JP2013131395A - Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic apparatus - Google Patents

Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic apparatus Download PDF

Info

Publication number
JP2013131395A
JP2013131395A JP2011280186A JP2011280186A JP2013131395A JP 2013131395 A JP2013131395 A JP 2013131395A JP 2011280186 A JP2011280186 A JP 2011280186A JP 2011280186 A JP2011280186 A JP 2011280186A JP 2013131395 A JP2013131395 A JP 2013131395A
Authority
JP
Japan
Prior art keywords
group
secondary battery
negative electrode
hydrocarbon group
monovalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011280186A
Other languages
Japanese (ja)
Other versions
JP2013131395A5 (en
Inventor
Masayuki Ihara
将之 井原
Tadahiko Kubota
忠彦 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2011280186A priority Critical patent/JP2013131395A/en
Priority to US13/690,916 priority patent/US20130164608A1/en
Priority to CN201811389015.6A priority patent/CN109585906A/en
Priority to CN2012105301970A priority patent/CN103178286A/en
Publication of JP2013131395A publication Critical patent/JP2013131395A/en
Publication of JP2013131395A5 publication Critical patent/JP2013131395A5/ja
Priority to US15/240,255 priority patent/US10541449B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0445Multimode batteries, e.g. containing auxiliary cells or electrodes switchable in parallel or series connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery capable of obtaining excellent electrical characteristics.SOLUTION: A secondary battery includes a positive electrode, a negative electrode and an electrolytic solution. The negative electrode contains a material including at least one of Si and Sn as a constituent element, and the electrolytic solution contains unsaturated cyclic carbonate. The unsaturated cyclic carbonate has a bivalent group X. X is a bivalent group obtained by jointing (m) pieces>C=CR1-R2 and (n) pieces>CR3R4 in optional order. Each of R1-R4 represents a hydrogen group, a halogen group, a monovalent hydrocarbon group, a monovalent hydrocarbon-halide group, or a monovalent oxygen-containing hydrocarbon or a monovalent oxygen halide gas-containing hydrocarbon, and any two or more of R1-R4 may be bonded to each other. (m) and (n) satisfy m≥1 and n≥0.

Description

本技術は、Siなどを構成元素として含む材料を用いた二次電池、ならびにその二次電池を用いた電池パック、電動車両、電力貯蔵システム、電動工具および電子機器に関する。   The present technology relates to a secondary battery using a material containing Si or the like as a constituent element, and a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device using the secondary battery.

近年、携帯電話機または携帯情報端末機器(PDA)などの多様な電子機器が広く普及しており、その電気機器のさらなる小型化、軽量化および長寿命化が要望されている。これに伴い、電源として、電池、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、最近では、電子機器などに着脱可能に搭載される電池パック、電気自動車などの電動車両、家庭用電力サーバなどの電力貯蔵システム、または電動ドリルなどの電動工具に代表される多様な他の用途への適用も検討されている。   In recent years, various electronic devices such as mobile phones and personal digital assistants (PDAs) have become widespread, and further reduction in size, weight, and life of the electrical devices are desired. Accordingly, as a power source, development of a battery, in particular, a secondary battery that is small and lightweight and capable of obtaining a high energy density is in progress. Recently, the secondary battery is typified by a battery pack that is detachably mounted on an electronic device, an electric vehicle such as an electric vehicle, an electric power storage system such as a household electric power server, or an electric tool such as an electric drill. Application to various other uses is also being considered.

二次電池としては、さまざまな充放電原理を利用して電池容量を得るものが提案されており、中でも、電極反応物質の吸蔵放出を利用する二次電池が有望視されている。鉛電池およびニッケルカドミウム電池などよりも高いエネルギー密度が得られるからである。   As secondary batteries, those that obtain battery capacity using various charge / discharge principles have been proposed, and among them, secondary batteries that utilize the storage and release of electrode reactants are promising. This is because higher energy density can be obtained than lead batteries and nickel cadmium batteries.

二次電池は、正極および負極と共に電解液を備えており、その電解液は、溶媒および電解質塩を含んでいる。充放電反応の媒介として機能する電解液は、二次電池の性能に大きな影響を及ぼすことから、その電解液の組成については、さまざまな検討がなされている。具体的には、高電圧充電時の電池劣化または電池内部の圧力上昇による爆発危険性などを抑制するために、電解液の添加剤として、1または2以上の炭素間不飽和結合を有する環状炭酸エステルを用いている(例えば、特許文献1〜6参照。)。この種の環状炭酸エステルは、電解液を用いる電池系(液体電池)に限らず、電解液を用いない電池系(固体電池)にも用いられている(例えば、特許文献7参照。)。   The secondary battery includes an electrolytic solution together with a positive electrode and a negative electrode, and the electrolytic solution includes a solvent and an electrolyte salt. Since the electrolytic solution that functions as a medium for the charge / discharge reaction has a great influence on the performance of the secondary battery, various studies have been made on the composition of the electrolytic solution. Specifically, in order to suppress battery deterioration during high-voltage charging or explosion risk due to pressure increase inside the battery, cyclic carbonic acid having one or more carbon-carbon unsaturated bonds as an additive for the electrolyte solution Esters are used (for example, see Patent Documents 1 to 6). This type of cyclic carbonate is used not only in battery systems (liquid batteries) that use an electrolytic solution, but also in battery systems (solid batteries) that do not use an electrolytic solution (see, for example, Patent Document 7).

特開2006−114388号公報JP 2006-114388 A 特開2001−135351号公報JP 2001-135351 A 特開平11−191319号公報JP 11-191319 A 特表2004−523073号公報Japanese translation of PCT publication No. 2004-523073 特開2000−058122号公報JP 2000-058122 A 特開2008−010414号公報JP 2008-010414 A 特開2003−017121号公報JP 2003-017121 A

近年、二次電池が適用される電子機器などは益々高性能化および多機能化しているため、電池特性についてさらなる改善が求められている。   In recent years, electronic devices and the like to which secondary batteries are applied have become more sophisticated and multifunctional, and thus further improvements in battery characteristics are required.

本技術はかかる問題点に鑑みてなされたもので、その目的は、優れた電池特性を得ることが可能な二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器を提供することにある。   The present technology has been made in view of such problems, and an object thereof is to provide a secondary battery, a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device that can obtain excellent battery characteristics. There is.

本技術の二次電池は、正極および負極と共に電解液を備え、負極がSiおよびSnのうちの少なくとも一方を構成元素として含む材料を含有し、電解液が下記の式(1)で表される不飽和環状炭酸エステルを含有するものである。また、本技術の電池パック、電動車両、電力貯蔵システム、電動工具または電子機器は、二次電池を備え、その二次電池が上記した本技術の二次電池と同様の構成を有するものである。   The secondary battery of the present technology includes an electrolyte solution together with a positive electrode and a negative electrode, the negative electrode contains a material containing at least one of Si and Sn as a constituent element, and the electrolyte solution is represented by the following formula (1) It contains an unsaturated cyclic carbonate. Moreover, the battery pack, electric vehicle, power storage system, electric tool, or electronic device of the present technology includes a secondary battery, and the secondary battery has the same configuration as the secondary battery of the present technology described above. .

Figure 2013131395
(Xはm個の>C=CR1−R2とn個の>CR3R4とが任意の順に結合された2価の基である。R1〜R4は水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基、1価の酸素含有炭化水素基または1価のハロゲン化酸素含有炭化水素基であり、R1〜R4のうちの任意の2つ以上は互いに結合されていてもよい。mおよびnはm≧1およびn≧0を満たす。)
Figure 2013131395
(X is a divalent group in which m> C═CR 1 -R 2 and n> CR 3 R 4 are bonded in any order. R 1 to R 4 are a hydrogen group, a halogen group, a monovalent hydrocarbon group, It is a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group or a monovalent halogenated oxygen-containing hydrocarbon group, and any two or more of R1 to R4 may be bonded to each other. M and n satisfy m ≧ 1 and n ≧ 0.)

本技術の二次電池によれば、負極がSiおよびSnのうちの少なくとも一方を構成元素として含む材料を含有していると共に、電解液が不飽和環状炭酸エステルを含有しているので、優れた電池特性を得ることができる。また、本技術の二次電池を備えた電池パック、電動車両、電力貯蔵システム、電動工具および電子機器でも同様の効果を得ることができる。   According to the secondary battery of the present technology, the negative electrode contains a material containing at least one of Si and Sn as a constituent element, and the electrolyte contains an unsaturated cyclic carbonate. Battery characteristics can be obtained. Moreover, the same effect can be acquired also with the battery pack provided with the secondary battery of this technique, an electric vehicle, an electric power storage system, an electric tool, and an electronic device.

本技術の一実施形態の二次電池(円筒型)の構成を表す断面図である。It is sectional drawing showing the structure of the secondary battery (cylindrical type) of one Embodiment of this technique. 図1に示した巻回電極体の一部を拡大して表す断面図である。It is sectional drawing which expands and represents a part of winding electrode body shown in FIG. 本技術の一実施形態の他の二次電池(ラミネートフィルム型)の構成を表す斜視図である。It is a perspective view showing the structure of the other secondary battery (laminate film type) of one Embodiment of this technique. 図3に示した巻回電極体のIV−IV線に沿った断面図である。It is sectional drawing along the IV-IV line of the wound electrode body shown in FIG. 二次電池の適用例(電池パック)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (battery pack) of a secondary battery. 二次電池の適用例(電動車両)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric vehicle) of a secondary battery. 二次電池の適用例(電力貯蔵システム)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric power storage system) of a secondary battery. 二次電池の適用例(電動工具)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric tool) of a secondary battery. XPSによるSnCoCの分析結果である。It is the analysis result of SnCoC by XPS.

以下、本技術の実施形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。

1.二次電池
1−1.リチウムイオン二次電池(円筒型)
1−2.リチウムイオン二次電池(ラミネートフィルム型)
2.二次電池の用途
2−1.電池パック
2−2.電動車両
2−3.電力貯蔵システム
2−4.電動工具
Hereinafter, embodiments of the present technology will be described in detail with reference to the drawings. The order of explanation is as follows.

1. Secondary battery 1-1. Lithium ion secondary battery (cylindrical type)
1-2. Lithium ion secondary battery (laminate film type)
2. 2. Use of secondary battery 2-1. Battery pack 2-2. Electric vehicle 2-3. Electric power storage system 2-4. Electric tool

<1.二次電池>
まず、本技術の一実施形態の二次電池について説明する。
<1. Secondary battery>
First, a secondary battery according to an embodiment of the present technology will be described.

<1−1.リチウムイオン二次電池(円筒型)>
図1および図2は、二次電池の断面構成を表しており、図2では、図1に示した巻回電極体20の一部を拡大している。
<1-1. Lithium-ion secondary battery (cylindrical type)>
1 and 2 show a cross-sectional configuration of the secondary battery. In FIG. 2, a part of the wound electrode body 20 shown in FIG. 1 is enlarged.

[二次電池の全体構成]
ここで説明する二次電池は、電極反応物質であるLi(リチウムイオン)の吸蔵放出により負極22の容量が得られるリチウムイオン二次電池である。
[Overall structure of secondary battery]
The secondary battery described here is a lithium ion secondary battery in which the capacity of the negative electrode 22 is obtained by occlusion and release of Li (lithium ions) that are electrode reactants.

この二次電池は、いわゆる円筒型であり、ほぼ中空円柱状の電池缶11の内部に、巻回電極体20および一対の絶縁板12,13が収納されている。巻回電極体20は、例えば、セパレータ23を介して正極21と負極22とが積層および巻回されたものである。   This secondary battery is a so-called cylindrical type, and a wound electrode body 20 and a pair of insulating plates 12 and 13 are accommodated in a substantially hollow cylindrical battery can 11. The wound electrode body 20 is obtained by, for example, laminating and winding a positive electrode 21 and a negative electrode 22 with a separator 23 interposed therebetween.

電池缶11は、一端部が閉鎖されると共に他端部が開放された中空構造を有しており、例えば、Fe、Alまたはそれらの合金などにより形成されている。電池缶11の表面には、Niなどの金属材料が鍍金されていてもよい。一対の絶縁板12,13は、巻回電極体20を上下から挟むと共にその巻回周面に対して垂直に延在するように配置されている。   The battery can 11 has a hollow structure in which one end is closed and the other end is opened, and is formed of, for example, Fe, Al, or an alloy thereof. A metal material such as Ni may be plated on the surface of the battery can 11. The pair of insulating plates 12 and 13 are disposed so as to sandwich the wound electrode body 20 from above and below and to extend perpendicularly to the wound peripheral surface.

電池缶11の開放端部には、電池蓋14、安全弁機構15および熱感抵抗素子(PTC素子)16がガスケット17を介してかしめられており、その電池缶11は密閉されている。この電池蓋14は、例えば、電池缶11と同様の材料により形成されている。安全弁機構15および熱感抵抗素子16は、電池蓋14の内側に設けられており、その安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。この安全弁機構15では、内部短絡、または外部からの加熱などに起因して内圧が一定以上になると、ディスク板15Aが反転して電池蓋14と巻回電極体20との電気的接続を切断するようになっている。熱感抵抗素子16は、大電流に起因する異常な発熱を防止するものであり、温度の上昇に応じて抵抗が増加するようになっている。ガスケット17は、例えば、絶縁材料により形成されており、その表面にアスファルトが塗布されていてもよい。   A battery lid 14, a safety valve mechanism 15, and a heat sensitive resistance element (PTC element) 16 are caulked to the open end of the battery can 11 via a gasket 17, and the battery can 11 is sealed. The battery lid 14 is formed of the same material as the battery can 11, for example. The safety valve mechanism 15 and the thermal resistance element 16 are provided inside the battery lid 14, and the safety valve mechanism 15 is electrically connected to the battery lid 14 via the thermal resistance element 16. In this safety valve mechanism 15, when the internal pressure becomes a certain level or more due to an internal short circuit or external heating, the disk plate 15 </ b> A is reversed to disconnect the electrical connection between the battery lid 14 and the wound electrode body 20. It is like that. The heat sensitive resistance element 16 prevents abnormal heat generation caused by a large current, and the resistance increases as the temperature rises. The gasket 17 is made of, for example, an insulating material, and asphalt may be applied to the surface thereof.

巻回電極体20の中心には、センターピン24が挿入されていてもよい。正極21には、例えば、Alなどの導電性材料により形成された正極リード25が接続されていると共に、負極22には、例えば、Niなどの導電性材料により形成された負極リード26が接続されている。正極リード25は、安全弁機構15に取り付けられていると共に、電池蓋14と電気的に接続されている。負極リード26は、電池缶11に取り付けられていると共に、その電池缶11と電気的に接続されている。   A center pin 24 may be inserted in the center of the wound electrode body 20. For example, a positive electrode lead 25 formed of a conductive material such as Al is connected to the positive electrode 21, and a negative electrode lead 26 formed of a conductive material such as Ni is connected to the negative electrode 22. ing. The positive electrode lead 25 is attached to the safety valve mechanism 15 and is electrically connected to the battery lid 14. The negative electrode lead 26 is attached to the battery can 11 and is electrically connected to the battery can 11.

[正極]
正極21は、例えば、正極集電体21Aの片面または両面に正極活物質層21Bを有している。正極集電体21Aは、例えば、Al、Niまたはステンレスなどの導電性材料により形成されている。
[Positive electrode]
The positive electrode 21 has, for example, a positive electrode active material layer 21B on one or both surfaces of the positive electrode current collector 21A. The positive electrode current collector 21A is formed of a conductive material such as Al, Ni, or stainless steel, for example.

正極活物質層21Bは、正極活物質として、リチウムイオンを吸蔵放出可能である正極材料のいずれか1種類または2種類以上を含んでおり、必要に応じて正極結着剤または正極導電剤などの他の材料を含んでいてもよい。   The positive electrode active material layer 21B includes one or more positive electrode materials capable of occluding and releasing lithium ions as a positive electrode active material, and a positive electrode binder or a positive electrode conductive agent is used as necessary. Other materials may be included.

正極材料は、リチウム含有化合物であることが好ましい。高いエネルギー密度が得られるからである。このリチウム含有化合物は、例えば、リチウム遷移金属複合酸化物またはリチウム遷移金属リン酸化合物などである。リチウム遷移金属複合酸化物は、Liと1または2以上の遷移金属元素とを構成元素として含む酸化物であり、リチウム遷移金属リン酸化合物は、Liと1または2以上の遷移金属元素とを構成元素として含む化合物である。中でも、遷移金属元素は、Co、Ni、MnまたはFeなどのいずれか1種類または2種類以上であることが好ましい。より高い電圧が得られるからである。その化学式は、例えば、Lix M1O2 またはLiy M2PO4 で表される。式中、M1およびM2は、1種類以上の遷移金属元素である。xおよびyの値は、充放電状態に応じて異なるが、通常、0.05≦x≦1.10、0.05≦y≦1.10である。 The positive electrode material is preferably a lithium-containing compound. This is because a high energy density can be obtained. The lithium-containing compound is, for example, a lithium transition metal composite oxide or a lithium transition metal phosphate compound. The lithium transition metal composite oxide is an oxide containing Li and one or more transition metal elements as constituent elements, and the lithium transition metal phosphate compound comprises Li and one or more transition metal elements. It is a compound containing as an element. Among these, the transition metal element is preferably one or more of Co, Ni, Mn, Fe, and the like. This is because a higher voltage can be obtained. The chemical formula thereof is represented by, for example, Li x M1O 2 or Li y M2PO 4 . In the formula, M1 and M2 are one or more transition metal elements. The values of x and y vary depending on the charge / discharge state, but are generally 0.05 ≦ x ≦ 1.10 and 0.05 ≦ y ≦ 1.10.

リチウム遷移金属複合酸化物は、例えば、LiCoO2 、LiNiO2 、または下記の式(20)で表されるリチウムニッケル系複合酸化物などである。リチウム遷移金属リン酸化合物は、例えば、LiFePO4 またはLiFe1-u Mnu PO4 (u<1)などである。高い電池容量が得られると共に、優れたサイクル特性も得られるからである。ただし、上記以外のリチウム遷移金属複合酸化物またはリチウム遷移金属リン酸化合物でもよい。 Examples of the lithium transition metal composite oxide include LiCoO 2 , LiNiO 2 , and a lithium nickel-based composite oxide represented by the following formula (20). The lithium transition metal phosphate compound is, for example, LiFePO 4 or LiFe 1-u Mn u PO 4 (u <1). This is because high battery capacity is obtained and excellent cycle characteristics are also obtained. However, lithium transition metal composite oxides or lithium transition metal phosphate compounds other than those described above may be used.

LiNi1-z z 2 …(20)
(MはCo、Mn、Fe、Al、V、Sn、Mg、Ti、Sr、Ca、Zr、Mo、Tc、Ru、Ta、W、Re、Yb、Cu、Zn、Ba、B、Cr、Si、Ga、P、SbおよびNbのうちの少なくとも1種であり、zは0.005<z<0.5を満たす。)
LiNi 1-z M z O 2 ... (20)
(M is Co, Mn, Fe, Al, V, Sn, Mg, Ti, Sr, Ca, Zr, Mo, Tc, Ru, Ta, W, Re, Yb, Cu, Zn, Ba, B, Cr, Si , Ga, P, Sb and Nb, and z satisfies 0.005 <z <0.5.)

この他、正極材料は、例えば、酸化物、二硫化物、カルコゲン化物または導電性高分子などでもよい。酸化物は、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガンなどである。二硫化物は、例えば、二硫化チタンまたは硫化モリブデンなどである。カルコゲン化物は、例えば、セレン化ニオブなどである。導電性高分子は、例えば、硫黄、ポリアニリンまたはポリチオフェンなどである。ただし、正極材料は、リチウムイオンを吸蔵放出可能であれば、上記した一連の材料以外の材料でもよい。   In addition, the positive electrode material may be, for example, an oxide, disulfide, chalcogenide, or conductive polymer. Examples of the oxide include titanium oxide, vanadium oxide, and manganese dioxide. Examples of the disulfide include titanium disulfide and molybdenum sulfide. An example of the chalcogenide is niobium selenide. Examples of the conductive polymer include sulfur, polyaniline, and polythiophene. However, the positive electrode material may be a material other than the series of materials described above as long as it can occlude and release lithium ions.

正極結着剤は、例えば、合成ゴムまたは高分子材料などのいずれか1種類または2種類以上である。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムまたはエチレンプロピレンジエンなどである。高分子材料は、例えば、ポリフッ化ビニリデンまたはポリイミドなどである。   The positive electrode binder is, for example, any one kind or two kinds or more of synthetic rubber or polymer material. Examples of the synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene. The polymer material is, for example, polyvinylidene fluoride or polyimide.

正極導電剤は、例えば、炭素材料などのいずれか1種類または2種類以上である。この炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラックまたはケチェンブラックなどである。なお、正極導電剤は、導電性を有する材料であれば、金属材料または導電性高分子などでもよい。   The positive electrode conductive agent is, for example, any one type or two or more types of carbon materials. Examples of the carbon material include graphite, carbon black, acetylene black, and ketjen black. The positive electrode conductive agent may be a metal material or a conductive polymer as long as it is a conductive material.

[負極]
負極22は、例えば、負極集電体22Aの片面または両面に負極活物質層22Bを有している。
[Negative electrode]
The negative electrode 22 has, for example, a negative electrode active material layer 22B on one side or both sides of a negative electrode current collector 22A.

負極集電体22Aは、例えば、Cu、Niまたはステンレスなどの導電性材料により形成されている。この負極集電体22Aの表面は、粗面化されていることが好ましい。いわゆるアンカー効果により、負極集電体22Aに対する負極活物質層22Bの密着性が向上するからである。この場合には、少なくとも負極活物質層22Bと対向する領域で負極集電体22Aの表面が粗面化されていればよい。粗面化の方法は、例えば、電解処理により微粒子を形成する方法などである。この電解処理とは、電解槽中で電解法により負極集電体22Aの表面に微粒子を形成して凹凸を設ける方法である。電解法により作製された銅箔は、一般的に、電解銅箔と呼ばれている。   The negative electrode current collector 22A is formed of, for example, a conductive material such as Cu, Ni, or stainless steel. The surface of the negative electrode current collector 22A is preferably roughened. This is because the so-called anchor effect improves the adhesion of the negative electrode active material layer 22B to the negative electrode current collector 22A. In this case, the surface of the anode current collector 22A only needs to be roughened at least in a region facing the anode active material layer 22B. Examples of the roughening method include a method of forming fine particles by electrolytic treatment. This electrolytic treatment is a method of providing irregularities by forming fine particles on the surface of the anode current collector 22A by an electrolytic method in an electrolytic bath. A copper foil produced by an electrolytic method is generally called an electrolytic copper foil.

負極活物質層22Bは、負極活物質として、リチウムイオンを吸蔵放出可能である負極材料のいずれか1種類または2種類以上を含んでおり、必要に応じて負極結着剤または負極導電剤などの他の材料を含んでいてもよい。負極結着剤および負極導電剤に関する詳細は、例えば、正極結着剤および正極導電剤と同様である。充放電時の意図しないリチウム金属の析出を防止するために、負極材料の充電可能な容量は正極21の放電容量よりも大きいことが好ましい。   The negative electrode active material layer 22B includes one or more negative electrode materials capable of occluding and releasing lithium ions as a negative electrode active material, and a negative electrode binder or a negative electrode conductive agent as necessary. Other materials may be included. Details regarding the negative electrode binder and the negative electrode conductive agent are the same as, for example, the positive electrode binder and the positive electrode conductive agent. In order to prevent unintentional precipitation of lithium metal during charging / discharging, the chargeable capacity of the negative electrode material is preferably larger than the discharge capacity of the positive electrode 21.

負極材料は、Liと合金を形成可能である金属元素または半金属元素のいずれか1種類または2種類以上を構成元素として含む材料(金属系材料)であり、より具体的には、SiおよびSnのうちの少なくとも一方を構成元素として含む材料である。リチウムイオンを吸蔵放出する能力が優れているため、高いエネルギー密度が得られるからである。   The negative electrode material is a material (metal-based material) containing one or more metal elements or metalloid elements capable of forming an alloy with Li as a constituent element, and more specifically, Si and Sn. It is a material containing at least one of them as a constituent element. This is because the ability to occlude and release lithium ions is excellent, and a high energy density can be obtained.

この金属系材料は、単体、合金または化合物でもよいし、それらの2種類以上でもよいし、それらの1種類または2種類以上の相を少なくとも一部に有するものでもよい。合金には、2種類以上の金属元素からなる材料に加えて、1種類以上の金属元素と1種類以上の半金属元素とを含む材料も含まれる。なお、合金は、非金属元素を構成元素として含んでいてもよい。その組織には、固溶体、共晶(共融混合物)、金属間化合物、またはそれらの2種類以上の共存物などがある。また、単体とは、あくまで一般的な意味合いでの単体(微量の不純物を含んでいてもよい)であり、必ずしも純度100%を意味しているわけではない。   The metal-based material may be a simple substance, an alloy or a compound, or two or more of them, or one having at least a part of one or more of those phases. The alloy includes a material containing one or more metal elements and one or more metalloid elements in addition to a material composed of two or more metal elements. The alloy may contain a nonmetallic element as a constituent element. The structure includes a solid solution, a eutectic (eutectic mixture), an intermetallic compound, or a coexistence of two or more kinds thereof. The simple substance is a simple substance (which may contain a small amount of impurities) in a general sense, and does not necessarily mean 100% purity.

Siの合金は、例えば、Si以外の構成元素としてSn、Ni、Cu、Fe、Co、Mn、Zn、In、Ag、Ti、Ge、Bi、SbまたはCrなどのいずれか1種類または2種類以上の元素を含む材料である。Siの化合物は、例えば、Si以外の構成元素としてCまたはOなどのいずれか1種類または2種類以上を含む材料である。なお、Siの化合物は、例えば、Si以外の構成元素として、Siの合金について説明した元素のいずれか1種類または2種類以上を含んでいてもよい。   The alloy of Si is, for example, any one or more of Sn, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb or Cr as constituent elements other than Si It is a material containing these elements. The Si compound is, for example, a material containing one or more of C or O as a constituent element other than Si. Note that the Si compound may include, for example, one or more of the elements described for the Si alloy as a constituent element other than Si.

Siの合金または化合物は、例えば、SiB4 、SiB6 、Mg2 Si、Ni2 Si、TiSi2 、MoSi2 、CoSi2 、NiSi2 、CaSi2 、CrSi2 、Cu5 Si、FeSi2 、MnSi2 、NbSi2 、TaSi2 、VSi2 、WSi2 、ZnSi2 、SiC、Si3 4 、Si2 2 O、SiOv (0<v≦2)、またはLiSiOなどである。なお、SiOv におけるvは、0.2<v<1.4でもよい。 Examples of the Si alloy or compound include SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2. NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 <v ≦ 2), LiSiO, or the like. Note that v in SiO v may be 0.2 <v <1.4.

Snの合金は、例えば、Sn以外の構成元素としてSi、Ni、Cu、Fe、Co、Mn、Zn、In、Ag、Ti、Ge、Bi、SbまたはCrなどの元素のいずれか1種類または2種類以上を含む材料である。Snの化合物は、例えば、CまたはOなどのいずれか1種類または2種類以上の構成元素として含む材料である。なお、Snの化合物は、例えば、Sn以外の構成元素として、Snの合金について説明した元素のいずれか1種類または2種類以上を含んでいてもよい。Snの合金または化合物は、例えば、SnOw (0<w≦2)、SnSiO3 、LiSnOまたはMg2 Snなどである。 The alloy of Sn is, for example, any one of elements such as Si, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb or Cr as a constituent element other than Sn, or 2 A material containing more than one type. The compound of Sn is a material containing any one kind or two or more kinds of constituent elements such as C or O, for example. The Sn compound may contain, for example, one or more of the elements described for the Sn alloy as a constituent element other than Sn. Examples of the alloy or compound of Sn include SnO w (0 <w ≦ 2), SnSiO 3 , LiSnO, and Mg 2 Sn.

中でも、Snを含む材料は、例えば、Snを第1構成元素とし、それに加えて第2および第3構成元素を含む材料であることが好ましい。第2構成元素は、例えば、Co、Fe、Mg、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Ce、Hf、Ta、W、BiまたはSiなどのいずれか1種類または2種類以上である。第3構成元素は、例えば、B、C、AlおよびPなどのいずれか1種類または2種類以上である。第2および第3構成元素を含むことで、高い電池容量および優れたサイクル特性などが得られるからである。   Among them, the material containing Sn is preferably a material containing, for example, Sn as the first constituent element and the second and third constituent elements in addition thereto. The second constituent element is, for example, Co, Fe, Mg, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Ce, Hf, Ta, W, Bi or Any one or more of Si and the like. The third constituent element is, for example, any one type or two or more types such as B, C, Al, and P. This is because high battery capacity and excellent cycle characteristics can be obtained by including the second and third constituent elements.

中でも、Sn、CoおよびCを構成元素として含む材料(SnCoC含有材料)が好ましい。SnCoC含有材料の組成としては、例えば、Cの含有量が9.9質量%〜29.7質量%であり、SnおよびCoの含有量の割合(Co/(Sn+Co))が20質量%〜70質量%である。このような組成範囲で高いエネルギー密度が得られるからである。   Among these, a material containing Sn, Co, and C as constituent elements (SnCoC-containing material) is preferable. As the composition of the SnCoC-containing material, for example, the C content is 9.9 mass% to 29.7 mass%, and the Sn and Co content ratio (Co / (Sn + Co)) is 20 mass% to 70 mass%. % By mass. This is because a high energy density can be obtained in such a composition range.

このSnCoC含有材料は、Sn、CoおよびCを含む相を有しており、その相は、低結晶性または非晶質であることが好ましい。この相は、Liと反応可能な反応相であり、その反応相の存在により優れた特性が得られる。この相のX線回折により得られる回折ピークの半値幅は、特定X線としてCuKα線を用いると共に挿引速度を1°/minとした場合、回折角2θで1°以上であることが好ましい。リチウムイオンがより円滑に吸蔵放出されると共に、電解液との反応性が低減するからである。なお、SnCoC含有材料は、低結晶性または非晶質の相に加えて、各構成元素の単体または一部を含む相を含んでいる場合もある。   This SnCoC-containing material has a phase containing Sn, Co, and C, and the phase is preferably low crystalline or amorphous. This phase is a reaction phase capable of reacting with Li, and excellent characteristics can be obtained due to the presence of the reaction phase. The half width of the diffraction peak obtained by X-ray diffraction of this phase is preferably 1 ° or more at a diffraction angle 2θ when CuKα ray is used as the specific X-ray and the drawing speed is 1 ° / min. This is because lithium ions are occluded and released more smoothly, and the reactivity with the electrolytic solution is reduced. Note that the SnCoC-containing material may include a phase containing a simple substance or a part of each constituent element in addition to the low crystalline or amorphous phase.

X線回折により得られた回折ピークがLiと反応可能な反応相に対応するものであるか否かは、Liとの電気化学的反応の前後におけるX線回折チャートを比較すれば容易に判断できる。例えば、Liとの電気化学的反応の前後で回折ピークの位置が変化すれば、Liと反応可能な反応相に対応するものである。この場合には、例えば、低結晶性または非晶質の反応相の回折ピークが2θ=20°〜50°の間に見られる。このような反応相は、例えば、上記した各構成元素を有しており、主に、Cの存在に起因して低結晶化または非晶質化しているものと考えられる。   Whether a diffraction peak obtained by X-ray diffraction corresponds to a reaction phase capable of reacting with Li can be easily determined by comparing X-ray diffraction charts before and after electrochemical reaction with Li. . For example, if the position of the diffraction peak changes before and after the electrochemical reaction with Li, it corresponds to a reaction phase capable of reacting with Li. In this case, for example, a diffraction peak of a low crystalline or amorphous reaction phase is observed between 2θ = 20 ° and 50 °. Such a reaction phase has, for example, each of the above-described constituent elements, and is considered to be low crystallization or amorphous mainly due to the presence of C.

SnCoC含有材料では、構成元素である炭素の少なくとも一部が他の構成元素である金属元素または半金属元素と結合していることが好ましい。Snなどの凝集または結晶化が抑制されるからである。元素の結合状態については、例えば、X線光電子分光法(XPS)で確認できる。市販の装置では、例えば、軟X線としてAl−Kα線またはMg−Kα線などが用いられる。Cの少なくとも一部が金属元素または半金属元素などと結合している場合には、Cの1s軌道(C1s)の合成波のピークは284.5eVよりも低い領域に現れる。なお、Au原子の4f軌道(Au4f)のピークが84.0eVに得られるようにエネルギー較正されているものとする。この際、通常、物質表面には表面汚染炭素が存在しているため、表面汚染炭素のC1sのピークを284.8eVとし、それをエネルギー基準とする。XPS測定では、C1sのピークの波形が表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形で得られるため、例えば、市販のソフトウエアを用いて解析して、両者のピークを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。   In the SnCoC-containing material, it is preferable that at least a part of carbon that is a constituent element is bonded to a metal element or a metalloid element that is another constituent element. This is because aggregation or crystallization of Sn or the like is suppressed. The bonding state of elements can be confirmed by, for example, X-ray photoelectron spectroscopy (XPS). In a commercially available apparatus, for example, Al—Kα ray or Mg—Kα ray is used as the soft X-ray. When at least a part of C is bonded to a metal element, a metalloid element, or the like, the peak of the synthesized wave of C 1s orbital (C1s) appears in a region lower than 284.5 eV. It is assumed that energy calibration is performed so that a peak of 4f orbit (Au4f) of Au atoms is obtained at 84.0 eV. At this time, since the surface contamination carbon usually exists on the surface of the substance, the C1s peak of the surface contamination carbon is set to 284.8 eV, which is used as the energy standard. In XPS measurement, the waveform of the C1s peak is obtained in a form that includes the surface contamination carbon peak and the carbon peak in the SnCoC-containing material. Isolate. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).

なお、SnCoC含有材料は、構成元素がSn、CoおよびCだけからなる材料(SnCoC)に限られない。すなわち、SnCoC含有材料は、例えば、必要に応じて、さらにSi、Fe、Ni、Cr、In、Nb、Ge、Ti、Mo、Al、P、GaまたはBiなどのいずれか1種類または2種類以上を構成元素として含んでいてもよい。   The SnCoC-containing material is not limited to a material (SnCoC) whose constituent elements are composed only of Sn, Co, and C. That is, for example, the SnCoC-containing material may be any one or more of Si, Fe, Ni, Cr, In, Nb, Ge, Ti, Mo, Al, P, Ga, Bi, etc., if necessary. May be included as a constituent element.

このSnCoC含有材料の他、Sn、Co、FeおよびCを構成元素として含む材料(SnCoFeC含有材料)も好ましい。このSnCoFeC含有材料の組成は、任意に設定可能である。例えば、Feの含有量を少なめに設定する場合の組成は、以下の通りである。Cの含有量は9.9質量%〜29.7質量%、Feの含有量は0.3質量%〜5.9質量%、SnおよびCoの含有量の割合(Co/(Sn+Co))は30質量%〜70質量%である。また、例えば、Feの含有量を多めに設定する場合の組成は、以下の通りである。Cの含有量は11.9質量%〜29.7質量%、Sn、CoおよびFeの含有量の割合((Co+Fe)/(Sn+Co+Fe))は26.4質量%〜48.5質量%、CoおよびFeの含有量の割合(Co/(Co+Fe))は9.9質量%〜79.5質量%である。このような組成範囲で高いエネルギー密度が得られるからである。このSnCoFeC含有材料の物性(半値幅など)は、上記したSnCoC含有材料と同様である。   In addition to this SnCoC-containing material, a material containing Sn, Co, Fe and C as constituent elements (SnCoFeC-containing material) is also preferable. The composition of the SnCoFeC-containing material can be arbitrarily set. For example, the composition when the Fe content is set to be small is as follows. The content of C is 9.9 mass% to 29.7 mass%, the content of Fe is 0.3 mass% to 5.9 mass%, and the ratio of the content of Sn and Co (Co / (Sn + Co)) is 30% by mass to 70% by mass. For example, the composition in the case where the Fe content is set to be large is as follows. The content of C is 11.9 mass% to 29.7 mass%, and the ratio of the content of Sn, Co and Fe ((Co + Fe) / (Sn + Co + Fe)) is 26.4 mass% to 48.5 mass%, Co The ratio of the Fe content (Co / (Co + Fe)) is 9.9 mass% to 79.5 mass%. This is because a high energy density can be obtained in such a composition range. The physical properties (half width, etc.) of this SnCoFeC-containing material are the same as those of the above-described SnCoC-containing material.

なお、負極活物質層22Bは、負極活物質として上記した負極材料(金属系材料)を含んでいれば、さらにリチウムイオンを吸蔵放出可能である他の負極材料のいずれか1種類または2種類以上を含んでいてもよい。   In addition, if the negative electrode active material layer 22B includes the negative electrode material (metal material) described above as the negative electrode active material, any one or more of other negative electrode materials capable of inserting and extracting lithium ions can be used. May be included.

他の負極材料は、例えば、炭素材料である。リチウムイオンの吸蔵放出時における結晶構造の変化が非常に少ないため、高いエネルギー密度および優れたサイクル特性が得られるからである。また、負極導電剤としても機能するからである。この炭素材料は、例えば、易黒鉛化性炭素、(002)面の面間隔が0.37nm以上の難黒鉛化性炭素、または(002)面の面間隔が0.34nm以下の黒鉛などである。より具体的には、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭またはカーボンブラック類などである。このうち、コークス類には、ピッチコークス、ニードルコークスまたは石油コークスなどが含まれる。有機高分子化合物焼成体は、フェノール樹脂またはフラン樹脂などの高分子化合物が適当な温度で焼成(炭素化)されたものである。この他、炭素材料は、約1000℃以下で熱処理された低結晶性炭素または非晶質炭素でもよい。なお、炭素材料の形状は、繊維状、球状、粒状または鱗片状のいずれでもよい。   Another negative electrode material is, for example, a carbon material. This is because the change in crystal structure at the time of occlusion and release of lithium ions is very small, so that a high energy density and excellent cycle characteristics can be obtained. In addition, it also functions as a negative electrode conductive agent. This carbon material is, for example, graphitizable carbon, non-graphitizable carbon having a (002) plane spacing of 0.37 nm or more, or graphite having a (002) plane spacing of 0.34 nm or less. . More specifically, pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon or carbon blacks. Among these, the cokes include pitch coke, needle coke, petroleum coke and the like. The organic polymer compound fired body is obtained by firing (carbonizing) a polymer compound such as a phenol resin or a furan resin at an appropriate temperature. In addition, the carbon material may be low crystalline carbon or amorphous carbon heat-treated at about 1000 ° C. or less. The shape of the carbon material may be any of a fibrous shape, a spherical shape, a granular shape, and a scale shape.

また、他の負極材料は、例えば、金属酸化物または高分子化合物などでもよい。金属酸化物は、例えば、酸化鉄、酸化ルテニウムまたは酸化モリブデンなどである。高分子化合物は、例えば、ポリアセチレン、ポリアニリンまたはポリピロールなどである。ただし、他の負極材料は、上記以外の他の材料でもよい。   The other negative electrode material may be, for example, a metal oxide or a polymer compound. Examples of the metal oxide include iron oxide, ruthenium oxide, and molybdenum oxide. Examples of the polymer compound include polyacetylene, polyaniline, and polypyrrole. However, other negative electrode materials may be other materials than the above.

負極活物質層22Bは、例えば、塗布法、気相法、液相法、溶射法または焼成法(焼結法)、あるいはそれらの2種類以上の方法により形成されている。塗布法とは、例えば、粒子(粉末)状の負極活物質を負極結着剤などと混合したのち、有機溶剤などの溶媒に分散させてから塗布する方法である。気相法は、例えば、物理堆積法または化学堆積法などである。具体的には、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱化学気相成長、化学気相成長(CVD)法またはプラズマ化学気相成長法などである。液相法は、例えば、電解鍍金法または無電解鍍金法などである。溶射法とは、溶融状態または半溶融状態の負極活物質を噴き付ける方法である。焼成法とは、例えば、塗布法により塗布したのち、負極結着剤などの融点よりも高い温度で熱処理する方法である。焼成法としては、公知の手法を用いることができる。一例としては、例えば、雰囲気焼成法、反応焼成法またはホットプレス焼成法などが挙げられる。   The negative electrode active material layer 22B is formed by, for example, a coating method, a gas phase method, a liquid phase method, a thermal spraying method, a firing method (sintering method), or two or more kinds thereof. The coating method is, for example, a method in which a particle (powder) negative electrode active material is mixed with a negative electrode binder and then dispersed in a solvent such as an organic solvent before coating. The vapor phase method is, for example, a physical deposition method or a chemical deposition method. Specific examples include vacuum deposition, sputtering, ion plating, laser ablation, thermal chemical vapor deposition, chemical vapor deposition (CVD), and plasma chemical vapor deposition. The liquid phase method is, for example, an electrolytic plating method or an electroless plating method. The thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material. The firing method is, for example, a method in which heat treatment is performed at a temperature higher than the melting point of the negative electrode binder or the like after coating by a coating method. As the firing method, a known method can be used. As an example, an atmosphere firing method, a reaction firing method, a hot press firing method, or the like can be given.

この二次電池では、上記したように、充電途中で負極22にリチウム金属が意図せずに析出することを防止するために、リチウムイオンを吸蔵放出可能である負極材料の電気化学当量が正極の電気化学当量よりも大きくなっている。また、完全充電時の開回路電圧(すなわち電池電圧)が4.25V以上であると、4.20Vである場合と比較して、同じ正極活物質でも単位質量当たりのリチウムイオンの放出量が多くなるため、それに応じて正極活物質と負極活物質との量が調整されている。これにより、高いエネルギー密度が得られるようになっている。   In this secondary battery, as described above, in order to prevent unintentional deposition of lithium metal on the negative electrode 22 during charging, the electrochemical equivalent of the negative electrode material capable of occluding and releasing lithium ions is that of the positive electrode. It is larger than the electrochemical equivalent. Further, when the open circuit voltage (that is, the battery voltage) at the time of full charge is 4.25V or more, even when the same positive electrode active material is used, the amount of lithium ions released per unit mass is large compared to the case of 4.20V. Therefore, the amount of the positive electrode active material and the negative electrode active material is adjusted accordingly. Thereby, a high energy density can be obtained.

[セパレータ]
セパレータ23は、正極21と負極22とを隔離して、両極の接触に起因する電流の短絡を防止しながらリチウムイオンを通過させるものである。このセパレータ23は、例えば、合成樹脂またはセラミックなどの多孔質膜であり、2種類以上の多孔質膜が積層された積層膜でもよい。合成樹脂は、例えば、ポリテトラフルオロエチレン、ポリプロピレンまたはポリエチレンなどである。
[Separator]
The separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes. The separator 23 is, for example, a porous film made of synthetic resin or ceramic, and may be a laminated film in which two or more kinds of porous films are laminated. The synthetic resin is, for example, polytetrafluoroethylene, polypropylene, or polyethylene.

特に、セパレータ23は、例えば、上記した多孔質膜(基材層)と、その基材層の片面または両面に設けられた高分子化合物層とを含んでいてもよい。正極21および負極22に対するセパレータ23の密着性が向上するため、巻回体である巻回電極体20の歪みが抑制されるからである。これにより、電解液の分解反応が抑制されると共に、基材層に含浸された電解液の漏液も抑制されるため、充放電を繰り返しても抵抗が上昇しにくくなると共に電池膨れが抑制される。   In particular, the separator 23 may include, for example, the above-described porous film (base material layer) and a polymer compound layer provided on one or both surfaces of the base material layer. This is because the adhesion of the separator 23 to the positive electrode 21 and the negative electrode 22 is improved, so that the distortion of the wound electrode body 20 that is a wound body is suppressed. As a result, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed, so that resistance is not easily increased even when charging and discharging are repeated, and battery swelling is suppressed. The

高分子化合物層は、例えば、ポリフッ化ビニリデンなどの高分子材料を含んでいる。物理的強度に優れていると共に、電気化学的に安定だからである。ただし、高分子材料は、ポリフッ化ビニリデン以外の他の材料でもよい。この高分子化合物層は、例えば、高分子材料が溶解された溶液を準備したのち、その溶液を基材層の表面に塗布してから乾燥させることで形成される。なお、基材層を溶液中に浸漬させてから乾燥させてもよい。   The polymer compound layer includes, for example, a polymer material such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable. However, the polymer material may be a material other than polyvinylidene fluoride. This polymer compound layer is formed, for example, by preparing a solution in which a polymer material is dissolved and then applying the solution to the surface of the base material layer and then drying the solution. The base material layer may be dipped in the solution and then dried.

[電解液]
セパレータ23には、液状の電解質である電解液が含浸されている。この電解液は、下記の式(1)で表される不飽和環状炭酸エステルのいずれか1種類または2種類以上を含んでいる。ただし、電解液は、溶媒および電解質塩などの他の材料を含んでいてもよい。
[Electrolyte]
The separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte. This electrolytic solution contains any one or two or more of unsaturated cyclic carbonates represented by the following formula (1). However, the electrolytic solution may contain other materials such as a solvent and an electrolyte salt.

Figure 2013131395
(Xはm個の>C=CR1−R2とn個の>CR3R4とが任意の順に結合された2価の基である。R1〜R4は水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基、1価の酸素含有炭化水素基または1価のハロゲン化酸素含有炭化水素基であり、R1〜R4のうちの任意の2つ以上は互いに結合されていてもよい。mおよびnはm≧1およびn≧0を満たす。)
Figure 2013131395
(X is a divalent group in which m> C═CR 1 -R 2 and n> CR 3 R 4 are bonded in any order. R 1 to R 4 are a hydrogen group, a halogen group, a monovalent hydrocarbon group, It is a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group or a monovalent halogenated oxygen-containing hydrocarbon group, and any two or more of R1 to R4 may be bonded to each other. M and n satisfy m ≧ 1 and n ≧ 0.)

不飽和環状炭酸エステルとは、1または2以上の炭素間二重結合(>C=C<)を有する環状炭酸エステルである。電解液が不飽和環状炭酸エステルを含んでいるのは、負極22が負極活物質として金属系材料を含んでいても、電解液の化学的安定性が飛躍的に向上するからである。これにより、電解液の分解反応が著しく抑制されるため、サイクル特性および保存特性などの電池特性が向上する。   An unsaturated cyclic carbonate is a cyclic carbonate having one or more carbon-carbon double bonds (> C = C <). The reason why the electrolytic solution contains the unsaturated cyclic carbonate is that the chemical stability of the electrolytic solution is dramatically improved even if the negative electrode 22 contains a metal-based material as the negative electrode active material. Thereby, since the decomposition reaction of the electrolytic solution is remarkably suppressed, battery characteristics such as cycle characteristics and storage characteristics are improved.

詳細には、負極活物質が低反応性の非金属系材料(例えば炭素材料)である場合には、充放電時において炭素材料の反応性に起因する電解液の分解反応がほとんど問題にならない。このため、電池特性は、電解液中における不飽和環状炭酸エステルの有無に応じてほとんど影響を受けない。   Specifically, when the negative electrode active material is a non-reactive non-metallic material (for example, a carbon material), the decomposition reaction of the electrolytic solution due to the reactivity of the carbon material is hardly a problem during charging and discharging. For this reason, battery characteristics are hardly influenced according to the presence or absence of unsaturated cyclic carbonates in the electrolyte.

これに対して、負極活物質が高反応性の金属系材料である場合には、高いエネルギー密度が得られる反面、充放電時において金属系材料の反応性に起因する電解液の分解反応が顕著になる。このため、電池特性は、電解液中における不飽和環状炭酸エステルの有無に応じて大きく変化する。すなわち、金属系材料を用いた場合には、電解液が不飽和環状炭酸エステルを含んでいないと、負極活物質の反応性に起因する電解液の分解反応が進行しやすいため、電池特性も低下しやすくなる。この傾向は、特に、高温環境などの厳しい条件下で顕著になる。しかしながら、電解液が不飽和環状炭酸エステルを含んでいると、充放電時において不飽和環状炭酸エステルに起因する強固な被膜が負極22の表面に形成されるため、その負極22が電解液から保護される。これにより、負極活物質の反応性に起因する電解液の分解反応が進行しにくくなるため、電池特性が維持されやすくなる。   On the other hand, when the negative electrode active material is a highly reactive metal material, a high energy density is obtained, but the decomposition reaction of the electrolyte solution due to the reactivity of the metal material during charge / discharge is remarkable. become. For this reason, a battery characteristic changes a lot according to the presence or absence of unsaturated cyclic carbonate ester in electrolyte solution. That is, when a metal-based material is used, if the electrolytic solution does not contain an unsaturated cyclic carbonate, the decomposition reaction of the electrolytic solution due to the reactivity of the negative electrode active material tends to proceed, so the battery characteristics also deteriorate. It becomes easy to do. This tendency becomes remarkable especially under severe conditions such as a high temperature environment. However, if the electrolytic solution contains an unsaturated cyclic carbonate, a strong film resulting from the unsaturated cyclic carbonate is formed on the surface of the negative electrode 22 during charging and discharging, and thus the negative electrode 22 is protected from the electrolytic solution. Is done. Thereby, since the decomposition reaction of the electrolytic solution due to the reactivity of the negative electrode active material is difficult to proceed, the battery characteristics are easily maintained.

式(1)中のXは、m個の>C=CR1−R2とn個の>CR3R4とが全体として2価となる(両末端に1つずつ結合手を有する)ように結合された基である。隣り合う(互いに結合される)基は、>C=CR1−R2同士のように同じ種類の基でもよいし、>C=CR1−R2および>CR3R4のように異なる種類の基でもよい。すなわち、2価の基を形成するために用いられる>C=CR1−R2の数(m)および>CR3R4の数(n)は任意であり、それらの結合順も任意である。   X in the formula (1) is a group in which m> C = CR1-R2 and n> CR3R4 are divalent as a whole (having one bond at each end). It is. Adjacent (bonded to each other) groups may be the same type of group such as> C = CR1-R2 or different types of groups such as> C = CR1-R2 and> CR3R4. That is, the number (> m) of> C = CR1-R2 and the number (n) of> CR3R4 used to form a divalent group are arbitrary, and the order of their binding is also arbitrary.

>C=CR1−R2は、上記した炭素間二重結合を有する2価の不飽和基であるのに対して、>CR3R4は、炭素間二重結合を有しない2価の飽和基である。ここで、n≧0であるため、飽和基である>CR3R4はX中に含まれていてもいなくてもよいが、m≧1であるため、不飽和基である>C=CR1−R2はX中に必ず1つ以上含まれていなければならない。このため、Xは、>C=CR1−R2だけにより構成されていてもよいし、>C=CR1−R2および>CR3R4の双方により構成されていてもよい。不飽和環状炭酸エステルは、その化学的構造中に少なくとも1つの不飽和基を有していなければならないからである。   > C = CR1-R2 is the above-described divalent unsaturated group having a carbon-carbon double bond, while> CR3R4 is a divalent saturated group having no carbon-carbon double bond. Here, since n ≧ 0,> CR3R4 which is a saturated group may or may not be contained in X, but since m ≧ 1,> C = CR1-R2 which is an unsaturated group is There must be at least one in X. For this reason, X may be comprised only by> C = CR1-R2, and may be comprised by both> C = CR1-R2 and> CR3R4. This is because the unsaturated cyclic carbonate must have at least one unsaturated group in its chemical structure.

mおよびnの値は、m≧1およびn≧0という条件を満たしていれば特に限定されない。中でも、>C=CR1−R2が>C=CH2 であると共に>CR3R4が>CH2 である場合には、(m+n)≦5という条件を満たしていることが好ましい。Xの炭素数が多くなりすぎないため、不飽和環状炭酸エステルの溶解性および相溶性が確保されるからである。 The values of m and n are not particularly limited as long as the conditions m ≧ 1 and n ≧ 0 are satisfied. In particular, when> C = CR1-R2 is> C = CH 2 and> CR3R4 is> CH 2 , it is preferable to satisfy the condition of (m + n) ≦ 5. This is because the carbon number of X does not increase too much, so that the solubility and compatibility of the unsaturated cyclic carbonate are ensured.

なお、>C=CR1−R2および>CR3R4におけるR1〜R4のうちの任意の2つ以上は互いに結合されており、その結合された基同士により環が形成されていてもよい。一例を挙げると、R1とR2とが結合されていてもよいし、R3とR4とが結合されていてもよいし、R2とR3またはR4とが結合されていてもよい。   Note that any two or more of R1 to R4 in> C = CR1-R2 and> CR3R4 are bonded to each other, and a ring may be formed by the bonded groups. For example, R1 and R2 may be bonded, R3 and R4 may be bonded, or R2 and R3 or R4 may be bonded.

R1〜R4に関する詳細は、以下の通りである。ただし、R1〜R4は、同じ種類の基でもよいし、異なる種類の基でもよいし、R1〜R4のうちの任意の2つまたは3つが同じ種類の基でもよい。   The detail regarding R1-R4 is as follows. However, R1 to R4 may be the same type of group, different types of groups, or any two or three of R1 to R4 may be the same type of group.

R1〜R4の種類は、水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基、1価の酸素含有炭化水素基または1価のハロゲン化酸素含有炭化水素基であれば、特に限定されない。Xが少なくとも1つの炭素間二重結合(>C=CR1−R2)を有していることで、R1〜R4の種類に依存せずに上記した利点が得られるからである。   The types of R1 to R4 may be a hydrogen group, a halogen group, a monovalent hydrocarbon group, a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group, or a monovalent halogenated oxygen-containing hydrocarbon group. There is no particular limitation. This is because X has at least one carbon-carbon double bond (> C = CR1-R2), so that the above-described advantages can be obtained without depending on the types of R1 to R4.

ハロゲン基は、例えば、フッ素基(−F)、塩素基(−Cl)、臭素基(−Br)またはヨウ素基(−I)などのいずれか1種類または2種類以上であり、中でも、フッ素基が好ましい。不飽和環状炭酸エステルに起因する被膜が形成されやすいからである。   The halogen group is, for example, one or more of fluorine group (—F), chlorine group (—Cl), bromine group (—Br), iodine group (—I), etc., among which fluorine group Is preferred. It is because the film resulting from unsaturated cyclic carbonate is easy to be formed.

「炭化水素基」とは、CおよびHにより構成される基の総称であり、直鎖状でもよいし、1または2以上の側鎖を有する分岐状でもよい。1価の炭化水素基は、例えば、炭素数=1〜12のアルキル基、炭素数=2〜12のアルケニル基、炭素数=2〜12のアルキニル基、炭素数=6〜18のアリール基、または炭素数=3〜18のシクロアルキル基などである。不飽和環状炭酸エステルの溶解性および相溶性などを確保しつつ、上記した利点が得られるからである。   The “hydrocarbon group” is a general term for groups composed of C and H, and may be linear or branched having one or more side chains. The monovalent hydrocarbon group is, for example, an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, an aryl group having 6 to 18 carbon atoms, Or a cycloalkyl group having 3 to 18 carbon atoms. This is because the above-described advantages can be obtained while ensuring the solubility and compatibility of the unsaturated cyclic carbonate.

より具体的には、アルキル基は、例えば、メチル基(−CH3 )、エチル基(−C2 5 )またはプロピル基(−C3 7 )などである。アルケニル基は、例えば、ビニル基(−CH=CH2 )またはアリル基(−CH2 −CH=CH2 )などである。アルキニル基は、例えば、エチニル基(−C≡CH)などである。アリール基は、例えば、フェニル基またはナフチル基などである。シクロアルキル基は、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基またはシクロオクチル基などである。 More specifically, the alkyl group is, for example, a methyl group (—CH 3 ), an ethyl group (—C 2 H 5 ) or a propyl group (—C 3 H 7 ). Examples of the alkenyl group include a vinyl group (—CH═CH 2 ) and an allyl group (—CH 2 —CH═CH 2 ). The alkynyl group is, for example, an ethynyl group (—C≡CH). The aryl group is, for example, a phenyl group or a naphthyl group. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.

「酸素含有炭化水素基」とは、CおよびHと共にOにより構成される基であり、1価の酸素含有炭化水素基は、例えば、炭素数=1〜12のアルコキシ基などである。不飽和環状炭酸エステルの溶解性および相溶性などを確保しつつ、上記した利点が得られるからである。より具体的には、アルコキシ基は、例えば、メトキシ基(−OCH3 )またはエトキシ基(−OC2 5 )などである。 The “oxygen-containing hydrocarbon group” is a group composed of C and H together with O, and the monovalent oxygen-containing hydrocarbon group is, for example, an alkoxy group having 1 to 12 carbon atoms. This is because the above-described advantages can be obtained while ensuring the solubility and compatibility of the unsaturated cyclic carbonate. More specifically, the alkoxy group is, for example, a methoxy group (—OCH 3 ) or an ethoxy group (—OC 2 H 5 ).

「2つ以上が結合された基」とは、例えば、上記したアルキル基などのうちの2種類以上が全体として1価となるように結合された基であり、例えば、アルキル基とアリール基とが結合された基、またはアルキル基とシクロアルキル基とが結合された基などである。より具体的には、アルキル基とアリール基とが結合された基は、例えば、ベンジル基などである。   The “group in which two or more are bonded” is, for example, a group in which two or more of the above-described alkyl groups and the like are bonded so as to be monovalent as a whole. For example, an alkyl group and an aryl group Or a group in which an alkyl group and a cycloalkyl group are combined. More specifically, the group in which an alkyl group and an aryl group are bonded is, for example, a benzyl group.

「ハロゲン化炭化水素基」とは、上記した炭化水素基のうちの少なくとも一部の水素基(−H)がハロゲン基により置換(ハロゲン化)されたものであり、そのハロゲン基の種類は、上記した通りである。同様に、「ハロゲン化酸素含有炭化水素基」とは、上記した酸素含有炭化水素基のうちの少なくとも一部の水素基がハロゲン基により置換されたものであり、そのハロゲン基の種類は、上記した通りである。   The “halogenated hydrocarbon group” is a group in which at least a part of the above-described hydrocarbon groups (—H) is substituted (halogenated) with a halogen group. As described above. Similarly, the “halogenated oxygen-containing hydrocarbon group” is one in which at least a part of the above-mentioned oxygen-containing hydrocarbon group is substituted with a halogen group. That's right.

1価のハロゲン化炭化水素基は、例えば、上記したアルキル基などがハロゲン化されたものであり、すなわちアルキル基などのうちの少なくとも一部の水素基がハロゲン基により置換されたものである。より具体的には、アルキル基などがハロゲン化された基は、例えば、トリフルオロメチル基(−CF3 )またはペンタフルオロエチル基(−C2 5 )などである。また、1価のハロゲン化酸素含有炭化水素基は、例えば、上記したアルコキシ基などのうちの少なくとも一部の水素基がハロゲン基により置換されたものである。より具体的には、アルコキシ基などがハロゲン化された基は、例えば、トリフルオロメトキシ基(−OCF3 )またはペンタフルエトキシ基(−OC2 5 )などである。 The monovalent halogenated hydrocarbon group is, for example, a group obtained by halogenating the above-described alkyl group, that is, a group in which at least a part of the alkyl group or the like is substituted with a halogen group. More specifically, the group in which an alkyl group or the like is halogenated is, for example, a trifluoromethyl group (—CF 3 ) or a pentafluoroethyl group (—C 2 F 5 ). In addition, the monovalent halogenated oxygen-containing hydrocarbon group is, for example, one in which at least a part of the above-described alkoxy groups is substituted with a halogen group. More specifically, the group in which an alkoxy group or the like is halogenated is, for example, a trifluoromethoxy group (—OCF 3 ) or a pentafluethoxy group (—OC 2 F 5 ).

なお、R1〜R4は、上記以外の種類の基でもよい。具体的には、R1〜R4は、例えば、上記した一連の基の誘導体でもよい。この誘導体とは、一連の基に1または2以上の置換基が導入されたものであり、その置換基の種類は任意でよい。   R1 to R4 may be groups other than those described above. Specifically, R1 to R4 may be, for example, derivatives of the above-described series of groups. This derivative is obtained by introducing one or more substituents into a series of groups, and the type of the substituents may be arbitrary.

中でも、不飽和環状炭酸エステルは、下記の式(2)または式(3)で表されることが好ましい。上記した利点が得られる上、容易に合成できるからである。   Among these, the unsaturated cyclic carbonate is preferably represented by the following formula (2) or formula (3). This is because the above-described advantages can be obtained and the synthesis can be easily performed.

Figure 2013131395
(R5〜R10は水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基、1価の酸素含有炭化水素基または1価のハロゲン化酸素含有炭化水素基であり、R5およびR6は互いに結合されていてもよいし、R7〜R10のうちの任意の2つ以上は互いに結合されていてもよい。)
Figure 2013131395
(R5 to R10 are a hydrogen group, a halogen group, a monovalent hydrocarbon group, a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group or a monovalent halogenated oxygen-containing hydrocarbon group; And R6 may be bonded to each other, and any two or more of R7 to R10 may be bonded to each other.)

式(1)と式(2)との関係に着目すると、式(2)に示した不飽和環状炭酸エステルは、式(1)中のXとして、>C=CR1−R2に対応する1つの不飽和基(>C=CH2 )と、>CR3R4に対応する1つの飽和基(>CR5R6)とを有している。一方、式(1)と式(3)との関係に着目すると、式(3)に示した不飽和環状炭酸エステルは、Xとして、>C=CR1−R2に対応する1つの不飽和基(>C=CH2 )と、>CR3R4に対応する2つの飽和基(>CR7R8および>CR9R10)とを有している。ただし、1つの不飽和基および2つの飽和基は、>CR7R8、>CR9R10および>C=CH2 の順に結合されている。 When attention is paid to the relationship between the formula (1) and the formula (2), the unsaturated cyclic carbonate shown in the formula (2) is one in the formula (1) corresponding to> C = CR1-R2. It has an unsaturated group (> C = CH 2 ) and one saturated group (> CR5R6) corresponding to> CR3R4. On the other hand, paying attention to the relationship between the formula (1) and the formula (3), the unsaturated cyclic carbonate represented by the formula (3) is represented by X as one unsaturated group (> C = CR1-R2) > C = CH 2 ) and two saturated groups (> CR7R8 and> CR9R10) corresponding to> CR3R4. However, one unsaturated group and two saturated radicals,> CR7R8, is coupled to the order of> CR9R10 and> C = CH 2.

式(2)中のR5およびR6、ならびに式(3)中のR7〜R10に関する詳細は、式(1)中のR1〜R4と同様であるため、その説明を省略する。   The details of R5 and R6 in formula (2) and R7 to R10 in formula (3) are the same as R1 to R4 in formula (1), and thus the description thereof is omitted.

ここで、不飽和環状炭酸エステルの具体例は、下記の式(1−1)〜式(1−56)で表され、その不飽和環状炭酸エステルには、幾何異性体も含まれる。ただし、不飽和環状炭酸エステルの具体例は、式(1−1)〜式(1−56)に列挙するものに限られない。   Here, specific examples of the unsaturated cyclic carbonate are represented by the following formulas (1-1) to (1-56), and the unsaturated cyclic carbonate includes geometric isomers. However, specific examples of the unsaturated cyclic carbonate are not limited to those listed in Formulas (1-1) to (1-56).

Figure 2013131395
Figure 2013131395

Figure 2013131395
Figure 2013131395

Figure 2013131395
Figure 2013131395

Figure 2013131395
Figure 2013131395

中でも、式(2)に該当する式(1−1)など、または式(3)に該当する式(1−32)などが好ましい。より高い効果が得られるからである。   Among these, the formula (1-1) corresponding to the formula (2) or the formula (1-32) corresponding to the formula (3) is preferable. This is because a higher effect can be obtained.

電解液中における不飽和環状炭酸エステルの含有量は、特に限定されないが、中でも、0.01重量%〜10重量%であることが好ましく、0.1重量%〜5重量%であることがより好ましい。より高い効果が得られるからである。   The content of the unsaturated cyclic carbonate in the electrolytic solution is not particularly limited, but is preferably 0.01% by weight to 10% by weight, and more preferably 0.1% by weight to 5% by weight. preferable. This is because a higher effect can be obtained.

電解液に用いられる溶媒は、有機溶媒などの非水溶媒(上記した不飽和環状炭酸エステルを除く)のいずれか1種類または2種類以上を含んでいる。   The solvent used for the electrolytic solution contains one or more of non-aqueous solvents such as organic solvents (excluding the unsaturated cyclic carbonates described above).

この非水溶媒は、例えば、環状炭酸エステル、鎖状炭酸エステル、ラクトン、鎖状カルボン酸エステルまたはニトリルなどである。優れた電池容量、サイクル特性および保存特性などが得られるからである。環状炭酸エステルは、例えば、炭酸エチレン、炭酸プロピレンまたは炭酸ブチレンなどであり、鎖状炭酸エステルは、例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルまたは炭酸メチルプロピルなどである。ラクトンは、例えば、γ−ブチロラクトンまたはγ−バレロラクトンなどである。カルボン酸エステルは、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチルまたはトリメチル酢酸エチルなどである。ニトリルは、例えば、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリルまたは3−メトキシプロピオニトリルなどである。   This non-aqueous solvent is, for example, a cyclic carbonate, a chain carbonate, a lactone, a chain carboxylic acid ester, or a nitrile. This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained. The cyclic carbonate is, for example, ethylene carbonate, propylene carbonate, or butylene carbonate, and the chain carbonate is, for example, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, or methyl propyl carbonate. The lactone is, for example, γ-butyrolactone or γ-valerolactone. Examples of the carboxylic acid ester include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, and ethyl trimethyl acetate. Examples of the nitrile include acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, and 3-methoxypropionitrile.

この他、非水溶媒は、例えば、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,3−ジオキサン、1,4−ジオキサン、N,N−ジメチルホルムアミド、N−メチルピロリジノン、N−メチルオキサゾリジノン、N,N’−ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチル、またはジメチルスルホキシドなどでもよい。同様に優れた電池容量などが得られるからである。   In addition, examples of the non-aqueous solvent include 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1 , 4-dioxane, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N′-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate, or dimethyl sulfoxide. It is because the battery capacity etc. which were excellent similarly are obtained.

中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルのうちの少なくとも1種が好ましい。より優れた電池容量、サイクル特性および保存特性などが得られるからである。この場合には、炭酸エチレンまたは炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば比誘電率ε≧30)と、炭酸ジメチル、炭酸エチルメチルまたは炭酸ジエチルなどの低粘度溶媒(例えば粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。   Among these, at least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is preferable. This is because better battery capacity, cycle characteristics, storage characteristics, and the like can be obtained. In this case, a high viscosity (high dielectric constant) solvent such as ethylene carbonate or propylene carbonate (for example, a relative dielectric constant ε ≧ 30) and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate (for example, viscosity ≦ 1 mPas). -A combination with s) is more preferred. This is because the dissociation property of the electrolyte salt and the ion mobility are improved.

特に、溶媒は、下記の式(4)および式(5)で表される他の不飽和環状炭酸エステルのいずれか1種類または2種類以上を含んでいることが好ましい。充放電時において主に負極22の表面に安定な保護膜が形成されるため、電解液の分解反応が抑制されるからである。R11およびR12は、同じ種類の基でもよいし、異なる種類の基でもよい。また、R13〜R16は、同じ種類の基でもよいし、異なる種類の基でもよいし、R13〜R16のうちの一部が同じ種類の基でもよい。溶媒中における他の不飽和環状炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%〜10重量%である。ただし、他の不飽和環状炭酸エステルの具体例は、以下で説明する化合物に限られず、式(4)および式(5)に該当する他の化合物でもよい。   In particular, the solvent preferably contains one or more of other unsaturated cyclic carbonates represented by the following formulas (4) and (5). This is because a stable protective film is formed mainly on the surface of the negative electrode 22 during charging / discharging, so that the decomposition reaction of the electrolytic solution is suppressed. R11 and R12 may be the same type of group or different types of groups. In addition, R13 to R16 may be the same type of group, may be different types of groups, or some of R13 to R16 may be the same type of group. Although content of the other unsaturated cyclic carbonate in a solvent is not specifically limited, For example, they are 0.01 weight%-10 weight%. However, specific examples of other unsaturated cyclic carbonates are not limited to the compounds described below, and may be other compounds corresponding to Formula (4) and Formula (5).

Figure 2013131395
(R11およびR12は水素基またはアルキル基である。)
Figure 2013131395
(R11 and R12 are a hydrogen group or an alkyl group.)

Figure 2013131395
(R13〜R16は水素基、アルキル基、ビニル基またはアリル基であり、R13〜R16のうちの少なくとも1つはビニル基またはアリル基である。)
Figure 2013131395
(R13 to R16 are a hydrogen group, an alkyl group, a vinyl group or an allyl group, and at least one of R13 to R16 is a vinyl group or an allyl group.)

式(4)に示した他の不飽和環状炭酸エステルは、炭酸ビニレン系化合物である。R11およびR12の種類は、水素基またはアルキル基であれば、特に限定されない。アルキル基は、例えば、メチル基またはエチル基などであり、そのアルキル基の炭素数は、1〜12であることが好ましい。優れた溶解性および相溶性が得られるからである。炭酸ビニレン系化合物の具体例は、炭酸ビニレン(1,3−ジオキソール−2−オン)、炭酸メチルビニレン(4−メチル−1,3−ジオキソール−2−オン)、炭酸エチルビニレン(4−エチル−1,3−ジオキソール−2−オン)、4,5−ジメチル−1,3−ジオキソール−2−オン、または4,5−ジエチル−1,3−ジオキソール−2−オンなどである。なお、R21およびR22は、アルキル基のうちの少なくとも一部の水素基がハロゲン基により置換された基でもよい。この場合における炭酸ビニレン系化合物の具体例は、4−フルオロ−1,3−ジオキソール−2−オン、または4−トリフルオロメチル−1,3−ジオキソール−2−オンなどである。中でも、炭酸ビニレンが好ましい。容易に入手できると共に、高い効果が得られるからである。   Another unsaturated cyclic carbonate represented by the formula (4) is a vinylene carbonate compound. The type of R11 and R12 is not particularly limited as long as it is a hydrogen group or an alkyl group. The alkyl group is, for example, a methyl group or an ethyl group, and the alkyl group preferably has 1 to 12 carbon atoms. This is because excellent solubility and compatibility can be obtained. Specific examples of vinylene carbonate compounds include vinylene carbonate (1,3-dioxol-2-one), methyl vinylene carbonate (4-methyl-1,3-dioxol-2-one), ethyl vinylene carbonate (4-ethyl- 1,3-dioxol-2-one), 4,5-dimethyl-1,3-dioxol-2-one, 4,5-diethyl-1,3-dioxol-2-one, and the like. R21 and R22 may be a group in which at least a part of the alkyl groups are substituted with a halogen group. Specific examples of the vinylene carbonate-based compound in this case include 4-fluoro-1,3-dioxol-2-one or 4-trifluoromethyl-1,3-dioxol-2-one. Among these, vinylene carbonate is preferable. This is because it can be easily obtained and a high effect can be obtained.

式(5)に示した他の不飽和環状炭酸エステルは、炭酸ビニルエチレン系化合物である。R13〜R16の種類は、水素基、アルキル基、ビニル基またはアリル基であれば、特に限定されない。ただし、R13〜R16のうちの少なくとも1つがビニル基またはアリル基であることを条件とする。アルキル基の種類および炭素数は、R11およびR12と同様である。炭酸ビニルエチレン系化合物の具体例は、炭酸ビニルエチレン(4−ビニル−1,3−ジオキソラン−2−オン)、4−メチル−4−ビニル−1,3−ジオキソラン−2−オン、4−エチル−4−ビニル−1,3−ジオキソラン−2−オン、4−n−プロピル−4−ビニル−1,3−ジオキソラン−2−オン、5−メチル−4−ビニル−1,3−ジオキソラン−2−オン、4,4−ジビニル−1,3−ジオキソラン−2−オン、または4,5−ジビニル−1,3−ジオキソラン−2−オンなどである。中でも、炭酸ビニルエチレンが好ましい。容易に入手できると共に、高い効果が得られるからである。もちろん、R13〜R16としては、全てがビニル基でもよいし、全てがアリル基でもよいし、ビニル基とアリル基とが混在してもよい。   Another unsaturated cyclic carbonate represented by the formula (5) is a vinyl ethylene carbonate compound. The type of R13 to R16 is not particularly limited as long as it is a hydrogen group, an alkyl group, a vinyl group, or an allyl group. However, it is a condition that at least one of R13 to R16 is a vinyl group or an allyl group. The kind and carbon number of the alkyl group are the same as those for R11 and R12. Specific examples of the vinyl carbonate ethylene compound include vinyl ethylene carbonate (4-vinyl-1,3-dioxolan-2-one), 4-methyl-4-vinyl-1,3-dioxolan-2-one, and 4-ethyl. -4-vinyl-1,3-dioxolan-2-one, 4-n-propyl-4-vinyl-1,3-dioxolan-2-one, 5-methyl-4-vinyl-1,3-dioxolane-2 -One, 4,4-divinyl-1,3-dioxolan-2-one, or 4,5-divinyl-1,3-dioxolan-2-one. Of these, vinyl ethylene carbonate is preferred. This is because it can be easily obtained and a high effect can be obtained. Of course, as R13 to R16, all may be vinyl groups, all may be allyl groups, or vinyl groups and allyl groups may be mixed.

なお、他の不飽和環状炭酸エステルは、式(4)および式(5)に示した化合物の他、ベンゼン環を有する炭酸カテコール(カテコールカーボネート)でもよい。   The other unsaturated cyclic ester carbonate may be catechol carbonate having a benzene ring in addition to the compounds represented by the formulas (4) and (5).

また、溶媒は、下記の式(6)および式(7)で表されるハロゲン化炭酸エステルのいずれか1種類または2種類以上を含んでいることが好ましい。充放電時において主に負極22の表面に安定な保護膜が形成されるため、電解液の分解反応が抑制されるからである。式(6)に示したハロゲン化炭酸エステルは、1または2以上のハロゲンを構成元素として含む環状の炭酸エステル(ハロゲン化環状炭酸エステル)である。式(7)に示したハロゲン化炭酸エステルは、1または2以上のハロゲンを構成元素として含む鎖状の炭酸エステル(ハロゲン化鎖状炭酸エステル)である。なお、R17〜R20は、同じ種類の基でもよいし、異なる種類の基でもよいし、R17〜R20のうちの一部が同じ種類の基でもよい。このことは、R21〜R26についても同様である。溶媒中におけるハロゲン化炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%〜50重量%である。ただし、ハロゲン化炭酸エステルの具体例は、以下で説明する化合物に限られず、式(6)および式(7)に該当する他の化合物でもよい。   Moreover, it is preferable that the solvent contains any one type or two or more types of halogenated carbonates represented by the following formulas (6) and (7). This is because a stable protective film is formed mainly on the surface of the negative electrode 22 during charging / discharging, so that the decomposition reaction of the electrolytic solution is suppressed. The halogenated carbonate represented by the formula (6) is a cyclic carbonate (halogenated cyclic carbonate) containing one or more halogens as constituent elements. The halogenated carbonate represented by the formula (7) is a chain carbonate (halogenated chain carbonate) containing one or more halogens as constituent elements. R17 to R20 may be the same type of group, different types of groups, or a part of R17 to R20 may be the same type of group. The same applies to R21 to R26. Although content of halogenated carbonate in a solvent is not specifically limited, For example, they are 0.01 weight%-50 weight%. However, specific examples of the halogenated carbonate are not limited to the compounds described below, and may be other compounds corresponding to the formulas (6) and (7).

Figure 2013131395
(R17〜R20は水素基、ハロゲン基、アルキル基またはハロゲン化アルキル基であり、R17〜R20のうちの少なくとも1つはハロゲン基またはハロゲン化アルキル基である。)
Figure 2013131395
(R17 to R20 are a hydrogen group, a halogen group, an alkyl group or a halogenated alkyl group, and at least one of R17 to R20 is a halogen group or a halogenated alkyl group.)

Figure 2013131395
(R21〜R26は水素基、ハロゲン基、アルキル基またはハロゲン化アルキル基であり、R21〜R26のうちの少なくとも1つはハロゲン基またはハロゲン化アルキル基である。)
Figure 2013131395
(R21 to R26 are a hydrogen group, a halogen group, an alkyl group or a halogenated alkyl group, and at least one of R21 to R26 is a halogen group or a halogenated alkyl group.)

ハロゲンの種類は、特に限定されないが、中でも、フッ素(F)、塩素(Cl)または臭素(Br)が好ましく、フッ素がより好ましい。他のハロゲンよりも高い効果が得られるからである。ただし、ハロゲンの数は、1つよりも2つが好ましく、さらに3つ以上でもよい。保護膜を形成する能力が高くなり、より強固で安定な保護膜が形成されるため、電解液の分解反応がより抑制されるからである。   The type of halogen is not particularly limited, but among them, fluorine (F), chlorine (Cl) or bromine (Br) is preferable, and fluorine is more preferable. This is because an effect higher than that of other halogens can be obtained. However, the number of halogens is preferably two rather than one, and may be three or more. This is because the ability to form a protective film is increased and a stronger and more stable protective film is formed, so that the decomposition reaction of the electrolytic solution is further suppressed.

ハロゲン化環状炭酸エステルは、例えば、下記の式(6−1)〜式(6−21)で表される化合物などである。このハロゲン化環状炭酸エステルには、幾何異性体も含まれる。中でも、式(6−1)に示した4−フルオロ−1,3−ジオキソラン−2−オンまたは式(6−3)に示した4,5−ジフルオロ−1,3−ジオキソラン−2−オンが好ましく、後者がより好ましい。また、4,5−ジフルオロ−1,3−ジオキソラン−2−オンとしては、シス異性体よりもトランス異性体が好ましい。容易に入手できると共に、高い効果が得られるからである。ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)または炭酸ジフルオロメチルメチルなどである。   Examples of the halogenated cyclic carbonate include compounds represented by the following formulas (6-1) to (6-21). This halogenated cyclic carbonate includes geometric isomers. Among them, 4-fluoro-1,3-dioxolan-2-one represented by the formula (6-1) or 4,5-difluoro-1,3-dioxolan-2-one represented by the formula (6-3) is preferred. The latter is preferred and the latter is more preferred. Moreover, as 4,5-difluoro-1,3-dioxolan-2-one, a trans isomer is preferable to a cis isomer. This is because it can be easily obtained and a high effect can be obtained. Examples of the halogenated chain carbonate ester include fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, and difluoromethyl methyl carbonate.

Figure 2013131395
Figure 2013131395

また、溶媒は、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電解液の化学的安定性がより向上するからである。このスルトンは、例えば、プロパンスルトンまたはプロペンスルトンなどである。溶媒中におけるスルトンの含有量は、特に限定されないが、例えば、0.5重量%〜5重量%である。ただし、スルトンの具体例は、上記した化合物に限られず、他の化合物でもよい。   Moreover, it is preferable that the solvent contains sultone (cyclic sulfonate ester). This is because the chemical stability of the electrolytic solution is further improved. This sultone is, for example, propane sultone or propene sultone. Although content of sultone in a solvent is not specifically limited, For example, it is 0.5 weight%-5 weight%. However, specific examples of sultone are not limited to the above-described compounds, and other compounds may be used.

さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性がより向上するからである。この酸無水物は、例えば、例えば、カルボン酸無水物、ジスルホン酸無水物、またはカルボン酸スルホン酸無水物などである。カルボン酸無水物は、例えば、無水コハク酸、無水グルタル酸または無水マレイン酸などである。ジスルホン酸無水物は、例えば、無水エタンジスルホン酸または無水プロパンジスルホン酸などである。カルボン酸スルホン酸無水物は、例えば、無水スルホ安息香酸、無水スルホプロピオン酸または無水スルホ酪酸などである。溶媒中における酸無水物の含有量は、特に限定されないが、例えば、0.5重量%〜5重量%である。ただし、酸無水物の具体例は、上記した化合物に限られず、他の化合物でもよい。   Furthermore, it is preferable that the solvent contains an acid anhydride. This is because the chemical stability of the electrolytic solution is further improved. Examples of the acid anhydride include a carboxylic acid anhydride, a disulfonic acid anhydride, and a carboxylic acid sulfonic acid anhydride. Examples of the carboxylic acid anhydride include succinic anhydride, glutaric anhydride, and maleic anhydride. Examples of the disulfonic anhydride include ethanedisulfonic anhydride and propanedisulfonic anhydride. Examples of the carboxylic acid sulfonic acid anhydride include anhydrous sulfobenzoic acid, anhydrous sulfopropionic acid, and anhydrous sulfobutyric acid. Although content of the acid anhydride in a solvent is not specifically limited, For example, they are 0.5 weight%-5 weight%. However, specific examples of the acid anhydride are not limited to the above-described compounds, and may be other compounds.

電解液に用いられる電解質塩は、例えば、リチウム塩などの塩のいずれか1種類または2種類以上を含んでいる。ただし、電解質塩は、例えば、リチウム塩以外の他の塩(例えばリチウム塩以外の軽金属塩)を含んでいてもよい。   The electrolyte salt used in the electrolytic solution includes, for example, one or more of salts such as lithium salts. However, the electrolyte salt may contain, for example, a salt other than the lithium salt (for example, a light metal salt other than the lithium salt).

このリチウム塩は、例えば、六フッ化リン酸リチウム(LiPF6 )、四フッ化ホウ酸リチウム(LiBF4 )、過塩素酸リチウム(LiClO4 )、六フッ化ヒ酸リチウム(LiAsF6 )、テトラフェニルホウ酸リチウム(LiB(C6 5 4 )、メタンスルホン酸リチウム(LiCH3 SO3 )、トリフルオロメタンスルホン酸リチウム(LiCF3 SO3 )、テトラクロロアルミン酸リチウム(LiAlCl4 )、六フッ化ケイ酸二リチウム(Li2 SiF6 )、塩化リチウム(LiCl)、または臭化リチウム(LiBr)である。優れた電池容量、サイクル特性および保存特性などが得られるからである。ただし、リチウム塩の具体例は、上記した化合物に限られず、他の化合物でもよい。 This lithium salt includes, for example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), tetra Lithium phenylborate (LiB (C 6 H 5 ) 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium tetrachloroaluminate (LiAlCl 4 ), hexafluoride Dilithium silicate (Li 2 SiF 6 ), lithium chloride (LiCl), or lithium bromide (LiBr). This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained. However, specific examples of the lithium salt are not limited to the above-described compounds, and may be other compounds.

中でも、LiPF6 、LiBF4 、LiClO4 およびLiAsF6 のうちの少なくとも1種類が好ましく、LiPF6 がより好ましい。内部抵抗が低下するため、より高い効果が得られるからである。 Among these, at least one of LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 is preferable, and LiPF 6 is more preferable. This is because a higher effect can be obtained because the internal resistance is lowered.

特に、電解質塩は、下記の式(8)〜式(10)で表される化合物のいずれか1種類または2種類以上を含んでいることが好ましい。より高い効果が得られるからである。なお、R31およびR33は、同じ種類の基でもよいし、異なる種類の基でもよい。このことは、R41〜R43、R51およびR52についても同様である。ただし、式(8)〜式(10)に示した化合物の具体例は、以下で説明する化合物に限られず、式(8)〜式(10)に該当する他の化合物でもよい。   In particular, the electrolyte salt preferably contains one or more of the compounds represented by the following formulas (8) to (10). This is because a higher effect can be obtained. R31 and R33 may be the same type of group or different types of groups. The same applies to R41 to R43, R51, and R52. However, specific examples of the compounds represented by the formulas (8) to (10) are not limited to the compounds described below, and other compounds corresponding to the formulas (8) to (10) may be used.

Figure 2013131395
(X31は長周期型周期表における1族元素または2族元素、またはAlである。M31は遷移金属、または長周期型周期表における13族元素、14族元素または15族元素である。R31はハロゲン基である。Y31は−C(=O)−R32−C(=O)−、−C(=O)−CR332 −、または−C(=O)−C(=O)−である。ただし、R32はアルキレン基、ハロゲン化アルキレン基、アリーレン基またはハロゲン化アリーレン基である。R33はアルキル基、ハロゲン化アルキル基、アリール基またはハロゲン化アリール基である。なお、a3は1〜4の整数であり、b3は0、2または4の整数であり、c3、d3、m3およびn3は1〜3の整数である。)
Figure 2013131395
(X31 is a group 1 element or group 2 element in the long-period periodic table, or Al. M31 is a transition metal, or a group 13, element, or group 15 element in the long-period periodic table. R31 is Y31 is —C (═O) —R32—C (═O) —, —C (═O) —CR33 2 —, or —C (═O) —C (═O) —. Where R32 is an alkylene group, a halogenated alkylene group, an arylene group or a halogenated arylene group, R33 is an alkyl group, a halogenated alkyl group, an aryl group or a halogenated aryl group, wherein a3 is 1-4. And b3 is an integer of 0, 2 or 4, and c3, d3, m3 and n3 are integers of 1 to 3.)

Figure 2013131395
(X41は長周期型周期表における1族元素または2族元素である。M41は遷移金属、または長周期型周期表における13族元素、14族元素または15族元素である。Y41は−C(=O)−(CR412 b4−C(=O)−、−R432 C−(CR422 c4−C(=O)−、−R432 C−(CR422 c4−CR432 −、−R432 C−(CR422 c4−S(=O)2 −、−S(=O)2 −(CR422 d4−S(=O)2 −、または−C(=O)−(CR422 d4−S(=O)2 −である。ただし、R41およびR43は水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基であり、それぞれのうちの少なくとも1つはハロゲン基またはハロゲン化アルキル基である。R42は水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基である。なお、a4、e4およびn4は1または2の整数であり、b4およびd4は1〜4の整数であり、c4は0〜4の整数であり、f4およびm4は1〜3の整数である。)
Figure 2013131395
(X41 is a group 1 or group 2 element in the long-period periodic table. M41 is a transition metal, or a group 13, 14 or 15 element in the long-period periodic table. Y41 is -C ( = O) - (CR41 2) b4 -C (= O) -, - R43 2 C- (CR42 2) c4 -C (= O) -, - R43 2 C- (CR42 2) c4 -CR43 2 -, -R43 2 C- (CR42 2) c4 -S (= O) 2 -, - S (= O) 2 - (CR42 2) d4 -S (= O) 2 -, or -C (= O) - ( CR42 2 ) d4 —S (═O) 2 —, wherein R41 and R43 are a hydrogen group, an alkyl group, a halogen group or a halogenated alkyl group, and at least one of each is a halogen group or a halogenated group R42 is a hydrogen group, an alkyl group, or a halogen. Or a halogenated alkyl group, wherein a4, e4 and n4 are integers of 1 or 2, b4 and d4 are integers of 1 to 4, c4 is an integer of 0 to 4, and f4 and m4 are It is an integer from 1 to 3.)

Figure 2013131395
(X51は長周期型周期表における1族元素または2族元素である。M51は遷移金属、または長周期型周期表における13族元素、14族元素または15族元素である。Rfはフッ素化アルキル基またはフッ素化アリール基であり、いずれの炭素数も1〜10である。Y51は−C(=O)−(CR512 d5−C(=O)−、−R522 C−(CR512 d5−C(=O)−、−R522 C−(CR512 d5−CR522 −、−R522 C−(CR512 d5−S(=O)2 −、−S(=O)2 −(CR512 e5−S(=O)2 −、または−C(=O)−(CR512 e5−S(=O)2 −である。ただし、R51は水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基である。R52は水素基、アルキル基、ハロゲン基またはハロゲン化アルキル基であり、そのうちの少なくとも1つはハロゲン基またはハロゲン化アルキル基である。なお、a5、f5およびn5は1または2の整数であり、b5、c5およびe5は1〜4の整数であり、d5は0〜4の整数であり、g5およびm5は1〜3の整数である。)
Figure 2013131395
(X51 is a group 1 element or a group 2 element in the long-period periodic table. M51 is a transition metal, or a group 13, element, or group 15 element in the long-period periodic table. Rf is a fluorinated alkyl. Or a fluorinated aryl group, each having 1 to 10 carbon atoms, Y51 is —C (═O) — (CR51 2 ) d5 —C (═O) —, —R52 2 C— (CR51 2). ) d5 -C (= O) - , - R52 2 C- (CR51 2) d5 -CR52 2 -, - R52 2 C- (CR51 2) d5 -S (= O) 2 -, - S (= O) 2 — (CR51 2 ) e5 —S (═O) 2 —, or —C (═O) — (CR51 2 ) e5 —S (═O) 2 —, wherein R51 is a hydrogen group, an alkyl group, A halogen group or a halogenated alkyl group, wherein R52 represents a hydrogen group, an alkyl group, or a halogen atom; Or a halogenated alkyl group, at least one of which is a halogen group or a halogenated alkyl group, wherein a5, f5 and n5 are integers of 1 or 2, and b5, c5 and e5 are from 1 to 4. D5 is an integer of 0 to 4, and g5 and m5 are integers of 1 to 3.)

なお、1族元素とは、H、Li、Na、K、Rb、CsおよびFrである。2族元素とは、Be、Mg、Ca、Sr、BaおよびRaである。13族元素とは、B、Al、Ga、InおよびTlである。14族元素とは、C、Si、Ge、SnおよびPbである。15族元素とは、N、P、As、SbおよびBiである。   Group 1 elements are H, Li, Na, K, Rb, Cs, and Fr. Group 2 elements are Be, Mg, Ca, Sr, Ba, and Ra. Group 13 elements are B, Al, Ga, In, and Tl. Group 14 elements are C, Si, Ge, Sn and Pb. Group 15 elements are N, P, As, Sb and Bi.

式(8)に示した化合物は、例えば、式(8−1)〜式(8−6)で表される化合物などである。式(9)に示した化合物は、例えば、式(9−1)〜式(9−8)で表される化合物などである。式(10)に示した化合物は、例えば、式(10−1)で表される化合物などである。   Examples of the compound represented by Formula (8) include compounds represented by Formula (8-1) to Formula (8-6). Examples of the compound represented by Formula (9) include compounds represented by Formula (9-1) to Formula (9-8). Examples of the compound represented by the formula (10) include a compound represented by the formula (10-1).

Figure 2013131395
Figure 2013131395

Figure 2013131395
Figure 2013131395

Figure 2013131395
Figure 2013131395

また、電解質塩は、下記の式(11)〜式(13)で表される化合物のいずれか1種類または2種類以上を含んでいることが好ましい。より高い効果が得られるからである。なお、mおよびnは、同じ値でもよいし、異なる値でもよい。このことは、p、qおよびrについても、同様である。ただし、式(11)〜式(13)に示した化合物の具体例は、以下で説明する化合物に限られず、式(11)〜式(13)に該当する他の化合物でもよい。   Moreover, it is preferable that electrolyte salt contains any 1 type or 2 types or more of the compound represented by following formula (11)-formula (13). This is because a higher effect can be obtained. Note that m and n may be the same value or different values. The same applies to p, q and r. However, specific examples of the compounds represented by the formulas (11) to (13) are not limited to the compounds described below, and may be other compounds corresponding to the formulas (11) to (13).

LiN(Cm 2m+1SO2 )(Cn 2n+1 SO2 ) …(11)
(mおよびnは1以上の整数である。)
LiN (C m F 2m + 1 SO 2) (C n F 2n + 1 SO 2) ... (11)
(M and n are integers of 1 or more.)

Figure 2013131395
(R61は炭素数=2〜4の直鎖状または分岐状のパーフルオロアルキレン基である。)
Figure 2013131395
(R61 is a linear or branched perfluoroalkylene group having 2 to 4 carbon atoms.)

LiC(Cp 2p+1SO2 )(Cq 2q+1SO2 )(Cr 2r+1SO2 ) …(13)
(p、qおよびrは1以上の整数である。)
LiC (C p F 2p + 1 SO 2 ) (C q F 2q + 1 SO 2 ) (C r F 2r + 1 SO 2 ) (13)
(P, q and r are integers of 1 or more.)

式(11)に示した化合物は、鎖状のイミド化合物であり、例えば、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3 SO2 2 )、ビス(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(C2 5 SO2 2 )、(トリフルオロメタンスルホニル)(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(CF3 SO2 )(C2 5 SO2 ))、(トリフルオロメタンスルホニル)(ヘプタフルオロプロパンスルホニル)イミドリチウム(LiN(CF3 SO2 )(C3 7 SO2 ))、または(トリフルオロメタンスルホニル)(ノナフルオロブタンスルホニル)イミドリチウム(LiN(CF3 SO2 )(C4 9 SO2 ))などである。 The compound represented by the formula (11) is a chain imide compound such as bis (trifluoromethanesulfonyl) imide lithium (LiN (CF 3 SO 2 ) 2 ), bis (pentafluoroethanesulfonyl) imide lithium (LiN). (C 2 F 5 SO 2 ) 2 ), (trifluoromethanesulfonyl) (pentafluoroethanesulfonyl) imidolithium (LiN (CF 3 SO 2 ) (C 2 F 5 SO 2 )), (trifluoromethanesulfonyl) (heptafluoro Propanesulfonyl) imidolithium (LiN (CF 3 SO 2 ) (C 3 F 7 SO 2 )) or (trifluoromethanesulfonyl) (nonafluorobutanesulfonyl) imide lithium (LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 )) and the like.

式(12)に示した化合物は、環状のイミド化合物であり、例えば、式(12−1)〜式(12−4)で表される化合物などである。   The compound represented by the formula (12) is a cyclic imide compound, for example, a compound represented by the formula (12-1) to the formula (12-4).

Figure 2013131395
Figure 2013131395

式(13)に示した化合物は、鎖状のメチド化合物であり、例えば、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CF3 SO2 3 )などである。 The compound represented by the formula (13) is a chain-like methide compound, such as lithium tris (trifluoromethanesulfonyl) methide (LiC (CF 3 SO 2 ) 3 ).

電解質塩の含有量は、特に限定されないが、中でも、非水溶媒に対して0.3mol/kg〜3.0mol/kgであることが好ましい。高いイオン伝導性が得られるからである。   Although content of electrolyte salt is not specifically limited, It is preferable that it is 0.3 mol / kg-3.0 mol / kg especially with respect to a non-aqueous solvent. This is because high ionic conductivity is obtained.

[二次電池の動作]
この二次電池では、例えば、充電時において、正極21から放出されたリチウムイオンが電解液を介して負極22に吸蔵されると共に、放電時において、負極22から放出されたリチウムイオンが電解液を介して正極21に吸蔵される。
[Operation of secondary battery]
In this secondary battery, for example, during charging, lithium ions released from the positive electrode 21 are occluded in the negative electrode 22 through the electrolytic solution, and during discharging, lithium ions released from the negative electrode 22 are used as the electrolytic solution. And inserted in the positive electrode 21.

[二次電池の製造方法]
この二次電池は、例えば、以下の手順により製造される。
[Method for producing secondary battery]
This secondary battery is manufactured by the following procedure, for example.

最初に、正極21を作製する。正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合して、正極合剤とする。続いて、正極合剤を有機溶剤などに分散させて、ペースト状の正極合剤スラリーとする。続いて、正極集電体21Aの両面に正極合剤スラリーを塗布してから乾燥させて、正極活物質層21Bを形成する。こののち、必要に応じて加熱しながら、ロールプレス機などを用いて正極活物質層21Bを圧縮成型する。この場合には、圧縮成型を複数回繰り返してもよい。   First, the positive electrode 21 is produced. A positive electrode active material and, if necessary, a positive electrode binder and a positive electrode conductive agent are mixed to obtain a positive electrode mixture. Subsequently, the positive electrode mixture is dispersed in an organic solvent or the like to obtain a paste-like positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A and then dried to form the positive electrode active material layer 21B. After that, the positive electrode active material layer 21B is compression-molded using a roll press or the like while being heated as necessary. In this case, compression molding may be repeated a plurality of times.

また、上記した正極21と同様の手順により、負極22を作製する。負極活物質と必要に応じて負極結着剤および負極導電剤などとが混合された負極合剤を有機溶剤などに分散させて、ペースト状の負極合剤スラリーとする。続いて、負極集電体22Aの両面に負極合剤スラリーを塗布してから乾燥させて負極活物質層22Bを形成したのち、必要に応じて負極活物質層22Bを圧縮成型する。   In addition, the negative electrode 22 is prepared by the same procedure as that of the positive electrode 21 described above. A negative electrode mixture in which a negative electrode active material and, if necessary, a negative electrode binder and a negative electrode conductive agent are mixed is dispersed in an organic solvent or the like to obtain a paste-like negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 22A and then dried to form the negative electrode active material layer 22B, and then the negative electrode active material layer 22B is compression molded as necessary.

また、溶媒に電解質塩を分散させたのち、不飽和環状炭酸エステルを加えて電解液を調製する。   Moreover, after electrolyte salt is disperse | distributed to a solvent, unsaturated cyclic carbonate is added and electrolyte solution is prepared.

最後に、正極21および負極22を用いて二次電池を組み立てる。最初に、溶接法などを用いて、正極集電体21Aに正極リード25を取り付けると共に、負極集電体22Aに負極リード26を取り付ける。続いて、セパレータ23を介して正極21と負極22とを積層してから巻回させて巻回電極体20を作製したのち、その巻回中心にセンターピン24を挿入する。続いて、一対の絶縁板12,13で挟みながら、巻回電極体20を電池缶11の内部に収納する。この場合には、溶接法などを用いて、正極リード25の先端部を安全弁機構15に取り付けると共に、負極リード26の先端部を電池缶11に取り付ける。続いて、電池缶11の内部に電解液を注入してセパレータ23に含浸させる。続いて、ガスケット17を介して電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16をかしめる。   Finally, a secondary battery is assembled using the positive electrode 21 and the negative electrode 22. First, using a welding method or the like, the positive electrode lead 25 is attached to the positive electrode current collector 21A, and the negative electrode lead 26 is attached to the negative electrode current collector 22A. Subsequently, after the positive electrode 21 and the negative electrode 22 are laminated via the separator 23 and wound to produce the wound electrode body 20, the center pin 24 is inserted into the winding center. Subsequently, the wound electrode body 20 is accommodated in the battery can 11 while being sandwiched between the pair of insulating plates 12 and 13. In this case, the tip of the positive electrode lead 25 is attached to the safety valve mechanism 15 and the tip of the negative electrode lead 26 is attached to the battery can 11 using a welding method or the like. Subsequently, an electrolytic solution is injected into the battery can 11 and impregnated in the separator 23. Subsequently, the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are caulked to the opening end of the battery can 11 through the gasket 17.

[二次電池の作用および効果]
この円筒型の二次電池によれば、負極22が金属系材料を含有していると共に、電解液が不飽和環状炭酸エステルを含有している。この場合には、上記したように、電解液の化学的安定性が特異的に向上するため、負極活物質として高反応性の金属系材料を用いても電解液の分解反応が著しく抑制される。よって、二次電池が充放電または保存されても電解液が分解しにくくなるため、優れた電池特性を得ることができる。
[Operation and effect of secondary battery]
According to this cylindrical secondary battery, the negative electrode 22 contains a metal material, and the electrolyte contains an unsaturated cyclic carbonate. In this case, as described above, since the chemical stability of the electrolytic solution is specifically improved, the decomposition reaction of the electrolytic solution is remarkably suppressed even when a highly reactive metal material is used as the negative electrode active material. . Therefore, even if the secondary battery is charged / discharged or stored, the electrolytic solution is difficult to be decomposed, so that excellent battery characteristics can be obtained.

特に、電解液中における不飽和環状炭酸エステルの含有量が0.01重量%〜10重量%であれば、より高い効果を得ることができる。また、不飽和環状炭酸エステルが式(1−1)〜式(1−56)に示したものであり、特に式(2)または式(3)に示したものであれば、より高い効果を得ることができる。   In particular, when the content of the unsaturated cyclic carbonate in the electrolytic solution is 0.01% by weight to 10% by weight, a higher effect can be obtained. Further, if the unsaturated cyclic carbonate is one represented by the formula (1-1) to the formula (1-56), particularly if it is represented by the formula (2) or the formula (3), a higher effect can be obtained. Can be obtained.

<1−2.リチウムイオン二次電池(ラミネートフィルム型)>
図3は、他の二次電池の分解斜視構成を表しており、図4は、図3に示した巻回電極体30のIV−IV線に沿った断面を拡大している。以下では、既に説明した円筒型の二次電池の構成要素を随時引用する。
<1-2. Lithium-ion secondary battery (laminate film type)>
FIG. 3 shows an exploded perspective configuration of another secondary battery, and FIG. 4 is an enlarged cross section taken along line IV-IV of the spirally wound electrode body 30 shown in FIG. In the following, the components of the cylindrical secondary battery already described will be referred to as needed.

[二次電池の全体構成]
この二次電池は、いわゆるラミネートフィルム型のリチウムイオン二次電池であり、フィルム状の外装部材40の内部に巻回電極体30が収納されている。この巻回電極体30は、セパレータ35および電解質層36を介して正極33と負極34とが積層されてから巻回されたものである。正極33には正極リード31が取り付けられていると共に、負極34には負極リード32が取り付けられている。この巻回電極体30の最外周部は、保護テープ37により保護されている。
[Overall structure of secondary battery]
This secondary battery is a so-called laminate film type lithium ion secondary battery, in which a wound electrode body 30 is housed inside a film-like exterior member 40. The wound electrode body 30 is wound after the positive electrode 33 and the negative electrode 34 are stacked via the separator 35 and the electrolyte layer 36. A positive electrode lead 31 is attached to the positive electrode 33, and a negative electrode lead 32 is attached to the negative electrode 34. The outermost periphery of the wound electrode body 30 is protected by a protective tape 37.

正極リード31および負極リード32は、例えば、外装部材40の内部から外部に向かって同一方向に導出されている。正極リード31は、例えば、Alなどの導電性材料により形成されていると共に、負極リード32は、例えば、Cu、Niまたはステンレスなどの導電性材料により形成されている。この導電性材料は、例えば、薄板状または網目状になっている。   For example, the positive electrode lead 31 and the negative electrode lead 32 are led out in the same direction from the inside of the exterior member 40 toward the outside. The positive electrode lead 31 is made of, for example, a conductive material such as Al, and the negative electrode lead 32 is made of, for example, a conductive material such as Cu, Ni, or stainless steel. This conductive material has, for example, a thin plate shape or a mesh shape.

外装部材40は、例えば、融着層、金属層および表面保護層がこの順に積層されたラミネートフィルムである。このラミネートフィルムでは、例えば、融着層が巻回電極体30と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、または接着剤などにより貼り合わされている。融着層は、例えば、ポリエチレンまたはポリプロピレンなどのフィルムである。金属層は、例えば、Al箔などである。表面保護層は、例えば、ナイロンまたはポリエチレンテレフタレートなどのフィルムである。   The exterior member 40 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order. In this laminated film, for example, the outer peripheral edge portions of the fusion layers of the two films are bonded together with an adhesive or the like so that the fusion layer faces the wound electrode body 30. The fusing layer is, for example, a film of polyethylene or polypropylene. The metal layer is, for example, an Al foil. The surface protective layer is, for example, a film such as nylon or polyethylene terephthalate.

中でも、外装部材40としては、ポリエチレンフィルム、Al箔およびナイロンフィルムがこの順に積層されたアルミラミネートフィルムが好ましい。ただし、外装部材40は、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレンなどの高分子フィルム、または金属フィルムでもよい。   Among these, as the exterior member 40, an aluminum laminated film in which a polyethylene film, an Al foil, and a nylon film are laminated in this order is preferable. However, the exterior member 40 may be a laminate film having another laminated structure, a polymer film such as polypropylene, or a metal film.

外装部材40と正極リード31および負極リード32との間には、外気の侵入を防止するために密着フィルム41が挿入されている。この密着フィルム41は、正極リード31および負極リード32に対して密着性を有する材料により形成されている。この密着性の材料は、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレンなどのポリオレフィン樹脂である。   An adhesion film 41 is inserted between the exterior member 40 and the positive electrode lead 31 and the negative electrode lead 32 in order to prevent intrusion of outside air. The adhesion film 41 is formed of a material having adhesion to the positive electrode lead 31 and the negative electrode lead 32. This adhesive material is, for example, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene, or modified polypropylene.

正極33は、例えば、正極集電体33Aの両面に正極活物質層33Bを有していると共に、負極34は、例えば、負極集電体34Aの両面に負極活物質層34Bを有している。正極集電体33A、正極活物質層33B、負極集電体34Aおよび負極活物質層34Bの構成は、それぞれ正極集電体21A、正極活物質層21B、負極集電体22Aおよび負極活物質層22Bの構成と同様である。このため、負極活物質層22Bは、負極活物質として金属系材料を含有している。また、セパレータ35の構成は、セパレータ23の構成と同様である。   The positive electrode 33 has, for example, a positive electrode active material layer 33B on both surfaces of the positive electrode current collector 33A, and the negative electrode 34 has, for example, a negative electrode active material layer 34B on both surfaces of the negative electrode current collector 34A. . The configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, the negative electrode current collector 34A, and the negative electrode active material layer 34B are respectively the positive electrode current collector 21A, the positive electrode active material layer 21B, the negative electrode current collector 22A, and the negative electrode active material layer. The configuration is the same as 22B. For this reason, the negative electrode active material layer 22B contains a metal material as a negative electrode active material. The configuration of the separator 35 is the same as the configuration of the separator 23.

電解質層36は、高分子化合物により電解液が保持されたものであり、いわゆるゲル状の電解質である。高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に、電解液の漏液が防止されるからである。この電解質層36は、必要に応じて、添加剤などの他の材料を含んでいてもよい。   The electrolyte layer 36 is a so-called gel electrolyte in which an electrolytic solution is held by a polymer compound. This is because high ionic conductivity (for example, 1 mS / cm or more at room temperature) is obtained and leakage of the electrolytic solution is prevented. The electrolyte layer 36 may contain other materials such as additives as necessary.

高分子化合物は、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリフッ化ビニル、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレン、ポリカーボネート、またはフッ化ビニリデンとヘキサフルオロピレンとの共重合体などのいずれか1種類または2種類以上である。中でも、ポリフッ化ビニリデン、またはフッ化ビニリデンとヘキサフルオロピレンとの共重合体が好ましく、ポリフッ化ビニリデンがより好ましい。電気化学的に安定だからである。   Examples of the polymer compound include polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, polyvinyl fluoride, polyvinyl acetate, polyvinyl alcohol, polymethacryl. One or more of methyl acid, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene, polycarbonate, or a copolymer of vinylidene fluoride and hexafluoropyrene . Among these, polyvinylidene fluoride or a copolymer of vinylidene fluoride and hexafluoropyrene is preferable, and polyvinylidene fluoride is more preferable. This is because it is electrochemically stable.

電解液の組成は、円筒型の場合と同様であり、その電解液は、不飽和環状炭酸エステルを含有している。ただし、ゲル状の電解質である電解質層36において、電解液の溶媒とは、液状の溶媒だけでなく、電解質塩を解離させることが可能なイオン伝導性を有する材料まで含む広い概念である。よって、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も溶媒に含まれる。   The composition of the electrolytic solution is the same as that of the cylindrical type, and the electrolytic solution contains an unsaturated cyclic carbonate. However, in the electrolyte layer 36 which is a gel electrolyte, the solvent of the electrolytic solution is a wide concept including not only a liquid solvent but also a material having ion conductivity capable of dissociating the electrolyte salt. Therefore, when using a polymer compound having ion conductivity, the polymer compound is also included in the solvent.

なお、ゲル状の電解質層36に代えて、電解液をそのまま用いてもよい。この場合には、電解液がセパレータ35に含浸される。   Instead of the gel electrolyte layer 36, the electrolytic solution may be used as it is. In this case, the separator 35 is impregnated with the electrolytic solution.

[二次電池の動作]
この二次電池では、例えば、充電時において、正極33から放出されたリチウムイオンが電解質層36を介して負極34に吸蔵されると共に、放電時において、負極34から放出されたリチウムイオンが電解質層36を介して正極33に吸蔵される。
[Operation of secondary battery]
In this secondary battery, for example, at the time of charging, lithium ions released from the positive electrode 33 are occluded by the negative electrode 34 through the electrolyte layer 36, and at the time of discharging, lithium ions released from the negative electrode 34 are absorbed by the electrolyte layer. It is occluded by the positive electrode 33 via 36.

[二次電池の製造方法]
このゲル状の電解質層36を備えた二次電池は、例えば、以下の3種類の手順により製造される。
[Method for producing secondary battery]
The secondary battery provided with the gel electrolyte layer 36 is manufactured by, for example, the following three types of procedures.

第1手順では、正極21および負極22と同様の作製手順により、正極33および負極34を作製する。この場合には、正極集電体33Aの両面に正極活物質層33Bを形成して正極33を作製すると共に、負極集電体34Aの両面に負極活物質層34Bを形成して負極34を作製する。続いて、電解液と、高分子化合物と、有機溶剤などの溶媒とを含む前駆溶液を調製したのち、その前駆溶液を正極33および負極34に塗布してゲル状の電解質層36を形成する。続いて、溶接法などを用いて、正極集電体33Aに正極リード31を取り付けると共に、負極集電体34Aに負極リード32を取り付ける。続いて、電解質層36が形成された正極33と負極34とをセパレータ35を介して積層してから巻回させて巻回電極体30を作製したのち、その最外周部に保護テープ37を貼り付ける。続いて、2枚のフィルム状の外装部材40の間に巻回電極体30を挟み込んだのち、熱融着法などを用いて外装部材40の外周縁部同士を接着させて巻回電極体30を封入する。この場合には、正極リード31および負極リード32と外装部材40との間に密着フィルム41を挿入する。   In the first procedure, the positive electrode 33 and the negative electrode 34 are manufactured by the same manufacturing procedure as that of the positive electrode 21 and the negative electrode 22. In this case, the positive electrode active material layer 33B is formed on both surfaces of the positive electrode current collector 33A to produce the positive electrode 33, and the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A to produce the negative electrode 34. To do. Subsequently, after preparing a precursor solution containing an electrolytic solution, a polymer compound, and a solvent such as an organic solvent, the precursor solution is applied to the positive electrode 33 and the negative electrode 34 to form a gel electrolyte layer 36. Subsequently, using a welding method or the like, the positive electrode lead 31 is attached to the positive electrode current collector 33A, and the negative electrode lead 32 is attached to the negative electrode current collector 34A. Subsequently, after the positive electrode 33 and the negative electrode 34 on which the electrolyte layer 36 is formed are stacked via the separator 35 and wound to produce the wound electrode body 30, a protective tape 37 is attached to the outermost peripheral portion thereof. wear. Subsequently, the wound electrode body 30 is sandwiched between the two film-shaped exterior members 40, and then the outer peripheral edge portions of the exterior member 40 are bonded to each other using a heat fusion method or the like. Enclose. In this case, the adhesion film 41 is inserted between the positive electrode lead 31 and the negative electrode lead 32 and the exterior member 40.

第2手順では、正極33に正極リード31を取り付けると共に、負極34に負極リード52を取り付ける。続いて、セパレータ35を介して正極33および負極34を積層してから巻回させて、巻回電極体30の前駆体である巻回体を作製したのち、その最外周部に保護テープ37を貼り付ける。続いて、2枚のフィルム状の外装部材40の間に巻回体を挟み込んだのち、熱融着法などを用いて一辺の外周縁部を除いた残りの外周縁部を接着させて、袋状の外装部材40の内部に巻回体を収納する。続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを含む電解質用組成物を調製して袋状の外装部材40の内部に注入したのち、熱融着法などを用いて外装部材40を密封する。続いて、モノマーを熱重合させる。これにより、高分子化合物が形成されるため、ゲル状の電解質層36が形成される。   In the second procedure, the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 52 is attached to the negative electrode 34. Subsequently, the positive electrode 33 and the negative electrode 34 are stacked via the separator 35 and wound to produce a wound body that is a precursor of the wound electrode body 30, and then a protective tape 37 is attached to the outermost periphery of the wound body. paste. Subsequently, after sandwiching the wound body between the two film-like exterior members 40, the remaining outer peripheral edge portion except for the outer peripheral edge portion on one side is bonded by using a heat fusion method or the like, and the bag The wound body is housed inside the shaped exterior member 40. Subsequently, an electrolyte composition containing an electrolytic solution, a monomer that is a raw material of the polymer compound, a polymerization initiator, and other materials such as a polymerization inhibitor as necessary is prepared to form a bag-shaped exterior member. After injecting into the inside of 40, the exterior member 40 is sealed using a heat sealing method or the like. Subsequently, the monomer is thermally polymerized. Thereby, since a high molecular compound is formed, the gel electrolyte layer 36 is formed.

第3手順では、高分子化合物が両面に塗布されたセパレータ35を用いることを除き、上記した第2手順と同様に、巻回体を作製して袋状の外装部材40の内部に収納する。このセパレータ35に塗布する高分子化合物は、例えば、フッ化ビニリデンを成分とする重合体(単独重合体、共重合体または多元共重合体)などである。具体的には、ポリフッ化ビニリデン、フッ化ビニリデンおよびヘキサフルオロプロピレンを成分とする二元系共重合体、またはフッ化ビニリデン、ヘキサフルオロプロピレンおよびクロロトリフルオロエチレンを成分とする三元系共重合体などである。なお、フッ化ビニリデンを成分とする重合体と一緒に、他の1種類または2種類以上の高分子化合物を用いてもよい。続いて、電解液を調製して外装部材40の内部に注入したのち、熱融着法などを用いて外装部材40の開口部を密封する。続いて、外装部材40に加重をかけながら加熱して、高分子化合物を介してセパレータ35を正極33および負極34に密着させる。これにより、電解液が高分子化合物に含浸するため、その高分子化合物がゲル化して電解質層36が形成される。   In the third procedure, a wound body is produced and stored in the bag-shaped exterior member 40 in the same manner as in the second procedure described above except that the separator 35 coated with the polymer compound on both sides is used. The polymer compound applied to the separator 35 is, for example, a polymer (homopolymer, copolymer or multi-component copolymer) containing vinylidene fluoride as a component. Specifically, a binary copolymer comprising polyvinylidene fluoride, vinylidene fluoride and hexafluoropropylene as components, or a ternary copolymer comprising vinylidene fluoride, hexafluoropropylene and chlorotrifluoroethylene as components. Etc. In addition to the polymer containing vinylidene fluoride as a component, one or more other polymer compounds may be used. Subsequently, after the electrolytic solution is prepared and injected into the exterior member 40, the opening of the exterior member 40 is sealed using a thermal fusion method or the like. Subsequently, the exterior member 40 is heated while applying a load, and the separator 35 is brought into close contact with the positive electrode 33 and the negative electrode 34 through the polymer compound. Thereby, since the electrolytic solution impregnates the polymer compound, the polymer compound is gelled to form the electrolyte layer 36.

この第3手順では、第1手順よりも二次電池の膨れが抑制される。また、第3手順では、第2手順よりも高分子化合物の原料であるモノマーまたは溶媒などが電解質層36中にほとんど残らないため、高分子化合物の形成工程が良好に制御される。このため、正極33、負極34およびセパレータ35と電解質層36との十分な密着性が得られる。   In the third procedure, the swelling of the secondary battery is suppressed more than in the first procedure. In the third procedure, since the monomer or solvent that is a raw material of the polymer compound hardly remains in the electrolyte layer 36 than in the second procedure, the formation process of the polymer compound is controlled well. Therefore, sufficient adhesion between the positive electrode 33, the negative electrode 34, the separator 35, and the electrolyte layer 36 is obtained.

[二次電池の作用および効果]
このラミネートフィルム型の二次電池によれば、負極34が金属系材料を含有していると共に、電解質層36の電解液が不飽和環状炭酸エステルを含有しているので、円筒型の二次電池と同様の理由により、優れた電池特性を得ることができる。これ以外の作用および効果は、円筒型と同様である。
[Operation and effect of secondary battery]
According to this laminated film type secondary battery, since the negative electrode 34 contains a metal material and the electrolyte solution of the electrolyte layer 36 contains an unsaturated cyclic carbonate, the cylindrical secondary battery Excellent battery characteristics can be obtained for the same reason. Other operations and effects are the same as those of the cylindrical type.

<2.二次電池の用途>
次に、上記した二次電池の適用例について説明する。
<2. Applications of secondary batteries>
Next, application examples of the above-described secondary battery will be described.

二次電池の用途は、その二次電池を駆動用の電源または電力蓄積用の電力貯蔵源などとして使用可能な機械、機器、器具、装置またはシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として使用される二次電池は、主電源(優先的に使用される電源)でもよいし、補助電源(主電源に代えて、または主電源から切り換えて使用される電源)でもよい。後者の場合、主電源の種類は二次電池に限られない。   The secondary battery can be used for a machine, device, instrument, device or system (an assembly of multiple devices) that can use the secondary battery as a power source for driving or a power storage source for storing power. There is no particular limitation. The secondary battery used as a power source may be a main power source (a power source used preferentially) or an auxiliary power source (a power source used in place of the main power source or switched from the main power source). In the latter case, the type of the main power source is not limited to the secondary battery.

二次電池の用途としては、例えば、以下の用途などが挙げられる。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビまたは携帯用情報端末などの携帯用電子機器である。電気シェーバなどの携帯用生活器具である。バックアップ電源またはメモリーカードなどの記憶用装置である。電動ドリルまたは電動のこぎりなどの電動工具である。ノート型パソコンなどの電源として用いられる電池パックである。ペースメーカーまたは補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、上記以外の用途でもよい。   Examples of uses of the secondary battery include the following uses. It is a portable electronic device such as a video camera, a digital still camera, a mobile phone, a notebook computer, a cordless phone, a headphone stereo, a portable radio, a portable TV, or a portable information terminal. It is a portable living device such as an electric shaver. A storage device such as a backup power supply or a memory card. An electric tool such as an electric drill or an electric saw. A battery pack used as a power source for a notebook computer or the like. Medical electronic devices such as pacemakers or hearing aids. An electric vehicle such as an electric vehicle (including a hybrid vehicle). It is an electric power storage system such as a home battery system that stores electric power in case of an emergency. Of course, applications other than those described above may be used.

中でも、二次電池は、電池パック、電動車両、電力貯蔵システム、電動工具または電子機器などに適用されることが有効である。優れた電池特性が要求されるため、本技術の二次電池を用いることで、有効に性能向上を図ることができるからである。なお、電池パックは、二次電池を用いた電源であり、いわゆる組電池などである。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、上記したように、二次電池以外の駆動源も併せて備えた自動車(ハイブリッド自動車など)でもよい。電力貯蔵システムは、二次電池を電力貯蔵源として用いるシステムである。例えば、家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に電力が蓄積されており、その電力が必要に応じて消費されるため、家庭用の電気製品などが使用可能になる。電動工具は、二次電池を駆動用の電源として可動部(例えばドリルなど)が可動する工具である。電子機器は、二次電池を駆動用の電源(電力供給源)として各種機能を発揮する機器である。   Among them, it is effective that the secondary battery is applied to a battery pack, an electric vehicle, an electric power storage system, an electric tool, an electronic device, or the like. This is because, since excellent battery characteristics are required, the performance can be effectively improved by using the secondary battery of the present technology. The battery pack is a power source using a secondary battery, and is a so-called assembled battery. The electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be an automobile (such as a hybrid automobile) that includes a drive source other than the secondary battery as described above. The power storage system is a system that uses a secondary battery as a power storage source. For example, in a household power storage system, power is stored in a secondary battery that is a power storage source, and the power is consumed as necessary, so that household electrical products can be used. An electric power tool is a tool in which a movable part (for example, a drill etc.) moves, using a secondary battery as a driving power source. An electronic device is a device that exhibits various functions using a secondary battery as a driving power source (power supply source).

ここで、二次電池のいくつかの適用例について具体的に説明する。なお、以下で説明する各適用例の構成はあくまで一例であるため、適宜変更可能である。   Here, some application examples of the secondary battery will be specifically described. In addition, since the structure of each application example demonstrated below is an example to the last, it can change suitably.

<2−1.電池パック>
図5は、電池パックのブロック構成を表している。この電池パックは、例えば、図5に示したように、プラスチック材料などにより形成された筐体60の内部に、制御部61と、電源62と、スイッチ部63と、電流測定部64と、温度検出部65と、電圧検出部66と、スイッチ制御部67と、メモリ68と、温度検出素子69と、電流検出抵抗70と、正極端子71および負極端子72とを備えている。
<2-1. Battery Pack>
FIG. 5 shows a block configuration of the battery pack. For example, as shown in FIG. 5, the battery pack includes a control unit 61, a power source 62, a switch unit 63, a current measuring unit 64, a temperature, and the like inside a housing 60 formed of a plastic material or the like. A detection unit 65, a voltage detection unit 66, a switch control unit 67, a memory 68, a temperature detection element 69, a current detection resistor 70, a positive electrode terminal 71, and a negative electrode terminal 72 are provided.

制御部61は、電池パック全体の動作(電源62の使用状態を含む)を制御するものであり、例えば、中央演算処理装置(CPU)などを含んでいる。電源62は、1または2以上の二次電池(図示せず)を含んでいる。この電源62は、例えば、2以上の二次電池を含む組電池であり、それらの接続形式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源62は、2並列3直列となるように接続された6つの二次電池を含んでいる。   The control unit 61 controls the operation of the entire battery pack (including the usage state of the power supply 62), and includes, for example, a central processing unit (CPU). The power source 62 includes one or more secondary batteries (not shown). The power source 62 is, for example, an assembled battery including two or more secondary batteries, and the connection form thereof may be in series, in parallel, or a mixture of both. For example, the power source 62 includes six secondary batteries connected in two parallel three series.

スイッチ部63は、制御部61の指示に応じて電源62の使用状態(電源62と外部機器との接続の可否)を切り換えるものである。このスイッチ部63は、例えば、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオード(いずれも図示せず)などを含んでいる。充電制御スイッチおよび放電制御スイッチは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。   The switch unit 63 switches the usage state of the power source 62 (whether or not the power source 62 can be connected to an external device) according to an instruction from the control unit 61. The switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, a discharging diode (all not shown), and the like. The charge control switch and the discharge control switch are semiconductor switches such as a field effect transistor (MOSFET) using a metal oxide semiconductor, for example.

電流測定部64は、電流検出抵抗70を用いて電流を測定して、その測定結果を制御部61に出力するものである。温度検出部65は、温度検出素子69を用いて温度を測定して、その測定結果を制御部61に出力するようになっている。この温度測定結果は、例えば、異常発熱時に制御部61が充放電制御を行う場合や、制御部61が残容量の算出時に補正処理を行うために用いられる。電圧検出部66は、電源62中における二次電池の電圧を測定して、その測定電圧アナログ/デジタル変換(A/D)変換して制御部61に供給するものである。   The current measurement unit 64 measures current using the current detection resistor 70 and outputs the measurement result to the control unit 61. The temperature detection unit 65 measures the temperature using the temperature detection element 69 and outputs the measurement result to the control unit 61. This temperature measurement result is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity. The voltage detector 66 measures the voltage of the secondary battery in the power source 62, converts the measured voltage analog / digital conversion (A / D), and supplies the converted voltage to the controller 61.

スイッチ制御部67は、電流測定部66および電圧測定部66から入力される信号に応じて、スイッチ部63の動作を制御するものである。   The switch control unit 67 controls the operation of the switch unit 63 in accordance with signals input from the current measurement unit 66 and the voltage measurement unit 66.

このスイッチ制御部67は、例えば、電池電圧が過充電検出電圧に到達した場合に、スイッチ部67(充電制御スイッチ)を切断して、電源62の電流経路に充電電流が流れないように制御するようになっている。これにより、電源62では、放電用ダイオードを介して放電のみが可能になる。なお、スイッチ制御部67は、例えば、充電時に大電流が流れた場合に、充電電流を遮断するようになっている。   For example, when the battery voltage reaches the overcharge detection voltage, the switch control unit 67 disconnects the switch unit 67 (charge control switch) and controls the charging current not to flow through the current path of the power source 62. It is like that. As a result, the power source 62 can only discharge through the discharging diode. The switch control unit 67 is configured to cut off the charging current when a large current flows during charging, for example.

また、スイッチ制御部67は、例えば、電池電圧が過放電検出電圧に到達した場合に、スイッチ部67(放電制御スイッチ)を切断して、電源62の電流経路に放電電流が流れないように制御するようになっている。これにより、電源62では、充電用ダイオードを介して充電のみが可能になる。なお、スイッチ制御部67は、例えば、放電時に大電流が流れた場合に、放電電流を遮断するようになっている。   Further, the switch control unit 67 controls the switch unit 67 (discharge control switch) to be disconnected so that the discharge current does not flow in the current path of the power source 62 when the battery voltage reaches the overdischarge detection voltage, for example. It is supposed to be. As a result, the power source 62 can only be charged via the charging diode. For example, the switch control unit 67 is configured to cut off the discharge current when a large current flows during discharging.

なお、二次電池では、例えば、過充電検出電圧は4.2V±0.05Vであり、過放電検出電圧は2.4V±0.1Vである。   In the secondary battery, for example, the overcharge detection voltage is 4.2V ± 0.05V, and the overdischarge detection voltage is 2.4V ± 0.1V.

メモリ68は、例えば、不揮発性メモリであるEEPROMなどである。このメモリ68には、例えば、制御部61により演算された数値や、製造工程段階で測定された二次電池の情報(例えば、初期状態の内部抵抗など)が記憶されている。なお、メモリ68に二次電池の満充電容量を記憶させておけば、制御部10が残容量などの情報を把握できる。   The memory 68 is, for example, an EEPROM that is a nonvolatile memory. The memory 68 stores, for example, numerical values calculated by the control unit 61 and information (for example, internal resistance in an initial state) of the secondary battery measured in the manufacturing process stage. If the full charge capacity of the secondary battery is stored in the memory 68, the control unit 10 can grasp information such as the remaining capacity.

温度検出素子69は、電源62の温度を測定して、その測定結果を制御部61に出力するものであり、例えば、サーミスタなどである。   The temperature detection element 69 measures the temperature of the power supply 62 and outputs the measurement result to the control unit 61, and is, for example, a thermistor.

正極端子71および負極端子72は、電池パックを用いて稼働される外部機器(例えばノート型のパーソナルコンピュータなど)または電池パックを充電するために用いられる外部機器(例えば充電器など)に接続される端子である。電源62の充放電は、正極端子71および負極端子72を介して行われる。   The positive electrode terminal 71 and the negative electrode terminal 72 are connected to an external device (for example, a notebook personal computer) operated using a battery pack or an external device (for example, a charger) used to charge the battery pack. Terminal. Charging / discharging of the power source 62 is performed via the positive terminal 71 and the negative terminal 72.

<2−2.電動車両>
図6は、電動車両の一例であるハイブリッド自動車のブロック構成を表している。この電動車両は、例えば、図6に示したように、金属製の筐体73の内部に、制御部74と、エンジン75と、電源76と、駆動用のモータ77と、差動装置78と、発電機79と、トランスミッション80およびクラッチ81と、インバータ82,83と、各種センサ84とを備えている。この他、電動車両は、例えば、差動装置78およびトランスミッション80に接続された前輪用駆動軸85および前輪86と、後輪用駆動軸87および後輪88とを備えている。
<2-2. Electric vehicle>
FIG. 6 shows a block configuration of a hybrid vehicle which is an example of an electric vehicle. For example, as shown in FIG. 6, the electric vehicle includes a control unit 74, an engine 75, a power source 76, a driving motor 77, and a differential device 78 in a metal housing 73. , A generator 79, a transmission 80 and a clutch 81, inverters 82 and 83, and various sensors 84. In addition, the electric vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential device 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.

この電動車両は、エンジン75またはモータ77のいずれか一方を駆動源として走行可能である。エンジン75は、主要な動力源であり、例えば、ガソリンエンジンなどである。エンジン75を動力源とする場合、エンジン75の駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86または後輪88に伝達される。なお、エンジン75の回転力は発電機79にも伝達され、その回転力により発電機79が交流電力を発生させると共に、その交流電力はインバータ83を介して直流電力に変換され、電源76に蓄積される。一方、変換部であるモータ77を動力源とする場合、電源76から供給された電力(直流電力)がインバータ82を介して交流電力に変換され、その交流電力によりモータ77が駆動する。このモータ77により電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86または後輪88に伝達される。   This electric vehicle can run using either the engine 75 or the motor 77 as a drive source. The engine 75 is a main power source, such as a gasoline engine. When the engine 75 is used as a power source, the driving force (rotational force) of the engine 75 is transmitted to the front wheels 86 or the rear wheels 88 via, for example, a differential device 78 that is a driving unit, a transmission 80, and a clutch 81. The rotational force of the engine 75 is also transmitted to the generator 79. The generator 79 generates AC power by the rotational force, and the AC power is converted into DC power via the inverter 83 and stored in the power source 76. Is done. On the other hand, when the motor 77 serving as a conversion unit is used as a power source, power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82, and the motor 77 is driven by the AC power. The driving force (rotational force) converted from electric power by the motor 77 is transmitted to the front wheels 86 or the rear wheels 88 via, for example, a differential device 78, a transmission 80, and a clutch 81, which are driving units.

なお、図示しない制動機構により電動車両が減速すると、その減速時の抵抗力がモータ77に回転力として伝達され、その回転力によりモータ77が交流電力を発生させるようにしてもよい。この交流電力はインバータ82を介して直流電力に変換され、その直流回生電力は電源76に蓄積されることが好ましい。   When the electric vehicle is decelerated by a braking mechanism (not shown), the resistance force at the time of deceleration may be transmitted as a rotational force to the motor 77, and the motor 77 may generate AC power by the rotational force. This AC power is preferably converted into DC power via the inverter 82, and the DC regenerative power is preferably stored in the power source 76.

制御部74は、電動車両全体の動作を制御するものであり、例えば、CPUなどを含んでいる。電源76は、1または2以上の二次電池(図示せず)を含んでいる。この電源76は、外部電源と接続され、その外部電源から電力供給を受けることで電力を蓄積可能になっていてもよい。各種センサ84は、例えば、エンジン75の回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御するために用いられる。この各種センサ84は、例えば、速度センサ、加速度センサ、エンジン回転数センサなどを含んでいる。   The control unit 74 controls the operation of the entire electric vehicle, and includes, for example, a CPU. The power source 76 includes one or more secondary batteries (not shown). The power source 76 may be connected to an external power source and can store power by receiving power supply from the external power source. The various sensors 84 are used, for example, to control the rotational speed of the engine 75 or to control the opening (throttle opening) of a throttle valve (not shown). The various sensors 84 include, for example, a speed sensor, an acceleration sensor, an engine speed sensor, and the like.

なお、上記では電動車両としてハイブリッド自動車について説明したが、電動車両は、エンジン75を用いずに電源76およびモータ77だけを用いて作動する車両(電気自動車)でもよい。   In the above description, the hybrid vehicle is described as the electric vehicle. However, the electric vehicle may be a vehicle (electric vehicle) that operates using only the power source 76 and the motor 77 without using the engine 75.

<2−3.電力貯蔵システム>
図7は、電力貯蔵システムのブロック構成を表している。この電力貯蔵システムは、例えば、図7に示したように、一般住宅または商業用ビルなどの家屋89の内部に、制御部90と、電源91と、スマートメータ92と、パワーハブ93とを備えている。
<2-3. Power storage system>
FIG. 7 shows a block configuration of the power storage system. This power storage system includes, for example, a control unit 90, a power source 91, a smart meter 92, and a power hub 93 in a house 89 such as a general house or a commercial building as shown in FIG. Yes.

ここでは、電源91は、例えば、家屋89の内部に設置された電気機器94に接続されていると共に、家屋89の外部に停車された電動車両96に接続可能になっている。また、電源91は、例えば、家屋89に設置された自家発電機95にパワーハブ93を介して接続されていると共に、スマートメータ92およびパワーハブ93を介して外部の集中型電力系統97に接続可能になっている。   Here, the power source 91 is connected to, for example, an electric device 94 installed inside the house 89 and can be connected to an electric vehicle 96 stopped outside the house 89. The power source 91 is connected to, for example, a private generator 95 installed in a house 89 via a power hub 93 and can be connected to an external centralized power system 97 via the smart meter 92 and the power hub 93. It has become.

なお、電気機器94は、例えば、冷蔵庫、エアコン、テレビまたは給湯器などの1または2以上の家電製品を含んでいる。自家発電機95は、例えば、太陽光発電機または風力発電機などの1種類または2種類以上である。電動車両96は、例えば、電気自動車、電気バイクまたはハイブリッド自動車などの1種類または2種類以上である。集中型電力系統97は、例えば、火力発電所、原子力発電所、水力発電所または風力発電所などの1種類または2種類以上である。   Note that the electric device 94 includes one or more home appliances such as a refrigerator, an air conditioner, a television, or a water heater. The private power generator 95 is, for example, one type or two or more types such as a solar power generator or a wind power generator. The electric vehicle 96 is, for example, one type or two or more types such as an electric vehicle, an electric motorcycle, or a hybrid vehicle. The centralized power system 97 is, for example, one type or two or more types such as a thermal power plant, a nuclear power plant, a hydroelectric power plant, or a wind power plant.

制御部90は、電力貯蔵システム全体の動作(電源91の使用状態を含む)を制御するものであり、例えば、CPUなどを含んでいる。電源91は、1または2以上の二次電池(図示せず)を含んでいる。スマートメータ92は、例えば、電力需要側の家屋89に設置されるネットワーク対応型の電力計であり、電力供給側と通信可能になっている。これに伴い、スマートメータ92は、例えば、必要に応じて外部と通信しながら、家屋89における需要・供給のバランスを制御し、効率的で安定したエネルギー供給を可能にするようになっている。   The control unit 90 controls the operation of the entire power storage system (including the usage state of the power supply 91), and includes, for example, a CPU. The power source 91 includes one or more secondary batteries (not shown). The smart meter 92 is, for example, a network-compatible power meter installed in a house 89 on the power demand side, and can communicate with the power supply side. Accordingly, for example, the smart meter 92 controls the balance between supply and demand in the house 89 while communicating with the outside as necessary, thereby enabling efficient and stable energy supply.

この電力貯蔵システムでは、例えば、外部電源である集中型電力系統97からスマートメータ92およびパワーハブ93を介して電源91に電力が蓄積されると共に、独立電源である太陽光発電機95からパワーハブ93を介して電源91に電力が蓄積される。この電源91に蓄積された電力は、制御部91の指示に応じて、必要に応じて電気機器94または電動車両96に供給されるため、その電気機器94が稼働可能になると共に、電動車両96が充電可能になる。すなわち、電力貯蔵システムは、電源91を用いて、家屋89内における電力の蓄積および供給を可能にするシステムである。   In this power storage system, for example, power is accumulated in the power source 91 from the centralized power system 97 that is an external power source via the smart meter 92 and the power hub 93, and the power hub 93 is connected from the solar power generator 95 that is an independent power source. Power is accumulated in the power source 91 through the power source 91. The electric power stored in the power source 91 is supplied to the electric device 94 or the electric vehicle 96 as required in accordance with an instruction from the control unit 91, so that the electric device 94 can be operated and the electric vehicle 96. Can be charged. In other words, the power storage system is a system that makes it possible to store and supply power in the house 89 using the power source 91.

電源91に蓄積された電力は、任意に利用可能である。このため、例えば、電気使用量が安い深夜に集中型電力系統97から電源91に電力を蓄積しておき、その電源91に蓄積しておいた電力を電気使用量が高い日中に用いることができる。   The power stored in the power supply 91 can be used arbitrarily. For this reason, for example, power is stored in the power source 91 from the centralized power system 97 at midnight when the amount of electricity used is low, and the power stored in the power source 91 is used during the day when the amount of electricity used is high. it can.

なお、上記した電力貯蔵システムは、1戸(1世帯)ごとに設置されていてもよいし、複数戸(複数世帯)ごとに設置されていてもよい。   The power storage system described above may be installed for each house (one household), or may be installed for each of a plurality of houses (multiple households).

<2−4.電動工具>
図8は、電動工具のブロック構成を表している。この電動工具は、例えば、図8に示したように、電動ドリルであり、プラスチック材料などにより形成された工具本体98の内部に、制御部99と、電源100とを備えている。この工具本体98には、例えば、可動部であるドリル部101が稼働(回転)可能に取り付けられている。
<2-4. Electric tool>
FIG. 8 shows a block configuration of the electric power tool. For example, as illustrated in FIG. 8, the electric power tool is an electric drill, and includes a control unit 99 and a power source 100 inside a tool main body 98 formed of a plastic material or the like. For example, a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).

制御部99は、電動工具全体の動作(電源100の使用状態を含む)を制御するものであり、例えば、CPUなどを含んでいる。電源100は、1または2以上の二次電池(図示せず)を含んでいる。この制御物99は、図示しない動作スイッチの操作に応じて、必要に応じて電源100からドリル部101に電力を供給して可動させるようになっている。   The control part 99 controls operation | movement (including the use condition of the power supply 100) of the whole electric tool, and contains CPU etc., for example. The power supply 100 includes one or more secondary batteries (not shown). This controlled object 99 is moved by supplying electric power from the power supply 100 to the drill unit 101 as necessary in accordance with operation of an operation switch (not shown).

本技術の具体的な実施例について、詳細に説明する。   Specific examples of the present technology will be described in detail.

(実験例1−1〜1−14)
以下の手順により、図1および図2に示した円筒型のリチウムイオン二次電池を作製した。
(Experimental Examples 1-1 to 1-14)
The cylindrical lithium ion secondary battery shown in FIGS. 1 and 2 was produced by the following procedure.

正極21を作製する場合には、最初に、炭酸リチウム(Li2 CO3 )と炭酸コバルト(CoCO3 )とをLi2 CO3 :CoCO3 =0.5:1のモル比で混合した。続いて、空気中で混合物を焼成(900℃×5時間)して、リチウムコバルト複合酸化物(LiCoO2 )を得た。続いて、正極活物質(LiCoO2 )91質量部と、正極結着剤(ポリフッ化ビニリデン:PVDF)3質量部と、正極導電剤(黒鉛)6質量部とを混合して、正極合剤とした。続いて、正極合剤を有機溶剤(N−メチル−2−ピロリドン:NMP)に分散させて、ペースト状の正極合剤スラリーとした。続いて、コーティング装置を用いて帯状の正極集電体21A(20μm厚のAl箔)の両面に正極合剤スラリーを均一に塗布してから乾燥させて、正極活物質層21Bを形成した。最後に、ロールプレス機を用いて正極活物質層21Bを圧縮成型した。 In producing the positive electrode 21, first, lithium carbonate (Li 2 CO 3 ) and cobalt carbonate (CoCO 3 ) were mixed at a molar ratio of Li 2 CO 3 : CoCO 3 = 0.5: 1. Subsequently, the mixture was fired in air (900 ° C. × 5 hours) to obtain a lithium cobalt composite oxide (LiCoO 2 ). Subsequently, 91 parts by mass of a positive electrode active material (LiCoO 2 ), 3 parts by mass of a positive electrode binder (polyvinylidene fluoride: PVDF), and 6 parts by mass of a positive electrode conductive agent (graphite) were mixed, did. Subsequently, the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone: NMP) to obtain a paste-like positive electrode mixture slurry. Subsequently, a positive electrode mixture slurry was uniformly applied to both surfaces of a belt-like positive electrode current collector 21A (20 μm thick Al foil) using a coating apparatus, and then dried to form a positive electrode active material layer 21B. Finally, the positive electrode active material layer 21B was compression molded using a roll press.

負極22を作製する場合には、負極活物質として金属系材料(Si)を用いて蒸着法により負極活物質層22Bを形成した。この場合には、電子ビーム蒸着法を用いて負極集電体22A(15μm厚の電解Cu箔)の両面に負極活物質(Si)を堆積させた。なお、10回の堆積工程を繰り返して、負極集電体22Aの片面側における負極活物質層22Bの厚さを6μmとした。   When producing the negative electrode 22, the negative electrode active material layer 22B was formed by the vapor deposition method using the metal type material (Si) as a negative electrode active material. In this case, the negative electrode active material (Si) was deposited on both surfaces of the negative electrode current collector 22A (15 μm thick electrolytic Cu foil) by using an electron beam evaporation method. In addition, the deposition process was repeated 10 times, and the thickness of the negative electrode active material layer 22B on one side of the negative electrode current collector 22A was set to 6 μm.

比較のために、負極活物質として非金属系材料(炭素材料:C)を用いて塗布法により負極活物質層22Bを形成した。この場合には、負極活物質(人造黒鉛)90質量部と、負極結着剤(PVDF)10質量部とを混合して、負極合剤とした。続いて、負極合剤を有機溶剤(NMP)に分散させて、ペースト状の負極合剤スラリーとした。続いて、コーティング装置を用いて帯状の負極集電体22Aの両面に負極合剤スラリーを均一に塗布してから乾燥させて、負極活物質層22Bを形成した。最後に、ロールプレス機を用いて負極活物質層22Bを圧縮成型した。   For comparison, a negative electrode active material layer 22B was formed by a coating method using a nonmetallic material (carbon material: C) as a negative electrode active material. In this case, 90 parts by mass of the negative electrode active material (artificial graphite) and 10 parts by mass of the negative electrode binder (PVDF) were mixed to obtain a negative electrode mixture. Subsequently, the negative electrode mixture was dispersed in an organic solvent (NMP) to obtain a paste-like negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry was uniformly applied to both surfaces of the strip-shaped negative electrode current collector 22A using a coating apparatus and then dried to form the negative electrode active material layer 22B. Finally, the negative electrode active material layer 22B was compression molded using a roll press.

電解液を調製する場合には、溶媒(炭酸エチレン(EC)および炭酸ジメチル(DMC))に電解質塩(LiPF6 )を溶解させたのち、表1に示したように、必要に応じて不飽和環状炭酸エステルを加えた。この場合には、溶媒の組成を重量比でEC:DMC=50:50、電解質塩の含有量を溶媒に対して1mol/kgとした。 When preparing an electrolytic solution, after dissolving an electrolyte salt (LiPF 6 ) in a solvent (ethylene carbonate (EC) and dimethyl carbonate (DMC)), as shown in Table 1, it is unsaturated as necessary. Cyclic carbonate was added. In this case, the composition of the solvent was EC: DMC = 50: 50 by weight, and the content of the electrolyte salt was 1 mol / kg with respect to the solvent.

二次電池を組み立てる場合には、最初に、正極集電体21AにAl製の正極リード25を溶接すると共に、負極集電体22AにNi製の負極リード26を溶接した。続いて、セパレータ23(25μm厚の微多孔性ポリプロピレンフィルム)を介して正極21と負極22とを積層してから巻回したのち、粘着テープで巻き終わり部分を固定して巻回電極体20を作製した。続いて、巻回電極体20の巻回中心にセンターピン24を挿入した。続いて、Ni鍍金された鉄製の電池缶11の内部に、巻回電極体20を一対の絶縁板12,13で挟みながら収納した。この場合には、正極リード25の一端部を安全弁機構15に溶接すると共に、負極リード26の一端部を電池缶11に溶接した。続いて、減圧方式により電池缶11の内部に電解液を注入してセパレータ23に含浸させた。最後に、ガスケット17を介して電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16をかしめた。これにより、円筒型の二次電池が完成した。なお、二次電池を作製する場合には、正極活物質層21Bの厚さを調節して、満充電時にリチウム金属が負極22に析出しないようにした。   When assembling the secondary battery, first, the positive electrode lead 25 made of Al was welded to the positive electrode current collector 21A, and the negative electrode lead 26 made of Ni was welded to the negative electrode current collector 22A. Subsequently, the positive electrode 21 and the negative electrode 22 are laminated via a separator 23 (a microporous polypropylene film having a thickness of 25 μm) and then wound, and then the winding end portion is fixed with an adhesive tape. Produced. Subsequently, the center pin 24 was inserted into the winding center of the wound electrode body 20. Subsequently, the wound electrode body 20 was housed in a Ni-plated iron battery can 11 while being sandwiched between a pair of insulating plates 12 and 13. In this case, one end of the positive electrode lead 25 was welded to the safety valve mechanism 15 and one end of the negative electrode lead 26 was welded to the battery can 11. Subsequently, an electrolytic solution was injected into the battery can 11 by a reduced pressure method to impregnate the separator 23. Finally, the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 were caulked to the opening end of the battery can 11 through the gasket 17. Thereby, a cylindrical secondary battery was completed. In the case of producing a secondary battery, the thickness of the positive electrode active material layer 21B was adjusted so that lithium metal did not deposit on the negative electrode 22 during full charge.

二次電池の電池特性(サイクル特性および保存特性)を調べたところ、表1に示した結果が得られた。   When the battery characteristics (cycle characteristics and storage characteristics) of the secondary battery were examined, the results shown in Table 1 were obtained.

サイクル特性を調べる場合には、電池状態を安定化させるために常温環境中(23℃)で二次電池を1サイクル充放電させたのち、同環境中で二次電池をさらに1サイクル充放電させて放電容量を測定した。続いて、同環境中でサイクル数の合計が100サイクルに到達するまで充放電を繰り返して放電容量を測定した。この結果から、サイクル維持率(%)=(100サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充電時には、0.2Cの電流で上限電圧4.2Vまで定電流定電圧充電し、さらに定電圧で電流が0.05Cに到達するまで充電した。放電時には、0.2Cの電流で終始電圧2.5Vに到達するまで定電流放電した。なお、「0.2C」および「0.05C」とは、それぞれ電池容量(理論容量)を5時間および20時間で放電しきる電流値である。   When investigating cycle characteristics, charge and discharge the secondary battery for one cycle in a normal temperature environment (23 ° C.) to stabilize the battery state, and then charge and discharge the secondary battery for another cycle in the same environment. The discharge capacity was measured. Subsequently, charging and discharging were repeated until the total number of cycles reached 100 in the same environment, and the discharge capacity was measured. From this result, cycle retention ratio (%) = (discharge capacity at the 100th cycle / discharge capacity at the second cycle) × 100 was calculated. At the time of charging, the battery was charged at a constant current and a constant voltage up to an upper limit voltage of 4.2 V at a current of 0.2 C, and further charged at a constant voltage until the current reached 0.05 C. At the time of discharging, constant current discharging was performed at a current of 0.2 C until the voltage reached 2.5 V throughout. “0.2 C” and “0.05 C” are current values at which the battery capacity (theoretical capacity) can be discharged in 5 hours and 20 hours, respectively.

保存特性を調べる場合には、サイクル特性を調べた場合と同様の手順により電池状態を安定化した二次電池を用いて、常温環境中(23℃)で二次電池を1サイクル充放電させて放電容量を測定した。続いて、二次電池を再び充電させた状態で恒温槽中(80℃)に10日間保存したのち、常温環境中(23℃)で二次電池を放電させて放電容量を測定した。この結果から、保存維持率(%)=(保存後の放電容量/保存前の放電容量)×100を算出した。充放電条件は、サイクル特性を調べた場合と同様である。   When examining the storage characteristics, charge and discharge the secondary battery in a normal temperature environment (23 ° C.) for one cycle using a secondary battery whose battery state is stabilized by the same procedure as when examining the cycle characteristics. The discharge capacity was measured. Subsequently, after the secondary battery was charged again and stored in a constant temperature bath (80 ° C.) for 10 days, the secondary battery was discharged in a normal temperature environment (23 ° C.) to measure the discharge capacity. From this result, storage retention ratio (%) = (discharge capacity after storage / discharge capacity before storage) × 100 was calculated. The charge / discharge conditions are the same as when the cycle characteristics are examined.

Figure 2013131395
Figure 2013131395

負極活物質として非金属系材料(炭素材料)を用いた場合には、電解液が不飽和環状炭酸エステルを含有しているか否かにかかわらず、高いサイクル維持率および保存維持率が得られた。すなわち、炭素材料を用いた場合には、電解液中における不飽和環状炭酸エステルの有無に応じてサイクル維持率および保存維持率に変化が生じなかった。   When a nonmetallic material (carbon material) was used as the negative electrode active material, a high cycle retention rate and storage retention rate were obtained regardless of whether or not the electrolyte contained an unsaturated cyclic carbonate. . That is, when the carbon material was used, the cycle maintenance ratio and the storage maintenance ratio did not change depending on the presence or absence of the unsaturated cyclic carbonate in the electrolytic solution.

これに対して、金属系材料を用いた場合には、電解液が不飽和環状炭酸エステルを含有していると、その不飽和環状炭酸エステルを含有していない場合と比較して、サイクル維持率および保存維持率の双方が高くなった。   On the other hand, in the case of using a metal-based material, when the electrolytic solution contains an unsaturated cyclic carbonate, the cycle retention rate is lower than when the unsaturated cyclic carbonate is not contained. Both the storage and maintenance rate increased.

これらの結果は、以下のことを表している。低反応性の炭素材料を用いた場合には、その炭素材料が電解液の化学的安定性(分解反応の進行性)にほとんど影響を与えない。これにより、不飽和環状炭酸エステルの有無によらずに高いサイクル維持率および保存維持率が得られるため、その不飽和環状炭酸エステルを用いてもサイクル維持率および保存維持率が改善されない。これに対して、高反応性の金属系材料を用いた場合には、その金属系材料が電解液の化学的安定性に大きな影響を及ぼす。このため、不飽和環状炭酸エステルを用いないと低いサイクル維持率および保存維持率しか得られないのに対して、その不飽和環状炭酸エステルを用いるとサイクル維持率および保存維持率が大きく改善される。   These results represent the following. When a low-reactivity carbon material is used, the carbon material hardly affects the chemical stability of the electrolyte (progress of decomposition reaction). Thereby, since a high cycle maintenance rate and a storage maintenance rate are obtained regardless of the presence or absence of the unsaturated cyclic carbonate ester, even if the unsaturated cyclic carbonate ester is used, the cycle maintenance rate and the storage maintenance rate are not improved. On the other hand, when a highly reactive metal material is used, the metal material greatly affects the chemical stability of the electrolytic solution. For this reason, if the unsaturated cyclic carbonate is not used, only a low cycle maintenance rate and a storage maintenance rate can be obtained, whereas if the unsaturated cyclic carbonate is used, the cycle maintenance rate and the storage maintenance rate are greatly improved. .

特に、不飽和環状炭酸エステルを用いた場合には、その含有量が0.01重量%〜10重量%、さらに0.01重量%〜5重量%であると、サイクル維持率および保存維持率がより高くなった。   In particular, when an unsaturated cyclic carbonate is used, if the content is 0.01 wt% to 10 wt%, and further 0.01 wt% to 5 wt%, the cycle maintenance rate and the storage maintenance rate are Became higher.

(実験例2−1〜2−16)
表2に示したように溶媒の組成を変更したことを除き、実験例1−5と同様の手順により二次電池を作製して諸特性を調べた。
(Experimental examples 2-1 to 2-16)
Except for changing the composition of the solvent as shown in Table 2, a secondary battery was produced in the same procedure as in Experimental Example 1-5, and various characteristics were examined.

ECと組み合わせた溶媒は、炭酸ジエチル(DEC)、炭酸エチルメチル(EMC)または炭酸プロピル(PC)である。この他、他の不飽和環状炭酸エステルは炭酸ビニレン(VC)、ハロゲン化炭酸エステルは4−フルオロ−1,3−ジオキソラン−2−オン(FEC)、シス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン(c−DFEC)、トランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン(t−DFEC)、または炭酸ビス(フルオロメチル)(DFDMC)である。また、スルトンはプロペンスルトン(PRS)、酸無水物は無水コハク酸(SCAH)または無水スルホプロピオン酸(PSAH)である。   The solvent combined with EC is diethyl carbonate (DEC), ethyl methyl carbonate (EMC) or propyl carbonate (PC). In addition, other unsaturated cyclic carbonates are vinylene carbonate (VC), halogenated carbonates are 4-fluoro-1,3-dioxolan-2-one (FEC), cis-4,5-difluoro-1,3 -Dioxolan-2-one (c-DFEC), trans-4,5-difluoro-1,3-dioxolan-2-one (t-DFEC), or bis (fluoromethyl) carbonate (DFDMC). The sultone is propene sultone (PRS), and the acid anhydride is succinic anhydride (SCAH) or sulfopropionic anhydride (PSAH).

溶媒の組成は、重量比でEC:PC:DMC=10:20:70である。溶媒中の含有量は、VCが2重量%、FEC、c−DFEC、t−DFECまたはDFDMCが5重量%、PRS、SCAHまたはPSAHが1重量%である。   The composition of the solvent is EC: PC: DMC = 10: 20: 70 by weight. The content in the solvent is 2% by weight of VC, 5% by weight of FEC, c-DFEC, t-DFEC or DFDMC, and 1% by weight of PRS, SCAH or PSAH.

Figure 2013131395
Figure 2013131395

溶媒の組成を変更しても、高いサイクル維持率および保存維持率が得られた。特に、電解液が他の不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルトンまたは酸無水物を含んでいると、サイクル維持率および保存維持率の一方または双方がより高くなった。   Even when the composition of the solvent was changed, a high cycle retention ratio and storage retention ratio were obtained. In particular, when the electrolytic solution contained other unsaturated cyclic carbonate, halogenated carbonate, sultone, or acid anhydride, one or both of the cycle maintenance ratio and the storage maintenance ratio were higher.

(実験例3−1〜3−3)
表3に示したように電解質塩の組成を変更したことを除き、実験例1−5と同様の手順により二次電池を作製して諸特性を調べた。
(Experimental examples 3-1 to 3-3)
Except for changing the composition of the electrolyte salt as shown in Table 3, a secondary battery was prepared by the same procedure as in Experimental Example 1-5, and various characteristics were examined.

LiPF6 と組み合わせた電解質塩は、四フッ化ホウ酸リチウム(LiBF4 )、式(8−6)に示したビス[オキソラト−O,O’]ホウ酸リチウム(LiBOB)、またはビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3 SO2 2 :LiTFSI)である。この場合には、LiPF6 の含有量を溶媒に対して0.9mol/kg、LiBF4 等の含有量を非水溶媒に対して0.1mol/kgとした。 The electrolyte salt combined with LiPF 6 is lithium tetrafluoroborate (LiBF 4 ), bis [oxolato-O, O ′] lithium borate (LiBOB) represented by formula (8-6), or bis (trifluoromethane) Sulfonyl) imidolithium (LiN (CF 3 SO 2 ) 2 : LiTFSI). In this case, the content of LiPF 6 was 0.9 mol / kg with respect to the solvent, and the content of LiBF 4 and the like was 0.1 mol / kg with respect to the nonaqueous solvent.

Figure 2013131395
Figure 2013131395

電解質塩の組成を変更しても、高いサイクル維持率および保存維持率が得られた。特に、電解液がLiBF4 などの他の電解質塩を含んでいると、サイクル維持率および保存維持率がより高くなった。 Even when the composition of the electrolyte salt was changed, a high cycle retention rate and storage retention rate were obtained. In particular, when the electrolytic solution contained other electrolyte salt such as LiBF 4 , the cycle maintenance ratio and the storage maintenance ratio were higher.

(実験例4−1〜4−12,5−1〜5−16,6−1〜6−3)
表4〜表6に示したように、焼結法を用いて負極活物質層22Bを形成したことを除き、実験例1−1〜1−12、2−1〜2−16,3−1〜3−3と同様の手順により二次電池を作製して諸特性を調べた。
(Experimental examples 4-1 to 4-12, 5-1 to 5-16, 6-1 to 6-3)
As shown in Tables 4 to 6, Experimental Examples 1-1 to 1-12, 2-1 to 2-16, and 3-1 except that the anode active material layer 22B was formed using a sintering method. A secondary battery was prepared by the same procedure as in 3-3, and various characteristics were examined.

負極22を作製する場合には、負極活物質(Si粉末)90質量部と、負極結着剤(PVDF)10質量部とを混合して、負極合剤とした。続いて、負極合剤を有機溶剤(NMP)に分散させて、ペースト状の負極合剤スラリーとした。続いて、コーティング装置を用いて帯状の負極集電体22Aの両面に負極合剤スラリーを均一に塗布したのち、焼成(350℃×3時間)した。   In producing the negative electrode 22, 90 parts by mass of a negative electrode active material (Si powder) and 10 parts by mass of a negative electrode binder (PVDF) were mixed to obtain a negative electrode mixture. Subsequently, the negative electrode mixture was dispersed in an organic solvent (NMP) to obtain a paste-like negative electrode mixture slurry. Then, after apply | coating the negative mix slurry uniformly on both surfaces of strip | belt-shaped negative electrode collector 22A using a coating apparatus, it baked (350 degreeC * 3 hours).

Figure 2013131395
Figure 2013131395

Figure 2013131395
Figure 2013131395

Figure 2013131395
Figure 2013131395

負極活物質層22Bの形成方法を変更しても、表1〜表3と同様の結果が得られた。すなわち、電解液が不飽和環状炭酸エステルを含有していると、高いサイクル維持率および保存維持率が得られた。これ以外の傾向は、表1〜表3の結果について説明した場合と同様であるため、その説明を省略する。   Even when the formation method of the negative electrode active material layer 22B was changed, the same results as in Tables 1 to 3 were obtained. That is, when the electrolytic solution contained an unsaturated cyclic carbonate, a high cycle retention rate and storage retention rate were obtained. Since the tendency other than this is the same as the case where the result of Table 1-Table 3 was demonstrated, the description is abbreviate | omitted.

(実験例7−1〜7−4)
表7に示したように、金属系材料としてSnCoC含有材料(SnCoC)を用いたことを除き、実験例1−5,1−12,2−6,2−15と同様の手順により二次電池を作製して諸特性を調べた。
(Experimental examples 7-1 to 7-4)
As shown in Table 7, the secondary battery was manufactured in the same procedure as in Experimental Examples 1-5, 1-12, 2-6, and 2-15, except that a SnCoC-containing material (SnCoC) was used as the metal material. And various characteristics were investigated.

負極22を作製する場合には、最初に、Co粉末およびSn粉末を合金化してCoSn粉末としたのち、C粉末を加えて乾式混合した。続いて、伊藤製作所製の遊星ボールミルの反応容器中に、上記した混合物10gを直径9mmの鋼玉約400gと一緒にセットした。続いて、反応容器中をAr雰囲気に置換したのち、毎分250回転の回転速度による10分間の運転と10分間の休止とを運転時間の合計が20時間になるまで繰り返した。続いて、反応容器を室温まで冷却してSnCoCを取り出したのち、280メッシュのふるいを通して粗粉を取り除いた。   When producing the negative electrode 22, first, the Co powder and the Sn powder were alloyed to form a CoSn powder, and then the C powder was added and dry mixed. Subsequently, 10 g of the above mixture was set together with about 400 g of steel balls having a diameter of 9 mm in a reaction vessel of a planetary ball mill manufactured by Ito Seisakusho. Subsequently, after replacing the inside of the reaction vessel with an Ar atmosphere, the operation for 10 minutes and the pause for 10 minutes at a rotation speed of 250 revolutions per minute were repeated until the total operation time reached 20 hours. Subsequently, after the reaction vessel was cooled to room temperature and SnCoC was taken out, coarse powder was removed through a 280 mesh sieve.

得られたSnCoCの組成を分析したところ、Snの含有量は49.5質量%、Coの含有量は29.7質量%、Cの含有量は19.8質量%、SnおよびCoの割合(Co/(Sn+Co))は37.5質量%であった。この際、SnおよびCoの含有量は誘導結合プラズマ(Inductively Coupled Plasma:ICP)発光分析で測定し、Cの含有量は炭素・硫黄分析装置で測定した。また、X線回折法によりSnCoCを分析したところ、2θ=20°〜50°の範囲に半値幅を有する回折ピークが観察された。さらに、XPSによりSnCoC含有材料を分析したところ、図9に示したように、ピークP1が得られた。このピークP1を解析すると、表面汚染炭素のピークP2と、それよりも低エネルギー側(284.5eVよりも低い領域)にSnCoC中におけるC1sのピークP3とが得られた。この結果から、SnCoC中のCは他の元素と結合していることが確認された。   When the composition of the obtained SnCoC was analyzed, the content of Sn was 49.5% by mass, the content of Co was 29.7% by mass, the content of C was 19.8% by mass, and the ratio of Sn and Co ( Co / (Sn + Co)) was 37.5% by mass. At this time, the Sn and Co contents were measured by inductively coupled plasma (ICP) emission analysis, and the C content was measured by a carbon / sulfur analyzer. Further, when SnCoC was analyzed by the X-ray diffraction method, a diffraction peak having a half width in the range of 2θ = 20 ° to 50 ° was observed. Further, when the SnCoC-containing material was analyzed by XPS, a peak P1 was obtained as shown in FIG. When this peak P1 was analyzed, a peak P2 of surface contamination carbon and a peak P3 of C1s in SnCoC on the lower energy side (region lower than 284.5 eV) were obtained. From this result, it was confirmed that C in SnCoC was bonded to other elements.

SnCoCを得たのち、負極活物質(SnCoC)80質量部と、負極結着剤(PVDF)8質量部と、負極導電剤(グラファイト11質量部およびアセチレンブラック1質量部)12質量部とを混合して、負極合剤とした。続いて、負極合剤を有機溶剤(NMP)に分散させて、ペースト状の負極合剤スラリーとした。続いて、コーティング装置を用いて負極集電体22Aの両面に負極合剤スラリーを均一に塗布してから乾燥させて負極活物質層22Bを形成したのち、ロールプレス機を用いて負極活物質層22Bを圧縮成型した。   After obtaining SnCoC, 80 parts by mass of a negative electrode active material (SnCoC), 8 parts by mass of a negative electrode binder (PVDF), and 12 parts by mass of a negative electrode conductive agent (11 parts by mass of graphite and 1 part by mass of acetylene black) are mixed. Thus, a negative electrode mixture was obtained. Subsequently, the negative electrode mixture was dispersed in an organic solvent (NMP) to obtain a paste-like negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry was uniformly applied to both surfaces of the negative electrode current collector 22A using a coating apparatus and then dried to form the negative electrode active material layer 22B, and then the negative electrode active material layer was formed using a roll press. 22B was compression molded.

Figure 2013131395
Figure 2013131395

金属系材料の種類を変更しても、表1および表2と同様の結果が得られた。すなわち、電解液が不飽和環状炭酸エステルを含有していると、高いサイクル維持率および保存維持率が得られた。これ以外の傾向は、表1および表2の結果について説明した場合と同様であるため、その説明を省略する。   Even when the type of the metal-based material was changed, the same results as in Tables 1 and 2 were obtained. That is, when the electrolytic solution contained an unsaturated cyclic carbonate, a high cycle retention rate and storage retention rate were obtained. The other tendencies are the same as those described for the results of Table 1 and Table 2, and thus the description thereof is omitted.

以上、実施形態および実施例を挙げて本技術について説明したが、本技術は実施形態および実施例で説明した態様に限定されず、種々の変形が可能である。例えば、二次電池の種類としてリチウムイオン二次電池について説明したが、これに限られない。本技術の二次電池は、負極の容量がリチウムイオンの吸蔵放出による容量とリチウム金属の析出溶解に伴う容量とを含み、かつ、それらの容量の和により電池容量が表される二次電池についても、同様に適用可能である。この場合には、負極活物質として、リチウムイオンを吸蔵放出可能である負極材料が用いられると共に、その負極材料の充電可能な容量は、正極の放電容量よりも小さくなるように設定される。   Although the present technology has been described with reference to the embodiments and examples, the present technology is not limited to the aspects described in the embodiments and examples, and various modifications can be made. For example, a lithium ion secondary battery has been described as a type of secondary battery, but the present invention is not limited to this. The secondary battery of the present technology is a secondary battery in which the capacity of the negative electrode includes a capacity due to insertion and extraction of lithium ions and a capacity due to precipitation and dissolution of lithium metal, and the battery capacity is represented by the sum of these capacities. Is equally applicable. In this case, a negative electrode material capable of occluding and releasing lithium ions is used as the negative electrode active material, and the chargeable capacity of the negative electrode material is set to be smaller than the discharge capacity of the positive electrode.

また、電池構造が円筒型またはラミネートフィルム型であると共に、電池素子が巻回構造を有する場合を例に挙げて説明したが、これに限られない。本技術の二次電池は、角型、コイン型またはボタン型などの他の電池構造を有する場合や、電池素子が積層構造などの他の構造を有する場合についても、同様に適用可能である。   In addition, the case where the battery structure is a cylindrical type or a laminate film type and the battery element has a winding structure has been described as an example, but the present invention is not limited thereto. The secondary battery of the present technology can be similarly applied to a case where the battery has another battery structure such as a square shape, a coin shape, or a button shape, and a case where the battery element has another structure such as a laminated structure.

また、電極反応物質としてLiを用いる場合について説明したが、これに限られない。この電極反応物質は、例えば、NaまたはKなどの他の1族元素や、MgまたはCaなどの2族元素や、Alなどの他の軽金属でもよい。本技術の効果は、電極反応物質の種類に依存せずに得られるはずであるため、その電極反応物質の種類を変更しても同様の効果を得ることができる。   Moreover, although the case where Li was used as an electrode reaction material was demonstrated, it is not restricted to this. The electrode reactant may be, for example, another group 1 element such as Na or K, a group 2 element such as Mg or Ca, or another light metal such as Al. Since the effect of the present technology should be obtained without depending on the type of the electrode reactant, the same effect can be obtained even if the type of the electrode reactant is changed.

また、不飽和環状炭酸エステルの含有量について、実施例の結果から導き出された適正範囲を説明している。しかしながら、その説明は、含有量が上記した範囲外となる可能性を完全に否定するものではない。すなわち、上記した適正範囲は、あくまで本技術の効果を得る上で特に好ましい範囲であるため、本技術の効果が得られるのであれば、上記した範囲から含有量が多少外れてもよい。   Moreover, the appropriate range derived | led-out from the result of the Example is demonstrated about content of unsaturated cyclic carbonate. However, the explanation does not completely deny the possibility that the content will be outside the above range. In other words, the appropriate range described above is a particularly preferable range in obtaining the effects of the present technology to the end, and therefore the content may be slightly deviated from the above ranges as long as the effects of the present technology can be obtained.

なお、本技術は以下のような構成を取ることも可能である。
(1)
正極および負極と共に電解液を備え、
前記負極は、SiおよびSnのうちの少なくとも一方を構成元素として含む材料を含有し、
前記電解液は、下記の式(1)で表される不飽和環状炭酸エステルを含有する、
二次電池。

Figure 2013131395
(Xはm個の>C=CR1−R2とn個の>CR3R4とが任意の順に結合された2価の基である。R1〜R4は水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基、1価の酸素含有炭化水素基または1価のハロゲン化酸素含有炭化水素基であり、R1〜R4のうちの任意の2つ以上は互いに結合されていてもよい。mおよびnはm≧1およびn≧0を満たす。)
(2)
前記ハロゲン基はフッ素基、塩素基、臭素基またはヨウ素基であり、
前記1価の炭化水素基、1価のハロゲン化炭化水素基、1価の酸素含有炭化水素基または1価のハロゲン化酸素含有炭化水素基は炭素数=1〜12のアルキル基、炭素数=2〜12のアルケニル基、炭素数=2〜12のアルキニル基、炭素数=6〜18のアリール基、炭素数=3〜18のシクロアルキル基、炭素数=1〜12のアルコキシ基、それらのうちの2つ以上が結合された基、またそれらの少なくとも一部の水素基がハロゲン基により置換された基である、
上記(1)に記載の二次電池。
(3)
前記不飽和環状炭酸エステルは下記の式(2)または式(3)で表される、
上記(1)または(2)に記載の二次電池。
Figure 2013131395
(R5〜R10は水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基、1価の酸素含有炭化水素基または1価のハロゲン化酸素含有炭化水素基であり、R5およびR6は互いに結合されていてもよいし、R7〜R10のうちの任意の2つ以上は互いに結合されていてもよい。)
(4)
前記不飽和環状炭酸エステルは下記の式(1−1)〜式(1−56)で表される、
上記(1)または(2)に記載の二次電池。
Figure 2013131395
Figure 2013131395
Figure 2013131395
Figure 2013131395
(5)
前記電解液中における前記不飽和環状炭酸エステルの含有量は0.01重量%〜10重量%である、
上記(1)ないし(4)のいずれかに記載の二次電池。
(6)
前記SiおよびSnのうちの少なくとも一方を構成元素として含む材料は、Siの単体、合金および化合物、ならびにSnの単体、合金および化合物のうちの少なくとも1種である、
上記(1)ないし(5)のいずれかに記載の二次電池。
(7)
リチウムイオン二次電池である、
上記(1)ないし(6)のいずれかに記載の二次電池。
(8)
上記(1)ないし(7)のいずれかに記載の二次電池と、
その二次電池の使用状態を制御する制御部と、
その制御部の指示に応じて前記二次電池の使用状態を切り換えるスイッチ部と
を備えた、電池パック。
(9)
上記(1)ないし(7)のいずれかに記載の二次電池と、
その二次電池から供給された電力を駆動力に変換する変換部と、
その駆動力に応じて駆動する駆動部と、
前記二次電池の使用状態を制御する制御部と
を備えた、電動車両。
(10)
上記(1)ないし(7)のいずれかに記載の二次電池と、
その二次電池から電力を供給される1または2以上の電気機器と、
前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
を備えた、電力貯蔵システム。
(11)
上記(1)ないし(7)のいずれかに記載の二次電池と、
その二次電池から電力を供給される可動部と
を備えた、電動工具。
(12)
上記(1)ないし(7)のいずれかに記載の二次電池を電力供給源として備えた、電子機器。 In addition, this technique can also take the following structures.
(1)
An electrolyte is provided together with the positive electrode and the negative electrode,
The negative electrode contains a material containing at least one of Si and Sn as a constituent element,
The electrolytic solution contains an unsaturated cyclic carbonate represented by the following formula (1).
Secondary battery.
Figure 2013131395
(X is a divalent group in which m> C═CR 1 -R 2 and n> CR 3 R 4 are bonded in any order. R 1 to R 4 are a hydrogen group, a halogen group, a monovalent hydrocarbon group, It is a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group or a monovalent halogenated oxygen-containing hydrocarbon group, and any two or more of R1 to R4 may be bonded to each other. M and n satisfy m ≧ 1 and n ≧ 0.)
(2)
The halogen group is a fluorine group, a chlorine group, a bromine group or an iodine group;
The monovalent hydrocarbon group, monovalent halogenated hydrocarbon group, monovalent oxygen-containing hydrocarbon group or monovalent halogenated oxygen-containing hydrocarbon group is an alkyl group having 1 to 12 carbon atoms, carbon number = An alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, an aryl group having 6 to 18 carbon atoms, a cycloalkyl group having 3 to 18 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and those A group in which two or more of them are bonded, or a group in which at least some of the hydrogen groups are substituted with a halogen group,
The secondary battery as described in said (1).
(3)
The unsaturated cyclic carbonate is represented by the following formula (2) or formula (3).
The secondary battery according to (1) or (2) above.
Figure 2013131395
(R5 to R10 are a hydrogen group, a halogen group, a monovalent hydrocarbon group, a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group or a monovalent halogenated oxygen-containing hydrocarbon group; And R6 may be bonded to each other, and any two or more of R7 to R10 may be bonded to each other.)
(4)
The unsaturated cyclic carbonate is represented by the following formula (1-1) to formula (1-56).
The secondary battery according to (1) or (2) above.
Figure 2013131395
Figure 2013131395
Figure 2013131395
Figure 2013131395
(5)
The content of the unsaturated cyclic carbonate in the electrolytic solution is 0.01 wt% to 10 wt%.
The secondary battery according to any one of (1) to (4) above.
(6)
The material containing at least one of Si and Sn as a constituent element is at least one of Si simple substance, alloy and compound, and Sn simple substance, alloy and compound.
The secondary battery according to any one of (1) to (5) above.
(7)
A lithium ion secondary battery,
The secondary battery according to any one of (1) to (6) above.
(8)
The secondary battery according to any one of the above (1) to (7);
A control unit for controlling the usage state of the secondary battery;
A battery pack comprising: a switch unit that switches a usage state of the secondary battery in accordance with an instruction from the control unit.
(9)
The secondary battery according to any one of the above (1) to (7);
A converter that converts electric power supplied from the secondary battery into driving force;
A drive unit that drives according to the driving force;
An electric vehicle comprising: a control unit that controls a usage state of the secondary battery.
(10)
The secondary battery according to any one of the above (1) to (7);
One or more electric devices supplied with power from the secondary battery;
And a control unit that controls power supply from the secondary battery to the electrical device.
(11)
The secondary battery according to any one of the above (1) to (7);
And a movable part to which electric power is supplied from the secondary battery.
(12)
An electronic device comprising the secondary battery according to any one of (1) to (7) as a power supply source.

11…電池缶、20,30…巻回電極体、21,33…正極、21A,33A…正極集電体、21B,33B…正極活物質層、22,34…負極、22A,34A…負極集電体、22B,34B…負極活物質層、23,35…セパレータ、36…電解質層、40…外装部材。   DESCRIPTION OF SYMBOLS 11 ... Battery can, 20, 30 ... Winding electrode body, 21, 33 ... Positive electrode, 21A, 33A ... Positive electrode collector, 21B, 33B ... Positive electrode active material layer, 22, 34 ... Negative electrode, 22A, 34A ... Negative electrode collection Electrical body, 22B, 34B ... negative electrode active material layer, 23, 35 ... separator, 36 ... electrolyte layer, 40 ... exterior member.

Claims (12)

正極および負極と共に電解液を備え、
前記負極は、SiおよびSnのうちの少なくとも一方を構成元素として含む材料を含有し、
前記電解液は、下記の式(1)で表される不飽和環状炭酸エステルを含有する、
二次電池。
Figure 2013131395
(Xはm個の>C=CR1−R2とn個の>CR3R4とが任意の順に結合された2価の基である。R1〜R4は水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基、1価の酸素含有炭化水素基または1価のハロゲン化酸素含有炭化水素基であり、R1〜R4のうちの任意の2つ以上は互いに結合されていてもよい。mおよびnはm≧1およびn≧0を満たす。)
An electrolyte is provided together with the positive electrode and the negative electrode,
The negative electrode contains a material containing at least one of Si and Sn as a constituent element,
The electrolytic solution contains an unsaturated cyclic carbonate represented by the following formula (1).
Secondary battery.
Figure 2013131395
(X is a divalent group in which m> C═CR 1 -R 2 and n> CR 3 R 4 are bonded in any order. R 1 to R 4 are a hydrogen group, a halogen group, a monovalent hydrocarbon group, It is a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group or a monovalent halogenated oxygen-containing hydrocarbon group, and any two or more of R1 to R4 may be bonded to each other. M and n satisfy m ≧ 1 and n ≧ 0.)
前記ハロゲン基はフッ素基、塩素基、臭素基またはヨウ素基であり、
前記1価の炭化水素基、1価のハロゲン化炭化水素基、1価の酸素含有炭化水素基または1価のハロゲン化酸素含有炭化水素基は炭素数=1〜12のアルキル基、炭素数=2〜12のアルケニル基、炭素数=2〜12のアルキニル基、炭素数=6〜18のアリール基、炭素数=3〜18のシクロアルキル基、炭素数=1〜12のアルコキシ基、それらのうちの2つ以上が結合された基、またそれらの少なくとも一部の水素基がハロゲン基により置換された基である、
請求項1記載の二次電池。
The halogen group is a fluorine group, a chlorine group, a bromine group or an iodine group;
The monovalent hydrocarbon group, monovalent halogenated hydrocarbon group, monovalent oxygen-containing hydrocarbon group or monovalent halogenated oxygen-containing hydrocarbon group is an alkyl group having 1 to 12 carbon atoms, carbon number = An alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, an aryl group having 6 to 18 carbon atoms, a cycloalkyl group having 3 to 18 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and those A group in which two or more of them are bonded, or a group in which at least some of the hydrogen groups are substituted with a halogen group,
The secondary battery according to claim 1.
前記不飽和環状炭酸エステルは下記の式(2)または式(3)で表される、
請求項1記載の二次電池。
Figure 2013131395
(R5〜R10は水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基、1価の酸素含有炭化水素基または1価のハロゲン化酸素含有炭化水素基であり、R5およびR6は互いに結合されていてもよいし、R7〜R10のうちの任意の2つ以上は互いに結合されていてもよい。)
The unsaturated cyclic carbonate is represented by the following formula (2) or formula (3).
The secondary battery according to claim 1.
Figure 2013131395
(R5 to R10 are a hydrogen group, a halogen group, a monovalent hydrocarbon group, a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group or a monovalent halogenated oxygen-containing hydrocarbon group; And R6 may be bonded to each other, and any two or more of R7 to R10 may be bonded to each other.)
前記不飽和環状炭酸エステルは下記の式(1−1)〜式(1−56)で表される、
請求項1記載の二次電池。
Figure 2013131395
Figure 2013131395
Figure 2013131395
Figure 2013131395
The unsaturated cyclic carbonate is represented by the following formula (1-1) to formula (1-56).
The secondary battery according to claim 1.
Figure 2013131395
Figure 2013131395
Figure 2013131395
Figure 2013131395
前記電解液中における前記不飽和環状炭酸エステルの含有量は0.01重量%〜10重量%である、
請求項1記載の二次電池。
The content of the unsaturated cyclic carbonate in the electrolytic solution is 0.01 wt% to 10 wt%.
The secondary battery according to claim 1.
前記SiおよびSnのうちの少なくとも一方を構成元素として含む材料は、Siの単体、合金および化合物、ならびにSnの単体、合金および化合物のうちの少なくとも1種である、
請求項1記載の二次電池。
The material containing at least one of Si and Sn as a constituent element is at least one of Si simple substance, alloy and compound, and Sn simple substance, alloy and compound.
The secondary battery according to claim 1.
リチウムイオン二次電池である、
請求項1記載の二次電池。
A lithium ion secondary battery,
The secondary battery according to claim 1.
二次電池と、
その二次電池の使用状態を制御する制御部と、
その制御部の指示に応じて前記二次電池の使用状態を切り換えるスイッチ部と
を備え、
前記二次電池は、正極および負極と共に電解液を備え、
前記負極は、SiおよびSnのうちの少なくとも一方を構成元素として含む材料を含有し、
前記電解液は、下記の式(1)で表される不飽和環状炭酸エステルを含有する、
電池パック。
Figure 2013131395
(Xはm個の>C=CR1−R2とn個の>CR3R4とが任意の順に結合された2価の基である。R1〜R4は水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基、1価の酸素含有炭化水素基または1価のハロゲン化酸素含有炭化水素基であり、R1〜R4のうちの任意の2つ以上は互いに結合されていてもよい。mおよびnはm≧1およびn≧0を満たす。)
A secondary battery,
A control unit for controlling the usage state of the secondary battery;
A switch unit for switching the usage state of the secondary battery according to an instruction of the control unit,
The secondary battery includes an electrolyte solution together with a positive electrode and a negative electrode,
The negative electrode contains a material containing at least one of Si and Sn as a constituent element,
The electrolytic solution contains an unsaturated cyclic carbonate represented by the following formula (1).
Battery pack.
Figure 2013131395
(X is a divalent group in which m> C═CR 1 -R 2 and n> CR 3 R 4 are bonded in any order. R 1 to R 4 are a hydrogen group, a halogen group, a monovalent hydrocarbon group, It is a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group or a monovalent halogenated oxygen-containing hydrocarbon group, and any two or more of R1 to R4 may be bonded to each other. M and n satisfy m ≧ 1 and n ≧ 0.)
二次電池と、
その二次電池から供給された電力を駆動力に変換する変換部と、
その駆動力に応じて駆動する駆動部と、
前記二次電池の使用状態を制御する制御部と
を備え、
前記二次電池は、正極および負極と共に電解液を備え、
前記負極は、SiおよびSnのうちの少なくとも一方を構成元素として含む材料を含有し、
前記電解液は、下記の式(1)で表される不飽和環状炭酸エステルを含有する、
電動車両。
Figure 2013131395
(Xはm個の>C=CR1−R2とn個の>CR3R4とが任意の順に結合された2価の基である。R1〜R4は水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基、1価の酸素含有炭化水素基または1価のハロゲン化酸素含有炭化水素基であり、R1〜R4のうちの任意の2つ以上は互いに結合されていてもよい。mおよびnはm≧1およびn≧0を満たす。)
A secondary battery,
A converter that converts electric power supplied from the secondary battery into driving force;
A drive unit that drives according to the driving force;
A control unit for controlling the usage state of the secondary battery,
The secondary battery includes an electrolyte solution together with a positive electrode and a negative electrode,
The negative electrode contains a material containing at least one of Si and Sn as a constituent element,
The electrolytic solution contains an unsaturated cyclic carbonate represented by the following formula (1).
Electric vehicle.
Figure 2013131395
(X is a divalent group in which m> C═CR 1 -R 2 and n> CR 3 R 4 are bonded in any order. R 1 to R 4 are a hydrogen group, a halogen group, a monovalent hydrocarbon group, It is a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group or a monovalent halogenated oxygen-containing hydrocarbon group, and any two or more of R1 to R4 may be bonded to each other. M and n satisfy m ≧ 1 and n ≧ 0.)
二次電池と、
その二次電池から電力を供給される1または2以上の電気機器と、
前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
を備え、
前記二次電池は、正極および負極と共に電解液を備え、
前記負極は、SiおよびSnのうちの少なくとも一方を構成元素として含む材料を含有し、
前記電解液は、下記の式(1)で表される不飽和環状炭酸エステルを含有する、
電力貯蔵システム。
Figure 2013131395
(Xはm個の>C=CR1−R2とn個の>CR3R4とが任意の順に結合された2価の基である。R1〜R4は水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基、1価の酸素含有炭化水素基または1価のハロゲン化酸素含有炭化水素基であり、R1〜R4のうちの任意の2つ以上は互いに結合されていてもよい。mおよびnはm≧1およびn≧0を満たす。)
A secondary battery,
One or more electric devices supplied with power from the secondary battery;
A control unit for controlling power supply from the secondary battery to the electrical device,
The secondary battery includes an electrolyte solution together with a positive electrode and a negative electrode,
The negative electrode contains a material containing at least one of Si and Sn as a constituent element,
The electrolytic solution contains an unsaturated cyclic carbonate represented by the following formula (1).
Power storage system.
Figure 2013131395
(X is a divalent group in which m> C═CR 1 -R 2 and n> CR 3 R 4 are bonded in any order. R 1 to R 4 are a hydrogen group, a halogen group, a monovalent hydrocarbon group, It is a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group or a monovalent halogenated oxygen-containing hydrocarbon group, and any two or more of R1 to R4 may be bonded to each other. M and n satisfy m ≧ 1 and n ≧ 0.)
二次電池と、
その二次電池から電力を供給される可動部と
を備え、
前記二次電池は、正極および負極と共に電解液を備え、
前記負極は、SiおよびSnのうちの少なくとも一方を構成元素として含む材料を含有し、
前記電解液は、下記の式(1)で表される不飽和環状炭酸エステルを含有する、
電動工具。
Figure 2013131395
(Xはm個の>C=CR1−R2とn個の>CR3R4とが任意の順に結合された2価の基である。R1〜R4は水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基、1価の酸素含有炭化水素基または1価のハロゲン化酸素含有炭化水素基であり、R1〜R4のうちの任意の2つ以上は互いに結合されていてもよい。mおよびnはm≧1およびn≧0を満たす。)
A secondary battery,
A movable part to which electric power is supplied from the secondary battery,
The secondary battery includes an electrolyte solution together with a positive electrode and a negative electrode,
The negative electrode contains a material containing at least one of Si and Sn as a constituent element,
The electrolytic solution contains an unsaturated cyclic carbonate represented by the following formula (1).
Electric tool.
Figure 2013131395
(X is a divalent group in which m> C═CR 1 -R 2 and n> CR 3 R 4 are bonded in any order. R 1 to R 4 are a hydrogen group, a halogen group, a monovalent hydrocarbon group, It is a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group or a monovalent halogenated oxygen-containing hydrocarbon group, and any two or more of R1 to R4 may be bonded to each other. M and n satisfy m ≧ 1 and n ≧ 0.)
二次電池を電力供給源として備え、
前記二次電池は、正極および負極と共に電解液を備え、
前記負極は、SiおよびSnのうちの少なくとも一方を構成元素として含む材料を含有し、
前記電解液は、下記の式(1)で表される不飽和環状炭酸エステルを含有する、
電子機器。
Figure 2013131395
(Xはm個の>C=CR1−R2とn個の>CR3R4とが任意の順に結合された2価の基である。R1〜R4は水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基、1価の酸素含有炭化水素基または1価のハロゲン化酸素含有炭化水素基であり、R1〜R4のうちの任意の2つ以上は互いに結合されていてもよい。mおよびnはm≧1およびn≧0を満たす。)
A secondary battery is provided as a power supply source,
The secondary battery includes an electrolyte solution together with a positive electrode and a negative electrode,
The negative electrode contains a material containing at least one of Si and Sn as a constituent element,
The electrolytic solution contains an unsaturated cyclic carbonate represented by the following formula (1).
Electronics.
Figure 2013131395
(X is a divalent group in which m> C═CR 1 -R 2 and n> CR 3 R 4 are bonded in any order. R 1 to R 4 are a hydrogen group, a halogen group, a monovalent hydrocarbon group, It is a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group or a monovalent halogenated oxygen-containing hydrocarbon group, and any two or more of R1 to R4 may be bonded to each other. M and n satisfy m ≧ 1 and n ≧ 0.)
JP2011280186A 2011-12-21 2011-12-21 Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic apparatus Pending JP2013131395A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011280186A JP2013131395A (en) 2011-12-21 2011-12-21 Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic apparatus
US13/690,916 US20130164608A1 (en) 2011-12-21 2012-11-30 Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
CN201811389015.6A CN109585906A (en) 2011-12-21 2012-12-10 Secondary cell, battery pack, electric vehicle, power storage system, electric tool and electronic equipment
CN2012105301970A CN103178286A (en) 2011-12-21 2012-12-10 Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
US15/240,255 US10541449B2 (en) 2011-12-21 2016-08-18 Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011280186A JP2013131395A (en) 2011-12-21 2011-12-21 Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016093702A Division JP6135798B2 (en) 2016-05-09 2016-05-09 Lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device

Publications (2)

Publication Number Publication Date
JP2013131395A true JP2013131395A (en) 2013-07-04
JP2013131395A5 JP2013131395A5 (en) 2015-01-22

Family

ID=48638000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280186A Pending JP2013131395A (en) 2011-12-21 2011-12-21 Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic apparatus

Country Status (3)

Country Link
US (2) US20130164608A1 (en)
JP (1) JP2013131395A (en)
CN (2) CN109585906A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015043269A (en) * 2013-08-26 2015-03-05 ソニー株式会社 Material for electrolytic solution, electrolytic solution, and secondary battery
JP2015046382A (en) * 2013-07-30 2015-03-12 ソニー株式会社 Electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2016192405A (en) * 2016-05-09 2016-11-10 ソニー株式会社 Lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
KR20180040524A (en) 2015-08-11 2018-04-20 가부시키가이샤 무라타 세이사쿠쇼 Non-aqueous electrolyte, non-aqueous electrolyte secondary battery using the non-aqueous electrolyte, and battery pack and electronic apparatus using the non-aqueous electrolyte secondary battery
US10044067B2 (en) 2014-04-21 2018-08-07 Murata Manufacturing Co., Ltd. Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6593305B2 (en) * 2016-11-09 2019-10-23 株式会社村田製作所 Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
CN111244530B (en) * 2020-01-15 2021-09-07 浙江大学 Electrolyte for alloy negative electrode material lithium battery and application thereof
US11848440B2 (en) * 2021-04-01 2023-12-19 GM Global Technology Operations LLC Prelithiated negative electrodes including composite Li—Si alloy particles and methods of manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058122A (en) * 1998-08-05 2000-02-25 Mitsui Chemicals Inc Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolytic solution secondary battery
JP2002063940A (en) * 2000-08-14 2002-02-28 Sony Corp Nonaqueous electrolyte secondary battery
JP2005235591A (en) * 2004-02-19 2005-09-02 Mitsui Chemicals Inc Nonaqueous electrolyte and lithium secondary battery
JP2009218057A (en) * 2008-03-10 2009-09-24 Sony Corp Electrolytic solution and secondary battery
JP2010533359A (en) * 2007-07-11 2010-10-21 ノボライト テクノロジーズ,インク. Non-aqueous electrolyte and electrochemical cell including the same
JP2011086577A (en) * 2009-10-19 2011-04-28 Sony Corp Electrolyte and battery
WO2011070964A1 (en) * 2009-12-07 2011-06-16 ソニー株式会社 Secondary cell, electrolyte, cell pack, electronic device, electric vehicle
JP2011222450A (en) * 2010-04-14 2011-11-04 Denso Corp Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolytic solution secondary battery using the electrolytic solution

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3393620B2 (en) 1994-04-11 2003-04-07 旭電化工業株式会社 Non-aqueous electrolyte battery
KR100250855B1 (en) 1997-08-28 2000-04-01 손욱 A hybrid polymeric electrolyte, a method of making the same and a lithium battery with the same
JP4255581B2 (en) 1999-09-10 2009-04-15 株式会社デンソー Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP4190672B2 (en) 1998-10-09 2008-12-03 株式会社デンソー Battery electrolyte and non-aqueous electrolyte secondary battery
KR100346541B1 (en) 1999-10-12 2002-07-26 삼성에스디아이 주식회사 Electrolyte for lithium secondary battery
DE10111410C1 (en) 2001-03-08 2002-07-25 Chemetall Gmbh Lithium bis(oxalato)borate electrolyte, used in electrochemical storage system or electrochromic formulation, e.g. window, contains ternary solvent system
JP5233024B2 (en) 2001-07-02 2013-07-10 パイオトレック株式会社 Solid lithium battery
JP4056302B2 (en) * 2002-06-21 2008-03-05 三洋電機株式会社 Nonaqueous electrolyte secondary battery
KR100472509B1 (en) 2002-10-04 2005-03-10 삼성에스디아이 주식회사 Organic electrolytic solution and lithium battery employing the same
KR100472512B1 (en) 2002-11-15 2005-03-11 삼성에스디아이 주식회사 Organic electrolytic solution and lithium battery employing the same
KR100875112B1 (en) 2002-11-16 2008-12-22 삼성에스디아이 주식회사 Non-aqueous electrolyte and lithium battery employing the same
JP4670305B2 (en) 2004-10-15 2011-04-13 三菱化学株式会社 Non-aqueous electrolyte and lithium secondary battery
US7238453B2 (en) * 2005-04-25 2007-07-03 Ferro Corporation Non-aqueous electrolytic solution with mixed salts
JP2006351337A (en) 2005-06-15 2006-12-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP4934999B2 (en) 2005-06-27 2012-05-23 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4375318B2 (en) * 2005-10-12 2009-12-02 ソニー株式会社 Battery device
JP5369391B2 (en) 2006-06-02 2013-12-18 三菱化学株式会社 Non-aqueous electrolyte, non-aqueous electrolyte battery, and non-aqueous electrolyte secondary battery
EP2360771B1 (en) * 2006-06-02 2015-04-29 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
JP4413888B2 (en) * 2006-06-13 2010-02-10 株式会社東芝 Storage battery system, in-vehicle power supply system, vehicle, and method for charging storage battery system
JP2009245923A (en) * 2008-03-10 2009-10-22 Sony Corp Secondary battery
JP5217536B2 (en) * 2008-03-17 2013-06-19 ソニー株式会社 Secondary battery and electronic equipment
JP2011078282A (en) * 2009-10-01 2011-04-14 Sony Corp Battery pack
JP2011171096A (en) * 2010-02-18 2011-09-01 Sony Corp Nonaqueous electrolyte battery
JP5463957B2 (en) * 2010-03-02 2014-04-09 ソニー株式会社 Non-aqueous electrolyte and battery
JP6065379B2 (en) * 2012-02-28 2017-01-25 ソニー株式会社 Lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058122A (en) * 1998-08-05 2000-02-25 Mitsui Chemicals Inc Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolytic solution secondary battery
JP2002063940A (en) * 2000-08-14 2002-02-28 Sony Corp Nonaqueous electrolyte secondary battery
JP2005235591A (en) * 2004-02-19 2005-09-02 Mitsui Chemicals Inc Nonaqueous electrolyte and lithium secondary battery
JP2010533359A (en) * 2007-07-11 2010-10-21 ノボライト テクノロジーズ,インク. Non-aqueous electrolyte and electrochemical cell including the same
JP2009218057A (en) * 2008-03-10 2009-09-24 Sony Corp Electrolytic solution and secondary battery
JP2011086577A (en) * 2009-10-19 2011-04-28 Sony Corp Electrolyte and battery
WO2011070964A1 (en) * 2009-12-07 2011-06-16 ソニー株式会社 Secondary cell, electrolyte, cell pack, electronic device, electric vehicle
JP2011222450A (en) * 2010-04-14 2011-11-04 Denso Corp Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolytic solution secondary battery using the electrolytic solution

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046382A (en) * 2013-07-30 2015-03-12 ソニー株式会社 Electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2015043269A (en) * 2013-08-26 2015-03-05 ソニー株式会社 Material for electrolytic solution, electrolytic solution, and secondary battery
KR20150024256A (en) * 2013-08-26 2015-03-06 소니 주식회사 Electrolytic solution material, electrolytic solution, and secondary battery
US10411300B2 (en) 2013-08-26 2019-09-10 Murata Manufacturing Co., Ltd. Electrolytic solution material, electrolytic solution, and secondary battery
KR102164406B1 (en) * 2013-08-26 2020-10-12 가부시키가이샤 무라타 세이사쿠쇼 Electrolytic solution material, electrolytic solution, and secondary battery
US10044067B2 (en) 2014-04-21 2018-08-07 Murata Manufacturing Co., Ltd. Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
KR20180040524A (en) 2015-08-11 2018-04-20 가부시키가이샤 무라타 세이사쿠쇼 Non-aqueous electrolyte, non-aqueous electrolyte secondary battery using the non-aqueous electrolyte, and battery pack and electronic apparatus using the non-aqueous electrolyte secondary battery
JP2016192405A (en) * 2016-05-09 2016-11-10 ソニー株式会社 Lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus

Also Published As

Publication number Publication date
US20160359200A1 (en) 2016-12-08
US20130164608A1 (en) 2013-06-27
CN103178286A (en) 2013-06-26
CN109585906A (en) 2019-04-05
US10541449B2 (en) 2020-01-21

Similar Documents

Publication Publication Date Title
JP5935318B2 (en) Electrolyte for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP5974735B2 (en) Non-aqueous electrolyte for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6561982B2 (en) Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP5978787B2 (en) Non-aqueous secondary battery electrolyte, non-aqueous secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
US10541449B2 (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP6131877B2 (en) Lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2013084428A (en) Electrolytic solution for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic device
US10833362B2 (en) Secondary battery including electrolyte having an unsaturated cyclic ester carbonate
JP2013222582A (en) Secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic equipment
US20180366783A1 (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JPWO2015163017A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6954354B2 (en) Non-aqueous electrolyte for secondary batteries, secondary batteries, battery packs, electric vehicles, energy storage systems, power tools and electronic devices
JP2014157738A (en) Electrolyte for nonaqueous secondary battery, nonaqueous secondary battery, battery pack, electric vehicle, electric power storage system, power tool, and electronic apparatus
US20130052524A1 (en) Electrolytic solution, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic device
WO2016056361A1 (en) Electrolyte for secondary cell, secondary cell, cell pack, electric vehicle, power storage system, electric power tool and electronic apparatus equipment
JP6065627B2 (en) Lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2020502739A (en) Rechargeable battery
JP6070236B2 (en) Lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2013093300A (en) Secondary battery electrolytic solution, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic device
JP2013058402A (en) Electrolyte for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric power tool and electronic apparatus
JP2013065536A (en) Electrolytic solution for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JP2014010976A (en) Electrolyte for nonaqueous secondary battery, nonaqueous secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic apparatus
WO2015186517A1 (en) Secondary cell electrolyte, secondary cell, cell pack, electric vehicle, electric power-storing system, electric tool, and electronic device
JP6135798B2 (en) Lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2013062072A (en) Electrolytic solution for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160209