JP2013177820A - Reed valve and compression device - Google Patents

Reed valve and compression device Download PDF

Info

Publication number
JP2013177820A
JP2013177820A JP2012040914A JP2012040914A JP2013177820A JP 2013177820 A JP2013177820 A JP 2013177820A JP 2012040914 A JP2012040914 A JP 2012040914A JP 2012040914 A JP2012040914 A JP 2012040914A JP 2013177820 A JP2013177820 A JP 2013177820A
Authority
JP
Japan
Prior art keywords
lead member
side lead
valve
stopper
seating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012040914A
Other languages
Japanese (ja)
Inventor
Tomohito Kato
智史 加藤
Yoshihiro Naito
喜裕 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2012040914A priority Critical patent/JP2013177820A/en
Publication of JP2013177820A publication Critical patent/JP2013177820A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Check Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an easy-to-manufacture reed valve superior in durability, and to provide a compression device having the reed valve.SOLUTION: A reed member of a reed valve 1 includes a seating-side reed member 40 and a stopper-side reed member 50. The seating-side reed member 40 is disposed on a valve base-side where a seating face is formed, and the stopper-side reed member 50 is disposed on the seating-side reed member 40. A spacer member 60 is interposed between the seating-side reed member 40 and the stopper-side reed member 50. When the valve is opened and closed, the stopper-side reed member 50 operates after the seating-side reed member 40. When the valve is opened, the stopper-side reed member 50 collides with the seating-side reed member 40, and absorbs a collision force. When the valve is closed, the fluttering of the seating-side reed member 40 can be prevented by the stopper-side reed member 50.

Description

本発明は、流体の流路を開閉するリードバルブ、および、このリードバルブを備える圧縮装置に関する。   The present invention relates to a reed valve that opens and closes a fluid flow path, and a compression device including the reed valve.

一般的なリードバルブは、バルブベースと、バルブベースに固定されている板状のリード部材と、リード部材を挟んでバルブベースの逆側に設けられているストッパ部材と、を持つ。バルブベースには貫通孔状の流入口が形成されている。リード部材は、外力が加わらない状態では、流入口を覆いバルブベースにおける流入口の周縁部に当接(着弁)して、流入口を閉じる。流体が流入口を経てリード部材側に流入し、リード部材を押圧すると、弾性変形したリード部材はバルブベースから離れ(開弁)、流入口を開く。このリード部材の開閉動作によって、リードバルブは流体の流動方向を一方向に規制する。   A typical reed valve has a valve base, a plate-like lead member fixed to the valve base, and a stopper member provided on the opposite side of the valve base with the lead member interposed therebetween. A through hole-like inlet is formed in the valve base. In a state where no external force is applied, the lead member covers the inflow port, abuts on the peripheral portion of the inflow port in the valve base (valve arrival), and closes the inflow port. When the fluid flows into the lead member through the inlet and presses the lead member, the elastically deformed lead member is separated from the valve base (opened) and opens the inlet. By the opening / closing operation of the lead member, the reed valve regulates the flow direction of the fluid in one direction.

ところで開弁時には、リード部材に、流入口を開く方向(以下、開方向と呼ぶ)の大きな力が作用する。このときリード部材の変形量が過大であれば、リード部材が塑性変形して元の形状に戻らなくなり、流入口を閉じることができなくなる可能性がある。このようなリード部材の過大な変形を抑制するために、一般には、リード部材を挟んで流入口とは逆側の位置に、リード部材よりも変形し難いストッパ部材を配置している。リード部材に開方向の力が作用すると、開方向に所定量変形したリード部材はストッパ部材に当接し、それ以上変形しない。このため、リード部材の過大な変形が抑制される。   By the way, when the valve is opened, a large force is applied to the lead member in the direction of opening the inlet (hereinafter referred to as the opening direction). At this time, if the deformation amount of the lead member is excessive, the lead member may be plastically deformed so that it does not return to its original shape, and the inflow port may not be closed. In order to suppress such excessive deformation of the lead member, generally, a stopper member that is more difficult to deform than the lead member is disposed at a position opposite to the inlet with the lead member interposed therebetween. When a force in the opening direction acts on the lead member, the lead member deformed by a predetermined amount in the opening direction comes into contact with the stopper member and is not further deformed. For this reason, excessive deformation of the lead member is suppressed.

しかし流体の流入速度が大きくリード部材に急激に大きな力が作用した場合等、リード部材の変形速度(開弁速度)が大きい場合には、リード部材がストッパ部材に勢いよく当接して騒音(打音)が生じる場合がある。   However, if the lead member has a high deformation rate (valve opening speed), such as when the fluid inflow rate is high and a sudden, large force is applied to the lead member, the lead member abruptly contacts the stopper member and makes noise ( Sound) may occur.

2枚のリード部材を設けることで、このような打音を抑制する技術が提案されている(例えば、特許文献1参照)。   A technique for suppressing such a hitting sound by providing two lead members has been proposed (see, for example, Patent Document 1).

特許文献1に紹介されているリードバルブは、2枚のリード部材を持つ。一方のリード部材(吐出リード)は、平板状をなし、弾性変形することで流入口を開閉する。他方のリード部材(スプリングリード)は屈折した板状をなし、弾性変形可能である。スプリングリードはストッパ部材と吐出リードとの間に配置されている。開方向に変形した吐出リードは、ストッパ部材よりも先にスプリングリードに当接する。スプリングリードは弾性変形可能であるため、吐出リードが加えた衝撃を吸収する。よって、上述した打音を抑制できると考えられる。   The reed valve introduced in Patent Document 1 has two lead members. One lead member (discharge lead) has a flat plate shape and elastically deforms to open and close the inlet. The other lead member (spring lead) has a refracted plate shape and is elastically deformable. The spring lead is disposed between the stopper member and the discharge lead. The discharge lead deformed in the opening direction comes into contact with the spring lead before the stopper member. Since the spring lead is elastically deformable, it absorbs the impact applied by the discharge lead. Therefore, it is considered that the hitting sound described above can be suppressed.

ところで、特許文献1のリードバルブによると、スプリングリードの屈折した部分(屈折部と呼ぶ)近傍の強度は低くなる(脆くなる)ため、屈折部近傍において、スプリングリードの耐久性は低下する。スプリングリードが耐久劣化すると、吐出リードによる衝撃を吸収できなくなり、上述した打音が生じる。また、スプリングリードの屈折部近傍の剛性は高くなる。このため、屈折部近傍において、スリングリードは弾性変形し難くなる。このようなスプリングリードを所望する形状およびバネ定数になるように製造することは極めて困難であり、製造効率を向上させる必要もあった。   By the way, according to the reed valve of Patent Document 1, the strength of the spring lead in the vicinity of the refracted portion (referred to as a refracting portion) becomes low (becomes brittle), so that the durability of the spring lead decreases in the vicinity of the refracting portion. When the spring lead is deteriorated in durability, the impact due to the discharge lead cannot be absorbed, and the hitting sound described above is generated. Further, the rigidity of the spring lead near the refracted portion is increased. For this reason, the sling lead is hardly elastically deformed in the vicinity of the refracting portion. It is extremely difficult to manufacture such a spring lead so as to have a desired shape and spring constant, and it is also necessary to improve manufacturing efficiency.

特開2002−195160号公報JP 2002-195160 A

本発明は上記事情に鑑みてなされたものであり、耐久性に優れ、かつ、容易に製造できるリードバルブ、およびこのリードバルブを有する圧縮装置を提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the reed valve which is excellent in durability, and can be manufactured easily, and the compression apparatus which has this reed valve.

本発明のリードバルブは、貫通孔状をなす流入口を有するバルブベースに取り付けられるリードバルブであって、
平板状をなし弾性変形可能であり、前記バルブベースに固定可能な第1固定部と、前記第1固定部に連続し前記流入口を開閉可能な第1可動部と、を持つ着座側リード部材と、
前記着座側リード部材の前記第1固定部に重ねられているスペーサ部材と、
平板状をなし弾性変形可能であり、前記スペーサ部材に重ねられている第2固定部と、前記第2固定部に連続し前記第1可動部に離間しつつ対面する第2可動部と、を持つストッパ側リード部材と、
前記ストッパ側リード部材に重ねられているストッパ部材と、を備えるものである。
The reed valve of the present invention is a reed valve attached to a valve base having an inflow port having a through hole shape,
A seating-side lead member that has a flat plate shape, is elastically deformable, and has a first fixed portion that can be fixed to the valve base, and a first movable portion that is continuous with the first fixed portion and can open and close the inlet. When,
A spacer member overlaid on the first fixed portion of the seating side lead member;
A second fixed portion that is formed in a flat plate shape and is elastically deformable and is stacked on the spacer member; and a second movable portion that is continuous with the second fixed portion and faces the first movable portion while being spaced apart from the first movable portion. A stopper side lead member having,
A stopper member superimposed on the stopper-side lead member.

本発明のリードバルブは、下記の(1)、(2)の何れかを備えることが好ましく、両方を備えることがより好ましい。
(1)前記ストッパ側リード部材のバネ定数は、前記着座側リード部材のバネ定数以下である。
(2)前記着座側リード部材と前記ストッパ側リード部材とは同形状である。
The reed valve of the present invention preferably includes either (1) or (2) below, and more preferably includes both.
(1) The spring constant of the stopper side lead member is equal to or less than the spring constant of the seating side lead member.
(2) The seating side lead member and the stopper side lead member have the same shape.

本発明の他のリードバルブは、貫通孔状をなす流入口を有するバルブベースに取り付けられるリードバルブであって、
平板状をなし弾性変形可能であり、前記バルブベースに固定可能な第1固定部と、前記第1固定部に連続し前記流入口を開閉可能な第1可動部と、を持つ着座側リード部材と、
前記バルブベースの反対側で前記着座側リード部材に対面して設けられ、平板状をなし弾性変形可能であり、前記スペーサ部材に重ねられている第2固定部と、前記第2固定部に連続し前記第1可動部に離間しつつ対面する第2可動部と、を持つストッパ側リード部材と、
前記着座側リード部材の反対側で前記ストッパ側リード部材に対面して設けられているストッパ部材と、を備えるものである。この本発明のリードバルブもまた、上記(1)、(2)の何れかを備えることが好ましく、両方を備えることがより好ましい。
Another reed valve of the present invention is a reed valve attached to a valve base having an inflow port having a through hole shape,
A seating-side lead member that has a flat plate shape, is elastically deformable, and has a first fixed portion that can be fixed to the valve base, and a first movable portion that is continuous with the first fixed portion and can open and close the inlet. When,
A second fixing portion provided on the opposite side of the valve base so as to face the seating-side lead member, having a flat plate shape and elastically deformable, is continuous with the second fixing portion. A stopper-side lead member having a second movable portion facing the first movable portion while being spaced apart from the first movable portion;
And a stopper member provided opposite to the seating side lead member and facing the stopper side lead member. The reed valve of the present invention also preferably includes any one of the above (1) and (2), and more preferably includes both.

本発明の圧縮装置は、上述した本発明のリードバルブを備える装置であり、上述した本発明のリードバルブと、圧縮室と、前記圧縮室に連通し外部から前記圧縮室に向けた流体の流入路を構成する第1バルブ室と、前記圧縮室に連通し前記圧縮室から前記外部に向けた前記流体の流出路を構成する第2バルブ室と、を有するケーシングと、前記圧縮室内に配設され、前記圧縮室内を移動することで前記圧縮室内の流体圧を変化させる圧縮部と、前記圧縮部を駆動する駆動部と、を備え、前記第1バルブ室を区画する区画壁の一部は、貫通孔状をなし前記外部から前記第1バルブ室に向けた前記流体の流路となる第1流入口を持つ第1バルブベースを構成し、前記第2バルブ室を区画する区画壁の一部は、貫通孔状をなし前記圧縮室から前記第2バルブ室に向けた前記流体の流路となる第2流入口を持つ第2バルブベースを構成し、前記リードバルブは、前記第1バルブベースおよび第2バルブベースに、それぞれ1つずつ固定されているものである。   The compression device of the present invention is a device including the above-described reed valve of the present invention. The reed valve of the present invention, the compression chamber, and the inflow of fluid from the outside toward the compression chamber in communication with the compression chamber. A casing having a first valve chamber constituting a passage; a second valve chamber communicating with the compression chamber and constituting an outflow passage for the fluid from the compression chamber toward the outside; and disposed in the compression chamber. A part of the partition wall that partitions the first valve chamber, the compressor part changing a fluid pressure in the compression chamber by moving in the compression chamber, and a drive part that drives the compression part. A first valve base having a first inlet having a through-hole shape and serving as a flow path for the fluid from the outside toward the first valve chamber, and a partition wall defining the second valve chamber. The part has a through-hole shape and the first part from the compression chamber. A second valve base having a second inlet serving as a fluid flow path toward the valve chamber is configured, and the reed valve is fixed to the first valve base and the second valve base one by one. It is what.

本発明のリードバルブは、平板状をなす2枚のリード部材(着座側リード部材、ストッパ側リード部材)を持つ。平板状をなすリード部材は、屈折板状をなすリード部材に比べて耐久性に優れ、また、所望する形状やバネ定数になるように製造することも容易である。このため本発明のリードバルブは容易に製造でき、かつ、耐久性に優れる。   The reed valve of the present invention has two lead members (a seating side lead member and a stopper side lead member) having a flat plate shape. A flat lead member is superior in durability to a refracting lead member, and can be easily manufactured to have a desired shape and spring constant. Therefore, the reed valve of the present invention can be easily manufactured and has excellent durability.

また、本発明のリードバルブにおいては、開方向に変形した着座側リード部材がストッパ部材よりも先にストッパ側リード部材に当接する。ストッパ側リード部材は弾性変形可能であるため、着座側リード部材が加えた衝撃を吸収する。このため本発明のリードバルブによると、従来のリードバルブと同様に打音の発生を抑制できる。   In the reed valve of the present invention, the seating-side lead member deformed in the opening direction comes into contact with the stopper-side lead member before the stopper member. Since the stopper side lead member can be elastically deformed, the impact applied by the seating side lead member is absorbed. For this reason, according to the reed valve of this invention, generation | occurrence | production of a hitting sound can be suppressed similarly to the conventional reed valve.

ところで、1枚のみのリードからなるリード部材を備える従来のリードバルブにおいては、閉弁時にリードバルブの動作遅れが生じる場合があった。つまり、外部から流入口を経てバルブ室に向かう流体の流入が停止した場合や、外部から流出口を経てバルブ室に向けて流体が流入する場合等、開方向に向けた流体の押圧力が小さくなる場合には、リード部材は自身の弾性により元の形状に戻り、流入口を閉じる。このとき、開方向に向けた流体の押圧力が急激に小さくなると、リード部材は勢いよく流入口を閉じる。するとリード部材がバルブベースに勢いよく当接し、騒音(打音)が生じる。さらに、バルブベースに当接したリード部材が勢いよく跳ね返ると、リード部材が一旦閉じた流入口が開き、リードバルブによって流入口を迅速に閉じることができず、リードバルブの動作遅れが生じる。また、開方向に変形したリード部材はストッパ部材に当接するため、リードバルブの使用状態によっては、リード部材とストッパ部材との間に機械油等の粘着物が介在して、リード部材がストッパ部材に凝着する可能性がある。この場合にも、リードバルブによって流入口を迅速に閉じることができず、リードバルブの動作遅れが生じる。   By the way, in the conventional reed valve provided with a lead member composed of only one lead, there is a case where a delay in the operation of the reed valve occurs when the valve is closed. In other words, when the inflow of fluid from the outside to the valve chamber stops via the inlet, or when the fluid flows from the outside to the valve chamber via the outlet, the fluid pressing force toward the opening direction is small. In this case, the lead member returns to its original shape due to its own elasticity and closes the inlet. At this time, when the pressing force of the fluid in the opening direction is rapidly reduced, the lead member vigorously closes the inlet. Then, the lead member comes into contact with the valve base vigorously, and noise (sounding sound) is generated. Further, when the lead member abutting against the valve base rebounds vigorously, the inlet port once closed by the lead member opens, and the inlet port cannot be quickly closed by the lead valve, causing a delay in the operation of the lead valve. In addition, since the lead member deformed in the opening direction comes into contact with the stopper member, depending on the use state of the reed valve, an adhesive such as machine oil is interposed between the lead member and the stopper member, and the lead member becomes the stopper member. There is a possibility of sticking to. Also in this case, the inlet cannot be quickly closed by the reed valve, and the operation of the reed valve is delayed.

上述した特許文献1には、リード部材を2枚のリード(吐出リード、スプリングリード)で構成し、このうちスプリングを屈折した板状にすることで、リードバルブの動作遅れを抑制できると説明されている。つまり、特許文献1のリードバルブにおいては、スプリングリードが屈折した板状をなすため、スプリングリードは吐出リードに対して傾きをもって配置される。このため、開弁時にも吐出リードはスプリングリードと面接触し難く、凝着し難い。このため、リードバルブの動作遅れを抑制できると考えられる。   In Patent Document 1 described above, it is described that the lead member is composed of two leads (discharge lead, spring lead), and the spring is refracted so that the delay of the operation of the reed valve can be suppressed. ing. That is, in the reed valve of Patent Document 1, since the spring lead has a refracted plate shape, the spring lead is disposed with an inclination with respect to the discharge lead. For this reason, even when the valve is opened, the discharge lead does not easily come into surface contact with the spring lead and does not adhere easily. For this reason, it is thought that the operation | movement delay of a reed valve can be suppressed.

これに対して、本発明のリードバルブにおいては、ストッパ側リード部材およびスペーサ部材を設けることで、リードバルブの動作遅れを抑制できる。   On the other hand, in the reed valve of the present invention, the operation delay of the reed valve can be suppressed by providing the stopper side lead member and the spacer member.

つまり、本発明のリードバルブにおける着座側リード部材は、開弁時においてはストッパ側リード部材に当接するがストッパ部材に直接当接することはない。このため、着座側リード部材はストッパ部材には凝着しない。また、着座側リード部材とストッパ側リード部材との間にスペーサ部材が介在しているため、開弁時および閉弁時にも、着座側リード部材とストッパ側リード部材とが全面で密着することはない。このため着座側リード部材はストッパ側リード部材に凝着し難い。よって本発明のリードバルブは動作遅れを抑制できる。   That is, the seating-side lead member in the reed valve of the present invention contacts the stopper-side lead member when the valve is opened, but does not directly contact the stopper member. For this reason, the seating side lead member does not adhere to the stopper member. In addition, since the spacer member is interposed between the seating side lead member and the stopper side lead member, the seating side lead member and the stopper side lead member are not in close contact with each other even when the valve is opened and closed. Absent. For this reason, the seating side lead member is difficult to adhere to the stopper side lead member. Therefore, the reed valve of the present invention can suppress the operation delay.

さらに、着座側リード部材とストッパ側リード部材との間にはスペーサ部材が介在しているため、着座側リード部材とストッパ側リード部材とはそれぞれ独立して動作する。このため閉弁時に着座側リード部材が勢いよくバルブベースに当接し跳ね返っても、ストッパ側リード部材が着座側リード部材に当接する。換言すると、着座側リード部材は閉弁時にストッパ側リード部材に押さえ込まれてばたつき難い。よって着座側リード部材は迅速に流入口を閉じることができ、リードバルブの動作遅れを抑制できる。また、着座側リード部材のばたつきによる閉弁時の打音もまた抑制可能である。   Further, since the spacer member is interposed between the seating side lead member and the stopper side lead member, the seating side lead member and the stopper side lead member operate independently of each other. For this reason, even if the seating side lead member vigorously contacts and rebounds when the valve is closed, the stopper side lead member contacts the seating side lead member. In other words, the seating-side lead member is not easily bumped by being pressed by the stopper-side lead member when the valve is closed. Therefore, the seating side lead member can quickly close the inflow port, and the operation delay of the reed valve can be suppressed. Further, it is also possible to suppress the hitting sound when the valve is closed due to flapping of the seating side lead member.

上記(1)を備える本発明のリードバルブによると、ストッパ側リード部材のバネ定数を着座側リード部材のバネ定数以上にしたため、開弁時および閉弁時にストッパ側リード部材が着座側リード部材に遅れて動作する。このため、開弁時には着座側リード部材に当接して着座側リード部材よる衝撃を充分に吸収でき、かつ、閉弁時にはバルブベースに勢いよく当接し跳ね返った着座側リード部材を押さえ込むことができる。よって、上記(1)を備える本発明のリードバルブによると、騒音および動作遅れをより信頼性高く抑制できる。   According to the reed valve of the present invention having the above (1), since the spring constant of the stopper side lead member is equal to or greater than the spring constant of the seating side lead member, the stopper side lead member becomes the seating side lead member when the valve is opened and closed. Work late. For this reason, when the valve is opened, it can abut against the seating-side lead member to sufficiently absorb the impact of the seating-side lead member, and when the valve is closed, the seating-side lead member that abruptly abuts against the valve base and rebounds can be pressed down. Therefore, according to the reed valve of the present invention having the above (1), noise and operation delay can be more reliably suppressed.

上記(2)を備える本発明のリードバルブによると、着座側リード部材とストッパ側リード部材とを例えばプレス成形する場合等に、着座側リード部材用のプレス成形型とストッパ側リード部材用のプレス成形型とを共用できる利点がある。   According to the reed valve of the present invention having the above (2), when the seating-side lead member and the stopper-side lead member are press-molded, for example, the press-forming die for the seating-side lead member and the press for the stopper-side lead member There is an advantage that the mold can be shared.

本発明の圧縮装置は、上述した本発明のリードバルブを備えることで、リードバルブの動作遅れを抑制でき、効率良く動作する。   By providing the reed valve of the present invention described above, the compression apparatus of the present invention can suppress the operation delay of the reed valve and operate efficiently.

実施形態の圧縮装置およびリードバルブを模式的に示す説明図である。It is explanatory drawing which shows typically the compression apparatus and reed valve of embodiment. 実施形態のリードバルブを模式的に示す分解斜視図である。It is a disassembled perspective view which shows the reed valve of embodiment typically. 自然状態における実施形態のリードバルブを模式的に示す断面図である。It is sectional drawing which shows typically the reed valve of embodiment in a natural state. 実施形態のリードバルブが開弁している様子を模式的に示す説明図である。It is explanatory drawing which shows typically a mode that the reed valve of embodiment is opening. 実施形態のリードバルブが開弁している様子を模式的に示す説明図である。It is explanatory drawing which shows typically a mode that the reed valve of embodiment is opening. 実施形態のリードバルブが閉弁している様子を模式的に示す説明図である。It is explanatory drawing which shows typically a mode that the reed valve of embodiment is closing. 実施形態のリードバルブが閉弁している様子を模式的に示す説明図である。It is explanatory drawing which shows typically a mode that the reed valve of embodiment is closing. 本発明のリードバルブの他の例を模式的に示す断面図である。It is sectional drawing which shows the other example of the reed valve of this invention typically.

以下、具体例を挙げ、本発明のリードバルブおよび圧縮装置を説明する。   Hereinafter, the reed valve and the compression device of the present invention will be described with specific examples.

(実施形態)
以下、本発明の実施形態について図1〜図8を参照して説明する。図1に示す圧縮装置はヒートポンプ用の圧縮機であり、ケーシング7と、圧縮部8と、駆動部9と、2つのリードバルブ1(第1リードバルブ10、第2リードバルブ11)とを備える。ケーシング7には、圧縮室70、第1バルブ室71および第2バルブ室72が区画形成されている。
(Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to FIGS. The compression device shown in FIG. 1 is a compressor for a heat pump, and includes a casing 7, a compression unit 8, a drive unit 9, and two reed valves 1 (first reed valve 10 and second reed valve 11). . In the casing 7, a compression chamber 70, a first valve chamber 71, and a second valve chamber 72 are defined.

圧縮室70には、柱状のシャフト80と、シャフト80の一端部に一体化されているピストン81と、を持つ圧縮部8が挿入されている。圧縮部8は図1中左右方向に摺動(往復動)可能であり、圧縮部8のシャフト80には圧縮部8を往復動させる駆動部9が取り付けられている。圧縮部8が往復動することで、圧縮室70内の流体圧は変化する。   A compression portion 8 having a columnar shaft 80 and a piston 81 integrated with one end portion of the shaft 80 is inserted into the compression chamber 70. The compression unit 8 can slide (reciprocate) in the left-right direction in FIG. 1, and a drive unit 9 that reciprocates the compression unit 8 is attached to the shaft 80 of the compression unit 8. As the compression unit 8 reciprocates, the fluid pressure in the compression chamber 70 changes.

第1バルブ室71を区画する区画壁の一部は、第1バルブベース21を構成している。第1バルブベース21には、貫通孔状の第1流入口22が形成されている。第1流入口22はケーシング7の外部と第1バルブ室71とを(より詳しくは、連通室29および連通口24を介して)連通する。第1バルブ室71を区画する区画壁のなかで第1バルブベース21に対面する部分には、貫通孔状の第1流出口23が形成されている。第1流出口23は、第1バルブ室71と圧縮室70とを連通する。したがって第1バルブ室71は圧縮室70およびケーシング7の外部に連通する。   A part of the partition wall that partitions the first valve chamber 71 constitutes the first valve base 21. The first valve base 21 is formed with a first inlet 22 having a through hole shape. The first inlet 22 communicates the outside of the casing 7 and the first valve chamber 71 (more specifically, via the communication chamber 29 and the communication port 24). A through hole-shaped first outlet 23 is formed in a portion of the partition wall that partitions the first valve chamber 71 facing the first valve base 21. The first outlet 23 communicates the first valve chamber 71 and the compression chamber 70. Therefore, the first valve chamber 71 communicates with the compression chamber 70 and the outside of the casing 7.

第2バルブ室72を区画する区画壁の一部は、第2バルブベース31を構成している。第2バルブベース31は、貫通孔状の第2流入口32を持つ。第2流入口32は圧縮室70と第2バルブ室72とを連通する。第2バルブ室72を区画する区画壁のなかで第2バルブベース31に対面する部分には、貫通孔状の第2流出口33が形成されている。第2流出口33は、第2バルブ室72とケーシング7の外部とを連通する。したがって第2バルブ室72もまた圧縮室70およびケーシング7の外部に連通する。第2流入口32の第2バルブ室72側における開口端面は、第1流入口22の第1バルブ室71側における開口端面と略同径の円形をなす。第2流出口33には、第2流路部35が接続されている。連通口24にもまた、第1流路部25が接続されている。なお、第1流路部25は、連通口24を介して第1流入口22に接続されている。   A part of the partition wall that partitions the second valve chamber 72 constitutes the second valve base 31. The second valve base 31 has a through-hole-shaped second inlet 32. The second inflow port 32 communicates the compression chamber 70 and the second valve chamber 72. A through-hole-shaped second outlet 33 is formed in a portion of the partition wall that partitions the second valve chamber 72 and that faces the second valve base 31. The second outlet 33 communicates the second valve chamber 72 and the outside of the casing 7. Therefore, the second valve chamber 72 also communicates with the compression chamber 70 and the outside of the casing 7. The opening end surface of the second inlet 32 on the second valve chamber 72 side is a circle having the same diameter as the opening end surface of the first inlet 22 on the first valve chamber 71 side. A second flow path part 35 is connected to the second outlet 33. The first flow path portion 25 is also connected to the communication port 24. The first flow path portion 25 is connected to the first inflow port 22 through the communication port 24.

第1リードバルブ10および第2リードバルブ11は同形状をなす。図2に示すように、第1リードバルブ10および第2リードバルブ11は、着座側リード部材40、ストッパ側リード部材50、スペーサ部材60、ストッパ部材65およびボルト69からなる。第1リードバルブ10は第1バルブ室71の内部に配置され、第1バルブベース21に固定されている。第2リードバルブ11は第2バルブ室72の内部に配置され、第2バルブベース31に固定されている。以下、第1リードバルブ10を例に挙げて本発明のリードバルブ1を説明する。   The first reed valve 10 and the second reed valve 11 have the same shape. As shown in FIG. 2, the first reed valve 10 and the second reed valve 11 include a seating side lead member 40, a stopper side lead member 50, a spacer member 60, a stopper member 65, and a bolt 69. The first reed valve 10 is disposed inside the first valve chamber 71 and is fixed to the first valve base 21. The second reed valve 11 is disposed inside the second valve chamber 72 and is fixed to the second valve base 31. Hereinafter, the reed valve 1 of the present invention will be described by taking the first reed valve 10 as an example.

<リードバルブの形状>
着座側リード部材40およびストッパ側リード部材50は、板厚0.3mmのバネ鋼(所謂バルブ材)を材料としてプレス成形されたものである。スペーサ部材60は板厚0.5mmの圧延鋼板を材料としてプレス成形されたものである。図2に示すように、着座側リード部材40とストッパ側リード部材50とは同形状である。具体的には、着座側リード部材40は、略矩形板状の第1固定部41と、第1固定部41に連続する短冊状の第1可動部42とを持つ。第1可動部42の先端部43(すなわち自由端)は第1流入口22の開口端面および第2流入口32の開口端面よりも外形の大きな略円板状をなす。第1可動部42における先端部43以外の部分の板幅は、先端部43および第1固定部41の板幅よりも小さい。このため第1可動部42は弾性変形し易い形状である。第1固定部41にはボルト69締結用の着座リード固定孔45が貫通形成されている。スペーサ部材60は第1固定部41と略同形状である。スペーサ部材60には、ボルト69締結用のスペーサ固定孔61が貫通形成されている。ストッパ側リード部材50は着座側リード部材40と同形状であり、第1固定部41と同形状の第2固定部51と、第1可動部42と同形状の第2可動部52と、先端部43と同形状の先端部53と、を持つ。第2固定部51には、着座リード固定孔45と同形状のストッパリード固定孔55が貫通形成されている。ストッパ部材65はステンレススチール製であり、ストッパ部材65の板厚は着座側リード部材40およびストッパ側リード部材50の板厚よりも大きい。したがってストッパ部材65は、着座側リード部材40およびストッパ側リード部材50に比べて変形し難い。ストッパ部材65は、板厚略一定の矩形板状をなすストッパ固定部66と、ストッパ固定部66に連続する短冊状のストッパ部67とを持つ。ストッパ部67における着座側リード部材40側の面65aは傾斜面であり、ストッパ部67の板厚はストッパ固定部66側から先端に向けて徐々に薄くなっている。着座リード部材40およびストッパ側リード部材50の変形時には、これらの断面形状は図3における面65aの断面形状とほぼ一致する。ストッパ固定部66にはボルト69締結用のストッパ固定孔68が貫通形成されている。
<Reed valve shape>
The seating-side lead member 40 and the stopper-side lead member 50 are press-molded using spring steel (so-called valve material) having a plate thickness of 0.3 mm. The spacer member 60 is press-formed using a rolled steel plate having a thickness of 0.5 mm as a material. As shown in FIG. 2, the seating side lead member 40 and the stopper side lead member 50 have the same shape. Specifically, the seating-side lead member 40 includes a substantially rectangular plate-shaped first fixed portion 41 and a strip-shaped first movable portion 42 continuous with the first fixed portion 41. The distal end portion 43 (that is, the free end) of the first movable portion 42 has a substantially disk shape having a larger outer shape than the opening end surface of the first inflow port 22 and the opening end surface of the second inflow port 32. The plate width of the first movable portion 42 other than the tip portion 43 is smaller than the plate width of the tip portion 43 and the first fixed portion 41. For this reason, the 1st movable part 42 is a shape which is easy to elastically deform. A seating lead fixing hole 45 for fastening a bolt 69 is formed through the first fixing portion 41. The spacer member 60 has substantially the same shape as the first fixing portion 41. A spacer fixing hole 61 for fastening a bolt 69 is formed through the spacer member 60. The stopper side lead member 50 has the same shape as the seating side lead member 40, the second fixed portion 51 having the same shape as the first fixed portion 41, the second movable portion 52 having the same shape as the first movable portion 42, and the tip A tip portion 53 having the same shape as the portion 43. A stopper lead fixing hole 55 having the same shape as the seating lead fixing hole 45 is formed through the second fixing portion 51. The stopper member 65 is made of stainless steel, and the thickness of the stopper member 65 is larger than the thicknesses of the seating side lead member 40 and the stopper side lead member 50. Therefore, the stopper member 65 is less likely to be deformed than the seating side lead member 40 and the stopper side lead member 50. The stopper member 65 has a stopper fixing portion 66 having a rectangular plate shape with a substantially constant plate thickness, and a strip-shaped stopper portion 67 continuing to the stopper fixing portion 66. The surface 65a on the seating-side lead member 40 side of the stopper portion 67 is an inclined surface, and the plate thickness of the stopper portion 67 gradually decreases from the stopper fixing portion 66 side toward the tip. When the seating lead member 40 and the stopper-side lead member 50 are deformed, their cross-sectional shapes substantially coincide with the cross-sectional shape of the surface 65a in FIG. A stopper fixing hole 68 for fastening the bolt 69 is formed through the stopper fixing portion 66.

図2および図3に示すように、着座側リード部材40の着座リード固定孔45、スペーサ部材60のスペーサ固定孔61、ストッパ側リード部材50のストッパリード固定孔55、およびストッパ部材65のストッパ固定孔68には、ボルト69が挿通されている。そして着座側リード部材40、スペーサ部材60、ストッパ側リード部材50およびストッパ部材65は、ボルト69によって第1バルブベース21に締結されている。着座側リード部材40の第1可動部42およびストッパ側リード部材50の第2可動部52は、このとき弾性変形可能である。また、このとき着座側リード部材40の先端部43は、第1バルブベース21における第1流入口22の開口端面22aに対面し、かつ、開口端面22aの周縁部に弾接している。したがって着座側リード部材40は第1流入口22を閉じている。ストッパ側リード部材50は着座側リード部材40と略平行に配置されている。ストッパ側リード部材50の先端部53は着座側リード部材40の先端部43に対面している。なお、ストッパ側リード部材50の第2可動部52は、着座側リード部材40およびストッパ部材65の何れとも離間している。着座側リード部材40におけるスペーサ部材60側の面を着座側リード部材40の上面40aと呼ぶ。ストッパ側リード部材50におけるスペーサ部材60側の面をストッパ側リード部材50の下面50aと呼ぶ。ストッパ部材65におけるストッパ側リード部材50側の面をストッパ部材65の下面65aと呼ぶ。図3に示すように、自然状態、すなわち第1リードバルブ10に流体圧が作用していない状態では、着座側リード部材40の上面40aとストッパ側リード部材50の下面50aとの距離の最大値(実施形態では上面40aと下面50aとは平行であるため、実際には上面40aと下面50aとの距離)は、着座側リード部材40の上面40aとストッパ部材65の下面65aとの距離の最大値の1/4程度である。換言すると、着座側リード部材40とストッパ側リード部材50との距離(すなわちスペーサ部材60の板厚W1)は、着座側リード部材40の最大変位量W2の1/4程度である。   As shown in FIGS. 2 and 3, the seating lead fixing hole 45 of the seating side lead member 40, the spacer fixing hole 61 of the spacer member 60, the stopper lead fixing hole 55 of the stopper side lead member 50, and the stopper fixing of the stopper member 65. Bolts 69 are inserted into the holes 68. The seating side lead member 40, the spacer member 60, the stopper side lead member 50 and the stopper member 65 are fastened to the first valve base 21 by bolts 69. At this time, the first movable part 42 of the seating side lead member 40 and the second movable part 52 of the stopper side lead member 50 are elastically deformable. At this time, the distal end portion 43 of the seating-side lead member 40 faces the opening end surface 22a of the first inflow port 22 in the first valve base 21 and elastically contacts the peripheral edge portion of the opening end surface 22a. Therefore, the seating side lead member 40 closes the first inlet 22. The stopper side lead member 50 is disposed substantially parallel to the seating side lead member 40. The distal end portion 53 of the stopper side lead member 50 faces the distal end portion 43 of the seating side lead member 40. Note that the second movable portion 52 of the stopper-side lead member 50 is separated from both the seating-side lead member 40 and the stopper member 65. The surface on the spacer member 60 side of the seating side lead member 40 is referred to as the upper surface 40 a of the seating side lead member 40. The surface on the spacer member 60 side of the stopper-side lead member 50 is referred to as the lower surface 50 a of the stopper-side lead member 50. The surface of the stopper member 65 on the stopper side lead member 50 side is referred to as a lower surface 65 a of the stopper member 65. As shown in FIG. 3, the maximum value of the distance between the upper surface 40 a of the seating-side lead member 40 and the lower surface 50 a of the stopper-side lead member 50 in a natural state, that is, a state where no fluid pressure is applied to the first reed valve 10. (In the embodiment, since the upper surface 40a and the lower surface 50a are parallel, the distance between the upper surface 40a and the lower surface 50a is actually the maximum distance between the upper surface 40a of the seating-side lead member 40 and the lower surface 65a of the stopper member 65). It is about 1/4 of the value. In other words, the distance between the seating side lead member 40 and the stopper side lead member 50 (ie, the plate thickness W1 of the spacer member 60) is about 1/4 of the maximum displacement W2 of the seating side lead member 40.

<圧縮装置の動作>
以下、実施形態の圧縮装置の動作を説明する。
<Operation of compression device>
Hereinafter, the operation of the compression apparatus of the embodiment will be described.

圧縮部8が停止しているときには、図1に示すように、第1リードバルブ10の着座側リード部材40は第1流入部22を封止し、第2リードバルブ11の着座側リード部材40は第2流入口32を封止している。   When the compression portion 8 is stopped, as shown in FIG. 1, the seating-side lead member 40 of the first reed valve 10 seals the first inflow portion 22 and the seating-side lead member 40 of the second reed valve 11. Seals the second inlet 32.

図1に示す圧縮部8が図1中右方に摺動すると、圧縮室70における流体圧、および、圧縮室70に連通する第1バルブ室71における流体圧が低くなる。すると圧縮室70および第1バルブ室71の流体圧が第1流路部25、連通口24および連通室29における流体圧よりも低くなり、図4に示すように、第1流路部25を流通する流体が第1流入口22を経て着座側リード部材40の先端部43を押圧する。このため着座側リード部材40が開方向に弾性変形し、流体は図1に示す第1バルブ室71に流入し、さらに第1流出口23を経て圧縮室70に流入する。このとき第2流入口32における流体圧もまた低くなる。このため、第2流入口32および圧縮室70の流体圧が第2バルブ室72の流体圧よりも低くなり、第2リードバルブ11の第2着座側リード部材40は第2流入口32側に吸引される。したがって、第2着座側リード部材40は第2バルブプレート31における第2流入口32の周縁部に密着し、第2流入口32を閉じたままである。このため、このとき圧縮室70に流入した流体は第2バルブ室72には流入しない。また、第2リードバルブ11が閉弁しているため、第2バルブ室72に存在する流体は圧縮室70に流入しない。第1流入口22はケーシング7の外部(第1実施形態においては第1流路部25に連通する連通室29)と第1バルブ室71とを連通し、第1流出口23は第1バルブ室71と圧縮室70とを連通する。第1リードバルブ10は、ケーシング7の外部から第1バルブ室71への流体の流通を許可し、第1バルブ室71からケーシング7の外部への流体の流通を遮断する。このため第1バルブ室71は、実質的には、ケーシング7の外部から圧縮室70に向けた流体の流路となる。   When the compression unit 8 shown in FIG. 1 slides to the right in FIG. 1, the fluid pressure in the compression chamber 70 and the fluid pressure in the first valve chamber 71 communicating with the compression chamber 70 become low. Then, the fluid pressure in the compression chamber 70 and the first valve chamber 71 becomes lower than the fluid pressure in the first flow path portion 25, the communication port 24, and the communication chamber 29, and as shown in FIG. The circulating fluid presses the front end portion 43 of the seating side lead member 40 through the first inlet 22. Therefore, the seating-side lead member 40 is elastically deformed in the opening direction, and the fluid flows into the first valve chamber 71 shown in FIG. 1 and further flows into the compression chamber 70 through the first outlet 23. At this time, the fluid pressure at the second inlet 32 also decreases. For this reason, the fluid pressure in the second inlet 32 and the compression chamber 70 becomes lower than the fluid pressure in the second valve chamber 72, and the second seating-side lead member 40 of the second reed valve 11 moves toward the second inlet 32. Sucked. Therefore, the second seating side lead member 40 is in close contact with the peripheral edge portion of the second inlet 32 in the second valve plate 31, and the second inlet 32 remains closed. For this reason, the fluid flowing into the compression chamber 70 at this time does not flow into the second valve chamber 72. Further, since the second reed valve 11 is closed, the fluid existing in the second valve chamber 72 does not flow into the compression chamber 70. The first inlet 22 communicates the outside of the casing 7 (the communication chamber 29 communicating with the first flow path portion 25 in the first embodiment) and the first valve chamber 71, and the first outlet 23 is the first valve. The chamber 71 and the compression chamber 70 are communicated with each other. The first reed valve 10 permits the flow of fluid from the outside of the casing 7 to the first valve chamber 71 and blocks the flow of fluid from the first valve chamber 71 to the outside of the casing 7. For this reason, the first valve chamber 71 is substantially a fluid flow path from the outside of the casing 7 toward the compression chamber 70.

圧縮部8の摺動が停止すると、第1リードバルブ10を開弁する方向に向けた流体の流動(すなわち、ケーシング7の外部から第1バルブ室71を経て圧縮室70に向かう流体の流動)は停止する。このため着座側リード部材40は自身の弾性により元の形状に戻って、第1流入口22を閉じる。つまり第1リードバルブ10は閉弁する。またこのとき、第2リードバルブ11の第2着座側リード部材40に作用する吸引力も低減するが、第2着座側リード部材40は自身の弾性により第2流入口32を閉じたままである。したがって、このとき圧縮室70内の流体は圧縮室70内に留まる。   When the sliding of the compression unit 8 stops, the fluid flows in the direction in which the first reed valve 10 opens (that is, the fluid flows from the outside of the casing 7 through the first valve chamber 71 to the compression chamber 70). Stops. For this reason, the seating-side lead member 40 returns to its original shape due to its own elasticity and closes the first inlet 22. That is, the first reed valve 10 is closed. At this time, the suction force acting on the second seating side lead member 40 of the second reed valve 11 is also reduced, but the second seating side lead member 40 keeps the second inlet 32 closed by its own elasticity. Accordingly, at this time, the fluid in the compression chamber 70 remains in the compression chamber 70.

圧縮部8が図1中左方に摺動すると、圧縮室70の流体圧が高くなる。このため、圧縮室70内の流体は第2流入口32に流入し、第2着座側リード部材40を開弁方向に押圧する。このため第2着座側リード部材40が開弁方向に弾性変形し、流体は第2バルブ室72に流入し、さらに第2流出口33を経てケーシング7の外部すなわち第2流路部35に流出する。このとき圧縮室70内の流体は、第1流出口23を経て第1バルブ室71にも流入する。しかし上述したように着座側リード部材40は第1流入口22を閉じているため、第1バルブ室71に流入した流体はケーシング7の外部には流出しない。なお、このとき、着座側リード部材40は第1バルブ室71内の流体によって第1流入口22に向けて押圧される。このため第1流入口22は着座側リード部材40によって強くシールされる。   When the compression unit 8 slides to the left in FIG. 1, the fluid pressure in the compression chamber 70 increases. For this reason, the fluid in the compression chamber 70 flows into the second inlet 32 and presses the second seating side lead member 40 in the valve opening direction. For this reason, the second seating side lead member 40 is elastically deformed in the valve opening direction, the fluid flows into the second valve chamber 72, and further flows out of the casing 7, that is, to the second flow path portion 35 through the second outlet port 33. To do. At this time, the fluid in the compression chamber 70 also flows into the first valve chamber 71 through the first outlet 23. However, as described above, since the seating-side lead member 40 closes the first inlet 22, the fluid that has flowed into the first valve chamber 71 does not flow out of the casing 7. At this time, the seating side lead member 40 is pressed toward the first inlet 22 by the fluid in the first valve chamber 71. Therefore, the first inlet 22 is strongly sealed by the seating side lead member 40.

第2流入口32は圧縮室70と第2バルブ室72とを連通し、第2流出口33は第2バルブ室72とケーシング7の外部(実施形態においては第2流路部35)とを連通する。第2リードバルブ11は、圧縮室70から第2バルブ室72への流体の流通を許可し、第2バルブ室72から圧縮室70への流体の流通を遮断する。このため第2バルブ室72は、実質的には、圧縮室70から第2流路部35に向けた流体の流路となる。   The second inlet 32 communicates the compression chamber 70 and the second valve chamber 72, and the second outlet 33 connects the second valve chamber 72 and the outside of the casing 7 (in the embodiment, the second flow path portion 35). Communicate. The second reed valve 11 permits the flow of fluid from the compression chamber 70 to the second valve chamber 72 and blocks the flow of fluid from the second valve chamber 72 to the compression chamber 70. Therefore, the second valve chamber 72 is substantially a fluid flow path from the compression chamber 70 toward the second flow path portion 35.

このように、第1リードバルブ10と第2リードバルブ11とが交互に開弁および閉弁することで、実施形態の圧縮装置においては、流体の流通方向が一方向に規制される。すなわち、圧縮装置は第1流路部25から第2流路部35に流体を圧送する。   As described above, the first reed valve 10 and the second reed valve 11 are alternately opened and closed, whereby in the compression device of the embodiment, the fluid flow direction is restricted to one direction. That is, the compression device pumps fluid from the first flow path portion 25 to the second flow path portion 35.

<リードバルブ1の動作>
以下、第1リードバルブ10を例に挙げて本発明のリードバルブ1を説明する。
<Operation of reed valve 1>
Hereinafter, the reed valve 1 of the present invention will be described by taking the first reed valve 10 as an example.

図4に示すように、開弁時には、第1流入口22を通じて第1バルブ室71に流体が流入する。着座側リード部材40とストッパ側リード部材50との間にはスペーサ61による隙間があるため、この流体の流体圧は、第1流入口22に近い着座側リード部材40により強く作用する。このため先ず着座側リード部材40が開方向に変形する。ストッパ側リード部材50は流体圧により押圧されるとともに、変形した着座側リード部材40による押圧されることによって変形する。ストッパ側リード部材50は弾性変形可能であるため、着座側リード部材40による衝撃荷重を受けて、着座側リード部材40に沿った形状に弾性変形する。このため、ストッパ側リード部材50と着座側リード部材40とは面接触し、ストッパ側リード部材50は着座側リード部材40の衝撃荷重を吸収する。実施形態においては、着座側リード部材40およびストッパ側リード部材50は同じバネ鋼からなりかつ同形状であるため、着座側リード部材40の変形速度(開弁速度)は1/2に減速する。   As shown in FIG. 4, when the valve is opened, fluid flows into the first valve chamber 71 through the first inlet 22. Since there is a gap due to the spacer 61 between the seating side lead member 40 and the stopper side lead member 50, the fluid pressure of this fluid acts more strongly on the seating side lead member 40 near the first inflow port 22. Therefore, the seating side lead member 40 is first deformed in the opening direction. The stopper-side lead member 50 is pressed by fluid pressure and deformed by being pressed by the deformed seating-side lead member 40. Since the stopper-side lead member 50 is elastically deformable, it receives an impact load from the seating-side lead member 40 and elastically deforms into a shape along the seating-side lead member 40. For this reason, the stopper side lead member 50 and the seating side lead member 40 are in surface contact, and the stopper side lead member 50 absorbs the impact load of the seating side lead member 40. In the embodiment, since the seating side lead member 40 and the stopper side lead member 50 are made of the same spring steel and have the same shape, the deformation speed (valve opening speed) of the seating side lead member 40 is reduced to ½.

着座側リード部材40がストッパ側リード部材50に当接すると、図5に示すように、着座側リード部材40およびストッパ側リード部材50はともに開弁方向に変形してストッパ部材65に当接する。ストッパ部材65に当接したストッパ側リード部材50はそれ以上変形せず、ストッパ側リード部材50に当接している着座側リード部材40もまたそれ以上変形しない。ストッパ側リード部材50が先ず着座側リード部材40に当接し自身の弾性により衝撃荷重を吸収することで、ストッパ部材65が受ける衝撃荷重が緩和される。このため、着座側リード部材40およびストッパ側リード部材50がストッパ部材65に当接したときの打音が抑制される。   When the seating side lead member 40 abuts against the stopper side lead member 50, as shown in FIG. 5, both the seating side lead member 40 and the stopper side lead member 50 are deformed in the valve opening direction and abut against the stopper member 65. The stopper side lead member 50 in contact with the stopper member 65 is not further deformed, and the seating side lead member 40 in contact with the stopper side lead member 50 is not further deformed. The stopper-side lead member 50 first contacts the seating-side lead member 40 and absorbs the impact load by its own elasticity, so that the impact load received by the stopper member 65 is reduced. For this reason, the hitting sound when the seating side lead member 40 and the stopper side lead member 50 abut against the stopper member 65 is suppressed.

図6に示すように、閉弁時には、着座側リード部材40は自身の弾性により閉方向に変形する。ストッパ側リード部材50もまた自身の弾性により閉方向に変形する。閉弁開始時において、着座側リード部材40およびストッパ側リード部材50は重なり合っているため、着座側リード部材40とストッパ側リード部材50とは一体的に動作する。このため、着座側リード部材40とストッパ側リード部材50との一体物のバネ定数は、着座側リード部材40単体のバネ定数(およびストッパ側リード部材50単体のバネ定数)の2倍となる。つまりこの一体物の閉弁速度は、着座側リード部材40が単体で動作する場合よりも遅くなる。   As shown in FIG. 6, when the valve is closed, the seating side lead member 40 is deformed in the closing direction by its own elasticity. The stopper-side lead member 50 is also deformed in the closing direction by its own elasticity. Since the seating side lead member 40 and the stopper side lead member 50 overlap each other at the start of valve closing, the seating side lead member 40 and the stopper side lead member 50 operate integrally. For this reason, the spring constant of the integrated body of the seating side lead member 40 and the stopper side lead member 50 is twice the spring constant of the seating side lead member 40 alone (and the spring constant of the stopper side lead member 50 alone). In other words, the valve closing speed of this integrated object is slower than when the seating-side lead member 40 operates alone.

またこのとき、上述したように第1流入口22における流体圧が低下するため、第1バルブ室71内の流体は第1流入口22に向けて吸引される。この吸引力は着座側リード部材40およびストッパ側リード部材50の両方に作用するが、第1流入口22に近い着座側リード部材40により強く作用する。したがって着座側リード部材40の動作は加速され、着座側リード部材40は閉弁の途中から単独で動作する。つまり着座側リード部材40は図7に示すように、ストッパ側リード部材50よりも先に第1バルブベース21に当接する。ストッパ側リード部材50は、着座側リード部材40よりも遅れて動作するため、第1バルブベース21に当接し跳ね返った着座側リード部材40(図7中二点鎖線で示す)に当接し、着座側リード部材40の開方向への再度の変形を妨げる。よって、着座側リード部材40は閉弁時にばたつき難く、第1流入口22を迅速に閉じる。なお、このときストッパ側リード部材50は、着座側リード部材40と同様に第1流入口22に向けて吸引されるため、着座側リード部材40とともに第1流入口22を閉じる。第1バルブベース21はストッパ側リード部材50の中立点(図3のように、外部応力を受けていない位置、初期位置)に対し着座側リード部材40側に離れた位置にある。換言すると、ストッパ側リード部材50と着座側リード部材40とは離間している。このため、ストッパ側リード部材50の開弁速度は、中立点を超えた時点から自身の弾性により遅くなる。したがって、第1バルブベース21に与える衝撃荷重は小さくなるため、閉弁時の打音を抑制できる。   At this time, as described above, the fluid pressure at the first inlet 22 decreases, so that the fluid in the first valve chamber 71 is sucked toward the first inlet 22. This suction force acts on both the seating-side lead member 40 and the stopper-side lead member 50, but acts more strongly on the seating-side lead member 40 near the first inflow port 22. Accordingly, the operation of the seating side lead member 40 is accelerated, and the seating side lead member 40 operates independently from the middle of the valve closing. That is, the seating side lead member 40 contacts the first valve base 21 before the stopper side lead member 50 as shown in FIG. Since the stopper-side lead member 50 operates later than the seating-side lead member 40, the stopper-side lead member 50 abuts on the seating-side lead member 40 (shown by a two-dot chain line in FIG. 7) bounced back against the first valve base 21. The side lead member 40 is prevented from being deformed again in the opening direction. Therefore, the seating-side lead member 40 hardly flutters when the valve is closed, and closes the first inlet 22 quickly. At this time, the stopper-side lead member 50 is sucked toward the first inflow port 22 in the same manner as the seating-side lead member 40, so the first inflow port 22 is closed together with the seating-side lead member 40. The first valve base 21 is located away from the neutral point of the stopper-side lead member 50 (the position where the external stress is not received as shown in FIG. 3, the initial position) toward the seating-side lead member 40. In other words, the stopper-side lead member 50 and the seating-side lead member 40 are separated from each other. For this reason, the valve opening speed of the stopper-side lead member 50 becomes slower due to its own elasticity from the time when the neutral point is exceeded. Therefore, the impact load applied to the first valve base 21 is small, so that the hitting sound when the valve is closed can be suppressed.

実施形態のリードバルブ1において、ストッパ部材65に接触するのはストッパ側リード部材50であり、着座側リード部材40は直接にはストッパ部材65に接触しない。このため、万が一ストッパ側リード部材50がストッパ部材65に凝着しストッパ側リード部材50に動作遅れが生じても、着座側リード部材40は正常に動作する。このため、リードバルブ1全体としての動作遅れは生じ難い。   In the reed valve 1 of the embodiment, the stopper-side lead member 50 contacts the stopper member 65, and the seating-side lead member 40 does not directly contact the stopper member 65. For this reason, even if the stopper side lead member 50 adheres to the stopper member 65 and an operation delay occurs in the stopper side lead member 50, the seating side lead member 40 operates normally. For this reason, the operation delay of the entire reed valve 1 hardly occurs.

また、ストッパ部材65はストッパ側リード部材50の変形時の形状と一致した傾斜面を有しているため、開弁時におけるストッパ側リード部材50とストッパ部材65との接触面積は大きい。このため、ストッパ側リード部材50とストッパ部材65との衝突時の衝撃を低減できる。   Further, since the stopper member 65 has an inclined surface that matches the deformed shape of the stopper-side lead member 50, the contact area between the stopper-side lead member 50 and the stopper member 65 when the valve is opened is large. For this reason, the impact at the time of the collision between the stopper-side lead member 50 and the stopper member 65 can be reduced.

実施形態のリードバルブ1は1枚の着座側リード部材40と1枚のストッパ側リード部材50とを持つが、本発明のリードバルブにおけるストッパ側リード部材50の数はこれに限らず、2枚以上の複数枚であっても良い。何れの場合にも、開弁時において着座側リード部材40がストッパ部材65に加える衝突荷重、および、閉弁時における着座側リード部材40のばたつきを、ストッパ側リード部材50によって抑制できれば良い。   The reed valve 1 of the embodiment has one seating-side lead member 40 and one stopper-side lead member 50, but the number of stopper-side lead members 50 in the reed valve of the present invention is not limited to this, and two A plurality of the above may be used. In any case, it is sufficient that the stopper-side lead member 50 can suppress the collision load applied by the seating-side lead member 40 to the stopper member 65 when the valve is opened and the fluttering of the seating-side lead member 40 when the valve is closed.

実施形態においては、着座側リード部材40およびストッパ側リード部材50は同形状であるが、異形状であっても良い。着座側リード部材40およびストッパ側リード部材50は、ストッパ側リード部材50が着座側リード部材40に遅れて開閉動作するバネ定数となるように、その形状や材料を適宜選定できる。また、実施形態においては着座側リード部材40とストッパ側リード部材50とを平行に配置したが、着座側リード部材40とストッパ側リード部材50とは平行でなくても良い。さらには、着座側リード部材40およびストッパ側リード部材50は平板状であれば良く、板厚一定でなくても良い。何れの場合にも、ストッパ側リード部材50およびスペーサ部材60を設けることで、開弁時において着座側リード部材40がストッパ部材65に加える衝突荷重、および、閉弁時における着座側リード部材40のばたつきをストッパ側リード部材50によって抑制できる。また、何れの場合にも、着座側リード部材40およびストッパ側リード部材50として平板状のものを用いることで、耐久性に優れ、かつ容易に製造できるリードバルブ1を得ることができる。   In the embodiment, the seating side lead member 40 and the stopper side lead member 50 have the same shape, but may have different shapes. The shape and material of the seating-side lead member 40 and the stopper-side lead member 50 can be appropriately selected so that the stopper-side lead member 50 has a spring constant that opens and closes behind the seating-side lead member 40. Further, in the embodiment, the seating side lead member 40 and the stopper side lead member 50 are arranged in parallel, but the seating side lead member 40 and the stopper side lead member 50 may not be parallel. Furthermore, the seating side lead member 40 and the stopper side lead member 50 may be flat plates, and the plate thickness may not be constant. In any case, by providing the stopper-side lead member 50 and the spacer member 60, the collision load applied to the stopper member 65 by the seating-side lead member 40 when the valve is opened, and the seating-side lead member 40 when the valve is closed. Flapping can be suppressed by the stopper-side lead member 50. In any case, the use of a flat plate as the seating side lead member 40 and the stopper side lead member 50 makes it possible to obtain the reed valve 1 that is excellent in durability and can be easily manufactured.

着座側リード部材40とストッパ側リード部材50との距離(すなわちスペーサ部材60の板厚)は特に問わないが、着座側リード部材40の最大変位量の1/2以下であるのが好ましく、0.1mm以上であるのが好ましい。着座側リード部材40とストッパ側リード部材50との距離がこの範囲内であれば、開弁時にストッパ側リード部材50と着座側リード部材40とが信頼性高く当接し、閉弁時にストッパ側リード部材50が着座側リード部材40のばたつきを信頼性高く抑え得る。   The distance between the seating-side lead member 40 and the stopper-side lead member 50 (that is, the thickness of the spacer member 60) is not particularly limited, but is preferably ½ or less of the maximum displacement of the seating-side lead member 40. It is preferably 1 mm or more. If the distance between the seating-side lead member 40 and the stopper-side lead member 50 is within this range, the stopper-side lead member 50 and the seating-side lead member 40 will reliably contact each other when the valve is opened, and the stopper-side lead when the valve is closed. The member 50 can suppress the flapping of the seating side lead member 40 with high reliability.

バルブベース21、31における流入口22、32の周縁部には、着座側リード部材40に向けて突起するシールリブ28を形成しても良い。例えば図8に示すように、シールリブ28を設けることで閉弁時に着座側リード部材40がバルブベース21、31に強く弾接する。このためリードバルブ1のシール性がより向上する。   Seal ribs 28 that protrude toward the seating-side lead member 40 may be formed at the peripheral portions of the inlets 22 and 32 in the valve bases 21 and 31. For example, as shown in FIG. 8, by providing the seal rib 28, the seating side lead member 40 elastically contacts the valve bases 21 and 31 when the valve is closed. For this reason, the sealing performance of the reed valve 1 is further improved.

(その他)
本発明は上記し且つ図面に示した実施形態のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できる。例えば本発明のリードバルブ1は圧縮装置以外の用途に用いても良いし、本発明の圧縮装置は3以上のリードバルブ1を備えても良い。
(Other)
The present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications within the scope not departing from the gist. For example, the reed valve 1 of the present invention may be used for applications other than the compression device, and the compression device of the present invention may include three or more reed valves 1.

本発明の圧縮装置は、冷蔵装置、冷凍装置、空気調和装置等に用いられるヒートポンプの一部を構成する圧縮装置として好ましく利用できる。本発明のリードバルブは、これらの圧縮装置用のリードバルブとして好ましく利用できる。   The compression apparatus of the present invention can be preferably used as a compression apparatus that constitutes a part of a heat pump used in a refrigeration apparatus, a refrigeration apparatus, an air conditioner, or the like. The reed valve of the present invention can be preferably used as a reed valve for these compression devices.

1はリードバルブ、7はケーシング、8は圧縮部、9は駆動部、21は第1バルブベース(バルブベース)、22は第1流入口(流入口)、31は第2バルブベース(バルブベース)、32は第2流入口(流入口)、40は着座側リード部材、41は第1固定部、42は第1可動部、50はストッパ側リード部材、51は第2固定部、52は第2可動部、60はスペーサ部材、65はストッパ部材、70は圧縮室、71は第1バルブ室、72は第2バルブ室を指す。   1 is a reed valve, 7 is a casing, 8 is a compression unit, 9 is a drive unit, 21 is a first valve base (valve base), 22 is a first inlet (inlet), 31 is a second valve base (valve base) ), 32 is a second inlet (inlet), 40 is a seating side lead member, 41 is a first fixing portion, 42 is a first movable portion, 50 is a stopper side lead member, 51 is a second fixing portion, and 52 is The second movable portion, 60 is a spacer member, 65 is a stopper member, 70 is a compression chamber, 71 is a first valve chamber, and 72 is a second valve chamber.

Claims (5)

貫通孔状をなす流入口を有するバルブベースに取り付けられるリードバルブであって、
平板状をなし弾性変形可能であり、前記バルブベースに固定可能な第1固定部と、前記第1固定部に連続し前記流入口を開閉可能な第1可動部と、を持つ着座側リード部材と、
前記着座側リード部材の前記第1固定部に重ねられているスペーサ部材と、
平板状をなし弾性変形可能であり、前記スペーサ部材に重ねられている第2固定部と、前記第2固定部に連続し前記第1可動部に離間しつつ対面する第2可動部と、を持つストッパ側リード部材と、
前記ストッパ側リード部材に重ねられているストッパ部材と、を備えるリードバルブ。
A reed valve attached to a valve base having an inflow port having a through hole shape,
A seating-side lead member that has a flat plate shape, is elastically deformable, and has a first fixed portion that can be fixed to the valve base, and a first movable portion that is continuous with the first fixed portion and can open and close the inlet. When,
A spacer member overlaid on the first fixed portion of the seating side lead member;
A second fixed portion that is formed in a flat plate shape and is elastically deformable and is stacked on the spacer member; and a second movable portion that is continuous with the second fixed portion and faces the first movable portion while being spaced apart from the first movable portion. A stopper side lead member having,
A reed valve comprising: a stopper member superimposed on the stopper-side lead member.
前記ストッパ側リード部材のバネ定数は、前記着座側リード部材のバネ定数以上である請求項1に記載のリードバルブ。   The reed valve according to claim 1, wherein a spring constant of the stopper side lead member is equal to or greater than a spring constant of the seating side lead member. 前記着座側リード部材およびストッパ側リード部材は同形状である請求項1または請求項2に記載のリードバルブ。   The reed valve according to claim 1 or 2, wherein the seating side lead member and the stopper side lead member have the same shape. 貫通孔状をなす流入口を有するバルブベースに取り付けられるリードバルブであって、
平板状をなし弾性変形可能であり、前記バルブベースに固定可能な第1固定部と、前記第1固定部に連続し前記流入口を開閉可能な第1可動部と、を持つ着座側リード部材と、
前記バルブベースの反対側で前記着座側リード部材に対面して設けられ、平板状をなし弾性変形可能であり、前記スペーサ部材に重ねられている第2固定部と、前記第2固定部に連続し前記第1可動部に離間しつつ対面する第2可動部と、を持つストッパ側リード部材と、
前記着座側リード部材の反対側で前記ストッパ側リード部材に対面して設けられているストッパ部材と、を備えるリードバルブ。
A reed valve attached to a valve base having an inflow port having a through hole shape,
A seating-side lead member that has a flat plate shape, is elastically deformable, and has a first fixed portion that can be fixed to the valve base, and a first movable portion that is continuous with the first fixed portion and can open and close the inlet. When,
A second fixing portion provided on the opposite side of the valve base so as to face the seating-side lead member, having a flat plate shape and elastically deformable, is continuous with the second fixing portion. A stopper-side lead member having a second movable portion facing the first movable portion while being spaced apart from the first movable portion;
And a stopper member provided on the opposite side of the seating-side lead member and facing the stopper-side lead member.
請求項1〜請求項4の何れか一項に記載のリードバルブと、
圧縮室と、前記圧縮室に連通し外部から前記圧縮室に向けた流体の流入路を構成する第1バルブ室と、前記圧縮室に連通し前記圧縮室から前記外部に向けた前記流体の流出路を構成する第2バルブ室と、を有するケーシングと、
前記圧縮室内に配設され、前記圧縮室内を移動することで前記圧縮室内を圧変化させる圧縮部と、
前記圧縮部を駆動する駆動部と、を備え、
前記第1バルブ室を区画する区画壁の一部は、貫通孔状をなし前記外部から前記第1バルブ室に向けた前記流体の流路となる第1流入口を持つ第1バルブベースを構成し、
前記第2バルブ室を区画する区画壁の一部は、貫通孔状をなし前記圧縮室から前記第2バルブ室に向けた前記流体の流路となる第2流入口を持つ第2バルブベースを構成し、
前記リードバルブは、前記第1バルブベースおよび第2バルブベースに、それぞれ1つずつ固定されている圧縮装置。
Reed valve according to any one of claims 1 to 4,
A compression chamber; a first valve chamber that communicates with the compression chamber to form a fluid inflow path from the outside toward the compression chamber; and an outflow of the fluid that communicates with the compression chamber from the compression chamber toward the outside. A casing having a second valve chamber constituting a path;
A compression unit that is disposed in the compression chamber and changes the pressure in the compression chamber by moving in the compression chamber;
A drive unit that drives the compression unit,
A part of the partition wall that partitions the first valve chamber forms a first valve base having a first inlet that serves as a flow path for the fluid from the outside toward the first valve chamber. And
A part of the partition wall defining the second valve chamber has a second valve base having a second inlet that serves as a flow path for the fluid from the compression chamber toward the second valve chamber. Configure
One reed valve is fixed to each of the first valve base and the second valve base.
JP2012040914A 2012-02-28 2012-02-28 Reed valve and compression device Pending JP2013177820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012040914A JP2013177820A (en) 2012-02-28 2012-02-28 Reed valve and compression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012040914A JP2013177820A (en) 2012-02-28 2012-02-28 Reed valve and compression device

Publications (1)

Publication Number Publication Date
JP2013177820A true JP2013177820A (en) 2013-09-09

Family

ID=49269684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012040914A Pending JP2013177820A (en) 2012-02-28 2012-02-28 Reed valve and compression device

Country Status (1)

Country Link
JP (1) JP2013177820A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016082015A1 (en) 2014-11-25 2016-06-02 Whirlpool S.A. Reciprocating compressor valves arrangement
KR20200013344A (en) * 2018-07-30 2020-02-07 엘지전자 주식회사 Fluid compressor
WO2020260077A1 (en) * 2019-06-28 2020-12-30 Voith Patent Gmbh Valve for reciprocating compressor
KR20220046891A (en) * 2020-10-08 2022-04-15 엘지전자 주식회사 Discharge valve assembly and rotary compressor including thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608577A (en) * 1983-06-29 1985-01-17 Hitachi Ltd Construction of delivery valve for compressor
JPH03206373A (en) * 1990-01-09 1991-09-09 Sanden Corp Discharge valve mechanism for compressor
JP2002235660A (en) * 2001-02-06 2002-08-23 Calsonic Kansei Corp Delivery valve device and compressor with same
JP2008031957A (en) * 2006-07-31 2008-02-14 Hitachi Ltd Reciprocating compressor
JP2009138583A (en) * 2007-12-05 2009-06-25 Panasonic Corp Hermetic compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608577A (en) * 1983-06-29 1985-01-17 Hitachi Ltd Construction of delivery valve for compressor
JPH03206373A (en) * 1990-01-09 1991-09-09 Sanden Corp Discharge valve mechanism for compressor
JP2002235660A (en) * 2001-02-06 2002-08-23 Calsonic Kansei Corp Delivery valve device and compressor with same
JP2008031957A (en) * 2006-07-31 2008-02-14 Hitachi Ltd Reciprocating compressor
JP2009138583A (en) * 2007-12-05 2009-06-25 Panasonic Corp Hermetic compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016082015A1 (en) 2014-11-25 2016-06-02 Whirlpool S.A. Reciprocating compressor valves arrangement
US10174756B2 (en) 2014-11-25 2019-01-08 Whirlpool S.A. Reciprocating compressor valves arrangement
KR20200013344A (en) * 2018-07-30 2020-02-07 엘지전자 주식회사 Fluid compressor
KR102081943B1 (en) 2018-07-30 2020-02-26 엘지전자 주식회사 Fluid compressor
US11268510B2 (en) 2018-07-30 2022-03-08 Lg Electronics Inc. Fluid compressor having discharge port and valve
WO2020260077A1 (en) * 2019-06-28 2020-12-30 Voith Patent Gmbh Valve for reciprocating compressor
KR20220046891A (en) * 2020-10-08 2022-04-15 엘지전자 주식회사 Discharge valve assembly and rotary compressor including thereof
KR102413930B1 (en) * 2020-10-08 2022-06-28 엘지전자 주식회사 Discharge valve assembly and rotary compressor including thereof

Similar Documents

Publication Publication Date Title
JP5633520B2 (en) Compressor
EP2232072B1 (en) Noise reducing device for hermetic type compressor
US8869837B2 (en) Compressor
JP5429353B1 (en) Compressor
JP2013177820A (en) Reed valve and compression device
JP6065192B2 (en) Hermetic compressor
JP5516542B2 (en) Compressor
KR20110013444A (en) Discharge valve arrangement for a hermetic compressor
WO2007123002A1 (en) Compressor
TWM507979U (en) Piezoelectric pump and piezoelectric pump assembly
JP2006528742A (en) Stroke-controlled pump valve
KR100719626B1 (en) A hinge type check valve
CN209724606U (en) Linear compressor gas deflation assembly and linear compressor
CN107191380B (en) Compression mechanism and compressor with same
EP3260748B1 (en) Valve assembly
JP2011208511A (en) Compressor
JP2014015911A (en) Rotary compressor
JP2016070167A (en) Reciprocation type compressor
JP3248236U (en) Reed valve
CN217712964U (en) Exhaust assembly, compressor and temperature adjusting device
JP6442168B2 (en) Hermetic compressor and equipment using the same
KR102080624B1 (en) Swash plate compressor
KR20160090036A (en) Diaphragm pumps and method for controlling operation.
JP2014015883A (en) Hermetic type compressor
JP2008095522A (en) Suction valve mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160331