JP2013203943A - Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and vehicle component - Google Patents

Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and vehicle component Download PDF

Info

Publication number
JP2013203943A
JP2013203943A JP2012075989A JP2012075989A JP2013203943A JP 2013203943 A JP2013203943 A JP 2013203943A JP 2012075989 A JP2012075989 A JP 2012075989A JP 2012075989 A JP2012075989 A JP 2012075989A JP 2013203943 A JP2013203943 A JP 2013203943A
Authority
JP
Japan
Prior art keywords
carbon fiber
prepreg
composite material
reinforced composite
fiber prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012075989A
Other languages
Japanese (ja)
Inventor
Masao Tomioka
正雄 冨岡
Atsushi Takahashi
厚 高橋
Saki Fujita
沙紀 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012075989A priority Critical patent/JP2013203943A/en
Publication of JP2013203943A publication Critical patent/JP2013203943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a prepreg which has small thickness deviation, is hardly cracked and is thin though the fineness of a fiber bundle is large and a so-called large tow-type carbon fiber bundle is used and to provide a carbon fiber-reinforced composite material which has excellent mechanical properties and is suitable for vehicle components.SOLUTION: A carbon fiber prepreg is obtained by pulling/aligning a plurality of carbon fiber bundles (A), each of which is configured so that the average fineness of single fibers may be 1.0-2.4 dtex and the total fineness thereof is 30,000-67,000 dtex, to one direction and impregnating the plurality of aligned carbon fiber bundles with a matrix resin (B). A sizing agent (C) containing 60-100 mass% of a polyalkylene group is stuck to the carbon fiber bundle (A) while controlling so that the amount of the (C) component to be stuck to the (A) component is 0.2-2.4 mass%. The average roundness of the single fibers of the carbon fiber bundle (A) is 0.70-0.90.

Description

本発明は、炭素繊維プリプレグ、炭素繊維プリプレグテープ、炭素繊維強化複合材料、自動車用部品に関する。   The present invention relates to a carbon fiber prepreg, a carbon fiber prepreg tape, a carbon fiber reinforced composite material, and an automotive part.

炭素繊維強化複合材料の成形方法の1つとして、炭素繊維にマトリックス樹脂を含浸してなるプリプレグを用いる手法がある。プリプレグは用いた炭素繊維強化複合材料はスポーツレジャー関連用途から航空機用途に至るまでの広範囲の用途に供されている。またマトリックス樹脂に熱可塑性樹脂とした炭素繊維強化複合材料は耐衝撃性が優れ、かつ成形時間が短くなるため、自動車用部品等に最適である。(特許文献1)   One method of forming a carbon fiber reinforced composite material is to use a prepreg formed by impregnating a carbon fiber with a matrix resin. The carbon fiber reinforced composite material used for the prepreg is used in a wide range of applications from sports and leisure related applications to aircraft applications. In addition, a carbon fiber reinforced composite material in which a matrix resin is a thermoplastic resin is excellent in impact resistance and has a short molding time, and is therefore optimal for automotive parts and the like. (Patent Document 1)

近年、総繊度30000dtex以上の炭素繊維束、いわゆるラージトウタイプの炭素繊維束が上市されており、その炭素繊維束を用いたプリプレグ用とへの展開は炭素繊維需要拡大には不可欠である。   In recent years, carbon fiber bundles having a total fineness of 30000 dtex or more, so-called large tow type carbon fiber bundles, have been put on the market, and development for prepregs using the carbon fiber bundles is indispensable for expanding the demand for carbon fibers.

プリプレグの製造において、求められる品質・品位を確保しつつ、生産効率と製造コストを下げることが重要であり、そのためには低目付けでも厚み斑の少ないプリプレグにする必要がある。しかしながら、ラージトウタイプの炭素繊維束を用いた場合、その炭素繊維束のフィラメント数の多さから、開繊性に劣り、開繊幅が狭い部分が厚みを有し隣接糸条間に隙間が生じ、ワレの原因となる。また、開繊性が劣る繊維束を用いる場合、プリプレグの加工速度を下げざるを得ず生産効率が低下するという問題もある。加えて、厚み斑は、樹脂との含浸性を低下させ、離形紙との局部剥離や皺発生によって平滑性が悪くなり、プリプレグの品質欠陥につながる。特に、マトリックス樹脂に熱可塑性樹脂を用いた場合は、エポキシ樹脂等の熱可塑性樹脂に比べ、含浸時の粘度が高いために、厚み斑による含浸性の低下は顕著である。この様な厚み斑や含浸不良のプリプレグを用いて成形した炭素繊維強化複合材料においては、その厚み斑部分や含浸不良部分が破壊の起点となり、炭素繊維強化複合材料の機械物性を低下させる問題もある。   In the production of prepregs, it is important to reduce the production efficiency and the production cost while ensuring the required quality and quality, and for this purpose, it is necessary to make the prepregs with less thickness unevenness even with a low basis weight. However, when a large tow type carbon fiber bundle is used, due to the large number of filaments in the carbon fiber bundle, the opening property is inferior, the portion where the opening width is narrow has a thickness, and there is a gap between adjacent yarns. To cause cracks. Moreover, when using a fiber bundle with inferior openability, there is also a problem that the production rate is reduced because the processing speed of the prepreg must be reduced. In addition, the thickness unevenness decreases the impregnation property with the resin, and the smoothness is deteriorated due to local peeling from the release paper and generation of wrinkles, leading to a quality defect of the prepreg. In particular, when a thermoplastic resin is used as the matrix resin, since the viscosity at the time of impregnation is higher than that of a thermoplastic resin such as an epoxy resin, the decrease in impregnation due to thickness unevenness is significant. In the carbon fiber reinforced composite material formed using such a thick spot or poorly impregnated prepreg, the thick spot part or poorly impregnated part becomes a starting point of destruction, and there is a problem that the mechanical properties of the carbon fiber reinforced composite material are deteriorated. is there.

特開平 9−155862号公報Japanese Patent Laid-Open No. 9-155862

本発明の目的は、繊維束の繊度の大きい、いわゆるラージトウタイプの炭素繊維束でありながら、厚み斑やワレの少ない、薄物のプリプレグを提供することにあり、機械物性が良好で自動車用部品に適した炭素繊維強化複合材料を提供することである。   An object of the present invention is to provide a thin prepreg having a large thickness of fiber bundles, a so-called large tow type carbon fiber bundle with little thickness unevenness and cracking, and having good mechanical properties and automotive parts. It is providing the carbon fiber reinforced composite material suitable for.

上記課題を解決するため、本発明では、平均単繊維繊度が1.0〜2.4dtexであり、かつ総繊度が30000〜67000dtexである炭素繊維束(A)を複数本一方向に引き揃えてマトリックス樹脂(B)に含浸させてなる炭素繊維プリプレグにおいて、該炭素繊維束(A)にポリオキシアルキレン基を60質量%〜100質量%含有するサイズ剤(C)が付着しており、該(C)成分の該(A)成分に対する付着量が0.2〜2.4質量%である炭素繊維プリプレグであって、該炭素繊維束(A)の平均単繊維真円度が0.70〜0.90である請求項1に記載のサイズ処理された炭素繊維プリプレグ。ただし、真円度は下記式(I)にて求められる値であって、S及びLは、単繊維の繊維軸に垂直な断面をSEM観察にて画像解析することによって得られる、単繊維の断面積および周長である。
真円度=4πS/L ・・・(I)
In order to solve the above problems, in the present invention, a plurality of carbon fiber bundles (A) having an average single fiber fineness of 1.0 to 2.4 dtex and a total fineness of 30000 to 67000 dtex are aligned in one direction. In the carbon fiber prepreg impregnated in the matrix resin (B), a sizing agent (C) containing 60% by mass to 100% by mass of a polyoxyalkylene group is attached to the carbon fiber bundle (A). C) A carbon fiber prepreg in which the adhesion amount of component (A) to component (A) is 0.2 to 2.4% by mass, and the average single fiber roundness of carbon fiber bundle (A) is 0.70 to 0.70. The sized carbon fiber prepreg of claim 1 which is 0.90. However, the roundness is a value obtained by the following formula (I), and S and L are obtained by image analysis of the cross section perpendicular to the fiber axis of the single fiber by SEM observation. Cross-sectional area and perimeter.
Roundness = 4πS / L 2 (I)

本発明によれば、繊維束の繊度の大きい、いわゆるラージトウタイプの炭素繊維束でありながら、厚み斑やワレの少ない、薄物のプリプレグを提供でき、機械物性が良好で自動車用部品に適した炭素繊維強化複合材料を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, although it is what is called a large tow type carbon fiber bundle with the fineness of a fiber bundle, it can provide a thin prepreg with few thickness spots and cracks, and it is suitable for automotive parts with good mechanical properties. A carbon fiber reinforced composite material can be provided.

以下、本発明について、詳細に説明する。
≪炭素繊維熱プリプレグ≫
本発明の炭素繊維プリプレグは平均単繊維繊度が1.0〜2.4dtexであり、かつ総繊度が30000〜67000dtexである炭素繊維束(A)を複数本一方向に引き揃えてマトリックス樹脂(B)に含浸させてなる炭素繊維プリプレグにおいて、該炭素繊維束(A)にポリオキシアルキレン基を60質量%〜100質量%含有するサイズ剤(C)が付着しており、該(C)成分の該(A)成分に対する付着量が0.2〜2.4質量%である炭素繊維プリプレグであって、該炭素繊維束(A)の平均単繊維真円度が0.70〜0.90である請求項1に記載のサイズ処理された炭素繊維プリプレグ。ただし、真円度は下記式(I)にて求められる値であって、S及びLは、単繊維の繊維軸に垂直な断面をSEM観察にて画像解析することによって得られる、単繊維の断面積および周長である。
真円度=4πS/L ・・・(I)
Hereinafter, the present invention will be described in detail.
≪Carbon fiber thermal prepreg≫
In the carbon fiber prepreg of the present invention, a plurality of carbon fiber bundles (A) having an average single fiber fineness of 1.0 to 2.4 dtex and a total fineness of 30000 to 67000 dtex are aligned in one direction to form a matrix resin (B In the carbon fiber prepreg impregnated in (1), a sizing agent (C) containing 60% by mass to 100% by mass of a polyoxyalkylene group is attached to the carbon fiber bundle (A). A carbon fiber prepreg having an adhesion amount to the component (A) of 0.2 to 2.4% by mass, and the average single fiber roundness of the carbon fiber bundle (A) is 0.70 to 0.90. The sized carbon fiber prepreg according to claim 1. However, the roundness is a value obtained by the following formula (I), and S and L are obtained by image analysis of the cross section perpendicular to the fiber axis of the single fiber by SEM observation. Cross-sectional area and perimeter.
Roundness = 4πS / L 2 (I)

炭素繊維プリプレグの繊維目付および繊維含有率は特に限定しないが、好ましくは繊維目付けが20〜150g/m、繊維含有率25〜60体積%である。より好ましくは繊維目付けが40〜115g/m、繊維含有率35〜50体積%である。 The fiber basis weight and fiber content of the carbon fiber prepreg are not particularly limited, but preferably the fiber basis weight is 20 to 150 g / m 2 and the fiber content is 25 to 60% by volume. More preferably, the fiber basis weight is 40 to 115 g / m 2 and the fiber content is 35 to 50% by volume.

繊維目付けを20g/m未満とすると、炭素繊維束を十分に拡幅させるために必要とされる張力を掛けると、炭素繊維束が擦過され、毛羽や糸傷みが発生しプリプレグの品質低下につながる。 When the fiber basis weight is less than 20 g / m 2 , when the tension required to sufficiently widen the carbon fiber bundle is applied, the carbon fiber bundle is abraded and fluff and thread damage occur, leading to a deterioration in the quality of the prepreg. .

繊維目付けが150g/mを超える場合は従来技術でも生産効率を下げれば要求される品位・品質のプリプレグを得ることができるが、繊維目付けが150g/m以下の場合、特に繊維目付けが115g/m以下の場合に本発明は有効である。 If the fiber basis weight exceeds 150 g / m 2 , the prepreg of the required quality and quality can be obtained if the production efficiency is lowered even with the conventional technology. However, when the fiber basis weight is 150 g / m 2 or less, the fiber basis weight is particularly 115 g. The present invention is effective when it is less than / m 2 .

<炭素繊維束(A)>
本発明で用いる炭素繊維束(A)は総繊度が30000〜67000dtexに限定される。総繊度が30000dtex未満の炭素繊維束を用いた場合は、従来技術でも生産効率を下げれば要求される品位・品質のプリプレグを得ることができる。67000dtexを超えると、本発明を適用しても良好な開繊性が得られず、厚み斑やワレの多いプリプレグとなる。
<Carbon fiber bundle (A)>
The total fineness of the carbon fiber bundle (A) used in the present invention is limited to 30000 to 67000 dtex. When a carbon fiber bundle having a total fineness of less than 30000 dtex is used, a prepreg having the required quality and quality can be obtained by reducing the production efficiency even in the prior art. When it exceeds 67000 dtex, even if the present invention is applied, good openability cannot be obtained, resulting in a prepreg having many thickness spots and cracks.

炭素繊維束(A)を構成する単繊維は、平均単繊維繊度が1.0〜2.4dtexであることが必要である。平均単繊維繊度を1.0dtex以上とすることで、開繊時の金属ガイドバーと繊維との接触面積の低下により、糸の接触抵抗の斑が軽減して、開繊斑、つまり厚み斑やワレが少なくなる。2.4dtexを超えると、低繊維目付の場合、プリプレグにおける単位幅におけるフィラメント本数の減少により、開繊斑が生じ、厚み斑やワレの原因となる。また、2.4dtex未満とすることで、炭素繊維の断面二重構造が適度であり、ストランド強度・弾性率の低下が無く、炭素繊維強化複合材料の機械物性が低下することもないので好ましい。   The single fiber constituting the carbon fiber bundle (A) needs to have an average single fiber fineness of 1.0 to 2.4 dtex. By setting the average single fiber fineness to 1.0 dtex or more, due to a decrease in the contact area between the metal guide bar and the fiber at the time of opening, the unevenness of the contact resistance of the yarn is reduced, so There is less cracking. When it exceeds 2.4 dtex, in the case of a low fiber basis weight, a decrease in the number of filaments in a unit width in the prepreg causes spread spots, which causes thickness spots and cracks. Moreover, it is preferable to make it less than 2.4 dtex because the cross-sectional double structure of the carbon fiber is appropriate, the strand strength / elastic modulus is not lowered, and the mechanical properties of the carbon fiber reinforced composite material are not lowered.

炭素繊維束(A)を構成する単繊維は、平均単繊維真円度が0.70〜0.90が好ましい。平均単繊維真円度を0.90以下とすることで、開繊時に、楕円状の単繊維の長軸が開繊方向に揃うことで、良好な開繊性が得られ、厚み斑やワレの少ないプリプレグとなる。また0.70未満とすると、良好な開繊性は得られるが、炭素繊維強化複合材料とした際、フィラメント内での局部的な応力集中により、炭素繊維強化複合材料の機械物性が低下する。ただし、真円度は下記式(II)にて求められる値であって、S及びLは、単繊維の繊維軸に垂直な断面をSEM観察にて画像解析することによって得られる、単繊維の断面積および周長である。
真円度=4πS/L2 ・・・(II)
The single fiber constituting the carbon fiber bundle (A) preferably has an average single fiber roundness of 0.70 to 0.90. By setting the average single fiber roundness to 0.90 or less, the long axis of the elliptical single fiber is aligned in the opening direction at the time of opening, so that a good opening property is obtained, and thickness irregularities and cracks are obtained. The prepreg with less. On the other hand, when it is less than 0.70, good opening property can be obtained. However, when the carbon fiber reinforced composite material is used, the mechanical properties of the carbon fiber reinforced composite material are lowered due to local stress concentration in the filament. However, the roundness is a value obtained by the following formula (II), and S and L are obtained by image analysis of the cross section perpendicular to the fiber axis of the single fiber by SEM observation. Cross-sectional area and perimeter.
Roundness = 4πS / L 2 (II)

本発明で用いる炭素繊維束(A)の種類は特に限定せず、例えば、PAN系炭素繊維、PICH系炭素繊維が挙げられ、1種を単独で使用してもよく、2種類以上を併用してもよいが、特に好ましくはPAN系炭素繊維を用いることができる。   The type of the carbon fiber bundle (A) used in the present invention is not particularly limited, and examples thereof include PAN-based carbon fibers and PICH-based carbon fibers. One type may be used alone, or two or more types may be used in combination. However, PAN-based carbon fibers can be used particularly preferably.

<マトリックス樹脂(B)>
本発明で用いるマトリックス樹脂(B)は特に限定しないが、本発明は特にマトリックス樹脂(B)に熱可塑性樹脂を用いた場合に有効である。熱可塑性樹脂としては、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、液晶ポリマー樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、ポリスルフォン樹脂、ポリイミド樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、変性ポリスチレン樹脂、ABS樹脂、変性ABS樹脂、MBS樹脂、ポリメチルメタクリレート樹脂、及びこれらの変性樹脂、及びこれらのポリマーアロイ樹脂が挙げられる。これらはいずれか1種を単独で使用してもよく、2種類以上を併用してもよいが、好ましくはポリプロピレン樹脂および/またはポリアミド樹脂、もしくはポリプロピレン樹脂および/またはポリアミド樹脂の変性樹脂である。
<Matrix resin (B)>
The matrix resin (B) used in the present invention is not particularly limited, but the present invention is particularly effective when a thermoplastic resin is used for the matrix resin (B). Examples of the thermoplastic resin include polycarbonate resin, polyester resin, polyamide resin, liquid crystal polymer resin, polyether sulfone resin, polyether ether ketone resin, polyarylate resin, polyphenylene ether resin, polyphenylene sulfide resin, polyacetal resin, polysulfone. Examples thereof include resins, polyimide resins, polyolefin resins, polystyrene resins, modified polystyrene resins, ABS resins, modified ABS resins, MBS resins, polymethyl methacrylate resins, modified resins thereof, and polymer alloy resins thereof. Any one of these may be used alone, or two or more may be used in combination, but a polypropylene resin and / or polyamide resin, or a modified resin of polypropylene resin and / or polyamide resin is preferable.

<サイズ剤(C)>
本発明で用いるサイズ剤(C)はポリオキシアルキレン基を60質量%〜100質量%含有する必要がある。60質量%以上とすることで、開繊時の糸と開繊バーとの摩擦抵抗が適度であり、良好な開繊性が得られ、厚み斑やワレの少ないプリプレグとなる。オキシアルキレン基の含有質量分率は仕込み量で決まり、NMRで測定することができる。
<Sizing agent (C)>
The sizing agent (C) used in the present invention needs to contain 60% by mass to 100% by mass of a polyoxyalkylene group. By setting it to 60% by mass or more, the frictional resistance between the yarn and the opening bar at the time of opening is appropriate, good opening property is obtained, and a prepreg with less thickness unevenness and cracking is obtained. The content mass fraction of the oxyalkylene group is determined by the charged amount and can be measured by NMR.

ポリオキシアルキレン基を含有する化合物としては、例えば、エチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドをモノマーとし、ランダムあるいはブロック共重合させた高分子化合物である。本発明で用いるポリオキシアルキレン基を含有する化合物は、必要に応じて、一部がビスフェノールA構造、ビスフェノールF構造、ビスフェノールE構造等の芳香環構造を有するものであってもよい。   The compound containing a polyoxyalkylene group is, for example, a polymer compound obtained by random or block copolymerization using an alkylene oxide such as ethylene oxide or propylene oxide as a monomer. The compound containing a polyoxyalkylene group used in the present invention may have a part having an aromatic ring structure such as a bisphenol A structure, a bisphenol F structure, or a bisphenol E structure, if necessary.

本発明で用いるポリオキシアルキレン基を含有する化合物の分子量は、400〜20000が好ましく、より好ましくは1000〜10000である。分子量が400未満であると、室温(23℃)〜30℃付近の融点を有しており、炭素繊維を取り扱う際の雰囲気温度によって液体から固体に変化するために、サイズ剤としての特性の発現に対しての安定性に欠ける。また、20000を超えると、固着性が増し、炭素繊維フィラメントの収束性が強くなり、炭素繊維束の柔軟性と樹脂の含浸工程での炭素繊維束の開繊性とを著しく阻害するようになる。   As for the molecular weight of the compound containing the polyoxyalkylene group used by this invention, 400-20000 are preferable, More preferably, it is 1000-10000. When the molecular weight is less than 400, it has a melting point of room temperature (23 ° C.) to about 30 ° C., and changes from liquid to solid depending on the atmospheric temperature when handling the carbon fiber. Lacks stability. On the other hand, if it exceeds 20000, the fixing property is increased, the convergence property of the carbon fiber filament is increased, and the flexibility of the carbon fiber bundle and the opening property of the carbon fiber bundle in the resin impregnation step are significantly inhibited. .

本発明で用いるサイズ剤(C)の前記炭素繊維束(A)に対する付着量は0.2〜2.4質量%が必要である。0.2質量%未満の場合には、収束性、及び擦過性が不十分になり易く、機械的な摩擦等によって毛羽が発生し易くなる。また、2.4質量%を越えると、金属に対する摩擦係数が低下し、かつ収束性が強くなる為に炭素繊維束の開繊性が悪くなり、マトリックス樹脂を含浸させる際に炭素繊維束の内部へのマトリックス樹脂の含浸性が悪くなる。   The amount of adhesion of the sizing agent (C) used in the present invention to the carbon fiber bundle (A) needs to be 0.2 to 2.4% by mass. If the amount is less than 0.2% by mass, the convergence and scratching properties tend to be insufficient, and fluff is likely to occur due to mechanical friction or the like. On the other hand, if the content exceeds 2.4% by mass, the coefficient of friction against the metal decreases and the convergence becomes strong, so that the openability of the carbon fiber bundle is deteriorated. The impregnation property of the matrix resin into the resin deteriorates.

<サイズ剤付与方法>
本発明で用いるサイズ剤(C)の前記炭素繊維束(A)への付与方法としては、公知の手法で付与することができるが、本発明で用いるポリオキシアルキレン基含有化合物は水に可溶であるため、水溶液を使用することが望ましい。水溶液を使用することは、例えばアセトン等の有機溶剤溶液によるサイズ付与を行なう場合と比較して、サイズ剤液が安定で、しかもその取扱いが容易であり、かつ作業雰囲気の衛生面及び安全面での優位性も得られる。
<Sizing agent application method>
The sizing agent (C) used in the present invention can be applied to the carbon fiber bundle (A) by a known method, but the polyoxyalkylene group-containing compound used in the present invention is soluble in water. Therefore, it is desirable to use an aqueous solution. The use of an aqueous solution means that the sizing solution is stable and easy to handle, as compared with the case of sizing with an organic solvent solution such as acetone, and the hygienic and safety aspects of the working atmosphere. The advantage of is also obtained.

サイズ剤の付与方法の例としては、例えば、ローラー浸漬法やローラー接触法等を適用して実施することができる。なお、炭素繊維に対するサイズ剤の付着量は、サイズ剤水溶液の濃度調整や、絞りコントローラー等の通過工程の調整等によって調節し得る。サイズ剤水溶液を炭素繊維の表面に付着させた後、続く乾燥処理によって水分を除去し、目的のサイズ処理された炭素繊維にする。なお、このときの乾燥処理には、例えば熱風、熱板、ローラー、赤外線ヒーター等の熱媒を利用する方法を適用できる。   As an example of the method for applying the sizing agent, for example, a roller dipping method or a roller contact method can be applied. In addition, the adhesion amount of the sizing agent to the carbon fiber can be adjusted by adjusting the concentration of the sizing agent aqueous solution, adjusting the passing process such as a drawing controller. After the sizing agent aqueous solution is attached to the surface of the carbon fiber, the moisture is removed by a subsequent drying process to obtain the desired sized carbon fiber. In addition, the method using a heat medium, such as a hot air, a hot plate, a roller, an infrared heater, can be applied to the drying process at this time.

<炭素繊維プリプレグの製造方法>
炭素繊維プリプレグは公知の手法で製造することができる。マトリックス樹脂に熱可塑性樹脂を用いた場合も同様に公知の手法で製造することができるが、例えば、溶融樹脂を押出機にて含浸させる方法、粉末樹脂を繊維層に分散し溶融させる方法、樹脂をフィルム化してラミネートする方法、樹脂を溶剤に溶かし溶液の状態で含浸させた後に溶剤を揮発させる方法、樹脂を繊維化して混合糸にする方法、熱可塑性樹脂のモノマーの状態で含浸させた後に重合させてポリマーにする方法などがある。溶融樹脂を押出機にて含浸させる方法は樹脂を加工する必要が無いという利点があるが、安定したプリプレグを製造するのが難しい。粉末樹脂を繊維層に分散する方法は含浸がしやすいという利点があるが、粉末を均一に繊維層に分散させるのが困難である。樹脂をフィルム化してラミネートする方法はフィルム加工する必要があるが、比較的品質の良いものが作られる傾向にある。
<Method for producing carbon fiber prepreg>
The carbon fiber prepreg can be produced by a known method. Similarly, when a thermoplastic resin is used as the matrix resin, it can be produced by a known method. For example, a method of impregnating a molten resin with an extruder, a method of dispersing a powder resin in a fiber layer and melting, a resin A method of laminating a film, a method in which a resin is dissolved in a solvent and impregnated in the form of a solution, and then the solvent is volatilized. There is a method of polymerizing into a polymer. The method of impregnating the molten resin with an extruder has the advantage that the resin does not need to be processed, but it is difficult to produce a stable prepreg. The method of dispersing the powder resin in the fiber layer has an advantage that it is easily impregnated, but it is difficult to uniformly disperse the powder in the fiber layer. The method of laminating the resin into a film requires film processing, but tends to produce a relatively good quality.

溶融法にて熱可塑性樹脂を含浸させる工程は、前記押出機以外にも加熱プレスと冷却プレスの組合せにより溶融含浸後にプリプレグを固化させる方法、ダブルベルトプレスを使用して加熱ゾーンや冷却ゾーンを設ける方法がある。ダブルベルトプレスを使用する方法は連続的に生産できるため生産性に優れている。   The step of impregnating the thermoplastic resin by the melting method is not only the extruder, but also a method of solidifying the prepreg after melt impregnation by a combination of a heating press and a cooling press, and a heating zone and a cooling zone are provided using a double belt press. There is a way. The method using a double belt press is excellent in productivity because it can be produced continuously.

≪炭素繊維プリプレグテープ≫
本発明の炭素繊維プリプレグテープは前記炭素繊維プリプレグをカットして得られる。本発明における炭素繊維プリプレグテープは公知の手法で製造することができる。例として、カッティングプロッターを使用する手法や、スリッターとロータリーカッターを併用する手法が上げられる。炭素繊維プリプレグテープの幅や長さは特に限定しない。
≪Carbon fiber prepreg tape≫
The carbon fiber prepreg tape of the present invention is obtained by cutting the carbon fiber prepreg. The carbon fiber prepreg tape in the present invention can be produced by a known method. As an example, a technique using a cutting plotter or a technique using a slitter and a rotary cutter together can be mentioned. The width and length of the carbon fiber prepreg tape are not particularly limited.

≪炭素繊維強化複合材料≫
本発明の炭素繊維強化複合材料は、前記炭素繊維プリプレグおよび/または炭素繊維プリプレグテープを加熱もしくは加圧加熱後、加圧冷却することによって得られる。本発明における炭素繊維強化複合材料は公知の手法で製造することができる。例として、プレス成形やオートクレーブ成形が上げられる。
≪Carbon fiber reinforced composite material≫
The carbon fiber reinforced composite material of the present invention can be obtained by heating or pressurizing and heating and cooling the carbon fiber prepreg and / or the carbon fiber prepreg tape. The carbon fiber reinforced composite material in the present invention can be produced by a known method. Examples include press molding and autoclave molding.

≪自動車用部品≫
本発明の自動車用部品は、前記炭素繊維強化複合材料で一部または全部が構成されるものである。
≪Automobile parts≫
The automotive part of the present invention is partly or wholly composed of the carbon fiber reinforced composite material.

次に実施例により本発明をさらに詳細に説明する。
本発明はこれらの実施例により何ら限定されるものではない。
以下の各例で使用した原料、炭素繊維熱可塑性プリプレグの製造方法、炭素繊維複合材料板作成方法、物性の評価方法を以下に示す。
Next, the present invention will be described in more detail with reference to examples.
The present invention is not limited to these examples.
The raw materials, carbon fiber thermoplastic prepreg production methods, carbon fiber composite material plate production methods, and physical property evaluation methods used in the following examples are shown below.

<原料>
炭素繊維(A)
PAN系炭素繊維束1(平均単繊維繊度:1.4dtex、真円度:0.87、フィラメント数:24000本)
PAN系炭素繊維束2(平均単繊維繊度:1.4dtex、真円度:0.82、フィラメント数:28000本)
PAN系炭素繊維束3(平均単繊維繊度:2.4dtex、真円度:0.83、フィラメント数:14000本)
PAN系炭素繊維束4(平均単繊維繊度:0.7dtex、真円度:0.72、フィラメント数:60000本)
PAN系炭素繊維束5(平均単繊維繊度:0.8dtex、真円度:0.85、フィラメント数:50000本)
<Raw material>
Carbon fiber (A)
PAN-based carbon fiber bundle 1 (average single fiber fineness: 1.4 dtex, roundness: 0.87, number of filaments: 24000)
PAN-based carbon fiber bundle 2 (average single fiber fineness: 1.4 dtex, roundness: 0.82, number of filaments: 28000)
PAN-based carbon fiber bundle 3 (average single fiber fineness: 2.4 dtex, roundness: 0.83, number of filaments: 14000)
PAN-based carbon fiber bundle 4 (average single fiber fineness: 0.7 dtex, roundness: 0.72, number of filaments: 60000)
PAN-based carbon fiber bundle 5 (average single fiber fineness: 0.8 dtex, roundness: 0.85, number of filaments: 50000)

マトリックス樹脂(B)
変性ポリプロピレン (三菱化学(株)社製、製品名:モディックP958 38μm厚フィルム)
Matrix resin (B)
Modified polypropylene (Mitsubishi Chemical Corporation, product name: Modic P958 38 μm thick film)

サイズ剤(C)
ポリエチレングリコール(分子量:1500、オキシアルキレン基含有率:100質量%)
水系エポキシ樹脂 (三菱化学(株)社製、製品名:jER W2821R70(オキシアルキレン基含有率:22質量%))
Sizing agent (C)
Polyethylene glycol (molecular weight: 1500, oxyalkylene group content: 100% by mass)
Water-based epoxy resin (Mitsubishi Chemical Corporation, product name: jER W2821R70 (oxyalkylene group content: 22% by mass))

<平滑性評価方法>
3次元表面粗さ測定器を用い、検出速度0.5mm/秒でプリプレグ繊維引き揃え方向に対し直角方向に40mmの幅で測定を行った。検出曲線から求めた平均値である平均線を引き、この平均線に平行、かつ検出曲線を横切らない任意の直線から厚み方向に測定した最大山高さから5番目までの高さの平均値と、最深から5番目までの谷底の高さの平均値との差をμm表示したものを凹凸係数として算出し、厚み斑を表す尺度とした。評価結果を表1に示す。
<Smoothness evaluation method>
Using a three-dimensional surface roughness measuring device, the measurement was performed at a detection speed of 0.5 mm / second and a width of 40 mm in a direction perpendicular to the prepreg fiber alignment direction. An average line that is an average value obtained from the detection curve is drawn, an average value of the maximum height from the maximum peak height measured in the thickness direction from any straight line that is parallel to the average line and does not cross the detection curve, and A difference between the average value of the height of the valley bottom from the deepest to the fifth and expressed in μm was calculated as a concavo-convex coefficient, and used as a scale representing thickness spots. The evaluation results are shown in Table 1.

<ワレ評価方法>
プリプレグ1m当たりの、引き揃え繊維間に存在する幅0.5mm以上、長さ20mm以上の隙間をワレとした。評価結果を表1に示す。
<Checking method>
A gap having a width of 0.5 mm or more and a length of 20 mm or more existing between the aligned fibers per 1 m 2 of the prepreg was used as a crack. The evaluation results are shown in Table 1.

(実施例1)
PAN系炭素繊維束1に原料ポリエチレングリコールを5質量%水溶液として、ローラー含浸法にてサイズ剤付与し、120℃の蒸気加熱ロールで水を乾燥させた。サイズ剤の炭素繊維束に対する付着量は0.6質量%であった。こうして得られたサイズ付着炭素繊維束を21本引き揃えて、1000mm幅の繊維目付70g/mのシート状物とし、原料変性ポリプロピレンフィルムを240℃で離型紙とラミネートすることで炭素繊維プリプレグを得た。この炭素繊維プリプレグの平滑性とワレを評価した。
Example 1
A sizing agent was applied to the PAN-based carbon fiber bundle 1 as a 5% by mass aqueous solution of raw material polyethylene glycol by a roller impregnation method, and water was dried with a steam heating roll at 120 ° C. The adhesion amount of the sizing agent to the carbon fiber bundle was 0.6% by mass. The 21 size-attached carbon fiber bundles obtained in this way are aligned to form a sheet-like material having a fiber weight of 70 g / m 2 having a width of 1000 mm, and a carbon fiber prepreg is laminated by laminating a raw material-modified polypropylene film with a release paper at 240 ° C. Obtained. The smoothness and crack of this carbon fiber prepreg were evaluated.

(実施例2)
PAN系炭素繊維束1の代わりにPAN系炭素繊維束2を用い、引き揃える炭素繊維束の本数を18本とした以外は実施例1と同様に炭素繊維プリプレグを作製し、平滑性とワレを評価した。
(Example 2)
A carbon fiber prepreg was prepared in the same manner as in Example 1 except that the PAN-based carbon fiber bundle 2 was used instead of the PAN-based carbon fiber bundle 1 and the number of the aligned carbon fiber bundles was 18, and smoothness and cracking were achieved. evaluated.

(実施例3)
ポリエチレングリコール6のPAN系炭素繊維束1の代わりにPAN系炭素繊維束3を用いた以外は実施例1と同様に炭素繊維プリプレグを作製し、平滑性とワレを評価した。
(Example 3)
A carbon fiber prepreg was prepared in the same manner as in Example 1 except that the PAN-based carbon fiber bundle 3 was used instead of the PAN-based carbon fiber bundle 1 of polyethylene glycol 6, and smoothness and cracking were evaluated.

(比較例1)
PAN系炭素繊維束1の代わりにPAN系炭素繊維束4を用い、引き揃える炭素繊維束の本数を17本とした以外は実施例1と同様に炭素繊維プリプレグを作製し、平滑性とワレを評価した。
(Comparative Example 1)
A carbon fiber prepreg was prepared in the same manner as in Example 1 except that the PAN-based carbon fiber bundle 4 was used in place of the PAN-based carbon fiber bundle 1 and the number of the aligned carbon fiber bundles was 17, so that smoothness and cracking were achieved. evaluated.

(比較例2)
PAN系炭素繊維束1の代わりにPAN系炭素繊維束5を用い、引き揃える炭素繊維束の本数を18本とした以外は実施例1と同様に炭素繊維プリプレグを作製し、平滑性とワレを評価した。
(Comparative Example 2)
A carbon fiber prepreg was prepared in the same manner as in Example 1 except that the PAN-based carbon fiber bundle 5 was used in place of the PAN-based carbon fiber bundle 1 and the number of carbon fiber bundles to be aligned was 18, and smoothness and cracking were achieved. evaluated.

(比較例3)
原料エチレングリコールの5質量%水溶液の代わりに原料水系エポキシ樹脂の8倍質量希釈水溶液とした以外は実施例1と同様に炭素繊維プリプレグを作製し、平滑性とワレを評価した。
(Comparative Example 3)
A carbon fiber prepreg was prepared in the same manner as in Example 1 except that an aqueous 8-fold diluted aqueous solution of the raw water-based epoxy resin was used instead of the raw material ethylene glycol 5% by weight, and smoothness and cracking were evaluated.

Claims (7)

平均単繊維繊度が1.0〜2.4dtexであり、かつ総繊度が30000〜67000dtexである炭素繊維束(A)を複数本一方向に引き揃えてマトリックス樹脂(B)に含浸させてなる炭素繊維プリプレグにおいて、
該炭素繊維束(A)にポリオキシアルキレン基を60質量%〜100質量%含有するサイズ剤(C)が付着しており、
該(C)成分の該(A)成分に対する付着量が0.2〜2.4質量%であり、
該炭素繊維束(A)の平均単繊維真円度が0.70〜0.90である炭素繊維プリプレグ。
ただし、真円度は下記式(I)にて求められる値であって、S及びLは、単繊維の繊維軸に垂直な断面をSEM観察にて画像解析することによって得られる、単繊維の断面積および周長である。
真円度=4πS/L ・・・(I)
Carbon obtained by aligning a plurality of carbon fiber bundles (A) having an average single fiber fineness of 1.0 to 2.4 dtex and a total fineness of 30000 to 67000 dtex in one direction and impregnating the matrix resin (B). In fiber prepreg,
A sizing agent (C) containing 60% by mass to 100% by mass of a polyoxyalkylene group is attached to the carbon fiber bundle (A),
The adhesion amount of the component (C) to the component (A) is 0.2 to 2.4% by mass,
A carbon fiber prepreg in which the average single fiber roundness of the carbon fiber bundle (A) is 0.70 to 0.90.
However, the roundness is a value obtained by the following formula (I), and S and L are obtained by image analysis of the cross section perpendicular to the fiber axis of the single fiber by SEM observation. Cross-sectional area and perimeter.
Roundness = 4πS / L 2 (I)
前記マトリックス樹脂(B)が熱可塑性樹脂である請求項1に記載の炭素繊維プリプレグ。   The carbon fiber prepreg according to claim 1, wherein the matrix resin (B) is a thermoplastic resin. 前記炭素繊維プリプレグの繊維目付が40〜115g/mである請求項1または2のいずれかに記載の炭素繊維プリプレグ。 Carbon fiber prepreg according to any one of claims 1 or 2 fiber basis weight of the carbon fiber prepreg is 40~115g / m 2. 請求項1〜3のいずれかに記載の炭素繊維プリプレグを用いた炭素繊維プリプレグテープ。   A carbon fiber prepreg tape using the carbon fiber prepreg according to claim 1. 請求項1〜3のいずれかに記載の炭素繊維プリプレグを用いた炭素繊維強化複合材料。   The carbon fiber reinforced composite material using the carbon fiber prepreg in any one of Claims 1-3. 請求項4に記載の炭素繊維プリプレグテープを用いた炭素繊維強化複合材料。   A carbon fiber reinforced composite material using the carbon fiber prepreg tape according to claim 4. 請求項5または6に記載の炭素繊維強化複合材料を用いた自動車用部品。   An automotive part using the carbon fiber reinforced composite material according to claim 5.
JP2012075989A 2012-03-29 2012-03-29 Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and vehicle component Pending JP2013203943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075989A JP2013203943A (en) 2012-03-29 2012-03-29 Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and vehicle component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075989A JP2013203943A (en) 2012-03-29 2012-03-29 Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and vehicle component

Publications (1)

Publication Number Publication Date
JP2013203943A true JP2013203943A (en) 2013-10-07

Family

ID=49523397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075989A Pending JP2013203943A (en) 2012-03-29 2012-03-29 Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and vehicle component

Country Status (1)

Country Link
JP (1) JP2013203943A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164711B1 (en) * 2016-07-06 2017-07-19 創造技術株式会社 Reinforcing tape and reinforcing method using the reinforcing tape
WO2019017057A1 (en) 2017-07-18 2019-01-24 東レ株式会社 Unidirectionally-oriented tape-shaped prepreg, and molded article thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164711B1 (en) * 2016-07-06 2017-07-19 創造技術株式会社 Reinforcing tape and reinforcing method using the reinforcing tape
JP2018002939A (en) * 2016-07-06 2018-01-11 創造技術株式会社 Tape for reinforcement and reinforcement method using tape for reinforcement
WO2019017057A1 (en) 2017-07-18 2019-01-24 東レ株式会社 Unidirectionally-oriented tape-shaped prepreg, and molded article thereof
KR20200031604A (en) 2017-07-18 2020-03-24 도레이 카부시키가이샤 Prepreg on tape oriented in one direction and molded products thereof

Similar Documents

Publication Publication Date Title
US20200332077A1 (en) Random Mat and Fiber-Reinforced Composite Material Shaped Product
Daelemans et al. Using aligned nanofibres for identifying the toughening micromechanisms in nanofibre interleaved laminates
JP6496833B2 (en) Method for making unidirectional fiber reinforced tape
JP6450773B2 (en) Method for producing thermoplastic polymer pre-impregnated fiber material in a fluidized bed
JP7123052B2 (en) Method for producing fibrous material pre-impregnated with thermoplastic polymer in powder form
EP3120984B1 (en) Fiber-reinforced plastic and production method therefor
KR20140126312A (en) Random mat and fibre-reinforced composite material
US9884954B2 (en) Random mat and fiber-reinforced composite material shaped product
EP3603917B1 (en) Production method and coating device for coating-liquid-impregnated sheet-like reinforcing-fiber bundle and sheet-like integrated object
WO2016190194A1 (en) Tape-shaped prepreg and fiber-reinforced molded object
JP6176691B1 (en) Unidirectional prepreg and fiber reinforced thermoplastic resin sheet
JP2009114612A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
KR20160110446A (en) Method of manufacturing a fibrous material preimpregnated with thermoplastic polymer using an aqueous dispersion of polymer
RU2558516C1 (en) Mat with optional orientation of fibres, and formed product out of fibre reinforced composite material
CN112272603B (en) Coating liquid impregnated reinforcing fiber fabric, sheet-like integrated body, prepreg tape, and method for producing fiber-reinforced composite material
JP2009274412A (en) Manufacturing process of unidirectional sheet base material consisting of discontinuous fibers
JP7001088B2 (en) Carbon fiber random mat and carbon fiber composite material
US20130143025A1 (en) Thermoplastic resin impregnated tape
WO2022009796A1 (en) Carbon fiber bundle with adhered sizing agent
WO2020040153A1 (en) Prepreg manufacturing method and manufacturing apparatus
JP2013203943A (en) Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and vehicle component
JP6225558B2 (en) Sheet for fiber-reinforced plastic molded body and fiber-reinforced plastic molded body
Polat et al. Effect of solution blown nanofibers on Mode‐I fracture toughness and dynamic mechanical properties of carbon fiber‐reinforced composites
CN111527135A (en) Fiber-reinforced thermoplastic resin sheet, molded article of fiber-reinforced thermoplastic resin sheet, and method for producing fiber-reinforced thermoplastic resin sheet
CN108481609A (en) A kind of fiber reinforced thermolplastic composite material short route manufacturing method and manufacture system