータ
48 駆動用モータ
50 インバータ装置
52 制御部
54 受液器
56 ホットガスライン
DESCRIPTION OF SYMBOLS 10 Binary refrigeration apparatus 12 High side refrigerant circuit 14 Low side refrigerant circuit 16 Intermediate heat exchanger 18 High side compressor 20 High side refrigerant forward pipe 22 Condenser 24 Expansion valve 26 High side refrigerant return pipe 28 Low Original compressor 30 Low original refrigerant return pipe 32 Low original refrigerant return pipe 34 Expansion valve 36 Evaporator 38 Drive motor 40 Inverter device 42 Oil separator 44 Liquid receiver 46 Accumulator 48 Drive motor 50 Inverter device 52 Control Part 54 liquid receiver 56 hot gas line

Claims (9)

圧縮機と、凝縮器と、膨張機構と、中間熱交換器の蒸発部とが順に接続されて構成され、高元冷媒が循環する高元側冷媒回路と、圧縮機と、上記中間熱交換器の凝縮部と、膨張機構と、蒸発器とが順に接続されて構成され、高元冷媒より低沸点の低元冷媒が循環すると共に、上記中間熱交換器において高元冷媒と低元冷媒とが熱交換する少なくとも1つの低元側冷媒回路とを備え、カスケード温度が常温近傍、あるいはそれより高い二元冷凍装置の立ち上げ制御方法において、
低元冷媒回路を起動して、低元冷媒を高元冷媒回路側の立ち上げ初期に必要な負荷となる程度の所定第1圧力とする段階と、
低元冷媒が前記所定第1圧力に達したら、低元冷媒回路を停止するとともに、高元冷媒回路を起動する段階と、
低元冷媒回路の低元冷媒が所定第2圧力まで減圧されたら、低元冷媒回路を起動する段階と、
を有することを特徴とする二元冷凍装置の立ち上げ制御方法。
A compressor, a condenser, an expansion mechanism, and an evaporation unit of an intermediate heat exchanger are connected in order, and a high-side refrigerant circuit in which high-source refrigerant circulates, a compressor, and the intermediate heat exchanger The condensing part, the expansion mechanism, and the evaporator are connected in order, and a low-source refrigerant having a lower boiling point than that of the high-source refrigerant circulates, and in the intermediate heat exchanger, the high-source refrigerant and the low-source refrigerant are In a start-up control method of a binary refrigeration apparatus comprising at least one low-source-side refrigerant circuit for heat exchange, and having a cascade temperature near room temperature or higher,
Activating the low-source refrigerant circuit and setting the low-source refrigerant to a predetermined first pressure that is a required load at the initial startup of the high-source refrigerant circuit;
When the low-source refrigerant reaches the predetermined first pressure, stopping the low-source refrigerant circuit and starting the high-source refrigerant circuit;
Activating the low-source refrigerant circuit when the low-source refrigerant in the low-source refrigerant circuit is depressurized to a predetermined second pressure;
A start-up control method for a binary refrigeration apparatus, comprising:
二元冷凍装置の起動前に、低元冷媒回路の低元冷媒の高圧圧力を検出する段階と、
検出した低元冷媒の高圧圧力が所定第3圧力より低ければ、低元冷媒回路を起動し該所定第3圧力と等しい、あるいは前記所定高圧より高ければ、高元冷媒回路を起動する段階とをさらに有する、請求項1に記載の二元冷凍装置の立ち上げ制御方法。
Detecting the high pressure of the low-source refrigerant in the low-source refrigerant circuit before starting the binary refrigeration system;
Starting the low-source refrigerant circuit if the detected high-pressure pressure of the low-source refrigerant is lower than the predetermined third pressure and starting the high-source refrigerant circuit if the low-source refrigerant circuit is equal to or equal to the predetermined third pressure; The start-up control method for a binary refrigeration apparatus according to claim 1, further comprising:
前記所定第3圧力は、前記所定第2圧力より高く、前記所定第1圧より低い、請求項2に記載の二元冷凍装置の立ち上げ制御方法。 The start-up control method for a binary refrigeration apparatus according to claim 2, wherein the predetermined third pressure is higher than the predetermined second pressure and lower than the predetermined first pressure. 前記低元冷媒は、通常の空調用冷媒である、請求項1に記載の二元冷凍装置の立ち上げ制御方法。 The start-up control method for a binary refrigeration apparatus according to claim 1, wherein the low-source refrigerant is a normal air-conditioning refrigerant. 前記低元冷媒は、周囲温度と平衡状態の停止中の圧力が、運転中の圧力よりも低い、請求項4に記載の二元冷凍装置の立ち上げ制御方法。 5. The start-up control method for a binary refrigeration apparatus according to claim 4, wherein the low-source refrigerant has a pressure in a state of equilibrium with an ambient temperature that is lower than a pressure during operation. 前記低元冷媒は、R134a、前記高元冷媒は、R245faである、請求項5に記載の二元冷凍装置の立ち上げ制御方法。 The start-up control method for a binary refrigeration apparatus according to claim 5, wherein the low-source refrigerant is R134a, and the high-source refrigerant is R245fa. 前記カスケード温度は、10 ℃以上である、請求項5に記載の二元冷凍装置の立ち上げ制御方法。 The start-up control method for a binary refrigeration apparatus according to claim 5, wherein the cascade temperature is 10 ° C or higher. 前記二元冷凍装置は、前記低元冷媒回路の前記蒸発器を利用して、排熱回収に用いられる、請求項4に記載の二元冷凍装置の立ち上げ制御方法。 5. The start-up control method for a binary refrigeration apparatus according to claim 4, wherein the binary refrigeration apparatus is used for exhaust heat recovery using the evaporator of the low-source refrigerant circuit. 前記所定第1圧力、前記所定第2圧力および前記所定第3圧力はそれぞれ、用いる冷媒の種類、圧縮機の回転数および排熱回収温度に基づいて、決定する、請求項8に記載の二元冷凍装置の立ち上げ制御方法。 The binary according to claim 8, wherein the predetermined first pressure, the predetermined second pressure, and the predetermined third pressure are determined based on a type of refrigerant to be used, a rotation speed of a compressor, and an exhaust heat recovery temperature, respectively. Start-up control method for refrigeration equipment.
JP2012083360A 2012-03-31 2012-03-31 Start-up control method for dual refrigeration system Active JP5279105B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012083360A JP5279105B1 (en) 2012-03-31 2012-03-31 Start-up control method for dual refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012083360A JP5279105B1 (en) 2012-03-31 2012-03-31 Start-up control method for dual refrigeration system

Publications (2)

Publication Number Publication Date
JP5279105B1 JP5279105B1 (en) 2013-09-04
JP2013213592A true JP2013213592A (en) 2013-10-17

Family

ID=49273934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012083360A Active JP5279105B1 (en) 2012-03-31 2012-03-31 Start-up control method for dual refrigeration system

Country Status (1)

Country Link
JP (1) JP5279105B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183929A (en) * 2014-03-24 2015-10-22 サンデンホールディングス株式会社 Heat pump type heating device
JP2015215109A (en) * 2014-05-08 2015-12-03 三菱重工冷熱株式会社 Capacity control method for compressor of cascade freezing device
JP2018513956A (en) * 2015-06-18 2018-05-31 エルジー・ケム・リミテッド Heat recovery equipment
JP2021050843A (en) * 2019-09-24 2021-04-01 富士電機株式会社 Dual refrigerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190917A (en) * 2002-12-10 2004-07-08 Sanyo Electric Co Ltd Refrigeration device
JP2009139007A (en) * 2007-12-05 2009-06-25 Sanyo Electric Co Ltd Refrigerating apparatus and binary refrigerating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190917A (en) * 2002-12-10 2004-07-08 Sanyo Electric Co Ltd Refrigeration device
JP2009139007A (en) * 2007-12-05 2009-06-25 Sanyo Electric Co Ltd Refrigerating apparatus and binary refrigerating apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183929A (en) * 2014-03-24 2015-10-22 サンデンホールディングス株式会社 Heat pump type heating device
JP2015215109A (en) * 2014-05-08 2015-12-03 三菱重工冷熱株式会社 Capacity control method for compressor of cascade freezing device
JP2018513956A (en) * 2015-06-18 2018-05-31 エルジー・ケム・リミテッド Heat recovery equipment
US10591219B2 (en) 2015-06-18 2020-03-17 Lg Chem, Ltd. Heat recovery apparatus
JP2021050843A (en) * 2019-09-24 2021-04-01 富士電機株式会社 Dual refrigerator
JP7456107B2 (en) 2019-09-24 2024-03-27 富士電機株式会社 binary refrigerator

Also Published As

Publication number Publication date
JP5279105B1 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
KR101460426B1 (en) Turbo freezer device, control device therefor, and control method therefor
CN108317758B (en) Refrigeration cycle device
CN108291744B (en) Refrigeration cycle device
JP5698160B2 (en) Air conditioner
JPWO2012128229A1 (en) Dual refrigeration cycle equipment
US20220186987A1 (en) Heat source-side unit and refrigeration apparatus
JP5412193B2 (en) Turbo refrigerator
JP5279105B1 (en) Start-up control method for dual refrigeration system
JP2007225141A (en) Gas heat pump type air conditioner and its starting method
JP5279104B1 (en) Control method of dual refrigeration system
WO2017170538A1 (en) Refrigeration device
KR102017405B1 (en) Heat pump
JP2013155992A (en) Heat pump cycle device
US11708981B2 (en) High-pressure re-start control algorithm for microchannel condenser with reheat coil
JP2009293887A (en) Refrigerating device
JP2005048981A (en) Refrigeration unit
JP2014149103A (en) Refrigeration cycle device
JP6286844B2 (en) Air conditioner
JP5483129B2 (en) Start-up control method for dual refrigeration system
WO2020008916A1 (en) Refrigeration cycle device and method for controlling same
KR102242778B1 (en) Air Conditioner and Controlling method for the same
JP2008106953A (en) Refrigerating device
JP6342751B2 (en) Vapor compression refrigeration cycle
JP5748101B2 (en) Chiller
CN115127266A (en) Method for managing a heat pump operating with a low environmental impact working fluid

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130518

R150 Certificate of patent or registration of utility model

Ref document number: 5279105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250