JP2013182908A - コンデンサ - Google Patents

コンデンサ Download PDF

Info

Publication number
JP2013182908A
JP2013182908A JP2012043664A JP2012043664A JP2013182908A JP 2013182908 A JP2013182908 A JP 2013182908A JP 2012043664 A JP2012043664 A JP 2012043664A JP 2012043664 A JP2012043664 A JP 2012043664A JP 2013182908 A JP2013182908 A JP 2013182908A
Authority
JP
Japan
Prior art keywords
dielectric film
inorganic particles
capacitor
dielectric
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012043664A
Other languages
English (en)
Inventor
Yoichi Yamazaki
洋一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012043664A priority Critical patent/JP2013182908A/ja
Publication of JP2013182908A publication Critical patent/JP2013182908A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】 静電容量を高めることのできるコンデンサを提供する。
【解決手段】 誘電体フィルム1と、この誘電体フィルム1の両面に形成された電極層3とを備えているコンデンサであって、誘電体フィルム1は、樹脂5中に、平均粒径が30〜40nmであり、樹脂5よりも比誘電率の高い無機粒子7を30〜70体積%含み、無機粒子7がネック部7aを介して結合した三次元マトリクス構造を成しており、これにより誘電体フィルムの比誘電率が向上し、静電容量の高いコンデンサを得ることができる。
【選択図】図1

Description

本発明は、樹脂中にセラミック粒子を含むフィルムを誘電体とするコンデンサに関する。
誘電体が2枚の電極板によって挟持された構成を有するコンデンサは、直流の電荷を蓄電し、充放電できる機能や交流(高周波)の電流を流し、両端電圧を一定に維持するという機能を有しており、従来より、ノイズ除去、デカンプリング、カップリング、電圧の平滑化等、用途に応じて多くの電気製品に適用されている。
コンデンサとしては、容量あたりのサイズの小さい積層型セラミックコンデンサ、静電容量当たりの体積が小さく安価なアルミ電解コンデンサ、温度特性に優れ、大容量化が可能なタンタルコンデンサおよび耐電圧範囲が広く、誘電損失が小さいフィルムコンデンサが知られている。
この中で、フィルムコンデンサは、例えば、ポリプロピレン樹脂をフィルム化した誘電体フィルムの表面に蒸着によって形成された金属膜を電極として有しており、このような構成により、誘電体フィルムの絶縁欠陥部で短絡が生じた場合にも、短絡のエネルギーで欠陥部周辺の金属膜が蒸発、飛散して絶縁化し、フィルムコンデンサの絶縁破壊を防止できるという利点を有している(例えば、特許文献1を参照)。
このため、フィルムコンデンサは、電気回路が短絡した際の発火や感電を防止することができるという点が注目され、近年、LED(Light Emission Diode)照明等の電源回路に適用されている(例えば、特許文献2を参照)。
また、フィルムコンデンサについては、近年の小型化や高機能化の流れに伴って、誘電体フィルムの比誘電率を高くすることが要求されているが、この課題に対しては、誘電体フィルム中に強誘電性や常誘電性の無機フィラーを混合する方法等が以前より試みられている(例えば、特許文献3を参照)。
特開平9−129475号公報 特開2010−178571号公報 特開2006−225484号公報
ところが、特許文献3に開示されているように、誘電体フィルムを構成する樹脂中に無機フィラーを添加する方法では、無機フィラーの比誘電率の増加ほど誘電体フィルムの静電容量を高めることができないという問題がある。
従って、本発明は、静電容量を高めることのできるコンデンサを提供することを目的とする。
本発明のコンデンサは、誘電体フィルムと、該誘電体フィルムの両面に形成された電極
層とを備えているコンデンサであって、前記誘電体フィルムは、樹脂中に、平均粒径が30〜40nmであり、該樹脂よりも比誘電率の高い無機粒子を30〜70体積%含み、前記無機粒子がネック部を介して結合した三次元マトリクス構造を成していることを特徴とする。
本発明によれば、誘電体フィルムの静電容量を高めることができる。
本発明のコンデンサの一実施形態を示す断面模式図である。 誘電体フィルムの電極層の接する面に凹部を設けた構造を示す断面模式図である。 (a)は、積層型のコンデンサの外観を示す斜視図、(b)は図3(a)のA−A線における断面図である。
図1は、本発明のコンデンサの一実施形態を示す断面模式図である。図1では誘電体フィルム1を模式的に拡大して描いているため、無機粒子7の数を少なく描いているが、この実施形態における誘電体フィルム1には、後述するように、無数の無機粒子7がネック部7aを介して結合し、三次元マトリクス構造を成すように存在している。
本実施形態のコンデンサは、誘電体フィルム1と、この誘電体フィルム1の上面および下面に形成された一対の電極層3とを備えたものである。ここで、誘電体フィルム1は、樹脂5中に、平均粒径が30〜40nmであり、樹脂5よりも比誘電率の高い無機粒子7を30〜70体積%含有しており、また、その無機粒子7はネック部7aを介して結合した三次元マトリクス構造を成している。
本実施形態のコンデンサによれば、誘電体フィルム1中に樹脂5よりも比誘電率の高い無機粒子7を数多く含み、これらの無機粒子7がネック部7aを介して結合した三次元マトリクス構造を成している。このため焼成されたセラミック粒子ほどではないが、無機粒子7が焼結に近い結合状態にあることから、無機粒子7の比誘電率の寄与が三次元マトリクス構造のサイズに因るものとなり、これにより無機粒子7が樹脂5を介して存在している場合に比較して、樹脂5中の無機粒子7による比誘電率の対数混合則の効果を高めることができ、誘電体フィルム1の比誘電率の向上により静電容量を高めることができる。
これに対し、無機粒子7の比誘電率が樹脂5の比誘電率と同等かまたは低い場合には、樹脂5中の無機粒子7による比誘電率の対数混合則の効果を得ることができないため誘電体フィルム1の静電容量を高めることができない。
また、無機粒子7の平均粒径が30nmよりも小さく、例えば、10nm程度になると、樹脂5と複合(混合)させて誘電体フィルム1を形成したときに、無機粒子7間に樹脂5が介在しやすくなるため、無機粒子7がネック部7aを介して結合した三次元マトリクス構造を形成することが困難となり、このため誘電体フィルム1の静電容量の向上を図ることができない。
一方、無機粒子7の平均粒径が40nmよりも大きく、例えば、100nm程度である場合には、無機粒子7の比表面積が小さくなり、表面エネルギーが低下することから、後述する温度等の条件では無機粒子7がネック部7aを介して結合した三次元マトリクス構造を形成することが困難となるため、この場合も誘電体フィルム1の静電容量を高めることができない。
また、樹脂5中に含まれる無機粒子7の含有量が30体積%よりも少ない場合にも、無機粒子7が樹脂5中で孤立した状態となり、無機粒子7がネック部7aを介して結合した三次元マトリクス構造を形成することが困難となるため、この場合も誘電体フィルム1の静電容量を高めることができない。
一方、樹脂5中に含まれるシリカ粒子5の割合が70体積%よりも多い場合には、無機粒子7の三次元マトリクス構造の内部に樹脂5を侵入させることが困難になるため空隙が多くなることから、静電容量が低下してしまう。
ここで、無機粒子7がネック部7aを介して結合した三次元マトリクス構造を成しているというのは、図1に示すように、電子顕微鏡観察した写真上において、最低でも50個以上の無機粒子7が互いにネック部7aによって結合し、立体的なネットワーク構造を成したものが複数誘電体フィルム1全体にわたって認められるものをいう。この場合、無機粒子7同士が接している部位には樹脂が存在していないことが望ましい。
誘電体フィルム1が、上記のような三次元マトリクス構造(三次元網目構造、骨格構造)を形成している場合には、誘電体フィルム1の広い範囲にわたって無機粒子7が連結された状態となるため、樹脂5中を通過する電束量を低減することができることから、耐電圧を高めることも可能になる。この場合も、樹脂5は複数の無機粒子7の三次元マトリクス構造の空隙を埋めるように充填されているのがよい。
本実施形態のコンデンサを構成する誘電体フィルム1には、種々の無機粒子7を適用することが可能であるが、高誘電率という点で、シリカ(SiO、比誘電率:3〜4)、アルミナ(Al、比誘電率:8〜11)およびチタンジルコン酸カルシウム(CaTi1−xZr、比誘電率:10〜13)から選ばれる少なくとも1種が望ましいが、高誘電率とともに誘電損失を低くでき、樹脂5と複合させたときに誘電体フィルム1の耐電圧を高めることができるという点でシリカ粒子がより望ましい。この場合、シリカ粒子の含有量としては40〜50体積%であるのがよい。ここで、無機粒子7の比誘電率については直接測定することはできないが、その成分からなるセラミック焼結体の比誘電率から見積もられる値を採用している。
樹脂5としては、例えば、ポリブタジエン(比誘電率:2.3〜3.6)、エポキシ(比誘電率:2.5〜6)、ポリイミド(比誘電率:3.55)、シアノレジン(比誘電率:15〜20)、ポリビニルブチラール(PVB、比誘電率:3.9〜4)、フッ素樹脂(比誘電率:4〜8)、アクリル樹脂(比誘電率:2.7〜4.5)、ポリエチレンテレフタラート(PET、比誘電率:2.9〜3)、ポリシクロオレフィン(比誘電率:2.3)、ポリシルセスキオキサン(比誘電率:3.0〜3.4)、およびポリプロピレン(PP、比誘電率:2.2〜2.3)から選ばれる一種の高分子材料が好ましく、この中で、耐電圧が高いという理由からポリブタジエンがより好ましい。
無機粒子7の平均粒径は、例えば、誘電体フィルム1の研磨面もしくは破断面をSEM(Scanning Electron Microscope)によって適宜な倍率(例えば30000倍)で撮影して得られるSEI(二次電子像)及び/又はBEI(反射電子像)の写真を画像解析することにより測定できる。例えば、得られた写真上に無機粒子7が30〜100個ほど入る円を描き、各粒子の輪郭から面積を求め、その面積と同等の面積を有する円の直径(円相当径)として算出(測定)し、平均値を求める。
無機粒子7の体積%は、例えば、上述のSEI及び/又はBEIにおいて、画像解析装置等を用いて誘電体フィルム1に占める各無機粒子7の面積比率(面積%)を複数箇所(
例えば10箇所)の断面にて測定し、その測定値の平均値を算出して含有量(体積%)とみなすことにより求める。
また、電極層3の材料としては、例えば、AlもしくはAl−Zn合金を適用するのがよい。
図2は、誘電体フィルムの電極層の接する面に凹部を設けた構造を示す断面模式図である。図2の場合も図1と同様、誘電体フィルム1を模式的に拡大して描いているため、無機粒子7の数を少なく描いているが、この実施形態における誘電体フィルム1にも、無数の無機粒子7がネック部7aを介して結合した三次元マトリクス構造を成すように存在している。
本実施形態の他のコンデンサでは、誘電体フィルム1の電極層3に接した面に凹部8を有していることが望ましい。誘電体フィルム1が電極層3に接した面に凹部8を有していると、電極層3に挟持されている誘電体フィルム1の間隔が部分的に狭くなるために、その分だけ誘電体フィルム1の静電容量を高めることができる。
この場合、誘電体フィルム1の間隔の低減による効果をさらに高めることができるという点で、凹部8が誘電体フィルム1の両面の対向する位置に配置されていることがより望ましい。
次に、上述の誘電体フィルム1を複数層積層して形成した積層型のコンデンサについて説明する。図3(a)は、積層型のコンデンサの外観を示す斜視図、(b)は図3(a)のA−A線における断面図である。図3(b)において破線で囲まれた部分(E部分)が図1に示した、誘電体フィルム1の両面に電極層3を有する単層型のコンデンサに相当する。図3(a)(b)にはリード付きのコンデンサを一例として示しているが、リード付きのコンデンサだけではなく、リードを備えていないコンデンサや誘電体フィルム1と電極層3とが巻回された構造のコンデンサにも適用できることはいうまでもない。
本実施形態のコンデンサは、図1に示した単層型のコンデンサの他、図3に示すような積層型にも成り得る。ここで、上記した誘電体フィルム1が下記の積層型のコンデンサにおいて誘電体層15として適用される。これにより静電容量の高い積層型のコンデンサを得ることができる。
本実施形態のコンデンサは、図3(a)(b)に示すように、リード付きコンデンサとして構成されており、本体部13と、本体部13から延出し、電圧が印加される1対のリード14とを有している。本体部13は、例えば、概ね直方体状に形成されており、1対のリード14は、例えば、直方体の一の面から延出している。本体部13の大きさは適宜に設定されてよいが、例えば、1辺が3〜10数ミリである。
本体部13は、例えば、積層型のコンデンサとして構成されており、交互に積層された複数の誘電体層15および複数の内部電極層17を有している。また、本体部13は、複数の内部電極層17に接続された1対の外部電極19と、誘電体層15および外部電極19等を覆う外装部21とを有している。
複数の誘電体層15及び複数の内部電極層17は、要求される容量等に応じて適宜な数で積層されている。図3では、内部電極層17が3層となるように積層されているが、積層数はこれに限定されるものではなく、例えば、100〜1000層であってもよい。
複数の誘電体層15は、例えば、互いに同一の形状及び大きさとされており、各誘電体
層15は、厚さが概ね一定の平板状(フィルム状)に形成されている。誘電体層15の厚さは、印加される電圧及び要求される容量等に応じて適宜に設定されてよいが、例えば、5〜20μmである。誘電体層15の平面形状は、適宜に設定されてよいが、例えば矩形である。
複数の内部電極層17は、例えば、互いに同一の形状及び大きさとされており、各内部電極層17は、厚さが概ね一定の平板状(フィルム状)に形成されている。内部電極層17の平面形状は適宜に設定されてよいが、例えば矩形である。複数の内部電極層17は、その積層方向において交互に、1対の外部電極19の対向方向において互いにずれて配置されている。そして、複数の内部電極層17は、その積層方向において交互に、1対の外部電極9の一方又は他方に、平面形状の矩形の1辺(縁部)が接続されている。この場合も、内部電極層17は、例えば、Al若しくはAl−Zn合金等の金属により形成されている。
外部電極19は、複数の誘電体層15および複数の内部電極層17によって構成された積層体18の側面を覆うように形成されている。外部電極19は、例えば、概ね厚さが一定の板状に形成されている。外部電極19の平面形状は、例えば、積層体18の側面全体を覆う形状(本実施形態では矩形)とされている。外部電極19は、例えば、Sn、Zn若しくはSn−Zn合金等の金属により形成されている。
外装部21は、積層体18および1対の外部電極19の全体を覆っており、本体部13の外面全体を構成している。外装部21は、樹脂等の絶縁性材料により形成されている。樹脂は、例えば、エポキシ樹脂等の熱硬化性樹脂である。
リード14は、線材からなり、一端側が外部電極19の外側面に接続されており、他端側が外装部21から延出している。リード14は、例えば、Fe、Cu若しくはSn等の金属により形成されている。
次に、本実施形態のコンデンサを製造する方法について説明する。まず、平均粒径が30〜40nmであるコロイド状の無機粒子7を所定の配合比で配合するとともに溶剤および溶融状態の樹脂に分散させてスラリーを調製する。無機粒子7と樹脂5との配合比(体積比)は、例えば、3:7〜7:3である。
本実施形態における誘電体フィルム1は、原料として、微粒であるコロイド状の無機粒子7を用いて形成されるものであるが、コロイド状の無機粒子7は、原料の段階で無機粒子7の表面が水酸基やカルボキシル基に覆われているために、その表面は固体の無機粒子7の表面に比べて柔らかい状態となっている。このため、後述するような加熱条件にて誘電体フィルム1を形成したときに、無機粒子7の表面が面接触するようになり、微粒のため表面エネルギーが高いことから、無機粒子7同士がネック部7を介して結合した三次元マトリクス構造を容易に形成することができる。
ここで溶剤としては、例えば、メタノール、イソプロパノール、n-ブタノール、エチレングリコール、エチレングリコールモノプロピルエーテル、メチルエチルケトン、メチルイソブチルケトン、キシレン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジメチルアセトアミド、又は、これらから選択された2種以上の混合物を含んだ有機溶剤を用いるのがよい。
次に、調製したスラリーをキャリアフィルム上に塗布して、ドクターブレード法、ダイコータ法およびナイフコータ法から選ばれる一種のシート成形法を用いてシート状に成形し、脱溶剤を行った後、樹脂5が硬化する温度で熱処理を行って誘電体フィルム1を作製
する。これにより無機粒子7がネック部7aを介して結合した三次元マトリクス構造を成している誘電体フィルム1を得ることができる。
また、樹脂5を硬化させる際に、表面に凸部を有する台板を用いて加熱と同時に加圧処理を行うと、表面に凹部8を有する誘電体フィルム1を形成することができる。
キャリアフィルムは、樹脂等の適宜な材料により形成されていてよいが、耐熱性、機械的強度及びコストの観点から、ポリエチレンテレフタレート(PET)により形成されていることが好ましい。また、誘電体フィルム1の剥離性を高める上で、シリコーン樹脂やフッ素樹脂等が適宜コーティングされていてもよい。
次に、金属を誘電体フィルム1上に蒸着することによって電極層3を形成する。こうして、図1に示すような誘電体フィルム1の両面に電極層3を有するコンデンサを得ることができる。
なお、図3(a)(b)に示すような積層型のコンデンサを製造する場合には、さらに以下のような加工を行う。まず、誘電体フィルム1の表面にメタルマスクを介してパターニングされた内部電極層17を形成する。次に、この内部電極層17を有する誘電体フィルム1を所望の枚数積層し、内部電極層17が端面に露出するように切断することによって積層型のコンデンサの本体部13を得る。
なお、本体部13を、凹部8を有する誘電体フィルム1を用いて形成する場合には、誘電体フィルム1と内部電極層17との層間に接着剤を塗布して凹部8を埋めるようにした上で積層するのがよい。これにより誘電体フィルム1と内部電極層17との層間の剥離を防止することができる。
次に、本体部13の内部電極層17が露出した端面に外部電極9を形成する。外部電極9は、例えば、誘電体層15および内部電極層17からなる積層体18の側面に金属を溶射することによって形成する。さらに、外部電極9の外層にSn等のめっきを施してもよい。次に、外部電極9に溶接等によってリード14を接合し、次いで、外部電極9およびリード14を含む積層体18の表面に外装部21を形成する。
本実施形態の誘電体フィルムについて、具体的な材料の選択及び寸法の設定等を行い、実施例に係る誘電体フィルムを作製し、以下の評価を行った。
まず、表1に示す平均粒径を有するコロイド状の無機粒子(シリカ粒子の比誘電率は3.1、CZ(チタンジルコン酸カルシウムの比誘電率は10.3)と、樹脂としてポリブタジエン(分子量:Mw=5000〜7000、Mn=2500〜3500、比誘電率:3)とを準備した。表1には平均粒径が30nm以上のシリカ粒子を用いたときの試料を示しているが、平均粒径が約10nmと見積もられるシリカ粒子を適用した場合には、無機粒子間に樹脂が介在し、無機粒子がネック部を介して結合した三次元マトリクス構造を形成することができなかった。
次に、上記のコロイド状の無機粒子をポリブタジエン中に分散させてスラリーを調製した。場合によってはMEK(メチルエチルケトン)等の溶剤を希釈剤として加えた。
この後、上記スラリーをコーターを用いてポリエチレンテレフタレート(PET)フィルム上に塗布してシート状に成形し、110℃で脱溶剤を行った後、150〜200℃の温度で熱処理を行って厚み10μmの誘電体フィルムを作製した。次に、真空蒸着法によ
り誘電体フィルムの両面に平均厚みが75nmのAlの電極層を形成した。また、コロイド状の無機粒子を含まない試料(試料No.1)を比較例として同様の方法にて作製した。
次に、得られた誘電体フィルムについて、耐電圧、静電容量および誘電損失を測定した。また、誘電体フィルムに含まれるシリカ粒子の平均粒径と体積割合を求めた。
耐電圧は、誘電体フィルムの電極層間に商用周波数(60Hz)、毎秒100Vの昇圧速度で電圧を印加し、漏れ電流値が1.0mAを越えた瞬間の電圧値から求めた。
静電容量および誘電損失は、LCRメーターを使用して測定した。具体的には、作製した誘電体フィルムの電極層間の短絡の有無を確認した後、LCRメーターにより周波数1KHz、入力信号レベル1.0Vrmsの測定条件にて、誘電体フィルムの静電容量と誘電損失を測定した。
誘電体フィルムに含まれる無機粒子の平均粒径と体積割合は、以下のようにして分析用の試料を作製し、評価した。まず、誘電体フィルムを樹脂埋めした後、研磨し、図1に示すような断面を露出させた試料を作製した。次に、約30000倍の倍率でSEMによりSEIおよびBEIの写真を撮り、このうち縦横の長さが約10μm×約15μmの領域を選択し、マウンテック社製の画像解析式粒度分布測定ソフトウェア「マックビュー」を用いて、写真上に無機粒子が50個ほど入る円を描き、各粒子の輪郭から面積を求め、その面積と同等の面積を有する円の直径(円相当径)として算出(測定)し、平均値を求めた。
無機粒子の体積%は、上記SEIおよびBEIの写真において、縦横の長さが約1μm×約2μmの領域を10箇所選定し、画像解析装置を用いて誘電体フィルムに占める無機粒子の面積比率(面積%)を測定し、誘電体フィルムの組織が等方的であるものとして、その測定値の平均値を算出して含有量(体積%)とみなすことにより求めた。このとき空隙の体積は除くようにした。作製した誘電体フィルム中に含まれる無機粒子の平均粒径は表1に示す値に一致した。また、無機粒子の体積割合も表1に示す調合組成に一致するものであった。また、無機粒子が互いにネック部によって結合し、三次元ネットワーク構造を成しているという状態は、電子顕微鏡観察した写真から判定したが、本発明の試料では、いずれも最低でも50個以上の無機粒子が互いにネック部によって結合し、三次元マトリクス構造が誘電体フィルムの全体にわたって複数分布していることが認められた。
Figure 2013182908
表1の結果から明らかなように、平均粒径が30〜40nmの無機粒子を30〜70体積%含有させた試料(試料No.3〜6、9〜12および15〜17)は、静電容量が96.7nF以上であり、無機粒子を含有しない試料(試料No.1)および無機粒子の含有量が30〜70体積%の範囲に無い試料(試料No.2、7、8、13および14)に比較して、いずれも静電容量が高かった。
この中で、無機粒子としてシリカ粒子を用いた試料(試料No.3〜6、9〜12、15および16)は、耐電圧が211kV/mm以上であった。
また、シリカ粒子の含有量を40〜50体積%とした試料は、耐電圧が273kV/mm以上であった。
さらに、誘電体フィルムの電極層に接した面に凹部を形成した試料(試料No.14、15)は誘電体フィルムの電極層に接した面に凹部を形成しなかった試料(試料No.5)よりも静電容量が高かった。
1・・・・・・・誘電体フィルム
3・・・・・・・電極層
5・・・・・・・樹脂
7・・・・・・・無機粒子
7a・・・・・・ネック部
8・・・・・・・凹部
9・・・・・・・外部電極
13・・・・・・本体部
14・・・・・・リード
15・・・・・・誘電体層
17・・・・・・内部電極層
18・・・・・・積層体
19・・・・・・外部電極

Claims (5)

  1. 誘電体フィルムと、該誘電体フィルムの両面に形成された電極層とを備えているコンデンサであって、前記誘電体フィルムは、樹脂中に、平均粒径が30〜40nmであり、該樹脂よりも比誘電率の高い無機粒子を30〜70体積%含み、前記無機粒子がネック部を介して結合した三次元マトリクス構造を成していることを特徴とするコンデンサ。
  2. 前記無機粒子がシリカ粒子であることを特徴とする請求項1に記載のコンデンサ。
  3. 前記シリカ粒子の含有量が40〜50体積%であることを特徴とする請求項1または2に記載のコンデンサ。
  4. 前記誘電体フィルムは前記電極層に接した面に凹部を有していることを特徴とする請求項1乃至3のうちいずれかに記載のコンデンサ。
  5. 前記凹部が前記誘電体フィルムの両面の対向する位置に配置されていることを特徴とする請求項1乃至4のうちいずれかに記載のコンデンサ。
JP2012043664A 2012-02-29 2012-02-29 コンデンサ Pending JP2013182908A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012043664A JP2013182908A (ja) 2012-02-29 2012-02-29 コンデンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012043664A JP2013182908A (ja) 2012-02-29 2012-02-29 コンデンサ

Publications (1)

Publication Number Publication Date
JP2013182908A true JP2013182908A (ja) 2013-09-12

Family

ID=49273389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012043664A Pending JP2013182908A (ja) 2012-02-29 2012-02-29 コンデンサ

Country Status (1)

Country Link
JP (1) JP2013182908A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029005A (ja) * 2013-07-30 2015-02-12 京セラ株式会社 誘電体フィルムおよびフィルムコンデンサ
JP2017010978A (ja) * 2015-06-17 2017-01-12 日立化成株式会社 絶縁フィルム
WO2021228432A1 (de) * 2020-05-13 2021-11-18 Giesecke+Devrient Currency Technology Gmbh Gedruckter folienkondensator mit gesintertem dielektrikum
JP2023503212A (ja) * 2020-09-21 2023-01-27 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト コンデンサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056935A (ja) * 2003-08-07 2005-03-03 Hitachi Ltd 有機・無機酸化物混合体薄膜、それを用いた受動素子内蔵電子基板及び有機・無機酸化物混合体薄膜の製造方法
JP2009141293A (ja) * 2007-12-11 2009-06-25 Shin Etsu Polymer Co Ltd コンデンサ用フィルムの製造方法及びコンデンサ用フィルム
JP2009532521A (ja) * 2006-03-31 2009-09-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高周波数回路用途において有用なポリイミド系組成物を調製する方法
JP2011201939A (ja) * 2010-03-24 2011-10-13 Shin Etsu Polymer Co Ltd フィルムキャパシタ用フィルム及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056935A (ja) * 2003-08-07 2005-03-03 Hitachi Ltd 有機・無機酸化物混合体薄膜、それを用いた受動素子内蔵電子基板及び有機・無機酸化物混合体薄膜の製造方法
JP2009532521A (ja) * 2006-03-31 2009-09-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高周波数回路用途において有用なポリイミド系組成物を調製する方法
JP2009141293A (ja) * 2007-12-11 2009-06-25 Shin Etsu Polymer Co Ltd コンデンサ用フィルムの製造方法及びコンデンサ用フィルム
JP2011201939A (ja) * 2010-03-24 2011-10-13 Shin Etsu Polymer Co Ltd フィルムキャパシタ用フィルム及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029005A (ja) * 2013-07-30 2015-02-12 京セラ株式会社 誘電体フィルムおよびフィルムコンデンサ
JP2017010978A (ja) * 2015-06-17 2017-01-12 日立化成株式会社 絶縁フィルム
WO2021228432A1 (de) * 2020-05-13 2021-11-18 Giesecke+Devrient Currency Technology Gmbh Gedruckter folienkondensator mit gesintertem dielektrikum
JP2023503212A (ja) * 2020-09-21 2023-01-27 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト コンデンサ
JP7464704B2 (ja) 2020-09-21 2024-04-09 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト コンデンサ
US11996239B2 (en) 2020-09-21 2024-05-28 Tdk Electronics Ag Capacitor

Similar Documents

Publication Publication Date Title
JP6597008B2 (ja) 積層セラミックコンデンサ及び積層セラミックコンデンサの製造方法
KR101687575B1 (ko) 적층 세라믹 콘덴서
JP4859593B2 (ja) 積層セラミックコンデンサおよびその製法
KR101141457B1 (ko) 적층 세라믹 콘덴서 및 그 제조방법
JP6192724B2 (ja) 誘電体フィルム、フィルムコンデンサ、および電気装置
TW200421363A (en) Laminated ceramic capacitor and manufacturing method thereof
JP2017028254A (ja) 積層セラミックコンデンサ
JP2013182908A (ja) コンデンサ
JP2014146752A (ja) 積層セラミックコンデンサ
JP5743689B2 (ja) コンデンサ
JP5773726B2 (ja) 積層セラミックコンデンサ
JP2015012076A (ja) フィルムコンデンサ
JP5905739B2 (ja) コンデンサ
JP6034136B2 (ja) コンデンサ
JP6138434B2 (ja) アレイ型積層セラミック電子部品
JP2013175579A (ja) コンデンサ
JP2013207202A (ja) フィルムコンデンサ
JP4826881B2 (ja) 導電性ペースト、及び積層セラミック電子部品の製造方法、並びに積層セラミック電子部品
JP2015023174A (ja) フィルムコンデンサ
JP2015103700A (ja) フィルムコンデンサ
US8373966B2 (en) Structural body, capacitor, and method of fabricating the capacitor
CN107452435B (zh) 导体形成用糊剂
JP5825935B2 (ja) コンデンサ
JP6339344B2 (ja) フィルムコンデンサ
JP6215635B2 (ja) 積層体およびフィルムコンデンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151117