JP2013154313A - Treatment method of waste alkali liquid - Google Patents
Treatment method of waste alkali liquid Download PDFInfo
- Publication number
- JP2013154313A JP2013154313A JP2012017924A JP2012017924A JP2013154313A JP 2013154313 A JP2013154313 A JP 2013154313A JP 2012017924 A JP2012017924 A JP 2012017924A JP 2012017924 A JP2012017924 A JP 2012017924A JP 2013154313 A JP2013154313 A JP 2013154313A
- Authority
- JP
- Japan
- Prior art keywords
- waste liquid
- alkaline waste
- treatment
- flocculant
- activated carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Removal Of Specific Substances (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
本発明は、ソルダーレジスト、エッチングレジストまたはめっきレジスト等の感光性材料の現像廃液または剥離廃液を含むアルカリ廃液の処理方法に関するものである。 The present invention relates to a method for treating an alkaline waste liquid containing a development waste liquid or a peeling waste liquid of a photosensitive material such as a solder resist, an etching resist or a plating resist.
近年、配線基板等の製造工程においては、ソルダーレジストやエッチングレジスト等の感光性材料が多く用いられている。これらの感光性材料は、地球環境保護の観点から、塩素系溶剤を用いて現像や剥離を行うタイプの溶剤現像型から、大部分がアルカリ性水溶液を用いて現像や剥離を行うアルカリ現像型に切り替わってきた経緯がある。これに伴い、大量に発生するアルカリ廃液を処理する必要が生じている。 In recent years, photosensitive materials such as solder resists and etching resists are often used in the manufacturing process of wiring boards and the like. From the viewpoint of protecting the global environment, these photosensitive materials are switched from a solvent development type in which development and peeling are performed using a chlorinated solvent to an alkali development type in which development and peeling are mostly performed using an alkaline aqueous solution. There is a background. Along with this, it is necessary to process a large amount of alkaline waste liquid.
このような感光性材料の現像廃液や剥離廃液を含むアルカリ廃液の処理方法としては、廃液中の塩基量に対し当量以上のアルカリ土類金属を添加し廃液中の樹脂を不溶化させ、この不溶化物を除去する方法(特許文献1)、廃液を限外濾過してレジスト成分濃縮液を取り出し、熱エネルギーを加えて固化する方法(特許文献2)、アルカリ廃液からイオン交換によりアルカリ成分を除去した後、蒸発濃縮等を行う方法(特許文献3〜5)、アルカリ廃液をpH4に調整し、無機凝集剤を添加し、高分子凝集剤を添加する方法(特許文献6)等が知られている。 As a processing method of alkaline waste liquid including development waste liquid and stripping waste liquid of such photosensitive material, an alkaline earth metal equal to or more than the amount of base in the waste liquid is added to insolubilize the resin in the waste liquid, and this insolubilized product (Patent Document 1), Ultrafiltration of waste liquid to remove resist component concentrate, solidification by adding thermal energy (Patent Document 2), After removing alkali components from alkaline waste liquid by ion exchange In addition, a method of performing evaporation and concentration (Patent Documents 3 to 5), a method of adjusting an alkaline waste liquid to pH 4, adding an inorganic flocculant, and adding a polymer flocculant (Patent Document 6) are known.
しかしながら、特許文献1〜6の従来の廃液処理方法では、COD(化学的酸素要求量)を1/10より低下させるのは難しく、ソルダーレジストやエッチングレジスト等の感光性材料の現像廃液や剥離廃液を含むアルカリ廃液のBOD(生物学的酸素要求量)が数100〜数1,000ppm程度で、CODが数1,000〜数10,000ppm程度である場合、廃液処理を行った後の処理水でも、多い場合はBODが数100ppm以上で、CODが数1,000ppm以上となる。このため、そのまま、BODやCODが数100ppm以下の一般排水と同様の、pH調整及び一般排水処理施設での処理を行っただけでは河川への放流ができず、さらなる廃液処理を要する問題があった。 However, in the conventional waste liquid treatment methods of Patent Documents 1 to 6, it is difficult to reduce COD (chemical oxygen demand) below 1/10, and development waste liquid and peeling waste liquid of photosensitive materials such as solder resist and etching resist. When the BOD (biological oxygen demand) of the alkaline waste liquid containing is about several hundred to several thousand ppm and the COD is about several thousand to several 10,000 ppm, the treated water after performing the waste liquid treatment However, when the amount is large, the BOD is several hundred ppm or more and the COD is several thousand ppm or more. For this reason, there is a problem in that it cannot be discharged into a river just by performing pH adjustment and treatment at a general wastewater treatment facility, as is the case with general wastewater with BOD and COD of several hundred ppm or less, and further waste liquid treatment is required. It was.
本発明は、上記問題点に鑑みてなされたものであり、感光性材料の現像廃液または剥離廃液を含むアルカリ廃液のBOD及びCODを、pH調整及び一般排水処理施設での処理を行っただけで、河川への放流が可能な程度まで落とすことが可能なアルカリ廃液の処理方法を提供することを目的とする。 The present invention has been made in view of the above-described problems. The BOD and COD of an alkaline waste liquid containing a development waste liquid or a peeling waste liquid of a photosensitive material are merely subjected to pH adjustment and treatment in a general waste water treatment facility. An object of the present invention is to provide a method for treating alkaline waste liquid that can be dropped to the extent that it can be discharged into a river.
本発明は、以下のものに関する。
1. 感光性材料の現像廃液または剥離廃液を含むアルカリ廃液の処理方法であって、前記アルカリ廃液をpH1〜5以下に調整する工程と、凝集剤及び活性炭で処理する工程と、凝集沈殿物を濾過する工程と、を有するアルカリ廃液の処理方法。
2. 上記1において、凝集剤及び活性炭で処理する工程では、アルカリ廃液に、まず活性炭を加えてから、次に凝集剤を加えるアルカリ廃液の処理方法。
3. 上記1または2において、アルカリ廃液をpH1〜5に調整する工程では、20〜40質量%の硫酸または20〜35質量%の塩酸を用いて、pH1〜2に調整するアルカリ廃液の処理方法。
4. 上記1から3の何れかにおいて、凝集剤及び活性炭で処理する工程では、カチオン凝集剤を用いるアルカリ廃液の処理方法。
5. 上記1から4の何れかにおいて、凝集沈殿物を濾過する工程の後に、濾過後の濾液をpH4〜7に調整する工程と、一般排水処理施設での凝集沈殿処理及び接触式BOD処理を行う工程と、を有するアルカリ廃液の処理方法。
The present invention relates to the following.
1. A method for treating an alkaline waste solution containing a development waste solution or a stripping waste solution of a photosensitive material, the step of adjusting the alkaline waste solution to pH 1 to 5 or less, the step of treating with a flocculant and activated carbon, and filtering the aggregated precipitate And a method for treating an alkaline waste liquid.
2. In the process of 1 above, in the step of treating with a flocculant and activated carbon, the activated carbon is first added to the alkaline waste liquid, and then the flocculant is added.
3. In the above 1 or 2, in the step of adjusting the alkaline waste liquid to pH 1 to 5, the alkaline waste liquid treatment method is adjusted to pH 1 to 2 using 20 to 40 mass% sulfuric acid or 20 to 35 mass% hydrochloric acid.
4). In any one of 1 to 3 above, in the step of treating with a flocculant and activated carbon, a method for treating an alkaline waste liquid using a cationic flocculant.
5. In any of 1 to 4 above, after the step of filtering the aggregated precipitate, the step of adjusting the filtrate after filtration to pH 4-7, the step of performing the aggregated precipitation treatment and the contact-type BOD treatment in a general wastewater treatment facility And a method for treating an alkaline waste liquid.
本発明によって、感光性材料の現像廃液または剥離廃液を含むアルカリ廃液のBOD及びCODを、pH調整及び一般排水処理施設での処理を行っただけで、河川への放流が可能な程度まで落とすことが可能なアルカリ廃液の処理方法を提供することができる。 According to the present invention, BOD and COD of alkaline waste liquid containing development waste liquid or stripping waste liquid of photosensitive material are dropped to a level that can be discharged into a river only by performing pH adjustment and treatment at a general wastewater treatment facility. Therefore, it is possible to provide a method for treating an alkaline waste liquid.
本発明が対象とするアルカリ廃液は、感光性材料の現像廃液または剥離廃液を含むアルカリ廃液である。感光性材料としては、配線基板の製造工程において用いられ、アルカリ性水溶液を用いて現像や剥離を行う、いわゆるアルカリ現像型のものであれば、特に限定はない。このような感光性材料としては、ソルダーレジスト、エッチングレジストまたはめっきレジスト等の感光性レジストが挙げられる。現像を行うアルカリ水溶液としては、特に限定はないが、一般に、1質量%程度の炭酸ナトリウム水溶液または炭酸カリウム水溶液が用いられ、剥離を行うアルカリ水溶液としては、一般に、3〜6質量%程度の水酸化ナトリウム水溶液や水酸化カリウム水溶液が用いられる。このため、本発明の対象とするアルカリ廃液は、特には、これらのアルカリ水溶液に、ソルダーレジスト、エッチングレジストまたはめっきレジスト等の樹脂成分等が溶け込んだものである。 The alkaline waste liquid targeted by the present invention is an alkaline waste liquid containing a development waste liquid or a peeling waste liquid of a photosensitive material. The photosensitive material is not particularly limited as long as it is a so-called alkali development type that is used in the manufacturing process of the wiring board and performs development or peeling using an alkaline aqueous solution. Examples of such a photosensitive material include photosensitive resists such as a solder resist, an etching resist, and a plating resist. The alkaline aqueous solution for development is not particularly limited, but generally about 1% by mass of sodium carbonate aqueous solution or potassium carbonate aqueous solution is used, and the alkaline aqueous solution for peeling is generally about 3 to 6% by mass of water. A sodium oxide aqueous solution or a potassium hydroxide aqueous solution is used. For this reason, the alkaline waste liquid which is the subject of the present invention is a solution in which a resin component such as a solder resist, an etching resist or a plating resist is dissolved in these alkaline aqueous solutions.
なお、一般に、感光性材料の現像廃液または剥離廃液には、寿命が設定されており、所定の量の感光性材料の樹脂成分が溶け込んだ状態で廃棄され、アルカリ廃液となる。このアルカリ廃液には、感光性材料の樹脂分等が、2〜3質量%程度含まれ、この状態のアルカリ廃液のBODは数100〜数1,000ppm程度、CODは数1,000〜数10,000ppm程度であることが多い。 In general, the development waste liquid or the stripping waste liquid of the photosensitive material has a set life, and is discarded in a state where a predetermined amount of the resin component of the photosensitive material is dissolved to become an alkaline waste liquid. The alkaline waste liquid contains about 2-3% by mass of the resin component of the photosensitive material, the BOD of the alkaline waste liquid in this state is about several hundreds to several thousand ppm, and the COD is several thousand to several tens. Often about 1,000 ppm.
本発明のアルカリ廃液の処理方法のフローの一例を図1に示す。本発明のアルカリ廃液の処理方法は、アルカリ廃液をpH1〜5に調整する工程と、活性炭及び凝集剤で処理する工程と、凝集沈殿物を濾過する工程と、を有する。 An example of the flow of the alkaline waste liquid treatment method of the present invention is shown in FIG. The method for treating an alkaline waste liquid of the present invention includes a step of adjusting the alkaline waste solution to pH 1 to 5, a step of treating with activated carbon and a flocculant, and a step of filtering the aggregated precipitate.
アルカリ廃液をpH1〜5に調整する工程は、アルカリ廃液を酸性にすることで、アルカリ廃液中に溶解している感光性材料の樹脂成分を分解し、この後の活性炭による吸着をし易くするためのものである。アルカリ廃液のpHは、より低い方が樹脂成分をより小さく分解し、活性炭への吸着効率が高まる点で好ましい。このため、pHは低い方がより好ましいが、pH1未満では、加える硫酸や塩酸の量が多くなったり、銅が溶け込む傾向があるため、pH1〜2(pH1以上、pH2以下)が最適である。 The step of adjusting the alkaline waste liquid to pH 1 to 5 is to make the alkaline waste liquid acidic, thereby decomposing the resin component of the photosensitive material dissolved in the alkaline waste liquid and facilitating subsequent adsorption by activated carbon. belongs to. A lower pH of the alkaline waste liquid is preferable in that the resin component is decomposed smaller and the adsorption efficiency to activated carbon is increased. For this reason, although the one where pH is lower is more preferable, since there exists a tendency for the quantity of the sulfuric acid and hydrochloric acid to add and copper to melt | dissolve at less than pH 1, pH 1-2 (pH 1 or more, pH 2 or less) is optimal.
pH1〜5に調整するためには、硫酸や塩酸を用いることができるが、高濃度の原液を用いて、加える酸の濃度を高濃度に調整できる点で、硫酸がより好ましい。また、加える硫酸の濃度は20〜40質量%、塩酸の濃度は20〜35質量%であるのが、アルカリ廃液のpHの調整し易さの点で好ましい。 In order to adjust to pH 1-5, although sulfuric acid and hydrochloric acid can be used, a sulfuric acid is more preferable at the point which can adjust the density | concentration of the acid to add to a high concentration using a high concentration undiluted | stock solution. Further, the concentration of sulfuric acid to be added is 20 to 40% by mass, and the concentration of hydrochloric acid is 20 to 35% by mass from the viewpoint of easy adjustment of the pH of the alkaline waste liquid.
活性炭及び凝集剤で処理する工程は、アルカリ廃液をpH1〜5に調整する工程で分解した樹脂成分を活性炭に吸着しかつ凝集剤で凝集沈殿するためのものである。アルカリ廃液に、まず活性炭を加えてから、例えば30分〜1時間程度、十分に撹拌した後、次に凝集剤を加えるのが好ましい。これにより、分解した樹脂成分が活性炭に十分吸着した状態で凝集させることができるので、樹脂成分の凝集沈殿の効率を各段に向上させることができる。 The step of treating with activated carbon and the flocculant is for adsorbing the resin component decomposed in the step of adjusting the alkaline waste liquid to pH 1 to 5 on the activated carbon and coagulating and precipitating with the flocculant. It is preferable to add activated carbon to the alkaline waste liquid first, and after sufficiently stirring, for example, about 30 minutes to 1 hour, then add the flocculant. Thereby, since the decomposed resin component can be aggregated in a state where it is sufficiently adsorbed on the activated carbon, the efficiency of aggregation and precipitation of the resin component can be improved in each stage.
活性炭としては、例えば木炭を水蒸気で活性化したものや、ヤシガラ活性炭が例示され、特に限定されないが、アルカリ廃液中の分解した樹脂成分を吸着する効率(単位体積当たりの活性炭に吸着する樹脂成分の質量)がよい点で、粒状(平均粒径150μm以上)のものよりは、比表面積(単位体積当たりの表面積)の大きい粉末状(平均粒径150μm未満)の活性炭がより好ましい。平均粒径は、JIS K 1474に規定されるものである。また、粉末状の活性炭は、乾燥タイプの方が分解した樹脂成分を吸着する効率の点で優れるが、取り扱いの安全面や人体に対する衛生面から、含水率が68質量%以上であることが望ましい。このような、活性炭としては、梅蜂印活性炭(太平化学産業株式会社製、商品名、「梅蜂印」は登録商標。)の68質量%ウェット処理品(含水率68質量%)等が挙げられる。使用量は、アルカリ廃液2,500Lあたり、30〜45kgであることが好ましい。 Examples of the activated carbon include those obtained by activating charcoal with water vapor and coconut shell activated carbon, and are not particularly limited. However, the efficiency of adsorbing the decomposed resin component in the alkaline waste liquid (the resin component adsorbed on the activated carbon per unit volume) In terms of good mass, activated carbon in a powder form (average particle size of less than 150 μm) having a large specific surface area (surface area per unit volume) is more preferable than granular (average particle size of 150 μm or more). The average particle diameter is defined in JIS K 1474. In addition, the powdered activated carbon is superior in the efficiency of adsorbing the decomposed resin component in the dry type, but it is desirable that the moisture content is 68% by mass or more from the viewpoint of safety in handling and hygiene for the human body. . Examples of the activated carbon include 68 mass% wet-treated product (moisture content of 68 mass%) of plum bee seal activated carbon (trade name, “Plum bee seal” is a registered trademark) manufactured by Taihei Chemical Industry Co., Ltd.). It is done. The amount used is preferably 30 to 45 kg per 2,500 L of alkaline waste liquid.
凝集剤としては、高分子凝集剤が適しており、ノニオン系凝集剤、アニオン系凝集剤、カチオン系凝集剤のいずれか又はこれらを組み合わせて用いることができる。ノニオン系凝集剤としては、ポリアクリルアミド系を用いることができる。アニオン系凝集剤としては、ポリアクリルアミド系、ポリアクリル酸ソーダ系、変性ポリアクリルアミド系を用いることができる。カチオン系高分子凝集剤としては、特殊変性ポリアクリル酸エステル系、ポリアクリル酸エステル系、難脱水汚泥用ポリアクリル酸エステル系、ポリメタアクリル酸エステル系、難脱水汚泥用ポリメタアクリル酸エステル系を用いることができる。特には、カチオン系凝集剤が、吸着性や凝集性が高い点で好ましい。使用量は、凝集の状態をみて設定することができるが、一般に1〜50ppm程度に設定される。 As the flocculant, a polymer flocculant is suitable, and any of nonionic flocculants, anionic flocculants, cationic flocculants, or a combination thereof can be used. A polyacrylamide type can be used as the nonionic flocculant. As the anionic flocculant, polyacrylamide, sodium polyacrylate, or modified polyacrylamide can be used. Cationic polymer flocculants include specially modified polyacrylate esters, polyacrylate esters, polyacrylate esters for hardly dewatered sludge, polymethacrylate esters, polymethacrylate ester for hardly dehydrated sludge Can be used. In particular, a cationic flocculant is preferable in terms of high adsorptivity and aggregation. The amount used can be set in view of the state of aggregation, but is generally set to about 1 to 50 ppm.
凝集沈殿物を濾過する工程は、凝集沈殿した樹脂成分をアルカり廃液から除去するためのものである。濾過方法は、特に限定はないが、例えば、開口径が50〜100μmのフィルターを用いてフィルタープレスにより行うことができる。 The step of filtering the aggregated precipitate is for removing the resin component that has aggregated and precipitated from the alkaline waste liquid. Although the filtration method is not particularly limited, for example, it can be performed by a filter press using a filter having an opening diameter of 50 to 100 μm.
以上述べたように、アルカリ廃液をpH1〜5に調整する工程と、活性炭及び凝集剤で処理する工程と、凝集沈殿物を濾過する工程とを有することにより、アルカリ廃液中に溶解した樹脂成分が活性炭に吸着した状態で凝集沈殿されるので、凝集沈殿の効率が従来に比べて格段に高い。このため、感光性材料の現像廃液または剥離廃液を含むアルカリ廃液のBODを処理前の1/10〜1/3、CODを処理前の1/40〜1/10程度に落とすことが可能になる。凝集沈殿物を濾過した後の濾液は、一般排水処理施設にて、濾過後の濾液を凝集沈殿し、接触式BOD処理を経由してpH調製を行うだけで、河川に放流することができる。したがって、BODやCODが数100ppm以下の一般排水と同様の処理を行なうことで河川への放流が可能になるので、廃液の処理工数が少なく、処理コストの低減も可能になる。 As described above, the resin component dissolved in the alkaline waste liquid has the step of adjusting the alkaline waste liquid to pH 1 to 5, the step of treating with activated carbon and a flocculant, and the step of filtering the aggregated precipitate. Since it is agglomerated and precipitated while adsorbed on activated carbon, the efficiency of agglomeration and precipitation is much higher than before. For this reason, it becomes possible to drop the BOD of the alkaline waste liquid containing the development waste liquid or the peeling waste liquid of the photosensitive material to about 1/10 to 1/3 before processing, and the COD to about 1/40 to 1/10 before processing. . The filtrate after filtration of the coagulated sediment can be discharged into a river simply by coagulating and precipitating the filtrate after filtration at a general wastewater treatment facility and adjusting the pH via contact BOD treatment. Accordingly, by performing the same treatment as general wastewater with BOD and COD of several hundred ppm or less, it becomes possible to discharge to the river, so that the waste man-hours are reduced and the treatment cost can be reduced.
なお、一般排水とは、pHを4〜7に調整した後、一般排水処理施設での凝集沈殿処理及び接触式BOD処理を行うだけで、河川への放流が可能になる排水であり、したがって、BODやCODが数100ppm以下のものである。例えば、ソルダーレジストやエッチングレジスト等の現像や剥離を行った後の配線基板や、回路形成のためのエッチングを行った後の配線基板に対して、水洗水による洗浄を行う工程で生じる排水が挙げられる。また、一般排水処理施設での処理とは、BODやCODが数100ppm以下の一般排水(pH4〜8程度)を対象とする処理であり、凝集沈殿処理した後、接触式BOD処理(接触式の曝気処理)を行い、河川への放流が可能なレベルまでBODやCODを低下させるものである。なお、この一般排水処理施設での凝集沈殿処理は、一般的な凝集沈殿処理であり、活性炭を加えずに凝集剤を加え、排水中の有機物やイオン等を凝集させて除去するものである。河川への放流が可能なレベルは、地域等によっても異なり、一例としては160ppm以下である。 In addition, general waste water is waste water that can be discharged into a river only by performing coagulation sedimentation treatment and contact-type BOD treatment in a general waste water treatment facility after adjusting the pH to 4-7. BOD and COD are those of several hundred ppm or less. For example, drainage generated in a process of washing with washing water for a wiring board after development or peeling of a solder resist or an etching resist, or a wiring board after etching for circuit formation is mentioned. It is done. The treatment at a general wastewater treatment facility is a treatment for general wastewater (pH 4 to 8) having BOD and COD of several hundred ppm or less. After coagulating sedimentation treatment, contact-type BOD treatment (contact-type BOD treatment) Aeration processing) is performed, and BOD and COD are reduced to a level at which discharge into the river is possible. The coagulation sedimentation treatment in this general wastewater treatment facility is a general coagulation sedimentation treatment, in which a flocculant is added without adding activated carbon to coagulate and remove organic substances or ions in the wastewater. The level at which discharge into the river is possible varies depending on the region, and is 160 ppm or less as an example.
アルカリ廃液処理を行った後の処理液(凝集沈殿物を濾過後の濾液)に対して、一般排水処理施設での排水処理を行う前にpH調整を行う。このpH調整は、アルカリ溶液を加えて、pH3以上に調整する。特には、アルカリ廃液の添加量が多くならず、調整も容易な点で、pH4〜7に調整するのが好ましい。これにより、処理液(凝集沈殿物を濾過後の濾液)が、中性に近付くので、一般排水として、一般排水処理施設での排水処理を行った後に河川に放流することが容易になる。 The pH of the treatment liquid after the alkali waste liquid treatment (filtrate after filtering the aggregated precipitate) is adjusted before the waste water treatment in the general waste water treatment facility. This pH adjustment is adjusted to pH 3 or more by adding an alkaline solution. In particular, the pH is preferably adjusted to 4 to 7 because the amount of the alkaline waste liquid added is not increased and the adjustment is easy. Thereby, since a processing liquid (filtrate after filtering agglomerated sediment) approaches neutrality, it becomes easy to discharge as a general wastewater to a river after performing a wastewater treatment in a general wastewater treatment facility.
以下、本発明の実施例を説明するが、本発明は実施例に限定されない。 Examples of the present invention will be described below, but the present invention is not limited to the examples.
(実施例1)
ソルダーレジスト、エッチングレジストまたはめっきレジスト等の感光性レジストの現像廃液及び剥離廃液を混合させたアルカリ廃液(2,500L)を用意した。このアルカリ廃液には、感光性材料の樹脂成分が、2〜3質量%程度溶解しており、pHは>12である。また、BODは1,000ppm、CODは8,000ppmである。
Example 1
An alkaline waste liquid (2,500 L) was prepared by mixing a developing waste liquid and a peeling waste liquid of a photosensitive resist such as a solder resist, an etching resist or a plating resist. In this alkaline waste liquid, the resin component of the photosensitive material is dissolved in about 2 to 3% by mass, and the pH is> 12. Moreover, BOD is 1,000 ppm and COD is 8,000 ppm.
30質量%の硫酸を用いて、アルカリ廃液のpHを1に調整し、1時間、撹拌した。 The pH of the alkaline waste liquid was adjusted to 1 using 30% by mass of sulfuric acid and stirred for 1 hour.
活性炭である梅蜂FA印活性炭68%WET(太平化学産業株式会社製、商品名、「梅蜂印」は登録商標。「68%WET」は含水率68質量%を示す。)を、アルカリ廃液2,500Lに、30kg添加し、1時間、撹拌した。 Alkaline waste liquid of activated carbon ume FA activated carbon 68% WET (produced by Taihei Chemical Sangyo Co., Ltd., trade name “Plum Bee Seal” is a registered trademark. “68% WET” indicates a water content of 68% by mass). To 2,500 L, 30 kg was added and stirred for 1 hour.
カチオン系凝集剤であるアロンフロック(東亜合成株式会社製、商品名、「アロンフロック」は登録商標。)を、水100Lに対して100gの割合で混合し、2時間拡販して、溶解させた。このカチオン凝集剤を溶解させた溶液を、アルカリ廃液2,500Lに、250L添加し、1時間、撹拌した。 Aron Flock (trade name, “Aron Flock” manufactured by Toa Gosei Co., Ltd. is a registered trademark), which is a cationic flocculant, was mixed at a rate of 100 g with respect to 100 L of water, expanded for 2 hours, and dissolved. . 250 L of the solution in which this cationic flocculant was dissolved was added to 2500 L of alkaline waste liquid and stirred for 1 hour.
フィルタプレス(株式会社栗田機会製作所製)を用いて、凝集沈澱物を濾過して除去した。濾液のBOD及びCODを測定した(JIS−K−0102に準拠。)。 The aggregated precipitate was removed by filtration using a filter press (manufactured by Kurita Opportunity Co., Ltd.). The BOD and COD of the filtrate were measured (according to JIS-K-0102).
濾液をpHを4〜7に調整した後、一般排水処理施設で、凝集剤を加えて凝集沈殿処理と接触式BOD処理(接触式の曝気処理)とを行った。 After the pH of the filtrate was adjusted to 4-7, a flocculant was added and a coagulation sedimentation treatment and contact BOD treatment (contact type aeration treatment) were performed at a general wastewater treatment facility.
処理後の排水のBOD及びCODを測定したところ(JIS−K−0102に準拠。)、何れも20ppm以下であり、河川に放流できるレベルであった。 When BOD and COD of the treated wastewater were measured (conforms to JIS-K0102), both were 20 ppm or less, and were at a level that could be discharged into a river.
(実施例2)
30質量%の硫酸を用いて、アルカリ廃液のpHを2に調整した。これ以外は、実施例1と同様にしてアルカリ廃液を処理した。
(Example 2)
The pH of the alkaline waste liquid was adjusted to 2 using 30% by mass of sulfuric acid. Except for this, the alkaline waste liquid was treated in the same manner as in Example 1.
(実施例3)
30質量%の硫酸を用いて、アルカリ廃液のpHを3に調整した。これ以外は、実施例1と同様にしてアルカリ廃液を処理した。
(Example 3)
The pH of the alkaline waste liquid was adjusted to 3 using 30% by mass of sulfuric acid. Except for this, the alkaline waste liquid was treated in the same manner as in Example 1.
(実施例4)
30質量%の硫酸を用いて、アルカリ廃液のpHを4に調整した。これ以外は、実施例1と同様にしてアルカリ廃液を処理した。
Example 4
The pH of the alkaline waste liquid was adjusted to 4 using 30% by mass of sulfuric acid. Except for this, the alkaline waste liquid was treated in the same manner as in Example 1.
(実施例5)
30質量%の硫酸を用いて、アルカリ廃液のpHを5に調整した。これ以外は、実施例1と同様にしてアルカリ廃液を処理した。
(Example 5)
The pH of the alkaline waste liquid was adjusted to 5 using 30% by mass of sulfuric acid. Except for this, the alkaline waste liquid was treated in the same manner as in Example 1.
(比較例1)
30質量%の硫酸を用いて、アルカリ廃液のpHを6に調整した。これ以外は、実施例1と同様にしてアルカリ廃液を処理した。
(Comparative Example 1)
The pH of the alkaline waste liquid was adjusted to 6 using 30% by mass of sulfuric acid. Except for this, the alkaline waste liquid was treated in the same manner as in Example 1.
(比較例2)
30質量%の硫酸を用いて、アルカリ廃液のpHを2に調整し、1時間、撹拌したが、活性炭は添加しなかった。
次に、実施例1と同様にして、カチオン系凝集剤を溶解させた溶液を準備した。このカチオン凝集剤を溶解させた溶液を、活性炭を添加していないアルカリ廃液2,500Lに、250L添加し、1時間、撹拌した。
つまり、この比較例2では、活性炭を添加せずに、カチオン凝集剤だけを、アルカリ廃液に添加して、凝集沈殿処理を行った。これ以外は、実施例1と同様にしてアルカリ廃液を処理した。
(Comparative Example 2)
The pH of the alkaline waste liquid was adjusted to 2 using 30% by mass of sulfuric acid and stirred for 1 hour, but no activated carbon was added.
Next, in the same manner as in Example 1, a solution in which the cationic flocculant was dissolved was prepared. 250 L of the solution in which this cationic flocculant was dissolved was added to 2500 L of alkaline waste liquid to which activated carbon was not added, and stirred for 1 hour.
That is, in this comparative example 2, only the cationic flocculant was added to the alkaline waste liquid without adding the activated carbon, and the coagulation precipitation treatment was performed. Except for this, the alkaline waste liquid was treated in the same manner as in Example 1.
実施例1〜4及び比較例1、2で廃液処理を行った後の濾液のBOD及びCODの測定結果を、表1に示す。実施例1〜5では、廃液処理前のアルカリ廃液に対して、廃液処理後の濾液のBODが1/10〜1/3、CODが1/40〜1/10程度に低下し、BODが100〜350ppm及びCODが200〜650ppmとなったことから、pHを5.8〜8.6に調整した後、そのまま一般排水と同様の一般排水処理施設での処理を行っただけで、BOD及びCODが160ppm以下となり、河川に放流することができた。
一方、比較例1及び2では、廃液処理後のBOD及びCODの何れも、十分に低下しておらず、pHを5.8〜8.6に調整した後、そのまま一般排水と同様の一般排水処理施設での処理を行っただけでは、BODが500〜600ppm、CODが2,000ppm程度であり、河川に放流できなかった。比較例1では、pH6に調整した状態での樹脂成分は十分に分解されておらず、大きいため、活性炭への吸着が不十分になったためと考えられる。また、比較例2では、凝集剤を添加する前に活性炭を用いなかったため、凝集剤による樹脂成分の凝集沈澱が不十分になったためと考えられる。
Table 1 shows the BOD and COD measurement results of the filtrates after the waste liquid treatment in Examples 1 to 4 and Comparative Examples 1 and 2. In Examples 1 to 5, the BOD of the filtrate after the waste liquid treatment is reduced to 1/10 to 1/3, the COD is reduced to about 1/40 to 1/10, and the BOD is 100 with respect to the alkaline waste liquid before the waste liquid treatment. Since ~ 350ppm and COD became 200 ~ 650ppm, after adjusting the pH to 5.8 ~ 8.6, the treatment in the general waste water treatment facility similar to the general waste water was carried out as it was, and BOD and COD Became 160ppm or less, and could be discharged into the river.
On the other hand, in Comparative Examples 1 and 2, neither BOD nor COD after the waste liquid treatment was sufficiently lowered, and after adjusting the pH to 5.8 to 8.6, the same general waste water as the general waste water was used. By simply performing the treatment at the treatment facility, the BOD was about 500 to 600 ppm and the COD was about 2,000 ppm, and could not be discharged into the river. In Comparative Example 1, it is considered that the resin component in the state adjusted to pH 6 is not sufficiently decomposed and is large, so that the adsorption to activated carbon is insufficient. Moreover, in the comparative example 2, since activated carbon was not used before adding the flocculant, it is thought that the aggregation precipitation of the resin component by the flocculant became inadequate.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012017924A JP2013154313A (en) | 2012-01-31 | 2012-01-31 | Treatment method of waste alkali liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012017924A JP2013154313A (en) | 2012-01-31 | 2012-01-31 | Treatment method of waste alkali liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013154313A true JP2013154313A (en) | 2013-08-15 |
Family
ID=49050050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012017924A Pending JP2013154313A (en) | 2012-01-31 | 2012-01-31 | Treatment method of waste alkali liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013154313A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104495971A (en) * | 2014-11-27 | 2015-04-08 | 福建农林大学 | Method for processing aniline-blue-containing pollution wastewater by using cultivation material of harvested pleurotus eryngii |
CN110240310A (en) * | 2019-06-14 | 2019-09-17 | 吉林建筑大学 | A kind of town sewage treatment system based on block chain technology |
-
2012
- 2012-01-31 JP JP2012017924A patent/JP2013154313A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104495971A (en) * | 2014-11-27 | 2015-04-08 | 福建农林大学 | Method for processing aniline-blue-containing pollution wastewater by using cultivation material of harvested pleurotus eryngii |
CN110240310A (en) * | 2019-06-14 | 2019-09-17 | 吉林建筑大学 | A kind of town sewage treatment system based on block chain technology |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102001734B (en) | Heavy metal settling agent for treating mercury-containing wastewater | |
JP2009226244A (en) | Waste water treatment method and waste water treatment system | |
JP5118572B2 (en) | Sewage treatment method | |
JP2013154313A (en) | Treatment method of waste alkali liquid | |
JP2013202606A (en) | Treatment method and device of thiourea-containing water | |
JP4471112B2 (en) | Method for coagulating and dewatering muddy water | |
CN107698059A (en) | A kind of phosphorus-containing wastewater contamination precipitation processing method | |
CN110818123B (en) | Treatment method of trivalent chromium plating waste water | |
JPWO2005100253A1 (en) | Method for treating strongly acidic wastewater containing hazardous substances | |
CN105293659A (en) | Stabilization method for emergently treating sediment of heavy metal pollutants in water body | |
JP2012006000A (en) | Heavy metal treating agent, method of treating heavy-metal-containing liquid, and method of recovering heavy metal | |
JP2004290777A (en) | Method for treating arsenic-containing water | |
JP2010075849A (en) | Treatment method for chlorine-containing fine powder waste | |
CN104058520A (en) | Process method for deeply treating low-concentration chelated heavy metal wastewater | |
JP4735359B2 (en) | Treatment method of iron-containing waste liquid | |
JPS63258690A (en) | Treatment of organic sewage | |
JP6213044B2 (en) | Method and apparatus for treating selenium-containing water | |
JP6932590B2 (en) | Treatment method of Sn-containing water | |
JP2007038196A (en) | Metal etching wastewater treatment method | |
JP5693992B2 (en) | Method for recovering dissolved iron from wastewater containing various metal ions | |
JP2004267830A (en) | Method for treating biological treatment water-containing water | |
JP2007130545A (en) | Method and apparatus for treating drainage | |
JP4122207B2 (en) | Method for removing metal from wastewater | |
JP2001179233A (en) | Method for treating jellyfishes | |
JP2010240625A (en) | Method of recovering phosphorus |