JP2013188938A - Method and device for high-pressure pulverizing molten resin lowered in viscosity by mixing carbon dioxide thereto - Google Patents

Method and device for high-pressure pulverizing molten resin lowered in viscosity by mixing carbon dioxide thereto Download PDF

Info

Publication number
JP2013188938A
JP2013188938A JP2012056529A JP2012056529A JP2013188938A JP 2013188938 A JP2013188938 A JP 2013188938A JP 2012056529 A JP2012056529 A JP 2012056529A JP 2012056529 A JP2012056529 A JP 2012056529A JP 2013188938 A JP2013188938 A JP 2013188938A
Authority
JP
Japan
Prior art keywords
fluid
mixer
molten resin
carbon dioxide
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012056529A
Other languages
Japanese (ja)
Other versions
JP5871266B2 (en
Inventor
Shinichiro Kawasaki
慎一朗 川▲崎▼
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012056529A priority Critical patent/JP5871266B2/en
Publication of JP2013188938A publication Critical patent/JP2013188938A/en
Application granted granted Critical
Publication of JP5871266B2 publication Critical patent/JP5871266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for producing fine particles of molten resin by mixing carbon dioxide to the molten resin so as to lower viscosity and spraying the mixture into the atmosphere.SOLUTION: In a method for pulverizing molten resin by injecting molten resin continuously supplied under high pressure and high temperature and high pressure carbon dioxide to the atmosphere from the high pressure condition, when a fluid A and a fluid B are any of carbon dioxide and the molten resin, a multi-stage division flow passage type mixer is used as a mixer, which has a fluid A division part for evenly dividing the fluid A after the fluid A flows into the mixer, a fluid B division part for evenly dividing the fluid B after the fluid B flows into the mixer in the downstream side of the fluid A division part, a double tube type mixing part constituting a cylindrical double tube type mixer structure having the fluid A as the inner fluid and the fluid B as the outer fluid in the downstream side of the fluid B division part, and an individual contraction part for contracting an outlet of the double tube type mixing part in the downstream side of the double tube type mixing part. A pulverizing process of the resin and a product thereof can be provided.

Description

本発明は、二酸化炭素を混合して低粘度化させた溶融樹脂の高圧微粒化方法及び装置に関するものであり、更に詳しくは、溶融樹脂を高圧供給し、そこに、高圧二酸化炭素を混合器を介して混合して粘度を低下させ、その混合器に多段分割流路型混合器を用いることを特徴とし、その後、高圧から大気へ直接噴霧する、若しくは噴霧前に噴霧用の流体を追加した混合流体として噴霧することにより、樹脂の微粒子を製造することを可能とする溶融樹脂の高圧微粒化方法、並びに樹脂微粒子の製造方法及びその装置に関するものである。   The present invention relates to a high-pressure atomization method and apparatus for molten resin in which carbon dioxide is mixed to reduce viscosity, and more specifically, high-pressure carbon dioxide is supplied to the molten resin, and a high-pressure carbon dioxide mixer is provided therein. To reduce the viscosity by using a multi-stage divided flow channel mixer, and then spray directly from the high pressure to the atmosphere, or add the fluid for spraying before spraying The present invention relates to a molten resin high-pressure atomization method capable of producing resin fine particles by spraying as a fluid, a resin fine particle production method, and an apparatus therefor.

従来、粉体樹脂の製造技術で製造される粉体樹脂製品の多くは、例えば、ペレット状、フレーク状であるのが一般的であるが、粒子径が小さく、かつ球状に造粒された特定の形態の樹脂微粒子製品は、加工コストの分、一般的に高価である。この樹脂微粒子には、微細な粒子径で、狭い粒度分布が求められ、その用途は、樹脂単体部材、無機材料とのコンポジット、フィラー含有樹脂に始まり、プラスチック成型品全般にまで及んでいる。これらの樹脂微粒子については、製品の多機能性や、製造方法の低コスト化、グリーン化についても、種々の高付加価値化が強く求められている。   Conventionally, most powder resin products manufactured by powder resin manufacturing technology are generally in the form of pellets or flakes, for example. The resin fine particle product of the form is generally expensive because of the processing cost. The resin fine particles are required to have a fine particle size and a narrow particle size distribution, and their uses range from a single resin member, a composite with an inorganic material, and a filler-containing resin to a general plastic molded product. For these resin fine particles, various high added values are strongly demanded for the multi-functionality of products, cost reduction of manufacturing methods, and greening.

そのような高付加価値製品は、例えば、粉体塗料、ケミカルトナー、液晶ディスプレーの光拡散シート、スペーサー、塗料(エマルジョン)、白色顔料、高分散性化粧品、マイクロカプセル化製品、多孔質化製品、診断検査薬(凝集分析用粒子としてのラテックス)、DDS(薬物伝送システム)の微粒子製剤、マイクロカプセルなど、広範囲に及んでいる。   Such high-value-added products include, for example, powder paints, chemical toners, light diffusion sheets for liquid crystal displays, spacers, paints (emulsions), white pigments, highly dispersible cosmetics, microencapsulated products, porous products, Widespread use includes diagnostic test drugs (latex as particles for agglutination analysis), DDS (drug delivery system) microparticle preparations, microcapsules, and the like.

これまで、粉体樹脂の製造技術としては、先行技術として、気相法、液相法、晶析法、固相法が提案されており、それぞれの方法について、その特徴と課題をまとめて、以下の表1に示した。   Up to now, as a technology for producing powder resin, as a prior art, a gas phase method, a liquid phase method, a crystallization method, and a solid phase method have been proposed, and the characteristics and problems of each method are summarized. The results are shown in Table 1 below.

従来の粉体樹脂の製造技術におけるこれらの特徴と課題に鑑みて、現在、より広範な樹脂に適用可能で、環境負荷が小さく、かつ低コストで樹脂微粒子を製造することを可能とする新しい製造プロセスの開発が求められている。   In view of these characteristics and issues in conventional powder resin manufacturing technology, new manufacturing that can be applied to a wider range of resins, has a low environmental impact, and can manufacture resin particles at low cost. Process development is required.

二酸化炭素を利用して微粒子を製造する技術として、「ガス飽和溶液からの粒子製造技術」が注目されており、Weidnerらによって、PGSS(登録商標)(Particle from Gas−Saturated Solutions)技術として報告されている[特許文献1、非特許文献1−2]。   As a technology for producing fine particles using carbon dioxide, “particle production technology from a gas saturated solution” has attracted attention, and reported by Weidner et al. As PGSS (registered trademark) (Particle from Gas-Saturated Solutions) technology. [Patent Document 1, Non-Patent Document 1-2].

この技術の適用先分野としては、例えば、医薬品[非特許文献1,2]、機能性食品[非特許文献3]、樹脂の微粒化[非特許文献4]など、広範囲の領域で検討されている。この技術が提案された当初の装置の概略を図1に示す。   Fields to which this technology is applied include, for example, pharmaceuticals [Non-Patent Documents 1 and 2], functional foods [Non-Patent Document 3], and resin atomization [Non-Patent Document 4]. Yes. An outline of the original apparatus for which this technique was proposed is shown in FIG.

当該装置について説明すると、図1において、樹脂(3)を、撹拌機付きオートクレーブ容器(4)内に充填し、加熱溶融させる。二酸化炭素(1)を昇圧ポンプ(2)によりオートクレーブに加圧供給し、溶融樹脂中に溶解させる。   The apparatus will be described. In FIG. 1, the resin (3) is filled in an autoclave container (4) with a stirrer and heated and melted. Carbon dioxide (1) is pressurized and supplied to the autoclave by the booster pump (2) and dissolved in the molten resin.

二酸化炭素が溶融樹脂中に溶解するとオートクレーブの内圧は減少するため、二酸化炭素をチャージして飽和状態まで溶解させる。ここでは、撹拌のみが物質移動促進の要素であるため、飽和溶解には長時間を要する。その後、オートクレーブ下部に設けられたバルブ(図示せず)を開けて、噴霧ノズル(5)から大気中に噴出させる。   When carbon dioxide dissolves in the molten resin, the internal pressure of the autoclave decreases, so the carbon dioxide is charged and dissolved to saturation. Here, since only stirring is an element for promoting mass transfer, a long time is required for saturation dissolution. Thereafter, a valve (not shown) provided at the lower part of the autoclave is opened and ejected from the spray nozzle (5) into the atmosphere.

その際、二酸化炭素の加圧チャージを継続する。待機中に、噴霧された樹脂微粒子は、タンク下部(6)から一部回収され、多くはサイクロン(7)で分離されて、サイクロン下部から回収される。サイクロンのガス出口には、ブロア(8)が設けられている。PGSS(登録商標)の特徴は、以下のように整理される。   At that time, the carbon dioxide pressure charging is continued. During the standby, a part of the sprayed resin fine particles is recovered from the tank lower part (6), and most of the resin fine particles are separated by the cyclone (7) and recovered from the cyclone lower part. A blower (8) is provided at the gas outlet of the cyclone. The features of PGSS (registered trademark) are organized as follows.

(1)二酸化炭素の溶解により、樹脂が低粘性化し、噴霧が可能になる。
(2)条件によっては、二酸化炭素の溶解により、融点降下を生じるため、温度に過敏なプロダクトなどは、少しでも低温で微粒化ができる。
(3)低粘性化流体が二酸化炭素であるため、当該流体は、減圧後のプロダクト内に残留することがない。
(4)樹脂中に溶解している二酸化炭素は、ノズル内の減圧過程で、また、噴霧された樹脂中でも気化するため、樹脂の微粒化が促進される。
(5)二酸化炭素の減圧によるジュールトムソン効果によって、樹脂は、冷却され、溶融状態から固体微粒子へと凝固する。
(1) Due to the dissolution of carbon dioxide, the resin has a low viscosity and can be sprayed.
(2) Depending on the conditions, melting point drops due to the dissolution of carbon dioxide, so products that are sensitive to temperature can be atomized at a low temperature.
(3) Since the viscosity reducing fluid is carbon dioxide, the fluid does not remain in the product after decompression.
(4) Since carbon dioxide dissolved in the resin is vaporized in the process of depressurization in the nozzle and also in the sprayed resin, atomization of the resin is promoted.
(5) The resin is cooled and solidified from a molten state to solid fine particles by the Joule-Thompson effect due to the reduced pressure of carbon dioxide.

図1に示すように、既存の方法では、樹脂に二酸化炭素を飽和溶解させるために長時間を要し、かつ回分式プロセスであるため、連続製造することができない。近年、Weidnerらは、図2に示す、粒子製造量50kg/h規模のパイロットプラントを建設して、微粒子の製造技術の開発を行っている[非特許文献5]。   As shown in FIG. 1, in the existing method, it takes a long time to saturate and dissolve carbon dioxide in the resin, and since it is a batch process, continuous production cannot be performed. In recent years, Weidner et al. Have developed a fine particle production technique by constructing a pilot plant with a particle production amount of 50 kg / h shown in FIG. 2 [Non-patent Document 5].

図2のパイロットプラントでは、樹脂を加熱溶解させる液化溶解タンク(11)から、溶融したポリマーをギアポンプ(12)で連続供給し、樹脂加熱器(13)で温度調整を行う。二酸化炭素(14)は、二酸化炭素ポンプ(15)で高圧吐出し、二酸化炭素加熱器(16)で温度調整を行う。   In the pilot plant of FIG. 2, the melted polymer is continuously supplied from the liquefaction dissolution tank (11) for melting and melting the resin by the gear pump (12), and the temperature is adjusted by the resin heater (13). Carbon dioxide (14) is discharged at a high pressure by a carbon dioxide pump (15), and the temperature is adjusted by a carbon dioxide heater (16).

両者をスタティックミキサー(17)で混合して、噴霧ノズル(18)から噴霧し、微粒子を製造する。噴出した微粒子は、サイクロン(19)で分離され、サイクロン下部(20)から回収される。サイクロンのガス出口は、ブロア(21)で吸引する。   Both are mixed by a static mixer (17) and sprayed from a spray nozzle (18) to produce fine particles. The ejected fine particles are separated by the cyclone (19) and collected from the cyclone lower part (20). The gas outlet of the cyclone is sucked by a blower (21).

この方式により、微粒子の連続製造が可能となった。Weidnerらは、分子量6000のポリエチレンオキシド(PEO:ポリエチレングリコールPEGと同じ)を用いたポリマーの微粒子化について検討しており、ガスとポリマーの流量比(Gas to polymer mass flow ratio:GTP)、噴霧前温度、噴霧圧力と粒子径、粒子形状について、詳細な検討を行っている[非特許文献5,6]。   This method enabled continuous production of fine particles. Weidner et al. Are investigating micronization of a polymer using polyethylene oxide (PEO: same as polyethylene glycol PEG) having a molecular weight of 6000, gas to polymer mass flow ratio (GTP), before spraying. Detailed investigations have been conducted on temperature, spray pressure, particle diameter, and particle shape [Non-patent Documents 5 and 6].

上記、PGSS(登録商標)技術の研究開発においては、対象としていたポリマーの分子量は、6000程度までであり、それ以上の分子量となると、図3に示すように、ポリエチレンオキシドPEO(ポリエチレングリコールPEGと同じ)の微粒子の形状は、繊維状となり、粒子の形状を保てなくなる。実際には、高分子量、すなわち高粘度の溶融樹脂についても、球形の微粒子を得るプロセスの開発が求められており、現状のWeidnerらの方式では、そのような要求を満足することができない。   In the above research and development of PGSS (registered trademark) technology, the molecular weight of the target polymer is up to about 6000, and when the molecular weight is higher than that, as shown in FIG. 3, polyethylene oxide PEO (polyethylene glycol PEG and The shape of the same fine particles is fibrous, and the shape of the particles cannot be maintained. Actually, development of a process for obtaining spherical fine particles is required even for a high molecular weight, that is, high viscosity molten resin, and the current Weidner et al. Method cannot satisfy such a requirement.

微粒子の形状は、繊維状となり、粒子の形状を保てなくなるのは、噴霧時の樹脂の粘度が十分に低下していないことが原因と考えられる。本プロセスは、一相状態での操作を前提としており、樹脂の粘度低下は二酸化炭素の溶解性に依存するため、最大溶解度まで二酸化炭素が溶解した場合、それ以上の二酸化炭素添加による溶解度の低下は生じない。   The shape of the fine particles becomes fibrous, and the reason why the shape of the particles cannot be maintained is thought to be because the viscosity of the resin during spraying is not sufficiently lowered. This process is premised on operation in a one-phase state, and since the decrease in resin viscosity depends on the solubility of carbon dioxide, when carbon dioxide dissolves to the maximum solubility, the solubility decreases by adding more carbon dioxide. Does not occur.

したがって、最大溶解度まで、二酸化炭素が溶解しているかどうかが重要となる。その場合、高粘度の溶融樹脂に、低粘度の二酸化炭素を如何に均質に混合するかは、結局、混合器の混合性能に左右されるといっても過言ではなく、また、微粒化の主要操作因子の一つである噴霧流速が低いことも原因と考えられる。   Therefore, it is important whether carbon dioxide is dissolved up to the maximum solubility. In that case, it is not an exaggeration to say that how homogeneously the low viscosity carbon dioxide is mixed into the high viscosity molten resin depends on the mixing performance of the mixer. One of the operating factors is thought to be a low spray flow rate.

ヨーロッパ特許第940079号(特許第3510262号)European Patent No. 940079 (Patent No. 3510262)

Sencar-Bozic,P., Srcic, S., Knez, Z. and Kerc, J., "Improvement of nifedipine dissolution characteristics using supercritical CO2", Int. J. Pharm. 148(1997)123-130Sencar-Bozic, P., Srcic, S., Knez, Z. and Kerc, J., "Improvement of nifedipine dissolution characteristics using supercritical CO2", Int. J. Pharm. 148 (1997) 123-130 Kerc, J., Srcic, S., Knez, Z. and Sencar-Bozic, P., "Micronization of drugs using supercritical carbon dioxide",Int. J. Pharm. 182(1999)33-39Kerc, J., Srcic, S., Knez, Z. and Sencar-Bozic, P., "Micronization of drugs using supercritical carbon dioxide", Int. J. Pharm. 182 (1999) 33-39 Weidner, E.,"high pressure micronization for food applications", J. Supercrit. Fluids 47(2009)556-565Weidner, E., "high pressure micronization for food applications", J. Supercrit. Fluids 47 (2009) 556-565 Nalawade, S. P., Picchioni, F. and Janssen, L.P.B.M., "Batch production of micron size particles from poly (ethylene glycol) using supercritical CO2 as a processing solvent", Chem. Eng. Sci. 62(2007)1712-1720Nalawade, S. P., Picchioni, F. and Janssen, L.P.B.M., "Batch production of micron size particles from poly (ethylene glycol) using supercritical CO2 as a processing solvent", Chem. Eng. Sci. 62 (2007) 1712-1720 Weidner, E., Petermann, M. and Knez, Z., "Multifunctional composites by high-pressure spray processes", Curr. Opin. Solid State Mat. Sci. 7(2003)385-390Weidner, E., Petermann, M. and Knez, Z., "Multifunctional composites by high-pressure spray processes", Curr. Opin. Solid State Mat. Sci. 7 (2003) 385-390 Kappler, P., Leiner, W., Petermann, M. and Weidner, E.,"Size and morphology of particles generated by spraying polymer-melts with carbon dioxide", Proceedings of the 6th Int. Symp. Supercrit. Fluids, 2003, Versailles, pp.1891-1896Kappler, P., Leiner, W., Petermann, M. and Weidner, E., "Size and morphology of particles generated by spraying polymer-melts with carbon dioxide", Proceedings of the 6th Int. Symp. Supercrit. Fluids, 2003 , Versailles, pp.1891-1896

このような状況の中で、本発明者らは、Weidnerらの開発したPGSS(登録商標)技術では達成されていない分子量6000以上のポリエチレンオキシドPEO(ポリエチレングリコールPEGと同じ)を例として、高粘度の溶融樹脂の微粒化システムを開発することを目標として鋭意研究を積み重ねた。その結果、本技術のポイントは、連続的に、溶融樹脂中に二酸化炭素を効率的に均質混合することにあると考察した。   In such a situation, the present inventors have used a polyethylene oxide PEO (same as polyethylene glycol PEG) having a molecular weight of 6000 or more which has not been achieved by the PGSS (registered trademark) technology developed by Weidner et al. With the goal of developing a molten resin atomization system, we have conducted extensive research. As a result, it was considered that the point of this technique is to efficiently and uniformly mix carbon dioxide into the molten resin continuously.

Weidnerらは、溶融樹脂と二酸化炭素の混合に、スタティックミキサーを用いているが[非特許文献5]、このスタティックミキサーに、混合性能の限界があると考え、更に研究を重ねて、本発明を完成するに至った。本発明は、高粘度の溶融樹脂を微細化して溶融樹脂を微細化することを可能とする溶融樹脂の微細化方法及びその装置を提供することを目的とするものである。   Weidner et al. Used a static mixer to mix molten resin and carbon dioxide [Non-Patent Document 5], but thought that this static mixer had limitations in mixing performance, and further researched, the present invention It came to be completed. An object of the present invention is to provide a molten resin miniaturization method and apparatus capable of miniaturizing a molten resin by refining a high viscosity molten resin.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)連続的に高圧供給する溶融樹脂と、同じく連続的に供給する高温高圧の二酸化炭素を、混合器によって混合、溶解させて、溶融樹脂の粘度を低下させ、高圧条件から大気圧へ噴霧ノズルを介して噴出させることによって溶融樹脂を微粒化する方法であって、
流体A、流体Bが、二酸化炭素、溶融樹脂の何れかである場合、混合器として、流体Aが混合器に流入した後に、均等な圧力損失を生じさせて複数の円管状流路に均等分割させる流体A分割部と、
流体A分割部の下流に、流体Bが混合器に流入した後に、均等な圧力損失を生じさせて円管状流路に均等分割させる流体B分割部と、
流体B分割部の下流に、流体A分割部の分割数と同じ数だけ設けられ、流体Aが内部流体、流体Bが外部流体となる円管状の二重管型混合器構造を構成する二重管型混合部と、
二重管型混合部の下流に、流体A分割部の分割数と同じ数だけ設けられ、それぞれの二重管型混合部出口を縮流させる個別縮流部、
を有する多段分割流路型混合器を用いることを特徴とする溶融樹脂の微粒化方法。
(2)混合器として、多段分割流路型混合器の上記二重管型混合部−個別縮流部と、その下流に配設された流路全体を一つの流路に縮流させる集合縮流部ないし任意の滞留混合時間を有する直管型滞留部と、その下流に配設された円管状流路に分割する分割混錬部1と、分割混錬部1と分割数が異なり、同軸状に円管状流路を有さず、分割混錬部1出口流体が隣り合う流体と相互混合して流出することができる位置に円管状流路を配置した分割混錬部2を有する多段分割流路型混合器を用いる、前記(1)に記載の溶融樹脂の微粒化方法。
(3)混合器として、多段分割流路型混合器の上記二重管型混合部―個別縮流部と、その下流に、流路全体を一つの流路に縮流させる集合縮流部を有する多段分割流路型混合器を用いる、前記(1)に記載の溶融樹脂の微粒化方法。
(4)混合器として、多段分割流路型混合器の上記二重管型混合部―個別縮流部と、その下流に、任意の滞留混合時間を保有する直管型滞留部を有する多段分割流路型混合器を用いる、前記(1)に記載の溶融樹脂の微粒化方法。
(5)混合器として、多段分割流路型混合器の上記二重管型混合部―個別縮流部と、その下流に配設された流路全体を一つの流路に縮流させる集合縮流部ないし任意の滞留混合時間を有する直管型滞留部の下流に、円管状流路に分割する分割混錬部1を有する多段分割流路型混合器を用いる、前記(1)に記載の溶融樹脂の微粒化方法。
(6)混合器として、多段分割流路型混合器の下流に、上記集合縮流部、直管型滞留部、分割混錬部1、及び/又は分割混錬部2が任意の組み合わせで任意の数設けられている多段分割流路型混合器を用いる、前記(1)から(5)のいずれかに記載の溶融樹脂の微粒化方法。
(7)混合器として、流体A分割部、二重管混合部、個別縮流部、分割混錬部1、又は分割混錬部2の少なくとも一つの構成部材、もしくは複数の構成部材の流路において、流路内径が1mm以下のマイクロ流路であり、かつ全体の圧力損失が3MPa以下、あるいは1MPa以下となる分割数で分割されている多段分割流路型混合器を用いる、前記(1)から(6)のいずれかに記載の溶融樹脂の微粒化方法。
(8)混合器が高温高圧環境で使用できるように、これらを保持するハウジングが当該混合器の外周に設けられている、前記(1)から(7)のいずれかに記載の溶融樹脂の微粒化方法。
(9)上記多段分割流路型混合器において、流体Aが溶融樹脂、流体Bが二酸化炭素である、前記(1)から(8)のいずれかに記載の溶融樹脂の微粒化方法。
(10)上記多段分割流路型混合器において、流体Aが二酸化炭素、流体Bが溶融樹脂である、前記(1)から(9)のいずれかに記載の溶融樹脂の微粒化方法。
(11)溶融樹脂と二酸化炭素を均一に混合した混合流体を高圧条件から大気圧へ噴霧する前の工程において、噴霧流速を上昇させるための流体を追加混合する、前記(1)から(10)のいずれかに記載の溶融樹脂の微粒化方法。
(12)溶融樹脂と二酸化炭素を均一に混合した混合流体を高圧条件から大気圧へ噴霧する前に、噴霧流速を上昇させるために追加混合する流体が、二酸化炭素、窒素、ヘリウム、アルゴン、又はネオンである、前記(11)に記載の溶融樹脂の微粒化方法。
(13)前記(1)から(12)のいずれかに記載の溶融樹脂の微粒化方法を用いて、溶融樹脂を微粒化することにより微粒化された当該溶融樹脂の微粒子を製造することを特徴とする樹脂微粒子の製造方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) The molten resin that is continuously supplied at high pressure and the high-temperature and high-pressure carbon dioxide that is continuously supplied are mixed and dissolved by a mixer to reduce the viscosity of the molten resin and spray from high pressure conditions to atmospheric pressure. A method of atomizing molten resin by ejecting through a nozzle,
When fluid A and fluid B are either carbon dioxide or molten resin, after the fluid A flows into the mixer as a mixer, an equal pressure loss is generated and divided into a plurality of tubular channels. A fluid A splitting section;
Downstream of the fluid A dividing section, after the fluid B has flowed into the mixer, a fluid B dividing section that generates an equal pressure loss and equally divides the tubular flow path;
The number of divisions equal to the number of divisions of the fluid A division unit is provided downstream of the fluid B division unit, and the dual that constitutes a circular double-tube mixer structure in which the fluid A is an internal fluid and the fluid B is an external fluid A tube-type mixing section;
The downstream of the double tube type mixing unit is provided as many as the number of divisions of the fluid A dividing unit, and the individual contracted flow unit for contracting each double tube type mixing unit outlet,
A method for atomizing a molten resin, characterized by using a multistage divided flow channel mixer having the following.
(2) As a mixer, the above-mentioned double-tube type mixing unit of the multistage divided channel type mixer—the individual contraction unit and the collective contraction that contracts the entire channel disposed downstream thereof into one channel. A flow tube or a straight pipe-type staying portion having an arbitrary staying mixing time, a split kneading portion 1 that divides into a tubular flow channel disposed downstream thereof, and a split kneading portion 1 that has a different number of splits and is coaxial A multi-stage division having a divided kneading section 2 in which the circular flow path is arranged at a position where the outlet fluid of the divided kneading section 1 can be mixed with the adjacent fluid and outflow The method for atomizing a molten resin according to (1), wherein a flow channel mixer is used.
(3) As the mixer, the double-tube type mixing unit of the multi-stage divided flow channel type mixer—the individual flow-reducing unit, and the downstream portion thereof, the collective current-reducing unit for reducing the entire flow channel into one flow channel. The method for atomizing a molten resin according to (1), wherein a multistage divided flow channel mixer is used.
(4) As a mixer, the above-mentioned double tube type mixing section of the multistage divided flow channel type mixer—individual contraction section, and a multistage division having a straight pipe type retention section holding an arbitrary residence mixing time downstream thereof. The method for atomizing a molten resin according to (1), wherein a flow channel mixer is used.
(5) As a mixer, the above-mentioned double tube type mixing unit of the multi-stage divided channel type mixer—the individual contraction unit, and the collective contraction that contracts the entire channel disposed downstream thereof into one channel. The multistage divided flow channel type mixer having the divided kneading portion 1 that divides into a tubular flow channel is used downstream of the flow portion or the straight tube type retained portion having an arbitrary retained mixing time. Method for atomizing molten resin.
(6) As a mixer, downstream of the multistage divided flow channel mixer, the above-mentioned collective contraction part, straight pipe-type staying part, split kneading part 1 and / or split kneading part 2 are arbitrarily combined in any combination The method for atomizing a molten resin according to any one of (1) to (5), wherein a multistage divided flow path type mixer provided in a number of is used.
(7) As a mixer, at least one constituent member of the fluid A splitting unit, the double pipe mixing unit, the individual contraction unit, the split kneading unit 1, or the split kneading unit 2, or a flow path of a plurality of constituent members In the above (1), a multi-stage divided flow channel mixer is used, which is a micro flow channel having an inner diameter of 1 mm or less and is divided by a number of divisions in which the total pressure loss is 3 MPa or less, or 1 MPa or less. To (6). A method for atomizing a molten resin according to any one of (6) to (6).
(8) The molten resin fine particles according to any one of (1) to (7), wherein a housing for holding the mixer is provided on an outer periphery of the mixer so that the mixer can be used in a high temperature and high pressure environment. Method.
(9) The method for atomizing a molten resin according to any one of (1) to (8), wherein the fluid A is a molten resin and the fluid B is carbon dioxide in the multistage divided flow channel mixer.
(10) The molten resin atomization method according to any one of (1) to (9), wherein the fluid A is carbon dioxide and the fluid B is a molten resin in the multistage divided flow channel mixer.
(11) In the step before spraying the mixed fluid in which the molten resin and carbon dioxide are uniformly mixed from the high pressure condition to the atmospheric pressure, the fluid for increasing the spray flow rate is additionally mixed, (1) to (10) The method for atomizing a molten resin according to any one of the above.
(12) Before the mixed fluid in which the molten resin and carbon dioxide are uniformly mixed is sprayed from the high pressure condition to the atmospheric pressure, the fluid to be additionally mixed to increase the spray flow rate is carbon dioxide, nitrogen, helium, argon, or The method for atomizing a molten resin according to (11), wherein the method is neon.
(13) Using the molten resin atomization method according to any one of (1) to (12), the molten resin fine particles are produced by atomizing the molten resin. A method for producing resin fine particles.

次に、本発明について更に詳細に説明する。
本発明で用いる混合器は、以下の手段から構成される。
1)流体Aと流体Bを混合する多段分割流路型のマイクロ混合器であって、
流体Aが混合器に流入した後に、均等な圧力損失を生じさせて複数の円管状流路に均等分割させる流体A分割部と、
流体A分割部の下流に、流体Bが混合器に流入した後に、均等な圧力損失を生じさせて円管状流路に均等分割させる流体B分割部と、
流体B分割部の下流に、流体A分割部の分割数と同じ数だけ設けられ、流体Aが内部流体、流体Bが外部流体となる円管状の二重管型混合器構造を構成する二重管型混合部と、
二重管型混合部の下流に、流体A分割部の分割数と同じ数だけ設けられ、それぞれの二重管型混合部出口を縮流させる個別縮流部、
を有する多段分割流路型混合器。
Next, the present invention will be described in more detail.
The mixer used by this invention is comprised from the following means.
1) A multi-stage divided flow path type micro mixer that mixes fluid A and fluid B,
A fluid A dividing section for generating an equal pressure loss and dividing the fluid A into a plurality of circular channels after the fluid A flows into the mixer;
Downstream of the fluid A dividing section, after the fluid B has flowed into the mixer, a fluid B dividing section that generates an equal pressure loss and equally divides the tubular flow path;
The number of divisions equal to the number of divisions of the fluid A division unit is provided downstream of the fluid B division unit, and the dual that constitutes a circular double-tube mixer structure in which the fluid A is an internal fluid and the fluid B is an external fluid A tube-type mixing section;
The downstream of the double tube type mixing unit is provided as many as the number of divisions of the fluid A dividing unit, and the individual contracted flow unit for contracting each double tube type mixing unit outlet,
A multistage divided flow channel type mixer.

2)多段分割流路型混合器の上記二重管型混合部−個別縮流部と、その下流配設された流路全体を一つの流路に縮流させる集合縮流部ないし任意の滞留混合時間を有する直管型滞留部と、その下流に配設された円管状流路に分割する分割混錬部1と、分割混錬部1と分割数が異なり、同軸状に円管状流路を有さず、分割混錬部1出口流体が隣り合う流体と相互混合して流出することができる位置に円管状流路を配置した分割混錬部2を有する、前記1)に記載の多段分割流路型混合器。 2) The above-mentioned double tube type mixing section of the multi-stage divided flow path type mixer—individual constricted flow section, and a collective contracted flow section or an arbitrary stay that contracts the entire flow path disposed downstream thereof into a single flow path. A straight kneading portion having a mixing time, a divided kneading portion 1 that divides into a tubular flow channel disposed downstream thereof, and a divided kneading portion 1 having a different number of divisions, and a coaxial circular flow channel And the divided kneading section 1 has a divided kneading section 2 in which a circular flow channel is arranged at a position where the outlet fluid can be mixed with the adjacent fluid and flow out. Split channel mixer.

3)多段分割流路型混合器の上記二重管型混合部−個別縮流部と、その下流に、流路全体を一つの流路に縮流させる集合縮流部を有する、前記1)に記載の多段分割流路型混合器。
4)多段分割流路型混合器の上記二重管型混合部−個別縮流部と、その下流に、任意の滞留混合時間を保有する直管型滞留部を有する、前記1)に記載の多段分割流路型混合器。
3) The double pipe type mixing unit-individual contraction unit of the multistage divided channel type mixer, and an aggregated contraction unit for contracting the entire channel into one channel on the downstream side thereof 1) A multistage divided flow channel mixer according to claim 1.
4) Said double pipe type mixing part-individual contraction part of multistage division flow channel type mixer, and straight pipe type retention part holding arbitrary residence mixing time downstream thereof, as described in 1) above Multi-stage split channel mixer.

5)多段分割流路型混合器の上記二重管型混合部−個別縮流部と、その下流配設された流路全体を一つの流路に縮流させる集合縮流部ないし任意の滞留混合時間を有する直管型滞留部の下流に、円管状流路に分割する分割混錬部1を有する、前記1)に記載の多段分割流路型混合器。
6)多段分割流路型混合器の下流に、上記集合縮流部、直管型滞留部、分割混錬部1、又は分割混錬部2が任意の組み合わせで任意の数設けられている、前記1)から5)のいずれかに記載の多段分割流路型混合器。
7)流体A分割部、二重管混合部、個別縮流部、分割混錬部1、又は分割混錬部2の少なくとも一つの構成部材、もしくは複数の構成部材の流路において、流路内径が1mm以下のマイクロ流路であり、かつ全体の圧力損失が3MPa以下、あるいは1MPa以下となる分割数で分割されている、前記1)から6)に記載の多段分割流路型混合器。
5) The above-mentioned double-tube type mixing section of the multi-stage divided flow path type mixer—individual contracted flow section, and a collective contracted flow section or an arbitrary stay for contracting the entire flow path disposed downstream thereof into one flow path The multistage divided flow channel mixer according to 1) above, which has a divided kneading unit 1 that divides into a tubular flow channel downstream of a straight pipe type retention unit having a mixing time.
6) In the downstream of the multistage divided flow channel type mixer, an arbitrary number of the above-mentioned collective flow-reducing section, straight pipe-type staying section, divided kneading section 1, or divided kneading section 2 are provided in any combination, The multistage divided flow channel mixer according to any one of 1) to 5).
7) In the flow path of at least one constituent member or a plurality of constituent members of the fluid A splitting section, the double pipe mixing section, the individual contraction section, the split kneading section 1 or the split kneading section 2, Is a micro flow channel of 1 mm or less, and is divided by the number of divisions in which the total pressure loss is 3 MPa or less, or 1 MPa or less.

本発明は、連続的に高圧供給する溶融樹脂と、同じく連続的に供給する高温高圧の二酸化炭素を、混合器によって混合、溶解させて、溶融樹脂の粘度を低下させ、高圧条件から大気圧へ噴霧ノズルを介して噴出させることによって溶融樹脂を微粒化する方法であって、流体A、流体Bが、二酸化炭素、溶融樹脂の何れかである場合、当該混合器として、流体Aが混合器に流入した後に、均等な圧力損失を生じさせて複数の円管状流路に均等分割される流体A分割部と、流体A分割部の下流に、流体Bが混合器に流入した後に、均等な圧力損失を生じさせて円管状流路に均等分割させる流体B分割部と、流体B分割部の下流に、流体A分割部の分割数と同じ数だけ設けられ、流体Aが内部流体、流体Bが外部流体となる円管状の二重管型混合器構造を構成する二重管型混合部と、二重管型混合部の下流に、流体A分割部の分割数と同じ数だけ設けられ、それぞれの二重管型混合部出口を縮流させる個別縮流部、を有する多段分割流路型混合器を用いること、を特徴とするものである。   The present invention mixes and melts a molten resin that is continuously supplied at high pressure and high-temperature and high-pressure carbon dioxide that is also continuously supplied by a mixer to reduce the viscosity of the molten resin, and from high pressure conditions to atmospheric pressure. In this method, the molten resin is atomized by spraying through a spray nozzle, and when the fluid A and fluid B are either carbon dioxide or molten resin, the fluid A is used as the mixer. After flowing in, a uniform pressure loss is caused to equally divide the fluid A into a plurality of tubular channels, and after fluid B flows into the mixer downstream of the fluid A partition, the uniform pressure A fluid B dividing portion that causes a loss to be equally divided into circular flow paths, and the same number as the number of divisions of the fluid A dividing portion are provided downstream of the fluid B dividing portion. A circular double-pipe mixer serving as an external fluid The double pipe type mixing part that constitutes the structure, and the number of divisions of the fluid A dividing part are provided downstream of the double pipe type mixing part and the individual outlets of the double pipe type mixing part are contracted. It is characterized by using a multistage divided flow channel type mixer having a constricted flow part.

図4に、二酸化炭素と溶融樹脂の連続混合による溶融樹脂微粒化装置の概略を示す。図4において、樹脂ペレットをホッパー(31)に投入して、エクストルーダー(32)で加熱溶融して次工程へ供給する。エクストルーダー(32)出口の圧力P−1を任意の圧力、例えば、数MPaで一定となるように、エクストルーダー(32)の回転数を制御する。エクストルーダー(32)から供給された溶融樹脂を、ギアポンプ(33)により、高圧環境の工程に定量供給する。溶融樹脂ラインには、ラプチャーディスク(34)、樹脂ライン圧力P−2、ストップ弁SV−1、逆止弁CV−1が設けられ、樹脂ラインは、例えば、ヒートトレース(図示せず)で、加熱溶融状態を保持することが好ましい。   In FIG. 4, the outline of the molten resin atomization apparatus by the continuous mixing of a carbon dioxide and molten resin is shown. In FIG. 4, resin pellets are put into a hopper (31), heated and melted by an extruder (32), and supplied to the next step. The number of revolutions of the extruder (32) is controlled so that the pressure P-1 at the outlet of the extruder (32) is constant at an arbitrary pressure, for example, several MPa. The molten resin supplied from the extruder (32) is quantitatively supplied to the high-pressure environment process by the gear pump (33). The molten resin line is provided with a rupture disk (34), a resin line pressure P-2, a stop valve SV-1, and a check valve CV-1. The resin line is, for example, a heat trace (not shown), It is preferable to maintain a heated and melted state.

二酸化炭素は、二酸化炭素ボンベ(35)から冷却器(36)を経て、二酸化炭素ポンプ(37)で高圧環境の工程に定量供給する。二酸化炭素ラインには、安全弁でも構わないものの、背圧弁PCV−1を設けて、SV−3で二酸化炭素供給を閉止した際に生じる圧力上昇に対して、背圧弁PCV−1で設定した圧力以上は二酸化炭素ポンプ(37)吸込ラインに戻すようにする構成が好ましい。   Carbon dioxide is quantitatively supplied from the carbon dioxide cylinder (35) through the cooler (36) to the high pressure environment process by the carbon dioxide pump (37). The carbon dioxide line may be a safety valve, but a back pressure valve PCV-1 is provided, and the pressure rises when the carbon dioxide supply is closed in SV-3, the pressure set by the back pressure valve PCV-1 or higher. Is preferably configured to return to the carbon dioxide pump (37) suction line.

二酸化炭素ラインには、二酸化炭素安定供給システムを用いることが好ましい。これは、高圧二酸化炭素の供給ラインで、混合部よりも上流に、1次圧力制御弁を設け、該1次圧力調節弁の設定圧力を、混合部の圧力に混合部以降のラインで生じる変動圧力値を加えた圧力よりも大きな圧力に設定することで、高圧二酸化炭素の断続的な供給を抑制し、その供給流量を安定化させること、すなわち、例えば、二酸化炭素ラインに、1次圧力制御弁PCV−2を設けて、PCV−2上流の圧力を、混合器の圧力よりも高圧の条件、好ましくは2MPa以上高圧を保つことを特徴とするものある。   A carbon dioxide stable supply system is preferably used for the carbon dioxide line. This is a high-pressure carbon dioxide supply line, and a primary pressure control valve is provided upstream of the mixing section, and the set pressure of the primary pressure control valve is changed to the pressure of the mixing section in the line after the mixing section. By setting the pressure to a pressure larger than the pressure added, the intermittent supply of high-pressure carbon dioxide is suppressed and the supply flow rate is stabilized, that is, for example, the primary pressure control in the carbon dioxide line A valve PCV-2 is provided, and the pressure upstream of PCV-2 is maintained at a higher pressure than that of the mixer, preferably 2 MPa or more.

また、PCV−2から混合器(39)の間の容積を最小化することが好ましい。これにより、混合器下流で生じる圧力変動を要因とする二酸化炭素ラインの昇圧不足による二酸化炭素の間欠流発生を抑制することができる。   It is also preferred to minimize the volume between PCV-2 and the mixer (39). Thereby, it is possible to suppress the occurrence of intermittent flow of carbon dioxide due to insufficient pressurization of the carbon dioxide line due to pressure fluctuations occurring downstream of the mixer.

二酸化炭素ラインの1次圧力制御弁PCV−2の下流に、好ましくは、圧力計P−4、流量計F−1を設ける。その後、二酸化炭素加熱器(38)により、溶融樹脂と混合する温度に加熱を行う。加熱器下流に、ストップ弁SV−3、逆止弁CV−2を設けることが好ましい。   A pressure gauge P-4 and a flow meter F-1 are preferably provided downstream of the primary pressure control valve PCV-2 in the carbon dioxide line. Then, it heats to the temperature mixed with molten resin with a carbon dioxide heater (38). It is preferable to provide a stop valve SV-3 and a check valve CV-2 downstream of the heater.

溶融樹脂と二酸化炭素が混合器(39)を通過することにより、溶融樹脂中に二酸化炭素が溶解して、溶融樹脂の粘度が低下する。粘度低下挙動を計測するために、オリフィスOF−1、オリフィスの前後差圧を計測する差圧計ΔP−1を設ける。以下の式(1)に示すハーゲン・ポアズイユの式を用いて粘度を算出する。   When the molten resin and carbon dioxide pass through the mixer (39), the carbon dioxide is dissolved in the molten resin, and the viscosity of the molten resin is reduced. In order to measure the viscosity reduction behavior, an orifice OF-1 and a differential pressure gauge ΔP-1 for measuring the differential pressure across the orifice are provided. The viscosity is calculated using the Hagen-Poiseuille equation shown in the following equation (1).

溶融樹脂中への二酸化炭素の溶解性は、混合器の混合性能に依存する。本プロセスで求められる高い混合性能を有する混合器は、混合器から差圧計測部までの滞留時間において、飽和溶解度近くまで二酸化炭素を溶解することができるものであることが求められる。実際の運転では、飽和溶解条件以下の二酸化炭素添加率で混合し、確実に一相状態を保つ条件を選択する。その際の粘度が安定していることが重要である。すなわち、飽和溶解度未満の運転であっても、混合性能が高ければ、二酸化炭素添加率に応じた粘度低下率が得られ、かつ安定した運転ができることが重要である。   The solubility of carbon dioxide in the molten resin depends on the mixing performance of the mixer. The mixer having high mixing performance required in this process is required to be capable of dissolving carbon dioxide to near saturation solubility in the residence time from the mixer to the differential pressure measuring unit. In actual operation, mixing is performed at a carbon dioxide addition rate equal to or lower than the saturation dissolution condition, and a condition for reliably maintaining a one-phase state is selected. It is important that the viscosity at that time is stable. That is, even if the operation is less than the saturation solubility, it is important that if the mixing performance is high, a viscosity reduction rate corresponding to the carbon dioxide addition rate can be obtained and a stable operation can be performed.

そこで、本発明は、例えば、連続的に高圧供給する溶融樹脂と、同じく連続的に供給する高温高圧の二酸化炭素を、混合器によって混合、溶解させて、溶融樹脂の粘度を低下させ、高圧条件から大気圧へ噴霧ノズルを介して噴出させることによって、溶融樹脂を微粒化する方法において、混合器として、多段分割流路型混合器を用いることを特徴としている。   Accordingly, the present invention, for example, mixes and dissolves a molten resin that is continuously supplied with high pressure and high-temperature and high-pressure carbon dioxide that is continuously supplied with a mixer, thereby reducing the viscosity of the molten resin, In the method of atomizing the molten resin by spraying from the pressure to the atmospheric pressure through a spray nozzle, a multistage divided flow channel type mixer is used as the mixer.

ここで、本発明で用いる多段分割流路型混合器について説明すると、まず、その概略を図5に示す。図5に示す混合器は、高温高圧条件で耐圧ができるハウジングを外周に設けており、当該ハウジングの内部に混合器が内在している。溶融樹脂、二酸化炭素を、流体A、流体Bの何れかとした場合、上部から流体A、側面から流体Bが流入し、下部から混合後流体が流出する。   Here, the multistage divided flow channel mixer used in the present invention will be described. First, an outline thereof is shown in FIG. The mixer shown in FIG. 5 is provided with a housing that can withstand pressure under high-temperature and high-pressure conditions on the outer periphery, and the mixer is contained inside the housing. When molten resin or carbon dioxide is used as either fluid A or fluid B, fluid A flows from the top, fluid B flows from the side, and fluid flows out from the bottom after mixing.

図6に、多段分割流路型混合器の構成部品の例を示す。本発明では、この混合器として、流体Aと流体Bを混合するもので、流体Aが混合器に流入した後に、均等な圧力損失を生じさせて複数の円管状流路に均等分割される流体A分割部(部品1)と、流体A分割部の下流に、流体Bが混合器に流入した後に、均等な圧力損失を生じさせて円管状流路に均等分割させる流体B分割部(部品2側面)と、流体B分割部の下流に、流体A分割部の分割数と同じ数だけ設けられ、流体Aが内部流体、流体Bが外部流体となる円管状の二重管型混合器構造を構成する二重管型混合部(部品1と部品2)と、二重管型混合部の下流に、流体A分割部の分割数と同じ数だけ設けられ、それぞれの二重管型混合部出口を縮流させる個別縮流部(部品2底面)を有する多段分割流路型混合器が用いられる。   In FIG. 6, the example of the component of a multistage division flow path type mixer is shown. In the present invention, as the mixer, the fluid A and the fluid B are mixed. After the fluid A flows into the mixer, the fluid is uniformly divided into a plurality of circular flow paths by causing an equal pressure loss. A divided part (part 1) and a fluid B divided part (part 2) that causes an equal pressure loss after the fluid B flows into the mixer downstream of the fluid A divided part and equally divides the tubular flow path. Side surface) and downstream of the fluid B dividing portion, the same number of divisions as the number of the fluid A dividing portion is provided, and a circular double-tube type mixer structure in which the fluid A is an internal fluid and the fluid B is an external fluid is provided. The double pipe type mixing section (parts 1 and 2) to be configured and the number of divisions of the fluid A dividing part are provided downstream of the double pipe type mixing part, and the outlets of the respective double pipe type mixing parts A multistage divided flow channel type mixer having an individual contracted portion (bottom surface of the component 2) for contracting the flow is used.

多段分割流路型混合器の最小構成は、部品1、2で構成される。図7に、流体A、流体Bの二重管混合部と個別縮流部における混合状態の詳細を示した。本発明では、例えば、連続的に高圧供給する溶融樹脂と、同じく連続的に供給する高温高圧の二酸化炭素を、混合器によって混合、溶解させて、溶融樹脂の粘度を低下させ、高圧条件から大気圧へ噴霧ノズルを介して噴出させることによって、溶融樹脂を微粒化する。   The minimum configuration of the multistage divided flow channel mixer is composed of parts 1 and 2. FIG. 7 shows the details of the mixing state of the fluid A and fluid B in the double-tube mixing section and the individual contraction section. In the present invention, for example, a molten resin that is continuously supplied with high pressure and high-temperature and high-pressure carbon dioxide that is continuously supplied are mixed and dissolved by a mixer to reduce the viscosity of the molten resin, so that The molten resin is atomized by ejecting to atmospheric pressure through a spray nozzle.

本発明では、多段分割流路型混合器の上記二重管型混合部−個別縮流部(部品2)と、その下流に配設された流路全体を一つの流路に縮流させる集合縮流部(部品3−a)ないし任意の滞留混合時間を有する直管型滞留部(部品3−b)と、その下流に配設された円管状流路に分割する分割混錬部1(部品4)と、分割混錬部1と分割数が異なり、同軸状に円管状流路を有さず、分割混錬部1出口流体が隣り合う流体と相互混合して流出することができる位置に円管状流路を配置した分割混錬部2(部品5)を有する多段分割流路型混合器を用いること、を好ましい実施の態様としている。   In the present invention, the double-tube type mixing section-individual contracted section (part 2) of the multistage divided channel mixer and the assembly for contracting the entire channel disposed downstream thereof into one channel. Divided kneading section 1 (divided into a constricted flow section (part 3-a) or a straight pipe-type stay section (part 3-b) having an arbitrary stay-mixing time and a circular flow path disposed downstream thereof The part 4) is different from the division kneading unit 1 in the number of divisions, does not have a coaxial circular channel, and the division kneading unit 1 outlet fluid can be mixed with the adjacent fluid and flow out. It is a preferred embodiment to use a multistage divided flow channel type mixer having a divided kneading section 2 (part 5) in which a circular flow channel is disposed.

また、本発明では、多段分割流路型混合器の上記二重管型混合部―個別縮流部(部品2)と、その下流に、流路全体を一つの流路に縮流させる集合縮流部(部品3−a)を有する多段分割流路型混合器を用いることを、好ましい実施の態様としている。   In the present invention, the double-tube type mixing unit-individual contraction unit (part 2) of the multistage divided channel type mixer, and the collective contraction that contracts the entire channel into one channel downstream thereof. The use of a multistage divided flow channel mixer having a flow section (part 3-a) is a preferred embodiment.

また、本発明では、多段分割流路型混合器の上記二重管型混合部―個別縮流部(部品2)と、その下流に、任意の滞留混合時間を保有する直管型滞留部(部品3−a)を有する多段分割流路型混合器を用いることを、好ましい実施の態様としている。   Further, in the present invention, the above-mentioned double tube type mixing unit-individual contraction unit (part 2) of the multistage divided flow channel type mixer, and a straight pipe type retention unit (arbitrary residence mixing time downstream) It is a preferred embodiment to use a multi-stage split channel mixer with part 3-a).

また、本発明では、混合器として、多段分割流路型混合器の上記二重管型混合部―個別縮流部(部品2)と、その下流に配設された流路全体を一つの流路に縮流させる集合縮流部(部品3−a)ないし任意の滞留混合時間を有する直管型滞留部(部品3−b)の下流に、円管状流路に分割する分割混錬部1(部品4)を有する多段分割流路型混合器を用いることを、好ましい実施の態様としている。   Further, in the present invention, as the mixer, the above-mentioned double tube type mixing section-individual contraction section (part 2) of the multistage divided flow path type mixer and the entire flow path disposed downstream thereof are combined into one flow. Divided kneading section 1 for dividing into a tubular flow channel downstream of a collective contraction section (part 3-a) to be contracted in a path or a straight pipe type retention section (part 3-b) having an arbitrary residence mixing time The use of a multistage divided flow channel mixer having (Part 4) is a preferred embodiment.

また、本発明では、混合器として、多段分割流路型混合器の下流に、上記集合縮流部(部品3−a)、直管型滞留部(部品3−b)、分割混錬部1(部品4)、又は分割混錬部2(部品5)が任意の組み合わせで任意の数設けられている多段分割流路型混合器を用いることを、好ましい実施の態様としている。   Further, in the present invention, as the mixer, downstream of the multistage divided flow channel type mixer, the above-mentioned collective flow-reducing part (part 3-a), straight pipe type staying part (part 3-b), divided kneading part 1 It is a preferable embodiment to use (part 4) or a multistage divided flow channel mixer in which any number of divided kneading units 2 (parts 5) are provided in any combination.

また、本発明では、多段分割流路型混合器を用いる流体A分割部(部品1)、二重管混合部(部品2)、個別縮流部(部品2底面)、分割混錬部1(部品4)、又は分割混錬部2(部品5)の少なくとも一つの構成部品、もしくは複数の構成部品の流路において、流路内径が1mm以下のマイクロ流路であり、かつ全体の圧力損失が3MPa以下、好ましくは1MPa以下となる分割数で分割されている多段分割流路型混合器を用いることを、好ましい実施の態様としている。   Moreover, in this invention, the fluid A division | segmentation part (part 1) using a multistage division | segmentation flow-path type mixer (part 1), a double pipe mixing part (part 2), an individual flow reduction part (part 2 bottom face), the division | segmentation kneading part 1 ( The flow path of at least one component of the component 4) or the divided kneading section 2 (component 5), or a flow path of a plurality of components, is a micro flow channel having a flow channel inner diameter of 1 mm or less, and has an overall pressure loss. A preferred embodiment is to use a multistage divided flow channel mixer that is divided by a division number of 3 MPa or less, preferably 1 MPa or less.

本発明では、混合器が高温高圧環境で使用できるように、これらを保持するハウジングが外周に設けられていること、上記多段分割流路型混合器において、流体A、流体Bが、二酸化炭素、溶融樹脂の何れかであること、上記多段分割流路型混合器において、流体Aが二酸化炭素、流体Bが溶融樹脂であることが好ましい。   In the present invention, a housing for holding the mixer is provided on the outer periphery so that the mixer can be used in a high temperature and high pressure environment. In the multistage divided flow channel mixer, fluid A and fluid B are carbon dioxide, In the multistage divided flow channel mixer, the fluid A is preferably carbon dioxide and the fluid B is preferably a molten resin.

本発明で用いる多段分割流路型混合器は、例えば、図5〜7に示される構成部品の組み合わせから構成される構造体である。この構造体の基本構成について更に具体的に説明すると、当該構造体は、図5において、流体Aが混合器に流入した後に、均等な圧力損失を生じさせて複数の円管状流路に均等分割される流体A分割部と、流体A分割部の下流に、流体Bが混合器に流入した後に、均等な圧力損失を生じさせて円管状流路に均等分割される流体B分割部からなる第1層[部品1]と、流体B分割部の下流に、流体A分割部の分割数と同じ数だけ設けられ、流体Aが内部流体、流体Bが外部流体となる円管状の二重管型混合器構造を構成する二重管型混合部と、二重管型混合部の下流に、流体A分割部の分割数と同じ数だけ設けられ、それぞれの二重管型混合部出口を縮流させる個別縮流部からなる第2層[部品2]、を有する。   The multistage divided flow path type mixer used in the present invention is a structure constituted by a combination of components shown in FIGS. The basic structure of this structure will be described more specifically. In FIG. 5, the structure is divided equally into a plurality of tubular channels by causing an equal pressure loss after the fluid A flows into the mixer. And a fluid B dividing portion that is divided into a circular flow path by causing an equal pressure loss after the fluid B flows into the mixer downstream of the fluid A dividing portion. One layer [part 1] and a circular double-tube type provided downstream of the fluid B dividing portion by the same number as the number of divisions of the fluid A dividing portion, wherein fluid A is an internal fluid and fluid B is an external fluid The same number of divisions as the fluid A division part are provided downstream of the double pipe type mixing part and the double pipe type mixing part constituting the mixer structure, and each double pipe type mixing part outlet is contracted. And a second layer [part 2] composed of individual contracted portions.

部品1及び部品2で構成される最小限の基本構成の下流に、部品3−aに示すような、流路全体を一つの流路に縮流させる集合縮流部を形成することも可能である。部品1及び部品2で構成される最小限の基本構成の下流に、部品3−bに示すような、任意の滞留混合時間を保有する直管型滞留部を形成することも可能である。   It is also possible to form a collective contraction part that contracts the entire flow path into one flow path, as shown in the part 3-a, downstream of the minimum basic configuration composed of the parts 1 and 2. is there. It is also possible to form a straight pipe-type staying section having an arbitrary staying and mixing time as shown in the part 3-b, downstream of the minimum basic structure composed of the parts 1 and 2.

部品1及び部品2で構成される最小限の基本構成の下流に、部品4に示すような、好ましくは個別縮流部の分割数と異なる分割数を有する円管状流路に分割する分割混錬部1と、部品5に示すような、分割混錬部1と分割数が異なり、同軸状に円管状流路を有さず、分割混錬部1出口流体が隣り合う流体と相互混合して流出することができる位置に円管状の流路を配置した分割混錬部2を設けることも可能である。   Split kneading to divide into a circular flow channel having a division number different from the division number of the individual constricted flow section, as shown in the part 4, downstream of the minimum basic configuration composed of the parts 1 and 2 As shown in the part 1 and the part 5, the number of divisions is different from that of the divided kneading part 1, and does not have a coaxial circular channel, and the divided kneading part 1 outlet fluid is mixed with the adjacent fluid. It is also possible to provide the divided kneading section 2 in which a circular channel is arranged at a position where it can flow out.

ここで、部品4の上流に部品3−aが設置され、部品4の流路の分割数を限定するものではないが、部品4の上流に部品3−bが設置される場合は、個別縮流部の流路の分割数と異なる分割数のものが好ましい。   Here, the part 3-a is installed upstream of the part 4, and the number of divisions of the flow path of the part 4 is not limited. However, when the part 3-b is installed upstream of the part 4, the individual compression is performed. The thing of the division number different from the division number of the flow path of a flow part is preferable.

また、部品1及び部品2で構成される最小限の基本構成の下流に、部品3−a、3−b、部品4、5で示した部品を、任意の組み合わせで、任意の数で設けることも可能である。図1においては、部品1,2,3−a,4,5,4,5の順に組み合わせた例を示しているが、その他、これらの部品の組み合わせは、1,2,3−b,4,5,4,5であっても、1,2,4,5,4,5であっても構わない。   In addition, the parts indicated by parts 3-a, 3-b, parts 4, and 5 are provided in an arbitrary combination and in an arbitrary number downstream of the minimum basic configuration including parts 1 and 2 Is also possible. Although FIG. 1 shows an example in which the components 1, 2, 3-a, 4, 5, 4, 5 are combined in this order, other combinations of these components are 1, 2, 3-b, 4 , 5, 4, 5, or 1, 2, 4, 5, 4, 5.

この場合、少なくとも、流体A分割部、二重管混合部、個別縮流部、分割混錬部1、分割混錬部2の流路の内径が、1mm以下のマイクロ流路を用いること、かつ全体の圧力損失が2MPa以下、好ましくは1MPa以下となるような構成部品の流路の分割数に設計すること、が重要である。これらは、流体における流体流量、流体粘度の条件に依存するため、流路は、条件に応じたマイクロ流路の設計を、その適切な分割数に設計することが重要である。   In this case, at least, a micro flow path having an inner diameter of 1 mm or less of the flow path of the fluid A dividing section, the double pipe mixing section, the individual contracted flow section, the divided kneading section 1 and the divided kneading section 2 is used. It is important to design the number of divisions of the flow path of the component parts so that the total pressure loss is 2 MPa or less, preferably 1 MPa or less. Since these depend on the conditions of the fluid flow rate and fluid viscosity in the fluid, it is important to design the microchannel according to the conditions to the appropriate number of divisions.

前述のハーゲン・ポアズイユの式より、マイクロ流路の内径、長さ、通液する流体の体積流量、粘度を仮定すると、圧力損失を計算することができる。流路の分割数をn個とすると、流路断面積はn倍となり、流速が1/nとなるため、圧力損失は1/nとなる。従って、これにより、各部品で発生する圧力損失の合計が3MPa以下、好ましくは1MPa以下となる分割数を決定することができる。   From the Hagen-Poiseuille equation described above, the pressure loss can be calculated assuming the inner diameter and length of the microchannel, the volume flow rate of the fluid to be passed, and the viscosity. If the number of flow channel divisions is n, the cross-sectional area of the flow channel is n times and the flow velocity is 1 / n, so the pressure loss is 1 / n. Therefore, it is possible to determine the number of divisions in which the total pressure loss generated in each component is 3 MPa or less, preferably 1 MPa or less.

例えば、図5に示す流路多段分割型混合器では、その圧力損失は、質量流量50g/min、流体粘度10,000cPとして、流路は、各部品で生じる圧力損失の合計が0.9MPaとなる分割数を選定している。実際の実験では、二酸化炭素が溶解して粘度が低下するため、粘度低下率分、圧力損失は低下する。   For example, in the flow channel multistage split type mixer shown in FIG. 5, the pressure loss is 50 g / min mass flow rate and the fluid viscosity is 10,000 cP, and the flow channel has a total pressure loss of 0.9 MPa. The number of divisions is selected. In an actual experiment, since carbon dioxide dissolves and the viscosity decreases, the pressure loss decreases by the viscosity decrease rate.

本発明は、特に、多段分割流路型混合器を用いる点に特徴を有するものであり、当該混合器に適用する溶融樹脂については、その種類を限定するものではなく、当該多段分割流路型混合器に適用できる溶融樹脂であればすべての溶融樹脂を対象とすることができる。   The present invention is particularly characterized in that a multistage divided flow channel mixer is used. The type of the molten resin applied to the mixer is not limited, and the multistage divided flow channel type is not limited. Any molten resin that can be applied to a mixer can be used.

本発明では、上記多段分割流路型混合器を用いて溶融樹脂と二酸化炭素を均一に混合した混合流体を高圧条件から大気圧へ噴霧する前に、噴霧流速を上昇させるために流体を追加混合することが好ましい。図4に示すように、二酸化炭素が混合されて粘度が低下した溶融樹脂がオリフィスOF−1を経て、そのまま大気圧環境へ噴出される前に、噴霧用追加流体(40)を混合することで、噴霧流速を上昇させて微粒化を促進させることができる。   In the present invention, before the mixed fluid in which the molten resin and carbon dioxide are uniformly mixed is sprayed from the high pressure condition to the atmospheric pressure using the multistage divided flow channel mixer, the fluid is additionally mixed in order to increase the spray flow rate. It is preferable to do. As shown in FIG. 4, before the molten resin whose viscosity has been reduced by mixing with carbon dioxide passes through the orifice OF-1 and is jetted as it is to the atmospheric pressure environment, the additional fluid for spraying (40) is mixed. The atomization can be promoted by increasing the spray flow rate.

この際、噴霧用追加流体を混合する噴霧ノズルでの圧力損失が増加するため、噴霧前圧力が上昇し、合わせて系内の圧力が上昇する。従って、溶融樹脂と二酸化炭素を混合して粘度を低下させるユニットの圧力制御は、一次圧力制御弁PCV−3を設けて一定圧力に制御されることが好ましい。   At this time, the pressure loss at the spray nozzle for mixing the additional fluid for spraying increases, so that the pre-spray pressure increases and the pressure in the system also increases. Therefore, it is preferable that the pressure control of the unit for reducing the viscosity by mixing the molten resin and carbon dioxide is controlled to a constant pressure by providing the primary pressure control valve PCV-3.

本発明では、溶融樹脂と二酸化炭素を均一に混合した混合流体を高圧条件から大気圧へ噴霧する前に、噴霧流速を上昇させるために、流体を追加混合する混合器に、上記多段分割流路型混合器を用いることを、好ましい実施の態様としている。図4の混合器41は、通常のT字型継手などの混合器構造であっても構わないが、多段分割流路型混合器であることが好ましい。   In the present invention, before the mixed fluid in which the molten resin and carbon dioxide are uniformly mixed is sprayed from the high pressure condition to the atmospheric pressure, the multistage divided flow path is added to the mixer for additionally mixing the fluid in order to increase the spray flow rate. The use of a mold mixer is a preferred embodiment. The mixer 41 in FIG. 4 may have a mixer structure such as a normal T-shaped joint, but is preferably a multistage divided flow channel mixer.

本発明では、溶融樹脂と二酸化炭素を均一に混合した混合流体を高圧条件から大気圧へ噴霧する前に、噴霧流速を上昇させるために、追加混合する流体が、二酸化炭素、空気、窒素、ヘリウム、アルゴン、又はネオンであることが好ましい。この場合、初めに溶融樹脂に混合する流体は溶融樹脂に溶解して粘度を低下させる必要があるため、二酸化炭素である必要がある。   In the present invention, before the mixed fluid in which the molten resin and carbon dioxide are uniformly mixed is sprayed from the high pressure condition to the atmospheric pressure, the fluid to be additionally mixed is carbon dioxide, air, nitrogen, helium in order to increase the spray flow rate. Ar, argon or neon is preferred. In this case, the fluid that is first mixed with the molten resin needs to be dissolved in the molten resin to reduce the viscosity, and therefore needs to be carbon dioxide.

一方、噴霧用追加流体は、もちろん二酸化炭素を追加供給しても構わないが、ここで追加する流体の意味合いは、二酸化炭素が溶解した溶融樹脂と均一溶解しなくても構わない。噴霧直前に二相流となっても、その二相流の流動状態がスラグ流のように間欠流とならない気泡流、栓流、二層流、波状流、環状流、噴霧流の何れかで一様な二相流となることが重要である。   On the other hand, the additional fluid for spraying may, of course, additionally supply carbon dioxide, but the meaning of the fluid added here may not be uniformly dissolved with the molten resin in which carbon dioxide is dissolved. Even if it becomes a two-phase flow just before spraying, the flow state of the two-phase flow is not an intermittent flow like a slag flow, any of a bubble flow, plug flow, two-layer flow, wave flow, annular flow, or spray flow It is important to have a uniform two-phase flow.

従って、噴霧用追加流体は、空気、窒素、ヘリウム、アルゴン、ネオンの何れか、又はこれらの混合物であっても構わない。また、噴霧用追加流体の添加流量、添加温度を制御することにより、噴霧前の温度、圧力を制御することができる。これにより、噴霧後の液滴の冷却温度、表面張力を制御して、粒子径及び粒子の形態を制御することができる。   Therefore, the additional fluid for spraying may be air, nitrogen, helium, argon, neon, or a mixture thereof. Moreover, the temperature and pressure before spraying can be controlled by controlling the addition flow rate and the addition temperature of the additional fluid for spraying. Thereby, the particle diameter and the form of the particles can be controlled by controlling the cooling temperature and surface tension of the droplets after spraying.

本発明により、次のような効果が奏される。
(1)本発明により、気相法、液相法、固相法などにより生成していた樹脂の微粒子を、低環境負荷の二酸化炭素を用いて、連続的、安定的に製造することが可能である。
(2)本発明のプロセスは、溶融樹脂のみならず、様々な有機物の微粒化プロセスとしての展開が可能であり、二酸化炭素安定供給システムや、多段分割流路型混合器の応用と展開が期待される。
(3)二酸化炭素を混合して低粘度化させた溶融樹脂を微粒化させる方法及び溶融樹脂の微細化製品の提供を実現することができる。
(4)溶融樹脂の微粒子の粒子径、粒子形状を制御することができる。
(5)溶融樹脂の微粒化装置を提供することができる。
The present invention has the following effects.
(1) According to the present invention, resin fine particles produced by a gas phase method, a liquid phase method, a solid phase method, or the like can be continuously and stably produced using carbon dioxide having a low environmental load. It is.
(2) The process of the present invention can be developed not only as a molten resin but also as a process for atomizing various organic substances, and is expected to be applied and developed as a carbon dioxide stable supply system and a multistage divided flow channel mixer. Is done.
(3) It is possible to realize a method for atomizing a molten resin mixed with carbon dioxide to reduce the viscosity and a refined product of the molten resin.
(4) The particle diameter and particle shape of the fine particles of the molten resin can be controlled.
(5) An apparatus for atomizing molten resin can be provided.

既存技術としての二酸化炭素を飽和溶解させて大気圧に噴霧する溶融樹脂の微粒化装置(バッチ法)を示す。A melt resin atomization apparatus (batch method) that saturates and dissolves carbon dioxide as an existing technology and sprays to atmospheric pressure is shown. 既存技術としての二酸化炭素を飽和溶解させて大気圧に噴霧する溶融樹脂の微粒化装置(連続法)を示す。A melt resin atomization apparatus (continuous method) that melts carbon dioxide as an existing technology and sprays it to atmospheric pressure is shown. 既存の装置により微粒化した製造したポリエチレンオキシド(ポリエチレングリコール)の分子量6000、20000の微粒子の写真を示す。The photograph of the microparticles | fine-particles of the molecular weights 6000 and 20000 of the manufactured polyethylene oxide (polyethylene glycol) atomized with the existing apparatus is shown. 本発明に係る二酸化炭素と溶融樹脂の連続混合による溶融樹脂微粒化装置(連続法)を示す。The molten resin atomization apparatus (continuous method) by the continuous mixing of the carbon dioxide and molten resin which concerns on this invention is shown. 多段分割流路型混合器の一例を示す説明図である。It is explanatory drawing which shows an example of a multistage division | segmentation flow-path type mixer. 多段分割流路型混合器の構成部品の一例を示す説明図である。It is explanatory drawing which shows an example of the component of a multistage division | segmentation flow-path type mixer. 多段分割流路型混合器の二重管混合部−個別縮流部における流体の混合状態の詳細を示す説明図である。It is explanatory drawing which shows the detail of the mixing state of the fluid in the double pipe mixing part-individual contraction part of a multistage division flow channel type mixer. 既存混合器の中心衝突型混合器を示す。The center collision type mixer of the existing mixer is shown. 二酸化炭素添加率と粘度低下率(粘度比)の関係を示す。The relationship between a carbon dioxide addition rate and a viscosity reduction rate (viscosity ratio) is shown. 噴霧用追加流体流量と噴霧温度による平均粒子径の関係(噴霧用追加流体が二酸化炭素の場合)を示す。The relationship between the flow rate of the additional fluid for spraying and the average particle size according to the spraying temperature (when the additional fluid for spraying is carbon dioxide) is shown. 噴霧用追加流体流量と噴霧温度による樹脂微粒子の写真(噴霧用追加流体が二酸化炭素の場合)を示す。The photograph of the resin fine particle by the additional fluid flow for spraying and spraying temperature (when the additional fluid for spraying is carbon dioxide) is shown.

次に、混合器の製作例、装置及び実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   Next, although the present invention will be described in detail based on examples of manufacturing mixers, apparatuses, and examples, the present invention is not limited to the following examples.

次に、本発明の多段分割流路型混合器の製作例について具体的に説明する。   Next, a production example of the multistage divided flow channel mixer of the present invention will be specifically described.

[製作例]
本製作例では、本発明の多段分割流路型混合器を製作した例について説明する。図5〜7に、本発明の多段分割流路型混合器とその構成部品並びに二重管混合部と個別縮流部における流体の混合状態の詳細について示した。図6に示した構成部品1と2、部品3−aと3−bをこの順序で重層し、更に、部品4及び/又は部品5を重層して、図5〜7に示した多段分割流路型混合器を組み立てた。
[Production example]
In this production example, an example in which the multistage divided flow channel mixer of the present invention is produced will be described. 5 to 7 show the details of the mixed state of the fluid in the multistage divided flow channel mixer of the present invention, its components, and the double-tube mixing section and the individual contraction section. The component parts 1 and 2 and the parts 3-a and 3-b shown in FIG. 6 are overlaid in this order, and further the parts 4 and / or the parts 5 are overlaid, so that the multistage divided flow shown in FIGS. A road mixer was assembled.

当該多段分割流路型混合器においては、図5に示されるように、流体A、例えば、高圧二酸化炭素流体が上部から流入し、流体B、例えば、溶融樹脂は側面から流入し、下部から混合後流体が流出する。多段分割流路型混合器は、耐圧強度を有するハウジングの中に設置されるため、高圧機器としては、当該ハウジングのみ耐圧強度があればよく、多段分割流路型混合器は、圧力損失に耐え得る強度を有していればよい。   In the multistage divided flow channel mixer, as shown in FIG. 5, fluid A, for example, high-pressure carbon dioxide fluid flows in from the upper part, and fluid B, for example, molten resin flows in from the side and is mixed from the lower part. After fluid flows out. Since the multistage divided flow channel mixer is installed in a housing having pressure resistance, the high pressure device only needs to have pressure resistance, and the multistage divided flow channel mixer can withstand pressure loss. What is necessary is just to have the intensity | strength to obtain.

ここで、図5に示した多段分割流路型混合器を構成する構造体は、機械加工のみで製作することが可能な、機械加工に耐え得る強固な構造物であり、従来型のマイクロミキサーのような、微細構造体で構成される華奢な構造体ではない。その結果、例えば、流体の圧力損失が3MPaであっても、構造体の損傷はないが、通常は、圧力損失を1MPa以下となるように、上述の部品を積層する際の分割数を設計する。   Here, the structure constituting the multi-stage split channel mixer shown in FIG. 5 is a strong structure that can be manufactured only by machining and can withstand machining, and is a conventional micromixer. It is not a delicate structure composed of a fine structure. As a result, for example, even if the pressure loss of the fluid is 3 MPa, there is no damage to the structure, but normally, the number of divisions when the above components are stacked is designed so that the pressure loss is 1 MPa or less. .

多段分割流路型混合器の構成部品のうち、部品1については、流体A、例えば、高圧二酸化炭素流体が流入した後に、均等な圧力損失を生じさせて複数の円管状流路に均等分割される流体A分割部を形成し、流体A分割部とした。すなわち、具体的には、部品1は、21本の円管が底面に接続されるように形成すると共に、この21本の円管は、流体Aが均等に分割されるように、その内径、長さが正確に等しくなるように作製した。   Among the components of the multistage divided flow channel mixer, the component 1 is divided equally into a plurality of circular flow channels by causing a uniform pressure loss after the fluid A, for example, high-pressure carbon dioxide fluid flows in. The fluid A divided portion was formed as a fluid A divided portion. That is, specifically, the component 1 is formed so that 21 circular pipes are connected to the bottom surface, and the 21 circular pipes have inner diameters such that the fluid A is equally divided. The lengths were made to be exactly equal.

部品2は、側面からの溝状の複数の流路を有し、流体B、例えば、溶融樹脂が流入し、側面の全周に行き渡る構造とした。部品2については、溝状の流路の内側において、12本の円管の流路が中心の空間に向かって合流するように円管を配設して流体B分割部を形成し、流体B分割部とした。この12本の円管は、流体Bが均等に分割されるように、その内径、長さが正確に等しくなるように作製した。   The component 2 has a plurality of groove-like flow paths from the side surface, and has a structure in which the fluid B, for example, molten resin flows in and spreads around the entire side surface. For the component 2, the fluid B dividing portion is formed by arranging the circular pipe so that the flow paths of the 12 circular pipes merge toward the center space inside the groove-shaped flow path. Divided part. The twelve circular tubes were produced so that the inner diameter and length thereof were exactly equal so that the fluid B was equally divided.

流体Bは、均等分割されて、部品2の中心部に流入するように、部品2を器状に施工した。部品2の器状の底には、流体Aの分割数と同じ数だけ円形の凹みを形成した。該円管は、その凹みに流体Bが均等に流入し、更に、その凹みの中心に流体Aが流出する円管の端面が差し込まれた状態で配置させ、それによって、流体A分割数と同じ数の円管状の二重管型混合器を形成し、二重管型混合部とした。   The fluid 2 was divided into equal parts, and the component 2 was applied in a container shape so as to flow into the center of the component 2. A circular recess having the same number as the number of divisions of the fluid A was formed on the container-like bottom of the part 2. The circular pipe is disposed with the end face of the circular pipe through which the fluid B uniformly flows into the dent and the fluid A flows out into the center of the dent, thereby being the same as the fluid A division number. Several circular double-tube mixers were formed to form a double-tube mixer.

二重管型混合部の下流に配設される部品2の底面に、流路が、流体A分割部の流路の分割数と同じ数だけ設けられた、それぞれの二重管型混合部の出口を縮流させる個別縮流部を形成し、多段分割流路型混合器の最小限の基本構成は、部品1と部品2で構成した。   Each of the double-tube type mixing units is provided with the same number of channels as the number of divided channels of the fluid A dividing unit on the bottom surface of the component 2 disposed downstream of the double-tube type mixing unit. An individual flow-reducing part for reducing the flow of the outlet was formed, and the minimum basic configuration of the multi-stage divided flow channel mixer was composed of part 1 and part 2.

また、部品1と部品2で構成される最小限の基本構成の下流に、部品3−aに示すような、流路全体を一つの流路に縮流させる集合縮流部を形成し、更に、部品1と部品2で構成される最小限の基本構成の下流に、部品3−bに示すような、任意の滞留混合時間を保有する直管型滞留部を形成した。   Further, downstream of the minimum basic configuration composed of the parts 1 and 2, a collective contraction part for contracting the entire flow path into one flow path as shown in the part 3-a is formed. A straight pipe-type staying section having an arbitrary staying and mixing time as shown in the part 3-b was formed downstream of the minimum basic structure composed of the parts 1 and 2.

部品1と部品2で構成される最小限の基本構成の下流に、部品4に示すような、個別縮流部の流路の分割数と異なる分割数を有する円管状流路に分割する分割混錬部1と、部品5に示すような、分割混錬部1と流路の分割数が異なり、同軸状に円管状流路を有さず、分割混錬部1出口流体が隣り合う流体と相互混合して流出することができる位置に円管状流路を配置した分割混錬部2を設け、必要に応じて、適宜、これらの部品4、部品5を設けることも可能とした、多段分割流路型混合器を製作した。   A divided mixture that is divided into a circular flow channel having a division number different from the division number of the flow path of the individual constricted flow section, as shown in the component 4, downstream of the minimum basic configuration constituted by the component 1 and the component 2. As shown in the smelting unit 1 and the part 5, the divided kneading unit 1 and the number of divisions of the flow path are different, do not have a coaxial circular channel, and the divided kneading unit 1 outlet fluid is adjacent to the fluid. A multi-stage division in which a divided kneading section 2 in which circular flow channels are arranged at positions where they can be mixed and flowed out is provided, and these parts 4 and 5 can be provided as needed. A flow channel mixer was manufactured.

[装置及び実施例]
ガス飽和溶液を噴出することによる微粒子製造技術(PGSS)は、すでに公知であり、溶融樹脂の微粒化技術は検討されている。原理としては、溶融樹脂に二酸化炭素を溶解させて粘度を低下させ、大気圧に向けて噴霧して微粒子を得る方法である。そこで、本実施例では、(1)溶融樹脂と二酸化炭素の混合に多段分割流路型混合器を適用して混合性能を向上させ、二酸化炭素を飽和状態近くまで迅速に連続混合して安定的に最大限の粘度低減を得ること、(2)噴霧直前に噴霧用追加流体を混合して噴出流速を上昇させて微粒化を促進すること、を試みた。
[Apparatus and Examples]
A fine particle production technique (PGSS) by ejecting a gas saturated solution is already known, and a technique for atomizing a molten resin has been studied. The principle is to obtain fine particles by dissolving carbon dioxide in a molten resin to lower the viscosity and spraying it toward atmospheric pressure. Therefore, in this embodiment, (1) a multistage divided flow channel mixer is applied to the mixing of the molten resin and carbon dioxide to improve mixing performance, and carbon dioxide is continuously mixed to a saturated state quickly and stably. (2) Mixing an additional fluid for spraying immediately before spraying to increase the jet flow velocity and promoting atomization.

二酸化炭素、すなわち高温高圧の二酸化炭素、例えば、亜臨界ないし超臨界状態の二酸化炭素を混合して、低粘性化させた溶融樹脂の高圧微粒化装置について、図4に示した装置を用いて説明する。樹脂ペレットをホッパー(31)に投入して、エクストルーダー(32)で加熱溶融して次工程に供給した。   A high-pressure atomization apparatus for molten resin in which low viscosity is obtained by mixing carbon dioxide, that is, high-temperature and high-pressure carbon dioxide, for example, subcritical or supercritical carbon dioxide will be described with reference to the apparatus shown in FIG. To do. The resin pellets were put into a hopper (31), heated and melted with an extruder (32), and supplied to the next step.

エクストルーダー(32)出口の圧力P−1を、任意の圧力、例えば、数MPa一定となるように、エクストルーダー(32)の回転数を制御した。エクストルーダー(32)から供給された溶融樹脂をギアポンプ(33)により、高圧環境の工程に定量供給した。溶融樹脂ラインにはラプチャーディスク(34)、樹脂ライン圧力P−2、ストップ弁SV−1、逆止弁CV−1を設け、樹脂ラインは、ヒートトレース(図示せず)で、加熱溶融状態を保持した。   The number of revolutions of the extruder (32) was controlled so that the pressure P-1 at the outlet of the extruder (32) became an arbitrary pressure, for example, a few MPa. The molten resin supplied from the extruder (32) was quantitatively supplied to the high pressure environment process by the gear pump (33). The molten resin line is provided with a rupture disk (34), a resin line pressure P-2, a stop valve SV-1, and a check valve CV-1, and the resin line is heated and melted by a heat trace (not shown). Retained.

二酸化炭素は、二酸化炭素ボンベ(35)から冷却器(36)を経て、二酸化炭素ポンプ(37)で高圧環境の工程に定量供給した。二酸化炭素ラインには、背圧弁PCV−1を設けて、SV−3で二酸化炭素供給を閉止した際に生じる圧力上昇に対して、背圧弁PCV−1で設定した圧力以上は二酸化炭素ポンプ(37)吸込ラインに戻す構成とした。   Carbon dioxide was quantitatively supplied from the carbon dioxide cylinder (35) through the cooler (36) to the high-pressure environment process by the carbon dioxide pump (37). The carbon dioxide line is provided with a back pressure valve PCV-1, and a pressure higher than the pressure set by the back pressure valve PCV-1 with respect to the pressure rise that occurs when the supply of carbon dioxide is closed in SV-3 is a carbon dioxide pump (37 ) It was configured to return to the suction line.

二酸化炭素ラインには、二酸化炭素安定供給システムを用いた。これは、二酸化炭素ラインに1次圧力制御弁PCV−2を設けて、PCV−2から混合器(39)の間の容積を最小化し、混合器(39)の圧力よりも高圧、好ましくは2MPa以上高圧の条件を保った。これにより、混合器下流で生じる圧力変動を要因とする二酸化炭素ラインの昇圧不足による二酸化炭素の間欠流発生を抑制した。   A carbon dioxide stable supply system was used for the carbon dioxide line. This is because the primary pressure control valve PCV-2 is provided in the carbon dioxide line to minimize the volume between the PCV-2 and the mixer (39) and is higher than the pressure of the mixer (39), preferably 2 MPa. The above high pressure condition was maintained. As a result, the generation of an intermittent flow of carbon dioxide due to insufficient pressurization of the carbon dioxide line due to pressure fluctuations occurring downstream of the mixer was suppressed.

二酸化炭素ラインの1次圧力制御弁PCV−2の下流に、圧力計P−4、流量計F−1を設けた。その後、二酸化炭素加熱器(38)により溶融樹脂と混合する温度に加熱した。加熱器下流にストップ弁SV−3、逆止弁CV−2を設けた。   A pressure gauge P-4 and a flow meter F-1 were provided downstream of the primary pressure control valve PCV-2 in the carbon dioxide line. Then, it heated to the temperature mixed with molten resin with the carbon dioxide heater (38). A stop valve SV-3 and a check valve CV-2 were provided downstream of the heater.

溶融樹脂と二酸化炭素を混合器(39)に通過させることにより、溶融樹脂中に二酸化炭素を溶解させて、溶融樹脂の粘度を低下させた。粘度低下挙動を計測するために、オリフィスOF−1、オリフィスの前後差圧を計測する差圧計ΔP−1を設けた。以下の式(1)に示すハーゲン・ポアズイユの式を用いて粘度を算出した。   By passing the molten resin and carbon dioxide through the mixer (39), the carbon dioxide was dissolved in the molten resin to reduce the viscosity of the molten resin. In order to measure the viscosity lowering behavior, an orifice OF-1 and a differential pressure gauge ΔP-1 for measuring the differential pressure across the orifice were provided. The viscosity was calculated using the Hagen-Poiseuille equation shown in the following equation (1).

本実施例で用いた多段分割流路型混合器においては、溶融樹脂中への二酸化炭素の溶解性は、混合器の混合性能に依存する。本プロセスで用いた混合器は、混合器から差圧計測部までの滞留時間において、飽和溶解度近くまで二酸化炭素を溶解することができる。実際の運転では、飽和溶解条件以下の二酸化炭素添加率で混合し、確実に一相状態を保つ条件を選択した。すなわち、飽和溶解度未満の運転であっても、二酸化炭素添加率に応じた粘度低下率が得られ、かつ安定した運転ができた。   In the multistage divided flow channel mixer used in this example, the solubility of carbon dioxide in the molten resin depends on the mixing performance of the mixer. The mixer used in this process can dissolve carbon dioxide to near saturation solubility in the residence time from the mixer to the differential pressure measurement unit. In actual operation, mixing was performed at a carbon dioxide addition rate equal to or lower than the saturation dissolution condition, and a condition for reliably maintaining a one-phase state was selected. That is, even when the operation was less than the saturation solubility, a viscosity reduction rate corresponding to the carbon dioxide addition rate was obtained, and a stable operation was possible.

図8に、比較例として用いた中心衝突型混合器を示す。この混合器は、従来から用いられてきたT字型ミキサーやスタティックミキサーに比べて、高い混合性能を有するものである[文献:K. Mae, et al., J. Chem. Eng. Japan, 40 (12), 1101-1107 (2007)]。   FIG. 8 shows a center collision type mixer used as a comparative example. This mixer has a high mixing performance compared with the T-shaped mixer and the static mixer that have been used conventionally [Reference: K. Mae, et al., J. Chem. Eng. Japan, 40. (12), 1101-1107 (2007)].

図8より、上部から溶融樹脂が、下部から二酸化炭素が流入し、二酸化炭素は混合器流入後に4流路に均等分岐され、混合器中心部で溶融樹脂と衝突混合する構造となっている。内部流路は1〜2mmと細い単一流路である。溶融樹脂の流路には中心衝突部の流路隙間を調節できるニードルが挿入されており、混合状態を見ながら流路隙間を調整できる構造になっている。実験では圧力損失が大き過ぎたため、ニードルは撤去して使用した。   As shown in FIG. 8, molten resin flows from the upper part and carbon dioxide flows from the lower part. The carbon dioxide is evenly branched into four flow paths after flowing into the mixer and collides with the molten resin at the central part of the mixer. The internal flow path is a thin single flow path of 1 to 2 mm. A needle that can adjust the flow path gap of the center collision portion is inserted in the flow path of the molten resin, and the flow path gap can be adjusted while observing the mixed state. In the experiment, the pressure loss was too large, so the needle was removed and used.

上記、中心衝突型混合器と上述の多段分割流路型混合器を用いて、溶融樹脂に分子量20000のポリエチレングリコール(PEG20000)を用い、二酸化炭素を混合、溶解させて初期粘度からの粘度低下率を調べた。一定の樹脂の質量流量(30g/min)に対して、二酸化炭素の添加率を変化させて、混合器構造による溶融樹脂の粘度低下への影響を調べた。   Viscosity reduction rate from initial viscosity by using polyethylene glycol (PEG 20000) having a molecular weight of 20000 in the molten resin and mixing and dissolving carbon dioxide using the above-mentioned center impingement mixer and the above-mentioned multistage divided flow channel mixer. I investigated. The effect of the mixer structure on the decrease in the viscosity of the molten resin was examined by changing the addition rate of carbon dioxide with respect to a constant resin mass flow rate (30 g / min).

混合器の性能が良ければ、二酸化炭素がよりよく溶融樹脂中に溶解し、粘性が低下すると考えられる。混合不良の場合、粘度低下率が小さくなり、二相状態となると計測差圧の変動が大きくなると考えられる。温度は110℃一定とし、圧力は15MPaとした。   If the performance of the mixer is good, it is considered that carbon dioxide is better dissolved in the molten resin and the viscosity is lowered. In the case of poor mixing, it is considered that the rate of decrease in viscosity decreases and the variation in measured differential pressure increases when a two-phase state is reached. The temperature was constant at 110 ° C. and the pressure was 15 MPa.

図9に、二酸化炭素添加率による粘度低下率(粘度比)を示した。二酸化炭素添加0%での初期粘度を1.0として粘度低下挙動を示した。混合器によらず二酸化炭素添加率が上昇すると、概ね、粘性比は低下している。中心衝突型混合器に比べて、多段分割流路型混合器の方が粘度低下率は大きくなった。   FIG. 9 shows the viscosity reduction rate (viscosity ratio) depending on the carbon dioxide addition rate. Viscosity decreasing behavior was shown with an initial viscosity at 1.0% addition of carbon dioxide being 1.0. When the carbon dioxide addition rate increases regardless of the mixer, the viscosity ratio generally decreases. Compared with the center impingement type mixer, the viscosity reduction rate was larger in the multistage divided flow channel type mixer.

エラーバーで示した計測差圧の変動幅についても、中心衝突型混合器の二酸化炭素添加率17、20、24%で変動が多くなっており、二相状態となっていると考えられた。多段分割流路型混合器は二酸化炭素添加率30%でも変動することがないため、均一に溶解していると考えられた。   The fluctuation range of the measured differential pressure indicated by the error bar also increased at the carbon dioxide addition rate of 17, 20 and 24% in the central collision type mixer, and was considered to be in a two-phase state. The multistage divided flow channel mixer did not change even at a carbon dioxide addition rate of 30%, and thus was considered to be uniformly dissolved.

溶融樹脂の粘度低下のために供給する二酸化炭素は、溶融樹脂の質量流量に対して、10〜30%程度となり、それ以上は、現有の装置の設計条件300℃、30MPaの操作可能条件においては、溶解せずに、気液の2相流となった。そのため、それ以下の二酸化炭素添加率で運転することが好ましいと考えられた。しかし、溶解させた二酸化炭素のみで大気圧噴霧しても、分子量20000のPEGは、微粒化しなかった。   Carbon dioxide supplied for viscosity reduction of the molten resin is about 10 to 30% with respect to the mass flow rate of the molten resin, and more than that in the operating conditions of the existing apparatus design conditions of 300 ° C. and 30 MPa. It became a gas-liquid two-phase flow without dissolving. Therefore, it was considered preferable to operate at a carbon dioxide addition rate lower than that. However, PEG having a molecular weight of 20000 did not atomize even when sprayed at atmospheric pressure with only dissolved carbon dioxide.

そこで、図4において、上記多段分割流路型混合器を用いて溶融樹脂と二酸化炭素を均一に混合した混合流体を高圧条件から大気圧へ噴霧する前に、噴霧流速を上昇させるために流体を追加混合した。図4に示すように、二酸化炭素が混合されて粘度が低下した溶融樹脂がオリフィスOF−1を経て、そのまま大気圧環境へ噴出される前に、噴霧用追加流体(40)を混合した。   Therefore, in FIG. 4, before the mixed fluid in which the molten resin and carbon dioxide are uniformly mixed is sprayed from the high pressure condition to the atmospheric pressure using the multistage divided flow channel mixer, the fluid is used to increase the spray flow rate. Additional mixing. As shown in FIG. 4, before the molten resin, the viscosity of which was reduced by mixing carbon dioxide, was jetted through the orifice OF-1 to the atmospheric environment as it was, the additional fluid for spraying (40) was mixed.

それによって、噴霧流速を上昇させて微粒化を促進させた。この際、噴霧用追加流体を混合する噴霧ノズルでの圧力損失が増加するため、噴霧前圧力が上昇し、合わせて系内の圧力が上昇した。従って、溶融樹脂と二酸化炭素を混合して粘度を低下させるユニットの圧力制御は、一次圧力制御弁PCV−3を設けて、一定圧力に制御した。   Thereby, the spray flow rate was increased to promote atomization. At this time, since the pressure loss at the spray nozzle for mixing the additional fluid for spraying increased, the pre-spray pressure increased, and the pressure in the system also increased. Therefore, the pressure control of the unit for reducing the viscosity by mixing the molten resin and carbon dioxide was controlled to a constant pressure by providing the primary pressure control valve PCV-3.

溶融樹脂と二酸化炭素を均一に混合した混合流体を高圧条件から大気圧へ噴霧する前に、噴霧流速を上昇させるために流体を追加混合する混合器としては、通常のT字型継手などの混合器であっても構わないが、上記多段分割流路型混合器であることが好ましいことが分かった。   As a mixer that additionally mixes fluid in order to increase the spray flow rate before spraying a mixed fluid in which molten resin and carbon dioxide are uniformly mixed from high pressure conditions to atmospheric pressure, mixing such as a normal T-shaped joint However, it has been found that the multistage divided flow channel mixer is preferable.

溶融樹脂と二酸化炭素を均一に混合した混合流体を高圧条件から大気圧へ噴霧する前に、噴霧流速を上昇させるために流体を追加混合する流体としては、二酸化炭素、空気、窒素、ヘリウム、アルゴン、又はネオンが用いられるが、初めに溶融樹脂に混合する流体は、溶融樹脂に溶解して粘度を低下させる必要があるため、二酸化炭素である必要がある。   Before spraying a mixed fluid that is a homogeneous mixture of molten resin and carbon dioxide from high pressure conditions to atmospheric pressure, additional fluids to mix the fluid to increase the spray flow rate are carbon dioxide, air, nitrogen, helium, argon Alternatively, neon is used, but the fluid that is initially mixed with the molten resin needs to be carbon dioxide because it must be dissolved in the molten resin to lower the viscosity.

一方、噴霧用追加流体は、二酸化炭素が溶解した溶融樹脂と均一溶解しなくても構わない。噴霧直前に二相流となっても、その二相流の流動状態がスラグ流のように間欠流とならない気泡流、栓流、二層流、波状流、環状流、噴霧流の何れかで一様な二相流となることが重要である。   On the other hand, the additional fluid for spraying may not be uniformly dissolved with the molten resin in which carbon dioxide is dissolved. Even if it becomes a two-phase flow just before spraying, the flow state of the two-phase flow is not an intermittent flow like a slag flow, any of a bubble flow, plug flow, two-layer flow, wave flow, annular flow, or spray flow It is important to have a uniform two-phase flow.

噴霧用追加流体としては、空気、窒素、ヘリウム、アルゴン、ネオンの何れか、又はそれらの混合物であっても構わないことが分かった。また、噴霧用追加流体の添加流量、添加温度を制御することにより、噴霧前の温度、圧力を制御することにより、噴霧後の液滴の冷却温度、表面張力を制御して、粒子径及び粒子の形態を制御できることが分かった。   It has been found that the additional atomizing fluid may be air, nitrogen, helium, argon, neon, or a mixture thereof. In addition, by controlling the addition flow rate and addition temperature of the additional fluid for spraying, the temperature and pressure before spraying are controlled to control the cooling temperature and surface tension of the droplets after spraying, and the particle size and particle size. It was found that the form of can be controlled.

ここでは、噴霧用追加流体として二酸化炭素を供給した際の結果について、図10、図11に示す。噴霧用追加流体として、別途、二酸化炭素ポンプを噴霧部直前に供給した。噴霧部に供給する二酸化炭素は、十分に加熱して供給し、混合後の樹脂温度、二酸化炭素供給流量により、噴霧部の圧力を制御した。   Here, the results when carbon dioxide is supplied as the additional fluid for spraying are shown in FIGS. As an additional fluid for spraying, a carbon dioxide pump was separately supplied immediately before the spraying section. Carbon dioxide to be supplied to the spraying part was sufficiently heated and supplied, and the pressure of the spraying part was controlled by the resin temperature after mixing and the carbon dioxide supply flow rate.

噴霧実験の条件は、溶融樹脂として、PEG−20000を用い、流量を11〜12g/min、混合部制御圧を18MPaとし、混合部における二酸化炭素添加量は、混合器直後の差圧計の値のバラツキが小さい添加率20〜21wt%に設定した。噴霧用に追加する二酸化炭素に関しては、流量を3〜12.5kg/hの範囲で変化させるとともに、噴霧直前の温度を、100〜160℃の範囲で変化させ、生成する粒子の粒度と粒子形状を調べた。   The conditions of the spraying experiment were PEG-20000 as the molten resin, the flow rate was 11 to 12 g / min, the mixing part control pressure was 18 MPa, and the carbon dioxide addition amount in the mixing part was the value of the differential pressure gauge immediately after the mixer. The addition rate was set to 20 to 21 wt% with small variations. Regarding carbon dioxide added for spraying, while changing the flow rate in the range of 3 to 12.5 kg / h and changing the temperature just before spraying in the range of 100 to 160 ° C., the particle size and particle shape of the generated particles I investigated.

図10に、噴霧二酸化炭素の設定温度と、生成粒子の平均粒子径(X50)の関係を、噴霧二酸化炭素流量別に示した。噴霧二酸化炭素流量が、3〜4kg/h、5.5〜6kg/hの場合には、噴霧ガン下部にサンプリング用のカップを入れ、サンプル採取を行い、サンプルカップに付着した+600μmを除去後、−600μmの粒度を評価(−600μmの重量割合は、それぞれ、79〜93wt%、26〜50wt%)した。   FIG. 10 shows the relationship between the set temperature of the sprayed carbon dioxide and the average particle diameter (X50) of the generated particles for each sprayed carbon dioxide flow rate. When the spray carbon dioxide flow rate is 3 to 4 kg / h, 5.5 to 6 kg / h, a sampling cup is placed under the spray gun, a sample is collected, and after removing +600 μm adhering to the sample cup, A particle size of −600 μm was evaluated (weight ratios of −600 μm were 79 to 93 wt% and 26 to 50 wt%, respectively).

噴霧部二酸化炭素流量が11.5〜11.6kg/hの場合には、噴霧容器にサイクロンを接続し、サンプル採取(噴霧量のおおよそ25wt%)した。そのため、直接的に比較することは困難であるが、図10に示されるように、噴霧部における二酸化炭素流量が大きい方が、微細な粒子が生成するという傾向にあると考えられた。   When the spray part carbon dioxide flow rate was 11.5 to 11.6 kg / h, a cyclone was connected to the spray container, and a sample was collected (approximately 25 wt% of the spray amount). Therefore, it is difficult to directly compare, but as shown in FIG. 10, it was considered that the larger the carbon dioxide flow rate in the spray portion, the more the fine particles tend to be generated.

図11に、各サンプルのSEM画像を示した。これらの画像から、噴霧部における二酸化炭素流量が少ない方が、丸みを帯びた粒子が生成し易く、噴霧部における二酸化炭素流量が3〜4kg/hの場合には、ほぼ球状の粒子が生成していることが確認できた。また、噴霧部における二酸化炭素の設定温度が高い方が、丸みを帯びた粒子が生成し易いことも確認できた。これらのことから、溶融樹脂の微粒化には、噴霧二酸化炭素の流量と温度を好適ないし最適化することで、球状の微粉末を生成できる可能性を見出せた。   FIG. 11 shows an SEM image of each sample. From these images, the smaller the carbon dioxide flow rate in the spray part, the easier it is to produce rounded particles. When the carbon dioxide flow rate in the spray part is 3-4 kg / h, almost spherical particles are produced. It was confirmed that Moreover, it has also confirmed that the rounded particle | grains are easy to produce | generate when the preset temperature of the carbon dioxide in a spray part is high. From these facts, it has been found that spherical fine powder can be produced by atomizing the molten resin by optimizing or optimizing the flow rate and temperature of the sprayed carbon dioxide.

以上詳述した通り、本発明は、二酸化炭素を混合して低粘性化させた溶融樹脂の高圧微粒化方法及び装置に係るものであり、本発明により、粉砕法、化学法により生成していた樹脂の微粒子を、低環境負荷の二酸化炭素を用いて製造することが実現可能となった。本発明により、溶融樹脂のみならず、様々な有機物の微粒化プロセスとしての展開が可能であり、二酸化炭素安定供給システムや、多段分割流路型混合器などの応用展開が期待される。本発明により、二酸化炭素を混合して低粘度化させた溶融樹脂を微粒化させる方法及び溶融樹脂の微細化製品の提供を実現することができるとともに、溶融樹脂の微粒子の微細化形態を制御することができ、噴霧二酸化炭素の流量と温度を調節することにより、球状の微粉末を作製することが可能である。本発明は、溶融樹脂の微粒化装置を提供するとともに、溶融樹脂の微粉末製品を製造することを可能とする溶融樹脂の微粒化技術を提供するものとして有用である。   As described in detail above, the present invention relates to a high pressure atomization method and apparatus for molten resin mixed with carbon dioxide to reduce viscosity, and was produced by a pulverization method or a chemical method according to the present invention. It became feasible to produce resin fine particles using carbon dioxide with low environmental impact. According to the present invention, development as a process for atomizing not only molten resin but also various organic substances is possible, and application development such as a stable carbon dioxide supply system and a multistage divided flow channel mixer is expected. According to the present invention, it is possible to provide a method for atomizing a molten resin mixed with carbon dioxide to reduce the viscosity and to provide a refined product of the molten resin, and to control the refined form of fine particles of the molten resin. It is possible to produce a spherical fine powder by adjusting the flow rate and temperature of the sprayed carbon dioxide. INDUSTRIAL APPLICABILITY The present invention is useful as an apparatus for atomizing molten resin and also providing a technique for atomizing molten resin that makes it possible to produce a fine powder product of molten resin.

(図1〜2の符号の説明)
(1)二酸化炭素
(2)昇圧ポンプ
(3)樹脂
(4)オートクレーブ容器
(5)噴霧ノズル
(6)タンク下部
(7)サイクロン
(8)ブロア
(11)液化溶解タンク
(12)ギアポンプ
(13)樹脂加熱器
(14)二酸化炭素(CO
(15)二酸化炭素ポンプ
(16)二酸化炭素加熱器
(17)スタティックミキサー
(18)噴霧ノズル
(19)サイクロン
(20)サイクロン下部
(21)ブロア
(Explanation of symbols in FIGS. 1 and 2)
(1) Carbon dioxide (2) Booster pump (3) Resin (4) Autoclave container (5) Spray nozzle (6) Lower tank (7) Cyclone (8) Blower (11) Liquefaction dissolution tank (12) Gear pump (13) Resin heater (14) Carbon dioxide (CO 2 )
(15) Carbon dioxide pump (16) Carbon dioxide heater (17) Static mixer (18) Spray nozzle (19) Cyclone (20) Cyclone lower part (21) Blower

Claims (13)

連続的に高圧供給する溶融樹脂と、同じく連続的に供給する高温高圧の二酸化炭素を、混合器によって混合、溶解させて、溶融樹脂の粘度を低下させ、高圧条件から大気圧へ噴霧ノズルを介して噴出させることによって溶融樹脂を微粒化する方法であって、
流体A、流体Bが、二酸化炭素、溶融樹脂の何れかである場合、混合器として、流体Aが混合器に流入した後に、均等な圧力損失を生じさせて複数の円管状流路に均等分割させる流体A分割部と、
流体A分割部の下流に、流体Bが混合器に流入した後に、均等な圧力損失を生じさせて円管状流路に均等分割させる流体B分割部と、
流体B分割部の下流に、流体A分割部の分割数と同じ数だけ設けられ、流体Aが内部流体、流体Bが外部流体となる円管状の二重管型混合器構造を構成する二重管型混合部と、
二重管型混合部の下流に、流体A分割部の分割数と同じ数だけ設けられ、それぞれの二重管型混合部出口を縮流させる個別縮流部、
を有する多段分割流路型混合器を用いることを特徴とする溶融樹脂の微粒化方法。
The molten resin that is continuously supplied at high pressure and the high-temperature and high-pressure carbon dioxide that is continuously supplied are mixed and dissolved by a mixer to reduce the viscosity of the molten resin, and from the high-pressure condition to atmospheric pressure via a spray nozzle. A method of atomizing the molten resin by jetting,
When fluid A and fluid B are either carbon dioxide or molten resin, after the fluid A flows into the mixer as a mixer, an equal pressure loss is generated and divided into a plurality of tubular channels. A fluid A splitting section;
Downstream of the fluid A dividing section, after the fluid B has flowed into the mixer, a fluid B dividing section that generates an equal pressure loss and equally divides the tubular flow path;
The number of divisions equal to the number of divisions of the fluid A division unit is provided downstream of the fluid B division unit, and the dual that constitutes a circular double-tube mixer structure in which the fluid A is an internal fluid and the fluid B is an external fluid A tube-type mixing section;
The downstream of the double tube type mixing unit is provided as many as the number of divisions of the fluid A dividing unit, and the individual contracted flow unit for contracting each double tube type mixing unit outlet,
A method for atomizing a molten resin, characterized by using a multistage divided flow channel mixer having the following.
混合器として、多段分割流路型混合器の上記二重管型混合部−個別縮流部と、その下流に配設された流路全体を一つの流路に縮流させる集合縮流部ないし任意の滞留混合時間を有する直管型滞留部と、その下流に配設された円管状流路に分割する分割混錬部1と、分割混錬部1と分割数が異なり、同軸状に円管状流路を有さず、分割混錬部1出口流体が隣り合う流体と相互混合して流出することができる位置に円管状流路を配置した分割混錬部2を有する多段分割流路型混合器を用いる、請求項1に記載の溶融樹脂の微粒化方法。   As the mixer, the double-tube type mixing unit of the multi-stage divided flow channel type mixer—individual contracted flow unit, and a collective contracted flow unit that contracts the entire flow channel disposed downstream thereof into a single flow channel. A straight pipe-type staying section having an arbitrary staying mixing time, a split kneading section 1 that divides into a tubular flow channel disposed downstream thereof, and the split kneading section 1 has a different number of splits, and is coaxially circular. A multistage split flow channel type having a split kneading section 2 that does not have a tubular flow path, and has a circular flow path disposed at a position where the outlet fluid of the split kneading section 1 can mix and flow out with the adjacent fluid. The method for atomizing a molten resin according to claim 1, wherein a mixer is used. 混合器として、多段分割流路型混合器の上記二重管型混合部―個別縮流部と、その下流に、流路全体を一つの流路に縮流させる集合縮流部を有する多段分割流路型混合器を用いる、請求項1に記載の溶融樹脂の微粒化方法。   As a mixer, the above-mentioned double tube type mixing unit of the multi-stage divided flow channel type mixer—the individual flow-reducing unit, and the multi-stage division having an aggregated flow-reducing unit downstream of the entire flow channel into a single flow channel The method for atomizing a molten resin according to claim 1, wherein a flow channel mixer is used. 混合器として、多段分割流路型混合器の上記二重管型混合部―個別縮流部と、その下流に、任意の滞留混合時間を保有する直管型滞留部を有する多段分割流路型混合器を用いる、請求項1に記載の溶融樹脂の微粒化方法。   As a mixer, a multistage divided flow path type multi-stage divided flow path type mixer having the above-mentioned double pipe type mixing section-individual contracted flow section and a straight pipe-type staying section holding an arbitrary stay mixing time downstream thereof The method for atomizing a molten resin according to claim 1, wherein a mixer is used. 混合器として、多段分割流路型混合器の上記二重管型混合部―個別縮流部と、その下流に配設された流路全体を一つの流路に縮流させる集合縮流部ないし任意の滞留混合時間を有する直管型滞留部の下流に、円管状流路に分割する分割混錬部1を有する多段分割流路型混合器を用いる、請求項1に記載の溶融樹脂の微粒化方法。   As the mixer, the double-tube type mixing unit of the multi-stage divided channel type mixer—the individual contraction unit, and the collective contraction unit that contracts the entire channel disposed downstream thereof into one channel. 2. The molten resin fine particles according to claim 1, wherein a multistage divided flow channel mixer having a divided kneading portion 1 that divides into a tubular flow channel is used downstream of a straight pipe type retained portion having an arbitrary stay mixing time. Method. 混合器として、多段分割流路型混合器の下流に、上記集合縮流部、直管型滞留部、分割混錬部1、及び/又は分割混錬部2が任意の組み合わせで任意の数設けられている多段分割流路型混合器を用いる、請求項1から5のいずれかに記載の溶融樹脂の微粒化方法。   As the mixer, downstream of the multistage divided flow channel type mixer, any number of the above-mentioned collective contraction part, straight pipe type staying part, divided kneading part 1 and / or divided kneading part 2 are provided in any combination. The method for atomizing a molten resin according to any one of claims 1 to 5, wherein a multistage divided flow channel mixer is used. 混合器として、流体A分割部、二重管混合部、個別縮流部、分割混錬部1、又は分割混錬部2の少なくとも一つの構成部材、もしくは複数の構成部材の流路において、流路内径が1mm以下のマイクロ流路であり、かつ全体の圧力損失が3MPa以下、あるいは1MPa以下となる分割数で分割されている多段分割流路型混合器を用いる、請求項1から6のいずれかに記載の溶融樹脂の微粒化方法。   As a mixer, at least one constituent member of the fluid A splitting unit, the double pipe mixing unit, the individual flow reduction unit, the split kneading unit 1, or the split kneading unit 2, or a flow path of a plurality of constituent members, The multi-stage divided flow channel type mixer that is a micro flow channel having a channel inner diameter of 1 mm or less and is divided by a number of divisions in which the total pressure loss is 3 MPa or less, or 1 MPa or less is used. A method for atomizing a molten resin according to claim 1. 混合器が高温高圧環境で使用できるように、これらを保持するハウジングが当該混合器の外周に設けられている、請求項1から7のいずれかに記載の溶融樹脂の微粒化方法。   The method for atomizing a molten resin according to any one of claims 1 to 7, wherein a housing for holding the mixer is provided on an outer periphery of the mixer so that the mixer can be used in a high temperature and high pressure environment. 上記多段分割流路型混合器において、流体Aが溶融樹脂、流体Bが二酸化炭素である、請求項1から8のいずれかに記載の溶融樹脂の微粒化方法。   The method for atomizing a molten resin according to any one of claims 1 to 8, wherein the fluid A is a molten resin and the fluid B is carbon dioxide in the multistage divided flow channel mixer. 上記多段分割流路型混合器において、流体Aが二酸化炭素、流体Bが溶融樹脂である、請求項1から9のいずれかに記載の溶融樹脂の微粒化方法。   The method for atomizing a molten resin according to any one of claims 1 to 9, wherein the fluid A is carbon dioxide and the fluid B is a molten resin in the multistage divided flow channel mixer. 溶融樹脂と二酸化炭素を均一に混合した混合流体を高圧条件から大気圧へ噴霧する前の工程において、噴霧流速を上昇させるための流体を追加混合する、請求項1から10のいずれかに記載の溶融樹脂の微粒化方法。   The fluid for increasing the spraying flow rate is additionally mixed in the step before spraying the mixed fluid in which the molten resin and carbon dioxide are uniformly mixed from the high pressure condition to the atmospheric pressure. Method for atomizing molten resin. 溶融樹脂と二酸化炭素を均一に混合した混合流体を高圧条件から大気圧へ噴霧する前に、噴霧流速を上昇させるために追加混合する流体が、二酸化炭素、窒素、ヘリウム、アルゴン、又はネオンである、請求項11に記載の溶融樹脂の微粒化方法。   Prior to spraying a mixed fluid in which molten resin and carbon dioxide are uniformly mixed from high-pressure conditions to atmospheric pressure, the fluid to be additionally mixed to increase the spray flow rate is carbon dioxide, nitrogen, helium, argon, or neon. The method for atomizing a molten resin according to claim 11. 請求項1から12のいずれかに記載の溶融樹脂の微粒化方法を用いて、溶融樹脂を微粒化することにより微粒化された当該溶融樹脂の微粒子を製造することを特徴とする樹脂微粒子の製造方法。   Production of resin fine particles, characterized in that fine particles of the molten resin are produced by atomizing the molten resin by using the molten resin atomization method according to any one of claims 1 to 12. Method.
JP2012056529A 2012-03-13 2012-03-13 High pressure atomization method for molten resin and low viscosity produced by mixing carbon dioxide and method for producing resin fine particles Active JP5871266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012056529A JP5871266B2 (en) 2012-03-13 2012-03-13 High pressure atomization method for molten resin and low viscosity produced by mixing carbon dioxide and method for producing resin fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012056529A JP5871266B2 (en) 2012-03-13 2012-03-13 High pressure atomization method for molten resin and low viscosity produced by mixing carbon dioxide and method for producing resin fine particles

Publications (2)

Publication Number Publication Date
JP2013188938A true JP2013188938A (en) 2013-09-26
JP5871266B2 JP5871266B2 (en) 2016-03-01

Family

ID=49389716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012056529A Active JP5871266B2 (en) 2012-03-13 2012-03-13 High pressure atomization method for molten resin and low viscosity produced by mixing carbon dioxide and method for producing resin fine particles

Country Status (1)

Country Link
JP (1) JP5871266B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230448A (en) * 2012-05-02 2013-11-14 Ricoh Co Ltd Method for producing particle and particle
WO2014077206A1 (en) * 2012-11-13 2014-05-22 Ricoh Company, Ltd. Method for producing particles and apparatus for producing particles
JP2017516644A (en) * 2014-04-15 2017-06-22 ヒョン リ,ヨ Dissolved pipe using mesh drilling net having cross section of venturi structure, method for producing master screen roller, and electroforming mold method adapted thereto
JP2018520855A (en) * 2015-06-19 2018-08-02 ザ プロクター アンド ギャンブル カンパニー Apparatus and method for forming particles
TWI667367B (en) * 2015-10-06 2019-08-01 日商愛發科股份有限公司 Mixer and vacuum treatment apparatus
JP7394445B2 (en) 2019-11-01 2023-12-08 国立研究開発法人産業技術総合研究所 Manufacturing method of resin foam and resin foam

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583187B1 (en) * 1996-07-19 2003-06-24 Andrew T. Daly Continuous processing of powder coating compositions
JP2008018581A (en) * 2006-07-12 2008-01-31 Japan Steel Works Ltd:The Manufacturing method of thermoplastic resin composition
JP2008137377A (en) * 2006-11-10 2008-06-19 Ricoh Co Ltd Manufacturing apparatus of resin fine particle, manufacturing method of resin fine particle and manufacturing method of toner
JP2009125975A (en) * 2007-11-20 2009-06-11 Japan Steel Works Ltd:The Method of removing foreign substance contained in thermoplastic resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583187B1 (en) * 1996-07-19 2003-06-24 Andrew T. Daly Continuous processing of powder coating compositions
JP2008018581A (en) * 2006-07-12 2008-01-31 Japan Steel Works Ltd:The Manufacturing method of thermoplastic resin composition
JP2008137377A (en) * 2006-11-10 2008-06-19 Ricoh Co Ltd Manufacturing apparatus of resin fine particle, manufacturing method of resin fine particle and manufacturing method of toner
JP2009125975A (en) * 2007-11-20 2009-06-11 Japan Steel Works Ltd:The Method of removing foreign substance contained in thermoplastic resin

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230448A (en) * 2012-05-02 2013-11-14 Ricoh Co Ltd Method for producing particle and particle
US9669565B2 (en) 2012-05-02 2017-06-06 Ricoh Company, Ltd. Particles and method for producing particles
WO2014077206A1 (en) * 2012-11-13 2014-05-22 Ricoh Company, Ltd. Method for producing particles and apparatus for producing particles
JP2014097440A (en) * 2012-11-13 2014-05-29 Ricoh Co Ltd Production method of particle and particle production apparatus
US9611376B2 (en) 2012-11-13 2017-04-04 Ricoh Company, Ltd. Method for producing particles and apparatus for producing particles
JP2017516644A (en) * 2014-04-15 2017-06-22 ヒョン リ,ヨ Dissolved pipe using mesh drilling net having cross section of venturi structure, method for producing master screen roller, and electroforming mold method adapted thereto
EP3133050A4 (en) * 2014-04-15 2018-08-01 Yu Hyung Lee Dissolve tube using punctured steel mesh having venturi-structured cross-section, method for producing master screen roller and method for electro-form molding appropriate therefor
JP2018520855A (en) * 2015-06-19 2018-08-02 ザ プロクター アンド ギャンブル カンパニー Apparatus and method for forming particles
TWI667367B (en) * 2015-10-06 2019-08-01 日商愛發科股份有限公司 Mixer and vacuum treatment apparatus
JP7394445B2 (en) 2019-11-01 2023-12-08 国立研究開発法人産業技術総合研究所 Manufacturing method of resin foam and resin foam

Also Published As

Publication number Publication date
JP5871266B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5871266B2 (en) High pressure atomization method for molten resin and low viscosity produced by mixing carbon dioxide and method for producing resin fine particles
Joseph et al. Evaluation of Shirasu Porous Glass (SPG) membrane emulsification for the preparation of colloidal lipid drug carrier dispersions
US6443610B1 (en) Processing product components
Munoz-Ibanez et al. Changes in oil-in-water emulsion size distribution during the atomization step in spray-drying encapsulation
CN104797330B (en) Particle manufacture method and particle manufacture equipment
Campardelli et al. Nanoparticle precipitation by supercritical assisted injection in a liquid antisolvent
Li et al. A microdevice for producing monodispersed droplets under a jetting flow
Jarmer et al. Manipulation of particle size distribution of poly (L-lactic acid) nanoparticles with a jet-swirl nozzle during precipitation with a compressed antisolvent
Weidner et al. Multifunctional composites by high-pressure spray processes
WO2011023405A1 (en) Method and electro-fluidic device to produce emulsions and particle suspensions
Petermann Supercritical fluid-assisted sprays for particle generation
Suo et al. Micronization of the natural pigment-bixin by the SEDS process through prefilming atomization
JP2006517465A (en) Particle formation method
Subra et al. Precipitation and phase behavior of theophylline in solvent–supercritical CO2 mixtures
Gunduz et al. A device for the fabrication of multifunctional particles from microbubble suspensions
Ochowiak et al. The concept design and study of twin-fluid effervescent atomizer with air stone aerator
CN207680583U (en) A kind of micro-fluidic preparation facilities of polymer micro-emulsion
Sheng et al. Mechanism and modeling of Taylor bubble generation in viscous liquids via the vertical squeezing route
JP5660605B2 (en) Method and apparatus for continuous mixing of high pressure carbon dioxide and high viscosity organic fluid
Mousavi et al. Comparison of the jet breakup and droplet formation between non-Newtonian and Newtonian fluids
Wang et al. Production of highly monodisperse millimeter‐sized double‐emulsion droplets in a coaxial capillary device
He Application of flow-focusing to the break-up of an emulsion jet for the production of matrix-structured microparticles
WO2002014396A1 (en) Method for producing polyurethane particles
US20080144430A1 (en) Annular fluid processor with different annular path areas
Beh et al. Development of a novel continuous dense gas process for the production of residual solvent-free self-assembled nano-carriers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160106

R150 Certificate of patent or registration of utility model

Ref document number: 5871266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250