JP2013198379A - Non-contact power feeding apparatus - Google Patents

Non-contact power feeding apparatus Download PDF

Info

Publication number
JP2013198379A
JP2013198379A JP2012066447A JP2012066447A JP2013198379A JP 2013198379 A JP2013198379 A JP 2013198379A JP 2012066447 A JP2012066447 A JP 2012066447A JP 2012066447 A JP2012066447 A JP 2012066447A JP 2013198379 A JP2013198379 A JP 2013198379A
Authority
JP
Japan
Prior art keywords
power
side coil
coil
power feeding
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012066447A
Other languages
Japanese (ja)
Other versions
JP5939853B2 (en
Inventor
Tomoyuki Fujino
知之 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2012066447A priority Critical patent/JP5939853B2/en
Publication of JP2013198379A publication Critical patent/JP2013198379A/en
Application granted granted Critical
Publication of JP5939853B2 publication Critical patent/JP5939853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize damage to a rectifier smoothing circuit arranged between a power receiving coil and a battery and immediately stop power feeding, when defect occurs.SOLUTION: The non-contact power feeding apparatus comprises: a power receiving coil 22 for generating AC power by non-contact power feeding from a power receiving coil 14 arranged on a ground 11; a coil lifter 26 that supports the power receiving coil 22 to be lifted, brings down the power receiving coil 22 to be accessed to the power feeding coil 14 and brings up the power receiving coil 22 to be separated from the power feeding coil 14; a rectifier smoothing circuit 31 that converts AC power generating in the power receiving coil 22 to direct currents to be fed to a battery 21; defect detection means 24 for detecting defect during power feeding; and circuit disconnection means 32 for disconnecting a power feeding circuit between the rectifier smoothing circuit 31 and the battery 21 when the defect detection means 24 detects defect. When defect occurs in which the circuit disconnection means 32 disconnects the power feeding circuit, the coil lifting device 26 brings up the power receiving coil 22.

Description

本発明は、例えば電気自動車やハイブリッド車両などに搭載されるバッテリを充電するための非接触給電装置に関するものである。   The present invention relates to a non-contact power feeding device for charging a battery mounted on, for example, an electric vehicle or a hybrid vehicle.

近年、ガソリン等を燃料として動力を発生するエンジンによって走行する従来の自動車に対し、低公害、省資源の促進を目的として、エンジンに加えてバッテリからの電力で動力を発生するモータを搭載したハイブリッド自動車や、エンジンを搭載せずに電動モータのみで走行する電気自動車が開発されている。   In recent years, a hybrid equipped with a motor that generates power with electric power from a battery, in addition to the engine, for the purpose of promoting low-pollution and resource saving compared to conventional automobiles that run on engines that generate power using gasoline or other fuel. Automobiles and electric vehicles that run only on electric motors without an engine are being developed.

この電気自動車やハイブリッド車両では、それらの車両に搭載されたバッテリの電力が消費されると、市街地や自宅の車庫等に設けられた充電設備を利用して充電する必要がある。このような車両に搭載されたバッテリを充電する方法の一つとして、電磁誘導の相互誘電作用や磁気共鳴作用を利用して、地上(充電スタンド等)に設けた1次側(給電側)の給電側(送電側)コイルから、車両側に設けた2次側(受電側)の受電側コイルへ、非接触で電力を供給する非接触給電装置が提案されている(例えば、特許文献1及び2参照。)。   In the electric vehicle and the hybrid vehicle, when the power of the battery mounted on the vehicle is consumed, it is necessary to charge using a charging facility provided in an urban area, a garage at home, or the like. As one of the methods for charging a battery mounted on such a vehicle, the primary side (power feeding side) provided on the ground (charging stand etc.) is utilized by utilizing the mutual dielectric action or magnetic resonance action of electromagnetic induction. There has been proposed a non-contact power feeding device that supplies power in a non-contact manner from a power feeding side (power transmission side) coil to a secondary side (power receiving side) power receiving side coil provided on the vehicle side (for example, Patent Document 1 and 2).

そして、1次側の給電側コイルと、2次側の受電側コイルは所定の隙間を持って対峙させることが好ましいことから、その受電側コイルを昇降可能に支持するコイル昇降装置を車両に設けることを本出願人は提案した(例えば、特許文献3参照。)。このコイル昇降装置を備えた車両では、充電時には受電側コイルを降下させてその受電側コイルを地上側に配置された給電側コイルに接近させる。その一方で、非充電時には受電側コイルを上昇させてその受電側コイルを地上における給電側コイルから離間させて、車両の走行に支障を生じさせないようにするものである。   Since it is preferable that the primary power supply side coil and the secondary power reception side coil face each other with a predetermined gap, a coil lifting device that supports the power reception side coil so as to be movable up and down is provided in the vehicle. The applicant has proposed this (for example, see Patent Document 3). In a vehicle equipped with this coil raising / lowering device, at the time of charging, the power receiving side coil is lowered to bring the power receiving side coil closer to the power feeding side coil arranged on the ground side. On the other hand, at the time of non-charging, the power receiving side coil is raised and the power receiving side coil is separated from the power feeding side coil on the ground so as not to cause trouble in traveling of the vehicle.

特開2006−74868号公報JP 2006-74868 A 特開2010−246348号公報JP 2010-246348 A 特開2011−193617号公報JP 2011-193617 A

ここで、このような非接触給電装置では、給電側コイルから非接触で供給された電力により受電側コイルに交流電力を生じさせ、その受電側コイルに生じた交流電力によりバッテリを充電するものであるけれども、バッテリは直流のものであるので、受電側コイルとバッテリの間には、受電側コイルに生じる交流電力を直流に変換する整流平滑化回路が設けられる。また、その給電時に例えば、車両のバッテリに異常が生じたときには、他の機器を保護する観点からも、そのバッテリへの給電を直ちに停止する必要がある。そのためには、給電中の異常を検出する異常検出手段を車両に設け、整流平滑化回路とバッテリの間の給電回路にその回路を切断可能なリレースイッチ等の回路切断手段を設けることが行われる。そして、異常検出手段が異常を検出した時に、その回路切断手段により整流平滑化回路とバッテリの間の給電回路を切断してバッテリの充電を停止することが考えられる。   Here, in such a non-contact power feeding device, AC power is generated in the power receiving side coil by the power supplied in a non-contact manner from the power feeding side coil, and the battery is charged by the AC power generated in the power receiving side coil. However, since the battery is a direct current, a rectifying / smoothing circuit that converts alternating current power generated in the power receiving side coil into direct current is provided between the power receiving side coil and the battery. Further, for example, when an abnormality occurs in the battery of the vehicle at the time of the power supply, it is necessary to immediately stop the power supply to the battery from the viewpoint of protecting other devices. For this purpose, an abnormality detecting means for detecting an abnormality during power feeding is provided in the vehicle, and a circuit cutting means such as a relay switch capable of cutting the circuit is provided in the power feeding circuit between the rectifying and smoothing circuit and the battery. . Then, when the abnormality detection unit detects an abnormality, it is conceivable that the circuit cutting unit disconnects the power feeding circuit between the rectifying / smoothing circuit and the battery and stops charging the battery.

しかし、受電側コイルに交流電力が生じているにもかかわらず、整流平滑化回路とバッテリの間の給電回路を切断すると、受電側コイルに生じている交流電力が整流平滑化回路に負荷を生じさせ、その整流平滑化回路に被害を生じさせるおそれがある。   However, when the power supply circuit between the rectifying and smoothing circuit and the battery is disconnected even though AC power is generated in the power receiving side coil, the AC power generated in the power receiving side coil causes a load on the rectifying and smoothing circuit. May cause damage to the rectifying and smoothing circuit.

本発明の目的は、異常時に、受電側コイルとバッテリの間に設けられる整流平滑化回路の被害を最小限にして、バッテリへの給電を速やかに停止し得る非接触給電装置を提供することにある。   An object of the present invention is to provide a non-contact power feeding device that can quickly stop power feeding to a battery by minimizing damage to a rectifying and smoothing circuit provided between a power receiving coil and a battery in the event of an abnormality. is there.

本発明は、地上側に配設される給電側コイルからの非接触給電により交流電力を生じる受電側コイルと、受電側コイルを昇降可能に支持し受電側コイルを降下させて給電側コイルに接近させ受電側コイルを上昇させて給電側コイルから離間させるコイル昇降装置と、受電側コイルに生じる交流電力を直流に変換してバッテリへ供給する整流平滑化回路と、給電中の異常を検出する異常検出手段と、異常検出手段が異常を検出した時に整流平滑化回路とバッテリの間の給電回路を切断する回路切断手段とを備えた非接触給電装置である。   The present invention includes a power receiving side coil that generates AC power by non-contact power feeding from a power feeding side coil disposed on the ground side, and a power receiving side coil that can be moved up and down, and the power receiving side coil is lowered to approach the power feeding side coil. A coil lifting and lowering device that raises the power receiving coil and separates it from the power feeding coil, a rectifying and smoothing circuit that converts alternating current power generated in the power receiving coil into direct current and supplies the battery, and an abnormality that detects an abnormality during power feeding It is a non-contact power supply apparatus including a detection unit and a circuit cutting unit that disconnects the power supply circuit between the rectifying / smoothing circuit and the battery when the abnormality detection unit detects an abnormality.

その特徴ある構成は、回路切断手段が給電回路を切断する異常時にコイル昇降装置が受電側コイルを上昇させるように構成されたところにある。   The characteristic configuration is that the coil elevating device raises the power receiving side coil when the circuit cutting means disconnects the power feeding circuit.

圧縮エアの給排により車高を調整可能なエアサスペンション装置が車両に設けられている場合、受電側コイルを車両に固定して設け、車両を受電側コイルと共に昇降させるエアサスペンション装置をコイル昇降装置として代用することもできる。   When an air suspension device capable of adjusting the vehicle height by supplying and discharging compressed air is provided in the vehicle, the power reception side coil is fixed to the vehicle, and the air suspension device is moved up and down together with the power reception side coil. Can be substituted.

本発明の非接触給電装置では、整流平滑化回路とバッテリの間の給電回路を切断しなければならないような異常時に、コイル昇降装置により受電側コイルを上昇させるので、その異常時に、受電側コイルは給電側コイルから離間することになる。ここで、給電側コイルから受電側コイルが離間すると、給電側コイルから電力が供給されていても、その受電側コイルに生じる交流電力は減少する。このため、バッテリへの給電を停止するために、整流平滑化回路とバッテリの間の給電回路を回路切断手段により切断しても、そのような異常時では、受電側コイルに生じる交流電力は減少するので、その交流電力が受電側コイルとバッテリの間に設けられる整流平滑化回路に生じさせる負荷は減少する。よって、給電回路を切断しても、その整流平滑化回路に被害が生じるようなリスクを回避することができる。従って、本発明では、整流平滑化回路の被害を最小限にして、異常時にバッテリへの給電を速やかに停止することができるものとなる。   In the non-contact power feeding device of the present invention, the power receiving side coil is raised by the coil lifting device in the event of an abnormality in which the power feeding circuit between the rectifying / smoothing circuit and the battery must be disconnected. Is separated from the power supply coil. Here, when the power receiving side coil is separated from the power feeding side coil, the AC power generated in the power receiving side coil is reduced even if power is supplied from the power feeding side coil. For this reason, even if the power supply circuit between the rectifying / smoothing circuit and the battery is disconnected by the circuit disconnecting means in order to stop the power supply to the battery, the AC power generated in the power receiving side coil is reduced in such an abnormality. Therefore, the load that the AC power causes in the rectifying / smoothing circuit provided between the power receiving coil and the battery is reduced. Therefore, it is possible to avoid a risk that the rectifying / smoothing circuit is damaged even if the power feeding circuit is disconnected. Therefore, according to the present invention, the damage to the rectifying / smoothing circuit can be minimized, and the power supply to the battery can be stopped quickly in the event of an abnormality.

本発明実施形態の非接触給電装置を有する車両の前面図である。It is a front view of the vehicle which has the non-contact electric power feeder of this invention embodiment. そのコイル間の間隔と受電側コイルに生じる電力との関係を示す図である。It is a figure which shows the relationship between the space | interval between the coils, and the electric power which arises in a receiving side coil. そのコイル昇降装置の構造を示す図である。It is a figure which shows the structure of the coil raising / lowering apparatus. その非接触給電装置の異常時の流れを示すフローチャートである。It is a flowchart which shows the flow at the time of abnormality of the non-contact electric power feeder.

次に、本発明を実施するための最良の形態を図面に基づいて説明する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings.

図1に示すように、本発明における非接触給電装置10は、給電側コイル14から非接触で供給された電力により交流電力を生じる受電側コイル22を備える。給電側コイル14は、地上11に設けられた給電ステーション12の一部を構成するものであり、この給電側コイル14は地上11に配設される。この実施の形態における給電ステーション12は、その給電側コイル14を介する電磁誘導により、車両20に設けられたバッテリ21を充電するための電力をその車両20と非接触で供給するものを示す。従って、この給電ステーション12は、給電側コイル14と別に給電装置本体13が地上11に設けられ、その給電装置本体13には、ノイズフィルタ、整流・力率改善回路、共振型コンバータ等によって構成される給電のための装置が内蔵される。また、この給電装置本体13には、更に、車両20との通信を制御する通信装置15が備えられる。そして、この給電装置本体13に内蔵された装置は、ノイズフィルタを介して入力される商用の交流電源を、充電用駐車スペースに設置された給電側コイル14を介して車両20に設けられた受電側コイル22に電力を供給するように構成される。   As shown in FIG. 1, the non-contact power feeding device 10 according to the present invention includes a power receiving side coil 22 that generates AC power by power supplied from the power feeding side coil 14 in a contactless manner. The power supply side coil 14 constitutes a part of the power supply station 12 provided on the ground 11, and the power supply side coil 14 is disposed on the ground 11. The power supply station 12 in this embodiment shows what supplies the electric power for charging the battery 21 provided in the vehicle 20 without contact with the vehicle 20 by electromagnetic induction via the power supply side coil 14. Therefore, the power supply station 12 is provided with a power supply device main body 13 on the ground 11 separately from the power supply side coil 14, and the power supply device main body 13 includes a noise filter, a rectification / power factor correction circuit, a resonance converter, and the like. A device for supplying power is built in. The power supply device body 13 is further provided with a communication device 15 that controls communication with the vehicle 20. And the apparatus incorporated in this electric power feeder main body 13 is the electric power receiving provided in the vehicle 20 via the electric power feeding side coil 14 installed in the parking space for charge from the commercial alternating current power input via a noise filter. It is configured to supply power to the side coil 22.

この実施の形態における車両20は、電気モータにより走行するバスであって、その電気モータに電力を供給するバッテリ21が、その屋根の上に設けられる場合を示す。この車両20には、図示しないが、マイクロコンピュータ及び各種インターフェースや周辺回路等を備えて構成される電子制御装置(以下「ECU24」と言う。)が備えられる。図示しないが、この車両20では、ECU24を中心として、バッテリ21及びそのバッテリ21からの直流電圧を交流電圧に変換して車両20を走行させる電気モータに供給するインバータ等を備える。そして、このECU24には、バッテリ21への給電情報を車両20の外部に設けられた給電ステーション12における通信装置15と双方向通信可能な通信手段としての通信モジュール23が設けられる。   The vehicle 20 in this embodiment is a bus that runs on an electric motor, and shows a case where a battery 21 that supplies electric power to the electric motor is provided on the roof. Although not shown, the vehicle 20 is provided with an electronic control device (hereinafter referred to as “ECU 24”) that includes a microcomputer, various interfaces, peripheral circuits, and the like. Although not shown, the vehicle 20 includes an ECU 24 centered on the ECU 24 and an inverter that converts a direct current voltage from the battery 21 to an alternating current voltage and supplies the alternating current to an electric motor that causes the vehicle 20 to travel. The ECU 24 is provided with a communication module 23 as communication means capable of bidirectionally communicating power supply information to the battery 21 with the communication device 15 in the power supply station 12 provided outside the vehicle 20.

ECU24は、図示しないインバータを介して走行用の電気モータを制御するとともに、このECU24は、バッテリ21への給電状態で示される残存容量やバッテリ21の劣化度等によるバッテリ21状態を把握するように構成される。そして、このECU24は、バッテリ21の状態を把握した上で、そのバッテリ21の冷却、給電ステーション12における給電状態の監視、その給電時の異常検出及び異常検出時の保護動作等を行うように構成される。よって、このECUは、給電中の異常を検出する異常検出手段としても機能するように構成される。   The ECU 24 controls the electric motor for traveling via an inverter (not shown), and the ECU 24 grasps the state of the battery 21 based on the remaining capacity indicated by the power supply state to the battery 21 and the degree of deterioration of the battery 21. Composed. The ECU 24 is configured to grasp the state of the battery 21, cool the battery 21, monitor the power supply state at the power supply station 12, detect an abnormality during the power supply, and perform a protective operation when the abnormality is detected. Is done. Therefore, this ECU is configured to function also as an abnormality detection means for detecting an abnormality during power feeding.

車両20に設けられる受電側コイル22は、給電ステーション12の給電側コイル14に対向されて絶縁変圧器を構成するものであり、シャシフレーム20a(図3)の下部にコイル昇降装置26を介して昇降可能に設けられる。図3に示すように、この実施の形態におけるコイル昇降装置26は、互いの一端が枢支された一対のリンク片27,28と、その一方のリンク片27を回転させるアクチュエータ29を有する。一対のリンク片27,28は一方のリンク片27の他端が車両20下部におけるシャシフレーム20aに枢支され、他方のリンク片28の他端が受電側コイル22に枢支される。   The power receiving side coil 22 provided in the vehicle 20 is opposed to the power feeding side coil 14 of the power feeding station 12 to constitute an insulating transformer, and is provided at the lower part of the chassis frame 20a (FIG. 3) via a coil lifting device 26. It can be moved up and down. As shown in FIG. 3, the coil elevating device 26 in this embodiment has a pair of link pieces 27, 28 whose one ends are pivotally supported, and an actuator 29 that rotates the one link piece 27. In the pair of link pieces 27, 28, the other end of one link piece 27 is pivotally supported by a chassis frame 20 a at the lower part of the vehicle 20, and the other end of the other link piece 28 is pivotally supported by the power receiving side coil 22.

受電側コイル22はこれら一対のリンク片27,28により、車両20の前後方向又は幅方向における両側が支持されて車両20のフレームに吊り下げられるようにして設けられる。そして、実線で示すように、一対のリンク片27,28の交差角度が減少すると、受電側コイル22は上昇して、車両20のフレームに密着して受電側コイル22の収容状態(退避状態(車両20走行中における状態))となる。その一方で、一点鎖線で示すように、一対のリンク片27,28の交差角度が増加すると、受電側コイル22は降下して突出状態(給電可能な状態)となる。このように、受電側コイル22は、コイル昇降装置26を介して、収容状態と突出状態の間で移動可能に、車両20のシャシフレーム20aの下側に取付けられる。   The power receiving side coil 22 is provided so as to be supported by the pair of link pieces 27 and 28 on both sides in the front-rear direction or the width direction of the vehicle 20 and suspended from the frame of the vehicle 20. As shown by the solid line, when the crossing angle between the pair of link pieces 27 and 28 decreases, the power receiving side coil 22 rises and comes into close contact with the frame of the vehicle 20, and the receiving state of the power receiving side coil 22 (retracted state ( The state during traveling of the vehicle 20)). On the other hand, as indicated by the alternate long and short dash line, when the crossing angle of the pair of link pieces 27 and 28 increases, the power receiving side coil 22 descends and enters a protruding state (a state where power can be supplied). In this manner, the power receiving side coil 22 is attached to the lower side of the chassis frame 20a of the vehicle 20 via the coil lifting device 26 so as to be movable between the housed state and the protruding state.

また、一方のリンク片27を回転させる本実施の形態におけるアクチュエータ29は、空気圧や油圧等の流体圧を利用した流体圧シリンダ29であって、シリンダ本体29aから出没するシャフト29bの先端が一方のリンク片27の中間に枢支される。そして、そのシャフト29bを出没させることにより、一方のリンク片27をシャシフレーム20aに枢支された回動支点廻りに回転させるように、アクチュエータ29がシャシフレーム20aに配設される。なお、図3では、アクチュエータ29として、流体圧を利用した流体圧シリンダ29を採用した場合を例示しているが、これに限定されるものではなく、電動モータ等を利用することも可能である。従って、本実施の形態では、図3に実線で示す収容状態(退避状態)から、アクチュエータである流体圧シリンダ29に空気圧(油圧)を供給することで、そのシリンダ本体29aからシャフト29bを伸長させて、リンク片を回転させることにより、一点鎖線で示す突出状態へと移行させることが可能に構成される。ここで、図4における符号22aは、突出状態の受電側コイル22と給電側コイル14の間に介在して、その受電側コイル22と給電側コイル14の間に所定の隙間を形成するブッシュ22aである。   The actuator 29 in the present embodiment for rotating one link piece 27 is a fluid pressure cylinder 29 using fluid pressure such as air pressure or hydraulic pressure, and the tip of the shaft 29b protruding and retracting from the cylinder body 29a is one of the fluid pressure cylinders 29. It is pivotally supported in the middle of the link piece 27. The actuator 29 is disposed on the chassis frame 20a so that the one link piece 27 is rotated around a pivot fulcrum pivotally supported by the chassis frame 20a by projecting and retracting the shaft 29b. 3 illustrates the case where the fluid pressure cylinder 29 using fluid pressure is employed as the actuator 29, the present invention is not limited to this, and an electric motor or the like can also be used. . Therefore, in the present embodiment, the shaft 29b is extended from the cylinder main body 29a by supplying air pressure (hydraulic pressure) to the fluid pressure cylinder 29 as an actuator from the accommodated state (retracted state) shown by the solid line in FIG. Thus, by rotating the link piece, it is possible to shift to the protruding state indicated by the alternate long and short dash line. Here, reference numeral 22 a in FIG. 4 is a bush 22 a that is interposed between the power receiving side coil 22 and the power feeding side coil 14 in a protruding state and forms a predetermined gap between the power receiving side coil 22 and the power feeding side coil 14. It is.

図1に戻って、給電側コイル14は地上11に設けられているので、その給電側コイル14の上方に受電側コイル22が位置するように車両20を停車させ、その車両20に設けられたコイル昇降装置26は、その状態で受電側コイル22を降下させると、その受電側コイル22を地上11に設けられた給電側コイル14に接近させ、非接触給電の準備が成されることになる。即ち、シャシフレーム20a下部に受電側コイル22を配設した車両20を、給電ステーション12の予め規定された充電用駐車スペースに駐車すると、車両20の受電側コイル22と地上11への給電用駐車スペースに配置された給電側コイル14とが対向配置され、電磁誘導による非接触でのバッテリ21への給電が可能となるものである。   Returning to FIG. 1, since the power supply side coil 14 is provided on the ground 11, the vehicle 20 is stopped so that the power reception side coil 22 is positioned above the power supply side coil 14. When the coil lifting device 26 lowers the power receiving side coil 22 in this state, the power receiving side coil 22 is brought close to the power feeding side coil 14 provided on the ground 11 and preparation for non-contact power feeding is made. . That is, when the vehicle 20 having the power receiving side coil 22 disposed under the chassis frame 20a is parked in a predetermined charging parking space of the power supply station 12, the power receiving side coil 22 of the vehicle 20 and the power supply parking to the ground 11 are provided. The power supply side coil 14 disposed in the space is disposed oppositely, and power can be supplied to the battery 21 in a non-contact manner by electromagnetic induction.

そして、バッテリ21への給電に際して、ECU24は、通信モジュール23を介して給電ステーション12との通信を行い、バッテリ21の電圧、残存容量、フェール情報等のバッテリ21情報を給電ステーション12へ送信する。給電ステーション12では、車両20に設けられたECU24からのバッテリ21情報と給電ステーション12内に蓄積された情報とに基づいて最適な充電スケジュールを設定し、ユーザ側からの指示に応じて給電ステーション12における充電開始や充電終了を行って、車両20におけるバッテリ21への給電を制御するように構成される。   When power is supplied to the battery 21, the ECU 24 communicates with the power supply station 12 via the communication module 23, and transmits battery 21 information such as the voltage of the battery 21, remaining capacity, and failure information to the power supply station 12. In the power supply station 12, an optimal charging schedule is set based on the battery 21 information from the ECU 24 provided in the vehicle 20 and the information stored in the power supply station 12, and in response to an instruction from the user, the power supply station 12. It is configured to control the power supply to the battery 21 in the vehicle 20 by starting and ending charging.

ここで、このような非接触給電装置10では、給電側コイル14から非接触で供給された電力により受電側コイル22に交流電力を生じさせ、その受電側コイル22に生じた交流電力によりバッテリ21を充電するものであるけれども、バッテリ21は直流のものであるので、車両20には、電磁誘導による非接触の給電方式に対応して、受電側コイル22からの交流電力を直流に変換して平滑化し、バッテリ21へ供給する整流平滑化回路31が備えられる。また、その整流平滑化回路31とバッテリ21の間の給電回路には、その給電回路を切断可能な回路切断手段32が設けられる。この実施の形態における回路切断手段はリレースイッチ32である場合を示す。そして、この回路切断手段であるリレースイッチ32は異常検出手段として機能するECU24により制御され、この異常検出手段として機能するECU24は、充電時に異常を検出した時に、そのリレースイッチ32を制御して、整流平滑化回路31とバッテリ21の間の給電回路を切断するように構成される。   Here, in such a non-contact power feeding device 10, AC power is generated in the power receiving side coil 22 by the power supplied in a non-contact manner from the power feeding side coil 14, and the battery 21 is generated by the AC power generated in the power receiving side coil 22. However, since the battery 21 is a direct current, the vehicle 20 converts the alternating current power from the power receiving side coil 22 into a direct current corresponding to a non-contact power feeding method using electromagnetic induction. A rectifying / smoothing circuit 31 for smoothing and supplying the battery 21 is provided. Further, the power supply circuit between the rectifying / smoothing circuit 31 and the battery 21 is provided with a circuit cutting means 32 capable of cutting the power supply circuit. The circuit cutting means in this embodiment is a relay switch 32. The relay switch 32 serving as the circuit disconnecting means is controlled by the ECU 24 functioning as an abnormality detecting means. The ECU 24 functioning as the abnormality detecting means controls the relay switch 32 when detecting an abnormality during charging, The power supply circuit between the rectifying / smoothing circuit 31 and the battery 21 is cut off.

そして、本発明における非接触給電装置10の特徴ある構成は、その異常検出手段として機能するECU24が、回路切断手段であるリレースイッチ32が給電回路を切断する異常時に、コイル昇降装置26を制御して、受電側コイル22を上昇させるように構成されたところにある。図3に示すように、一対のリンク片27,28を有するこの実施の形態におけるコイル昇降装置26では、具体的にアクチュエータである流体圧シリンダ29のシリンダ本体29aにシャフト29bを没入させることにより、その受電側コイル22を実線で示すように上昇させる。このように受電側コイル22を上昇させると、地上11に設けられた給電側コイル14からその受電側コイル22は離間し、最終的にシャシフレーム20aに密着する収容状態になる。   The characteristic configuration of the non-contact power feeding device 10 according to the present invention is such that the ECU 24 functioning as the abnormality detecting means controls the coil lifting device 26 when the relay switch 32 serving as the circuit disconnecting means disconnects the power feeding circuit. Thus, the power receiving side coil 22 is configured to be raised. As shown in FIG. 3, in the coil lifting device 26 in this embodiment having a pair of link pieces 27, 28, a shaft 29 b is immersed in a cylinder body 29 a of a fluid pressure cylinder 29 that is specifically an actuator, The power receiving side coil 22 is raised as indicated by a solid line. When the power receiving side coil 22 is raised as described above, the power receiving side coil 22 is separated from the power feeding side coil 14 provided on the ground 11 and finally comes into a housing state in close contact with the chassis frame 20a.

次に、このように構成された非接触給電装置の動作を説明する。   Next, the operation of the non-contact power feeding apparatus configured as described above will be described.

バッテリ21が充電されている状態でこの車両20は走行するけれども、この走行はECU24により、図示しない走行用のインバータを制御して走行用のモータを駆動させることにより行われる。具体的に、ECU24は、図示しないアクセルペダルの踏込み量を検出するセンサからの信号に基づいてドライバーの要求する駆動力を算出し、走行用のモータの回転数や電圧・電流等の情報に基づいて、そのモータの出力をドライバーの要求駆動力に一致させるべく、そのモータを駆動させる図示しないインバータを制御する。これにより車両20は走行するけれども、本発明の非接触給電装置10にあっては、受電側コイル22を上昇させて、その受電側コイル22を収容状態として、その受電側コイル22が車両20の走行に支障を生じさせないようにする。   Although the vehicle 20 travels while the battery 21 is charged, the traveling is performed by the ECU 24 controlling a traveling inverter (not shown) to drive a traveling motor. Specifically, the ECU 24 calculates the driving force requested by the driver based on a signal from a sensor that detects the amount of depression of an accelerator pedal (not shown), and based on information such as the rotational speed, voltage / current, etc. of the traveling motor. Thus, an inverter (not shown) that drives the motor is controlled so that the output of the motor matches the driver's required driving force. Thus, although the vehicle 20 travels, in the non-contact power feeding device 10 of the present invention, the power receiving side coil 22 is raised to bring the power receiving side coil 22 into the accommodated state, and the power receiving side coil 22 is connected to the vehicle 20. Do not disturb the driving.

車両20が走行すると、バッテリ21に蓄えられた電力は消費されるので、その残量が少なくなると充電を行う。図4にバッテリ21への給電の流れを示す。この図4に示すように、バッテリ21への給電を行うためには、先ずその給電準備(S01)として、車両20を給電ステーション12まで走行させ、その地上11に設けられた給電側コイル14の上方に受電側コイル22が位置するような状態で車両20を停止させる。そして、コイル昇降装置26により、その車両20の下部に設けられた受電側コイル22を降下させ、その受電側コイル22を地上11に設けられた給電側コイル14に接近させてその受電側コイル22を突出状態とし、ブッシュ22aにより受電側コイル22と給電側コイル14の間に所望の隙間を形成する。   When the vehicle 20 travels, the electric power stored in the battery 21 is consumed, so that charging is performed when the remaining amount decreases. FIG. 4 shows the flow of power supply to the battery 21. As shown in FIG. 4, in order to supply power to the battery 21, first, as power supply preparation (S 01), the vehicle 20 travels to the power supply station 12, and the power supply side coil 14 provided on the ground 11 The vehicle 20 is stopped with the power receiving side coil 22 positioned above. Then, the coil raising / lowering device 26 lowers the power receiving side coil 22 provided in the lower portion of the vehicle 20, and the power receiving side coil 22 is brought close to the power feeding side coil 14 provided on the ground 11 to receive the power receiving side coil 22. And a desired gap is formed between the power receiving side coil 22 and the power feeding side coil 14 by the bush 22a.

この状態で給電が開始されるけれども(S02)、この給電の開始にあっては、先ず車両20に設けられたECU24は、通信モジュール23及び15を介して給電ステーション12との通信を行う。そして、給電ステーション12では、そのECU24からのバッテリ21に関する情報と給電ステーション12内に蓄積された情報、及びユーザ側からの指示に応じて充電条件を設定し、充電を開始する。即ち、給電ステーション12における給電装置本体13は、商用の交流電源を高周波の交流に変換して給電側コイル14に供給する。そして、受電側コイル22の中に発生する磁束により、その受電側コイル22に交流電力を生じさせる。その交流電力を整流平滑化回路31により直流に変換させてバッテリ21に給電する。   Although power supply is started in this state (S02), the ECU 24 provided in the vehicle 20 first communicates with the power supply station 12 via the communication modules 23 and 15 when starting the power supply. Then, the power supply station 12 sets charging conditions according to information on the battery 21 from the ECU 24, information stored in the power supply station 12, and instructions from the user side, and starts charging. That is, the power supply device main body 13 in the power supply station 12 converts commercial AC power into high frequency AC and supplies it to the power supply coil 14. Then, AC power is generated in the power receiving side coil 22 by the magnetic flux generated in the power receiving side coil 22. The AC power is converted into DC by the rectifying / smoothing circuit 31 and supplied to the battery 21.

この給電中にあって、ECU24は、給電状態の監視、その給電時の異常検出を行う(S03,S04)。そして、異常が無ければ給電を続行する。その一方、その給電中にバッテリ異常等の車両20側の異常が発生したならば、給電中の異常を検出する異常検出手段として機能するこのECU24は、通信モジュール23及び15を介して給電ステーション12に、給電を停止する通信を行う(S05)。給電ステーション12では、車両20側に設けられた通信モジュール23から発せられた給電停止を内容とする無線通信が正常に受信できたならば(S10)、直ちに給電を停止し(S11)、他の機器の保護を図る。一方、給電ステーション12では、その給電停止を内容とする無線通信が正常に受信できなかった場合であっても、給電開始時に設定された時間が経過した後に、タイムアウトとしてその給電を停止する(S12)。   During the power supply, the ECU 24 monitors the power supply state and detects an abnormality during the power supply (S03, S04). If there is no abnormality, the power supply is continued. On the other hand, if an abnormality on the vehicle 20 side such as a battery abnormality occurs during the power supply, the ECU 24 functioning as an abnormality detection means for detecting an abnormality during the power supply is connected to the power supply station 12 via the communication modules 23 and 15. In addition, communication for stopping power feeding is performed (S05). In the power supply station 12, if the wireless communication with the content of the power supply stop issued from the communication module 23 provided on the vehicle 20 side can be normally received (S10), the power supply is immediately stopped (S11). Protect equipment. On the other hand, the power supply station 12 stops the power supply as a time-out after the time set at the start of power supply elapses even if the wireless communication with the content of the power supply stop cannot be normally received (S12). ).

車両20側の異常が発生したならば、上述した給電を停止する通信を行う(S05)と共に、このECU24は、コイル昇降装置26を制御して、受電側コイル22を上昇させて、その受電側コイル22を収容状態とする(S06)。このようにして、受電側コイル22を給電側コイル14から離間させる。ここで、図2に示すように、給電側コイル14から受電側コイル22が離間すると、その受電側コイル22に生じる交流電力は減少する。このため、この異常時に受電側コイル22を上昇させると(S06)、給電側コイル14からその受電側コイル22が離間し、給電側コイル14から電力が供給されていても、その受電側コイル22に生じる交流電力を減少させることができる。   If an abnormality occurs on the vehicle 20 side, the ECU 24 controls the coil elevating device 26 to raise the power receiving side coil 22 and perform the communication for stopping the power feeding described above (S05). The coil 22 is set in the housed state (S06). In this way, the power receiving side coil 22 is separated from the power feeding side coil 14. Here, as shown in FIG. 2, when the power receiving side coil 22 is separated from the power feeding side coil 14, the AC power generated in the power receiving side coil 22 decreases. For this reason, if the power receiving side coil 22 is raised at the time of this abnormality (S06), even if the power receiving side coil 22 is separated from the power feeding side coil 14 and power is supplied from the power feeding side coil 14, the power receiving side coil 22 is separated. AC power generated in the can be reduced.

そして、受電側コイル22が上昇して格納状態になったことを検知した(S07)後に、ECU24はリレースイッチ32により、整流平滑化回路31とバッテリ21の間の給電回路を切断する(S08)。これにより、バッテリ21への給電が継続することに起因する他の機器への損傷を回避する。この給電回路が切断されると、受電側コイル22に交流電力が生じていると、その交流電力が整流平滑化回路31に負荷を生じさせることになるけれども、本発明では、予め受電側コイル22を上昇させて(S06)、その受電側コイル22に生じる交流電力を減少させているので、受電側コイル22に生じる交流電力が整流平滑化回路31に生じさせる負荷は減少する。このため、リレースイッチ32により、整流平滑化回路31とバッテリ21の間の給電回路を切断しても(S08)、その整流平滑化回路31に被害が及ぶようなリスクは回避される。よって、本発明では、整流平滑化回路31の被害を最小限にして、異常時にバッテリ21への給電を速やかに停止することができるものとなる。   Then, after detecting that the power receiving side coil 22 has been raised to the retracted state (S07), the ECU 24 disconnects the power feeding circuit between the rectifying / smoothing circuit 31 and the battery 21 by the relay switch 32 (S08). . Thereby, the damage to the other apparatus resulting from continuing the electric power feeding to the battery 21 is avoided. When this power supply circuit is disconnected, if AC power is generated in the power receiving side coil 22, the AC power causes a load on the rectifying / smoothing circuit 31, but in the present invention, the power receiving side coil 22 is previously provided. (S06), the AC power generated in the power receiving side coil 22 is reduced, so that the load that the AC power generated in the power receiving side coil 22 generates in the rectifying / smoothing circuit 31 decreases. For this reason, even if the power feeding circuit between the rectifying / smoothing circuit 31 and the battery 21 is disconnected by the relay switch 32 (S08), the risk of damaging the rectifying / smoothing circuit 31 is avoided. Therefore, in the present invention, damage to the rectifying / smoothing circuit 31 can be minimized, and power supply to the battery 21 can be stopped quickly in the event of an abnormality.

そして、給電回路を切断した後には、ECU24及び他への給電に関する機器の終了処理が成され(S09)、その後終了される。   Then, after disconnecting the power supply circuit, the ECU 24 and other devices related to power supply to the other end processing are performed (S09), and then the processing ends.

なお、上述した実施の形態では、互いの一端が枢支された一対のリンク片27,28と、その一方のリンク片27を回転させるアクチュエータ29を有するコイル昇降装置26を用いて説明したけれども、このコイル昇降装置26は、この構造のものに限定されるものではなく、受電側コイル22を昇降可能に支持し得る限り、他の形式の装置であっても良い。例えば、車両20が、圧縮エアの給排により車高を調整可能なエアサスペンション装置を備えるようなものであれば、受電側コイル22を車両20に固定して設け、その車両20を受電側コイル22と共に昇降させるエアサスペンション装置そのものをコイル昇降装置26としても良い。このようなコイル昇降装置26では、車両20におけるシャシフレーム20aに対して受電側コイル22を昇降させるような機構を設けることを不要にすることができる。   In the above-described embodiment, the description has been given using the coil lifting device 26 having the pair of link pieces 27 and 28 pivoted at one end and the actuator 29 for rotating the one link piece 27. The coil elevating device 26 is not limited to this structure, and may be another type of device as long as it can support the power receiving side coil 22 so that it can be raised and lowered. For example, if the vehicle 20 includes an air suspension device that can adjust the vehicle height by supplying and discharging compressed air, the power receiving side coil 22 is fixed to the vehicle 20 and the vehicle 20 is connected to the power receiving side coil. The air suspension device itself that moves up and down together with 22 may be used as the coil lifting device 26. In such a coil raising / lowering device 26, it is possible to eliminate the need to provide a mechanism for raising and lowering the power receiving side coil 22 with respect to the chassis frame 20a in the vehicle 20.

また、上述した実施の形態では、電磁誘導の相互誘電作用を利用して、非接触で電力を供給する非接触給電装置10を用いて説明したけれども、本発明の非接触給電装置10は、磁気共鳴作用を利用して、地上に設けた給電側コイルから、車両側に設けた受電側コイルへ、非接触で電力を供給するものであっても良い。   In the above-described embodiment, although the description has been made using the non-contact power supply apparatus 10 that supplies electric power in a non-contact manner using the mutual dielectric action of electromagnetic induction, the non-contact power supply apparatus 10 of the present invention is magnetic. Using resonance, power may be supplied in a non-contact manner from a power supply side coil provided on the ground to a power reception side coil provided on the vehicle side.

更に、上述した実施の形態では、回路切断手段としてリレースイッチ32を用いて説明したけれども、この回路切断手段は、異常検出手段24が異常を検出した時に整流平滑化回路31とバッテリ21の間の給電回路を切断し得るものである限り、リレースイッチ32以外のものであっても良い。   Further, in the above-described embodiment, although the relay switch 32 is used as the circuit disconnecting means, this circuit disconnecting means is provided between the rectifying / smoothing circuit 31 and the battery 21 when the abnormality detecting means 24 detects an abnormality. Any device other than the relay switch 32 may be used as long as the power supply circuit can be disconnected.

10 非接触給電装置
11 地上
14 給電側コイル
20 車両
22 受電側コイル
24 ECU(異常検出手段)
26 コイル昇降装置
31 整流平滑化回路
32 リレースイッチ(回路切断手段)
DESCRIPTION OF SYMBOLS 10 Non-contact electric power feeder 11 Ground 14 Power feeding side coil 20 Vehicle 22 Power receiving side coil 24 ECU (abnormality detection means)
26 Coil Lifting Device 31 Rectification Smoothing Circuit 32 Relay Switch (Circuit Cutting Means)

Claims (2)

地上(11)側に配設される給電側コイル(14)からの非接触給電により交流電力を生じる受電側コイル(22)と、
前記受電側コイル(22)を昇降可能に支持し前記受電側コイル(22)を降下させて前記給電側コイル(14)に接近させ前記受電側コイル(22)を上昇させて前記給電側コイル(14)から離間させるコイル昇降装置(26)と、
前記受電側コイル(22)に生じる交流電力を直流に変換してバッテリ(21)へ供給する整流平滑化回路(31)と、
給電中の異常を検出する異常検出手段(24)と、
前記異常検出手段(24)が異常を検出した時に前記整流平滑化回路(31)と前記バッテリ(21)の間の給電回路を切断する回路切断手段(32)と
を備えた非接触給電装置において、
前記回路切断手段(32)が前記給電回路を切断する異常時に前記コイル昇降装置(26)が前記受電側コイル(22)を上昇させるように構成された
ことを特徴とする非接触給電装置。
A power receiving side coil (22) that generates AC power by non-contact power feeding from a power feeding side coil (14) disposed on the ground (11) side;
The power receiving side coil (22) is supported to be movable up and down, the power receiving side coil (22) is lowered to approach the power feeding side coil (14), the power receiving side coil (22) is lifted, and the power feeding side coil ( Coil lifting device (26) to be separated from 14),
A rectifying / smoothing circuit (31) for converting alternating current power generated in the power receiving coil (22) into direct current and supplying the direct current to the battery (21),
Anomaly detection means (24) for detecting anomalies during power feeding,
In a non-contact power feeding apparatus comprising: a circuit cutting unit (32) for cutting a power feeding circuit between the rectifying / smoothing circuit (31) and the battery (21) when the abnormality detecting unit (24) detects an abnormality. ,
The contactless power feeding device, wherein the coil lifting device (26) is configured to raise the power receiving coil (22) when the circuit cutting means (32) disconnects the power feeding circuit.
圧縮エアの給排により車高を調整可能なエアサスペンション装置が車両(20)に設けられ、受電側コイル(22)が車両(20)に固定して設けられ、コイル昇降装置(26)が前記車両(20)を前記受電側コイル(22)と共に昇降させる前記エアサスペンション装置である請求項1記載の非接触給電装置。   An air suspension device capable of adjusting the vehicle height by supplying and discharging compressed air is provided in the vehicle (20), the power receiving side coil (22) is fixed to the vehicle (20), and the coil lifting device (26) The contactless power feeding device according to claim 1, wherein the air suspension device moves the vehicle (20) up and down together with the power receiving side coil (22).
JP2012066447A 2012-03-23 2012-03-23 Contactless power supply Active JP5939853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012066447A JP5939853B2 (en) 2012-03-23 2012-03-23 Contactless power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012066447A JP5939853B2 (en) 2012-03-23 2012-03-23 Contactless power supply

Publications (2)

Publication Number Publication Date
JP2013198379A true JP2013198379A (en) 2013-09-30
JP5939853B2 JP5939853B2 (en) 2016-06-22

Family

ID=49396672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012066447A Active JP5939853B2 (en) 2012-03-23 2012-03-23 Contactless power supply

Country Status (1)

Country Link
JP (1) JP5939853B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104648177A (en) * 2015-02-11 2015-05-27 吴宗群 Automobile wireless charging retractor device
JP2015100243A (en) * 2013-11-20 2015-05-28 日立建機株式会社 Electric drive vehicle
CN105900314A (en) * 2014-02-10 2016-08-24 罗姆股份有限公司 Wireless power receiver and control circuit therefor, electronic device using same, and error detection method
US10155450B2 (en) 2013-11-05 2018-12-18 Mitsubishi Heavy Industries Engineering, Ltd. Charging device, vehicle, vehicle charging system, charging method, and program
CN110481452A (en) * 2019-09-27 2019-11-22 深圳市车安达机电有限公司 A kind of stacked clamp bracket with lever
CN111114349A (en) * 2019-12-31 2020-05-08 中国第一汽车股份有限公司 Wireless charging method and system for electric automobile
JP2021061706A (en) * 2019-10-08 2021-04-15 昭和電線ケーブルシステム株式会社 Non-contact power supply system
JP2021125967A (en) * 2020-02-05 2021-08-30 東芝テック株式会社 Cart type product registration device and cart power supply device
JP2022127598A (en) * 2021-02-19 2022-08-31 トランスポーテーション アイピー ホールディングス,エルエルシー Electrical shunt apparatus and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345588A (en) * 2005-06-07 2006-12-21 Matsushita Electric Works Ltd Noncontact power supply and power supply system for autonomous mobile unit
WO2010041318A1 (en) * 2008-10-09 2010-04-15 トヨタ自動車株式会社 Noncontact receiving device, and vehicle having the device
JP2010246348A (en) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd Power-receiving device and power-transmitting device
JP2011193617A (en) * 2010-03-15 2011-09-29 Hino Motors Ltd Noncontact power feed device of vehicle and method
JP2012504387A (en) * 2008-09-27 2012-02-16 ウィトリシティ コーポレーション Wireless energy transfer system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345588A (en) * 2005-06-07 2006-12-21 Matsushita Electric Works Ltd Noncontact power supply and power supply system for autonomous mobile unit
JP2012504387A (en) * 2008-09-27 2012-02-16 ウィトリシティ コーポレーション Wireless energy transfer system
WO2010041318A1 (en) * 2008-10-09 2010-04-15 トヨタ自動車株式会社 Noncontact receiving device, and vehicle having the device
JP2010246348A (en) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd Power-receiving device and power-transmitting device
JP2011193617A (en) * 2010-03-15 2011-09-29 Hino Motors Ltd Noncontact power feed device of vehicle and method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10155450B2 (en) 2013-11-05 2018-12-18 Mitsubishi Heavy Industries Engineering, Ltd. Charging device, vehicle, vehicle charging system, charging method, and program
JP2015100243A (en) * 2013-11-20 2015-05-28 日立建機株式会社 Electric drive vehicle
CN105900314A (en) * 2014-02-10 2016-08-24 罗姆股份有限公司 Wireless power receiver and control circuit therefor, electronic device using same, and error detection method
US10128696B2 (en) 2014-02-10 2018-11-13 Rohm Co., Ltd. Wireless power receiving apparatus
CN104648177A (en) * 2015-02-11 2015-05-27 吴宗群 Automobile wireless charging retractor device
CN110481452A (en) * 2019-09-27 2019-11-22 深圳市车安达机电有限公司 A kind of stacked clamp bracket with lever
CN110481452B (en) * 2019-09-27 2024-06-21 深圳市车安达机电有限公司 Laminated clamping bracket with lever
JP7365842B2 (en) 2019-10-08 2023-10-20 Swcc株式会社 Contactless power supply system
JP2021061706A (en) * 2019-10-08 2021-04-15 昭和電線ケーブルシステム株式会社 Non-contact power supply system
CN111114349A (en) * 2019-12-31 2020-05-08 中国第一汽车股份有限公司 Wireless charging method and system for electric automobile
CN111114349B (en) * 2019-12-31 2021-09-21 中国第一汽车股份有限公司 Wireless charging method and system for electric automobile
JP7379195B2 (en) 2020-02-05 2023-11-14 東芝テック株式会社 Cart type product registration device and cart power supply device
JP2021125967A (en) * 2020-02-05 2021-08-30 東芝テック株式会社 Cart type product registration device and cart power supply device
JP2022127598A (en) * 2021-02-19 2022-08-31 トランスポーテーション アイピー ホールディングス,エルエルシー Electrical shunt apparatus and system

Also Published As

Publication number Publication date
JP5939853B2 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5939853B2 (en) Contactless power supply
US11312248B2 (en) Non-contact power reception device and vehicle including the same
JP5152338B2 (en) Non-contact charging device and non-contact power receiving device
JP4568736B2 (en) Overhead-less transportation system and charging method thereof
CN103107576B (en) Electric automobile wireless charging system
JP5282068B2 (en) Receiving side equipment of resonance type non-contact power feeding system
KR101585117B1 (en) Rapid Charging Power Supply System
EP2755301B1 (en) Non-contact power supply method used to recharge a vehicle
JP5485413B2 (en) vehicle
KR102612778B1 (en) Inductive energy transfer method and apparatus for operating the inductive energy transfer device
JP4698644B2 (en) Crane equipment
JP2012034468A (en) Resonance type non-contact power feeding system for vehicle
JP2016220532A (en) Non-contact power transmission device and non-contact power transmission method
US20160001668A1 (en) Power transmission device, power reception device, vehicle, and contactless power feeding system
JP6349384B2 (en) Method and structure for controlling charging of an energy storage system
CN112204847B (en) Power transmission device and control method for power transmission device
US10110062B2 (en) Wireless power transmission device
JP5488724B2 (en) Resonant contactless power supply system
JP2009023816A (en) Crane device
JP2011068499A (en) Crane device
US9656568B2 (en) Method and arrangement for error detection during charging of an energy storage system
KR20190056069A (en) Wireless charging system using height adjustment and control method for the wireless charging system
KR20180136984A (en) Method of detecting coil position of non-contact feeding system and non-contact feeding system
JP2015012748A (en) Power feeding apparatus and frequency characteristic acquisition method
JP2013169109A (en) Mobile vehicle and non contact power transmission apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160517

R150 Certificate of patent or registration of utility model

Ref document number: 5939853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250