JP2013128869A - Gas dissolved water producing apparatus and method thereof - Google Patents

Gas dissolved water producing apparatus and method thereof Download PDF

Info

Publication number
JP2013128869A
JP2013128869A JP2011278393A JP2011278393A JP2013128869A JP 2013128869 A JP2013128869 A JP 2013128869A JP 2011278393 A JP2011278393 A JP 2011278393A JP 2011278393 A JP2011278393 A JP 2011278393A JP 2013128869 A JP2013128869 A JP 2013128869A
Authority
JP
Japan
Prior art keywords
pure water
pipe
gas
dissolved
outflow pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011278393A
Other languages
Japanese (ja)
Other versions
JP6105844B2 (en
Inventor
Koichi Sakuma
浩一 佐久間
Hiroyuki Shinozaki
宏行 篠崎
Mitsuhiko Uenishi
允彦 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2011278393A priority Critical patent/JP6105844B2/en
Publication of JP2013128869A publication Critical patent/JP2013128869A/en
Application granted granted Critical
Publication of JP6105844B2 publication Critical patent/JP6105844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus which perfectly dissolves a gas fed to pure water of a small flow rate, and produces gas dissolved water having a stable specific resistance value of ≤1 MΩ cm.SOLUTION: In the gas dissolved water producing apparatus 11, a gas is injected into a pure water inflow pipe of feeding pure water to produce gas dissolved water in which the gas is dissolved at a fixed concentration. The apparatus includes: a T-type conduit 12; a gas feed pipe 15 which is inserted from one socket of the T-type conduit to the position of the center of a T-type joining part and in which a base part is sealed; a pure water inflow pipe 13 of feeding pure water vertically in a direction to be fed with the gas from the other one socket of the T-type conduit; and a pure water outflow pipe 14 composed of a first pure water outflow pipe 14a connected to one socket not provided by both of the gas feed pipe 15 and pure water inflow pipe 13 of the T-type conduit, and the second pure water outflow pipe 14c connected to the downstream of the first pure water outflow pipe 14a.

Description

本発明は小流量の気体溶解水製造装置及び気体溶解水製造方法に関する。   The present invention relates to a gas-dissolved water production apparatus and a gas-dissolved water production method having a small flow rate.

従来から、半導体装置の製造工程において、半導体ウエハの洗浄などには超純水が使用されている。例えば、基板の洗浄処理では、基板に対して純水等の洗浄水を噴射することにより基板の表面に付着したパーティクルなどが除去される。   Conventionally, in the manufacturing process of a semiconductor device, ultrapure water has been used for cleaning a semiconductor wafer. For example, in the substrate cleaning process, particles adhering to the surface of the substrate are removed by spraying cleaning water such as pure water onto the substrate.

ところで、純水を高圧で吐出させたり、研磨ブラシ等を高速で回転させると、純水の比抵抗が高いため、基板表面全体が帯電することが知られている。この基板表面の帯電量が大きくなると、洗浄後にパーティクルが再付着したり、ウエハに作りこまれた半導体素子を形成する酸化膜や金属薄膜が静電気放電により破壊するという問題がある。   By the way, it is known that when pure water is discharged at a high pressure or a polishing brush or the like is rotated at a high speed, the entire surface of the substrate is charged because the specific resistance of pure water is high. When the amount of charge on the substrate surface is increased, there are problems that particles are reattached after cleaning, and an oxide film and a metal thin film forming a semiconductor element formed on the wafer are destroyed by electrostatic discharge.

このような半導体素子の破壊を防止する対策として、純水の電気比抵抗を低下させ、静電気の発生を抑えることが行われている。   As a measure for preventing such destruction of the semiconductor element, the electrical resistivity of pure water is reduced to suppress the generation of static electricity.

例えば、特許文献1には、処理水である超純水に二酸化炭素(CO2)ガスを溶解させることで電気比抵抗を低下させ、基板表面の帯電を防止する方法が開示されている。 For example, Patent Document 1 discloses a method for preventing charging of the substrate surface by reducing the electrical resistivity by dissolving carbon dioxide (CO 2 ) gas in ultrapure water that is treated water.

このように、超純水に二酸化炭素(CO2)ガスを溶解させたいわゆる炭酸水中には炭酸水素イオンが解離溶解しているが、この炭酸水素イオンによって電気比抵抗を低くすることができるので、ウエハ上への静電気の帯電を低下させ、静電気放電による半導体素子の破壊を防止することができる。 In this way, hydrogen carbonate ions are dissociated and dissolved in so-called carbonated water in which carbon dioxide (CO 2 ) gas is dissolved in ultrapure water, but the electrical resistivity can be lowered by the hydrogen carbonate ions. It is possible to reduce the electrostatic charge on the wafer and prevent the semiconductor element from being destroyed by electrostatic discharge.

また、洗浄後の乾燥工程を経た段階では、ウエハ表面では(炭酸水中に溶解していた)炭酸ガスはガスとして消失し、一切不純物残渣の痕跡を残さないという利点もある。   Further, at the stage after the drying process after cleaning, the carbon dioxide gas (dissolved in the carbonated water) disappears as a gas on the wafer surface, and there is an advantage that no trace of impurity residue is left.

さらに、特許文献2には、このような気体溶解水の溶存気体濃度を安定させるために、微小気泡を生成させ、気泡の合体を抑制して水中に溶解させる装置が開示されている。このような装置は、流断面積の異なる液体導入部を円錐形状の結合部により結合した装置であり、気体の気泡が完全に溶解した気体溶解水を生成するようになっている。   Further, Patent Document 2 discloses a device for generating microbubbles and suppressing coalescence of bubbles to dissolve in water in order to stabilize the dissolved gas concentration of such gas-dissolved water. Such an apparatus is an apparatus in which liquid introduction parts having different flow cross-sectional areas are coupled by a conical coupling part, and gas dissolved water in which gas bubbles are completely dissolved is generated.

また、たとえば、炭酸ガス溶解水の製造においては、炭酸を所定の濃度だけ溶解させて、炭酸ガス溶解水の比抵抗値を一定にする必要がある。   Further, for example, in the production of carbon dioxide-dissolved water, it is necessary to dissolve carbonic acid by a predetermined concentration so that the specific resistance value of the carbon dioxide-dissolved water is constant.

そのため特許文献3に記載されているように、製造した炭酸ガス溶解水の比抵抗値を測定し、測定値を用いて供給する炭酸ガス流量のフィードバック制御を行うことにより、気体溶解水の比抵抗値を一定にすることが行われている。   Therefore, as described in Patent Document 3, by measuring the specific resistance value of the produced carbon dioxide-dissolved water and performing feedback control of the carbon dioxide flow rate supplied using the measured value, the specific resistance of the gas-dissolved water is obtained. The value is made constant.

特許文献4に記載されているように、純水の一部のみに炭酸ガスを溶解させ濃度の高い炭酸ガス溶解水を製造し、この溶解水と純水をさらに混合することにより所定の比抵抗値を持つ炭酸ガス溶解水を得る方法もある。   As described in Patent Document 4, carbon dioxide gas is dissolved in only a part of pure water to produce a high concentration carbon dioxide dissolved water, and the dissolved water and pure water are further mixed to obtain a predetermined specific resistance. There is also a method for obtaining carbon dioxide-dissolved water having a value.

さらに近年は、炭酸ガス以外の気体、例えば、水素、オゾン、酸素、窒素ガスを溶解させた溶解水も多く利用されており、窒素ガスを所定の濃度で溶解した超純水を製造する場合には、炭酸ガス溶解水の製造の場合と同様に、溶解させるガス量の制御が問題となる。特許文献5では、窒素ガスを気体溶解膜に通じ、さらに、ガスの供給量をフィードバック制御することによりガス溶解度の調整が行われている。   In recent years, gas other than carbon dioxide gas, for example, dissolved water in which hydrogen, ozone, oxygen, and nitrogen gas are dissolved is also widely used. In the case of producing ultrapure water in which nitrogen gas is dissolved at a predetermined concentration. As with the production of carbon dioxide-dissolved water, control of the amount of gas to be dissolved becomes a problem. In Patent Document 5, the gas solubility is adjusted by passing nitrogen gas through the gas dissolution membrane and further feedback controlling the gas supply amount.

特開2008−153322号公報JP 2008-153322 A 特開2003−230824号公報Japanese Patent Laid-Open No. 2003-230824 特公平07−067554号公報Japanese Patent Publication No. 07-067554 特許3690569号Patent No. 3690569 特許4470101号Patent 4470101

ところで、二酸化炭素(炭酸)は、水に溶解して重炭酸イオンや炭酸イオンを生成する。したがって、水に対する溶解度は比較的大きく、溶解させること自体は容易である。しかし、炭酸の供給量を制御しても、純水の供給圧、供給流量の微小な変動に伴い、実質的な炭酸ガスの供給量が変動してしまうため、比抵抗を所定の値に一定にすることは困難である。従って、フィードバック制御や、純水と予め炭酸ガスを溶解させた高濃度の炭酸ガス溶解水との混合を行うなど、種々の工夫が必要になる。さらに装置を小型化し、小流量の溶解水の製造を行う場合には、この傾向は大きくなり、1MΩ・cm以下の比抵抗値を安定的に持つ二酸化炭素溶解水を得ることは困難であった。   By the way, carbon dioxide (carbonic acid) dissolves in water to generate bicarbonate ions and carbonate ions. Therefore, the solubility in water is relatively large, and the dissolution itself is easy. However, even if the carbon dioxide supply amount is controlled, the specific carbon dioxide gas supply amount fluctuates as the pure water supply pressure and supply flow fluctuate. Therefore, the specific resistance remains constant. It is difficult to make. Accordingly, various devices such as feedback control and mixing of pure water and high-concentration carbon dioxide-dissolved water in which carbon dioxide is dissolved in advance are required. In addition, when the apparatus is further downsized and dissolved water with a small flow rate is produced, this tendency is increased, and it is difficult to obtain carbon dioxide-dissolved water having a specific resistance value of 1 MΩ · cm or less. .

本発明者らは、このような問題に対処して鋭意研究を重ねた結果、純水の流量が小さいと、注入された二酸化炭素の気泡が配管の内壁に付着しやすく、配管内壁に付着した気泡にさらに別の気泡が結合するなどして、壁面にとどまるが、やがて壁面から脱離し、溶解し、その影響で、炭酸ガス濃度が一時的に上昇し、比抵抗値の不安定要因となることを見出した。また、小型の装置では、配管が細くなるため、流量に対して配管中で水が接触する配管の内壁の占める面積が相対的に大きくなり、この現象が顕著になるとの知見も得られた。また、従来の場合においては、速やかに混合させて溶解させるために、純水流は乱流であることが重要であると考えられていたが、小流量の場合にはむしろ、層流であることが有効であるという知見をも得た。   As a result of intensive research to cope with such problems, the inventors of the present invention, when the flow rate of pure water is small, bubbles of injected carbon dioxide tend to adhere to the inner wall of the pipe, and adhere to the inner wall of the pipe. Another bubble is bonded to the bubble and stays on the wall surface. However, it eventually desorbs from the wall surface and dissolves, and as a result, the carbon dioxide concentration temporarily rises, causing the resistivity to become unstable. I found out. Further, in a small apparatus, since the pipe is thin, the area occupied by the inner wall of the pipe that is in contact with water in the pipe with respect to the flow rate is relatively large, and it has been found that this phenomenon becomes remarkable. In addition, in the conventional case, it was considered that the pure water flow was turbulent in order to quickly mix and dissolve, but in the case of a small flow rate, it should be a laminar flow. We also obtained the knowledge that is effective.

さらに本発明者らは、研究を重ねた結果、溶解する気体の気泡径が小さいほど溶解が早くなるため、気体供給管の末端の出口に気体の流路を横切る方向に純水流を噴出させることにより該出口で気泡が発生すると同時にせん断力を気泡に加え、気泡が気体供給管の末端で合体して成長する前にせん断することで、気泡がより小さくなり、溶解が速やかに進むことを見出した。   Furthermore, as a result of repeated research, the present inventors have made it possible to expel a pure water flow in a direction crossing the gas flow path at the outlet of the end of the gas supply pipe because the dissolution becomes faster as the bubble diameter of the dissolved gas becomes smaller. As a result, bubbles are generated at the outlet, and at the same time, a shearing force is applied to the bubbles and sheared before the bubbles merge and grow at the end of the gas supply pipe, so that the bubbles become smaller and the dissolution proceeds quickly. It was.

本発明は、かかる知見に基づいてなされたもので、小流量の純水が流れる配管中に気体供給管より気体を圧入して溶解させる際に、気体の噴出する流路に純水流が垂直にあたるように供給させることで、気泡をできるだけ細かくし、その下流では、水流を層流にして配管内壁への気泡の付着を防ぐことにより、1MΩ・cm以下で安定した比抵抗値を持つ気体溶解水を製造可能にするとともに、小型化も可能にした気体溶解水製造装置を提供しようとするものである。   The present invention has been made based on such knowledge, and when a gas is injected from a gas supply pipe into a pipe through which a small amount of pure water flows and dissolved, the pure water flow is perpendicular to the flow path from which the gas is ejected. The gas dissolved water having a stable specific resistance value of 1 MΩ · cm or less by making the bubbles as fine as possible, and preventing the bubbles from adhering to the inner wall of the pipe by making the water flow a laminar flow downstream. It is an object of the present invention to provide a gas-dissolved water production apparatus that can be manufactured and can be miniaturized.

すなわち、本発明の気体溶解水製造装置の第1の実施形態は、純水を供給する純水流入管に気体を注入し、前記気体が一定濃度で溶解する気体溶解水を製造する気体溶解水製造装置において、T型管路と、前記T型管路の1つの受口からT型の結合部中心の位置まで挿入されて基部が封止された気体供給管と、前記T型管路の他の1つの受口から前記気体の供給される方向に垂直に純水を供給させる純水流入管と、前記T型管路の前記気体供給管と前記純水流入管のいずれも備えない1つの受口に接続された、第1の純水流出管及び第1の純水流出管の下流に接続された第2の純水流出管からなる純水流出管と、を備えたことを特徴とする。   That is, the first embodiment of the gas-dissolved water production apparatus of the present invention is such that gas is injected into a pure water inflow pipe for supplying pure water, and gas-dissolved water for producing gas-dissolved water in which the gas dissolves at a constant concentration. In the manufacturing apparatus, a T-type pipe, a gas supply pipe that is inserted from one receiving port of the T-type pipe to the position of the center of the T-type coupling portion and whose base is sealed, and the T-type pipe Neither a pure water inflow pipe for supplying pure water perpendicularly to a direction in which the gas is supplied from another one receiving port, nor the gas supply pipe or the pure water inflow pipe of the T-type pipe 1 A pure water outflow pipe comprising a first pure water outflow pipe and a second pure water outflow pipe connected downstream of the first pure water outflow pipe, connected to one receiving port. And

本発明の気体溶解水製造装置の第2の実施形態は、前記純水流入管が、前記T型管路の結合部の中央まで挿入されて基部が封止されたことを特徴とする。   A second embodiment of the gas-dissolved water production apparatus of the present invention is characterized in that the pure water inflow pipe is inserted to the center of the coupling portion of the T-shaped pipe line and the base is sealed.

具体的には、前記純水の供給流量が、0.1〜2L/minであり、前記気体と前記純水が混合された後の流路の一部または全部での純水流が層流であることが好ましい。   Specifically, the pure water supply flow rate is 0.1 to 2 L / min, and the pure water flow in a part or all of the flow path after the gas and the pure water are mixed is a laminar flow. Preferably there is.

さらに具体的には、第2の純水流出管の管径が、第1の純水流出管の管径より大きくされることが好ましい。   More specifically, it is preferable that the pipe diameter of the second pure water outflow pipe is larger than the pipe diameter of the first pure water outflow pipe.

また、前記純水流出管又は第2の純水流出管におけるレイノルズ数が、2300未満であることが好ましい。   The Reynolds number in the pure water outflow pipe or the second pure water outflow pipe is preferably less than 2300.

また、前記純水流入管でのレイノルズ数が2300以上、又は第2の純水流出管もしくは前記純水流出管のレイノルズ数の2倍以上、であることが好ましい。すなわち、前記気体供給管から供給された気体は、前記純水流入管から乱流で、又は、第2の純水流出管もしくは前記純水流出管のレイノルズ数の2倍以上の層流で、供給された純水と合流し、前記気体と前記純水が混合された後の流路での一部または全部の純水流が層流であり、かつ前記気体と前記純水が垂直方向で混合されるため、供給された気体はせん断されて、速やかに溶解させることができる。   Moreover, it is preferable that the Reynolds number in the said pure water inflow pipe is 2300 or more, or 2 times or more of the Reynolds number of a 2nd pure water outflow pipe or the said pure water outflow pipe. That is, the gas supplied from the gas supply pipe is a turbulent flow from the pure water inflow pipe, or a laminar flow more than twice the Reynolds number of the second pure water outflow pipe or the pure water outflow pipe, Part or all of the pure water flow in the flow path after joining the supplied pure water and after the gas and the pure water are mixed is a laminar flow, and the gas and the pure water are mixed in the vertical direction Therefore, the supplied gas is sheared and can be quickly dissolved.

また、より具体的には、第1の流出管部と第2の流出管部が、下流側に拡開するテーパー管を介して接続されることが好ましい。また、前記気体は二酸化炭素を用いることができる。   More specifically, it is preferable that the first outflow pipe part and the second outflow pipe part are connected via a tapered pipe that expands downstream. Further, carbon dioxide can be used as the gas.

すなわち、本発明の気体溶解水製造装置は、レイノルズ数と、配管内流の関係を見出してなされたものであり、所定の流速および配管内径が選択され、レイノルズ数が上記のように決定されることにより、供給された気体が均一に溶解し、比抵抗の安定した気体溶解水を製造することが可能である。   That is, the gas-dissolved water production apparatus of the present invention is made by finding the relationship between the Reynolds number and the flow in the pipe, and a predetermined flow velocity and pipe inner diameter are selected, and the Reynolds number is determined as described above. Thus, it is possible to produce gas dissolved water in which the supplied gas is uniformly dissolved and the specific resistance is stable.

本発明の気体溶解水製造方法は、T型管路と、前記T型管路の1つの受口からT型の結合部中心の位置まで挿入されて基部が封止された気体供給管と、前記T型管路の他の1つの受口から前記気体の供給される方向に垂直に純水を供給させる純水流入管と、前記T型管路の前記気体供給管と前記純水流入管のいずれも備えない1つの受口に接続された、第1の純水流出管及び第1の純水流出管の下流に接続された第2の純水流出管からなる純水流出管とを備えた気体溶解水製造装置によって気体溶解水を製造する方法であって、前記気体と前記純水が混合された後の流路の一部または全部での純水流を層流とすることを特徴とする。   The gas-dissolved water production method of the present invention includes a T-type pipe, a gas supply pipe that is inserted from one receiving port of the T-type pipe to the position of the center of the T-type joint, and the base is sealed, A pure water inflow pipe for supplying pure water perpendicularly to a direction in which the gas is supplied from another one receiving port of the T type pipe, and the gas supply pipe and the pure water inflow pipe of the T type pipe A pure water outflow pipe, which is connected to one receiving port not provided with any of the above, and includes a first pure water outflow pipe and a second pure water outflow pipe connected downstream of the first pure water outflow pipe. A method for producing dissolved gas with a dissolved gas production apparatus, comprising a laminar flow of pure water in a part or all of a flow path after the gas and pure water are mixed. And

小流量の純水中に供給された気体を完全に溶解し、1MΩ・cm以下で安定した比抵抗値を持つ気体溶解水を製造する装置及び方法を提供する。   Provided is an apparatus and method for completely dissolving a gas supplied in a small flow rate of pure water and producing gas-dissolved water having a stable specific resistance value of 1 MΩ · cm or less.

図1は本発明の第1の実施形態の気体溶解水製造装置を模式的に示す側断面図である。FIG. 1 is a side sectional view schematically showing a gas-dissolved water production apparatus according to a first embodiment of the present invention. 図2Aは本発明の第2の実施形態の気体溶解水製造装置を模式的に示す側断面図である。FIG. 2A is a side sectional view schematically showing a gas-dissolved water production apparatus according to the second embodiment of the present invention. 図2Bは本発明の第2の実施形態の気体溶解水製造装置におけるT型管部を模式的に示す側断面図である。FIG. 2B is a side sectional view schematically showing a T-shaped pipe portion in the gas-dissolved water producing apparatus according to the second embodiment of the present invention. 図3は本発明の第1の実施形態の気体溶解水製造装置を用いて製造した二酸化炭素溶解水の比抵抗値を示すグラフである。FIG. 3 is a graph showing specific resistance values of carbon dioxide-dissolved water produced using the gas-dissolved water producing apparatus according to the first embodiment of the present invention. 図4は本発明の第1の実施形態の気体溶解水製造装置を用いて製造した二酸化炭素溶解水の比抵抗値を示すグラフである。FIG. 4 is a graph showing specific resistance values of carbon dioxide-dissolved water produced using the gas-dissolved water producing apparatus according to the first embodiment of the present invention. 図5は本発明の第2の実施形態の気体溶解水製造装置を用いて製造した二酸化炭素溶解水の比抵抗値を示すグラフである。FIG. 5 is a graph showing specific resistance values of carbon dioxide-dissolved water produced using the gas-dissolved water producing apparatus according to the second embodiment of the present invention. 図6は本発明の第1の実施形態の比較例である気体溶解水製造装置を用いて製造した二酸化炭素溶解水の比抵抗値を示すグラフである。FIG. 6 is a graph showing specific resistance values of carbon dioxide-dissolved water produced using a gas-dissolved water producing apparatus that is a comparative example of the first embodiment of the present invention. 図7は本発明の第1の実施形態の比較例である気体溶解水製造装置を用いて製造した二酸化炭素溶解水の比抵抗値を示すグラフである。FIG. 7 is a graph showing specific resistance values of carbon dioxide-dissolved water produced using a gas-dissolved water producing apparatus that is a comparative example of the first embodiment of the present invention. 図8は本発明の第2の実施形態の比較例である気体溶解水製造装置を用いて製造した二酸化炭素溶解水の比抵抗値を示すグラフである。FIG. 8 is a graph showing specific resistance values of carbon dioxide-dissolved water produced using a gas-dissolved water producing apparatus that is a comparative example of the second embodiment of the present invention.

以下、本発明の実施の形態について図面を用いて説明する。なお、本明細書において、「純水」とは、比抵抗が10MΩ・cm以上、TOC(全有機炭素)が0.1mg/L以下の水であり、「超純水」とは、比抵抗値が17MΩ・cm以上、TOC(全有機炭素)が10μg/L以下の水をいう。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this specification, “pure water” means water having a specific resistance of 10 MΩ · cm or more and TOC (total organic carbon) of 0.1 mg / L or less, and “ultra pure water” means specific resistance. Water whose value is 17 MΩ · cm or more and TOC (total organic carbon) is 10 μg / L or less.

図1は本発明の第1の実施形態の気体溶解水製造装置11を模式的に示す側断面図であり、二酸化炭素溶解水(炭酸水)を製造するための装置である。本発明の第1の実施形態の気体溶解水製造装置11は、T型継手12を、直管部12a側を垂直に配置し、枝管部12bに純水流入管13を接続し、直管部12a側の上方に純水流出管14を接続するとともに、直管部12a側の下方から気体供給管15を枝管部12bの中心線上の位置まで挿入し、気体供給管15とT型継手12との間は、封止部材で液密に封止して構成されている。   FIG. 1 is a side sectional view schematically showing a gas-dissolved water production apparatus 11 according to a first embodiment of the present invention, which is an apparatus for producing carbon dioxide-dissolved water (carbonated water). In the gas-dissolved water production apparatus 11 of the first embodiment of the present invention, the T-shaped joint 12 is arranged vertically on the straight pipe portion 12a side, the pure water inflow pipe 13 is connected to the branch pipe portion 12b, and the straight pipe The pure water outflow pipe 14 is connected to the upper side of the portion 12a, and the gas supply pipe 15 is inserted from the lower side of the straight pipe portion 12a to the position on the center line of the branch pipe portion 12b. 12 is configured to be liquid-tightly sealed with a sealing member.

純水流出管14は、純水流入管13と同寸法の第1の純水流出管14aと、第1の流出管部から下流側に拡開するテーパー管部14bを介して接続された第2の純水流出管14cとから構成されている。   The pure water outflow pipe 14 is connected to a first pure water outflow pipe 14a having the same dimensions as the pure water inflow pipe 13 and a tapered pipe portion 14b that expands downstream from the first outflow pipe portion. 2 pure water outflow pipes 14c.

なお、本実施形態の気体溶解水製造装置11において、T型継手の上方に純水流出管14を配置し、下方から気体供給管15を挿入して構成しているが、純水流出管14を下方に、気体供給管15を上方に配置してもよく、気体供給管15を枝管部12bに設置し、純水流入管13を上方もしくは下方のいずれに設置した場合も、本発明の効果を得ることができる。また、T型継手12の直管部12aを垂直方向以外に設置することもできる。   In the gas dissolved water production apparatus 11 of the present embodiment, the pure water outflow pipe 14 is disposed above the T-shaped joint and the gas supply pipe 15 is inserted from below, but the pure water outflow pipe 14 is configured. The gas supply pipe 15 may be arranged on the lower side, the gas supply pipe 15 may be installed on the branch pipe portion 12b, and the pure water inflow pipe 13 may be installed on either the upper side or the lower side. An effect can be obtained. Further, the straight pipe portion 12a of the T-shaped joint 12 can be installed in a direction other than the vertical direction.

気体供給管15から二酸化炭素ガスが供給され、純水流入管13から小流量の純水が供給され、T型継手12の内部において直交方向で混合される。   Carbon dioxide gas is supplied from the gas supply pipe 15, and a small amount of pure water is supplied from the pure water inflow pipe 13 and mixed in the orthogonal direction inside the T-shaped joint 12.

混合された、気体の気泡を含む純水は、第1の純水流出管14aへ流出し、さらに混合される。T型継手12内から、該管部14a内までの流域で純水流は全体としてレイノルズ数2300以上の乱流とすることが好ましいが、第2の純水流出管14cのレイノルズ数の2倍以上の層流であれば、同様の効果が得られる。気体を溶解させた純水は、続いて第2の純水流出管14c内へ流出する。該管部14c内では純水流は全体としてレイノルズ数2300未満の層流となることが好ましい。   The mixed pure water containing gas bubbles flows out to the first pure water outflow pipe 14a and is further mixed. The pure water flow is preferably a turbulent flow having a Reynolds number of 2300 or more as a whole in the flow region from the inside of the T-shaped joint 12 to the inside of the pipe portion 14a. However, it is more than twice the Reynolds number of the second pure water outflow pipe 14c. The same effect can be obtained with the laminar flow. The pure water in which the gas is dissolved subsequently flows out into the second pure water outflow pipe 14c. In the pipe portion 14c, the pure water flow is preferably a laminar flow having a Reynolds number of less than 2300 as a whole.

供給する水としては、半導体製造工程などにおいて用いられる超純水や、純水などが挙げられる。この装置における純水の流量は、例えば0.2L/minであり、比抵抗は10〜18.2MΩ・cmである。また、二酸化炭素の供給量は0.08mL/min(20℃、1気圧において)である。   Examples of water to be supplied include ultrapure water and pure water used in semiconductor manufacturing processes. The flow rate of pure water in this apparatus is, for example, 0.2 L / min, and the specific resistance is 10 to 18.2 MΩ · cm. The supply amount of carbon dioxide is 0.08 mL / min (at 20 ° C. and 1 atm).

例えば、純水流入管13の寸法は、外径φ6mm,内径φ4mmであり、気体供給管15の外形は約φ2mm、内径はφ0.13mmである。なお、気体供給管15はSUSチューブ等であり、内径は、φ0.5mm以下が好ましく、φ0.3mm以下がより好ましく、小径にするほど二酸化炭素溶解純水の比抵抗値は安定するようになる。   For example, the dimensions of the pure water inflow pipe 13 are an outer diameter of 6 mm and an inner diameter of 4 mm, and the outer shape of the gas supply pipe 15 is about 2 mm and the inner diameter is 0.13 mm. The gas supply pipe 15 is a SUS tube or the like, and the inner diameter is preferably φ0.5 mm or less, more preferably φ0.3 mm or less, and the specific resistance value of carbon dioxide-dissolved pure water becomes more stable as the diameter is reduced. .

第1の純水流出管14aは、純水流を全体として乱流とするために、内部が平滑な円形断面の配管を用いることが好ましい。また、第1の純水流出管14aとして、SUS、PFA、PTFE等で形成された配管を用いることができる。   The first pure water outflow pipe 14a is preferably a pipe having a circular cross section with a smooth interior in order to make the pure water flow turbulent as a whole. Further, as the first pure water outflow pipe 14a, a pipe formed of SUS, PFA, PTFE or the like can be used.

第2の純水流出管14cは、純水流が全体として層流となるように構成されることが好ましい。配管の接続部分では、純水流は乱流となる場合が多いが、テーパー管部14bと第2の流水管14cは、これらの影響を最小限にするように接続されることが好ましい。配管の寸法としては、第2の純水流出管14cの内径は、内部での純水流が層流となる内径とすればよく、好ましくはφ20mm以下、より好ましくはφ15mm以下、さらに好ましくはφ12mm以下である。例えば、純水流出管14の第1の流出管部14aは純水流入管13と同一寸法とされ、第2の流出管部14cの内径はφ10mmとされている。   The second pure water outflow pipe 14c is preferably configured so that the pure water flow becomes a laminar flow as a whole. The pure water flow is often turbulent at the connection portion of the pipe, but the tapered pipe portion 14b and the second flow water pipe 14c are preferably connected so as to minimize these effects. As for the dimensions of the pipe, the inner diameter of the second pure water outflow pipe 14c may be an inner diameter in which the pure water flow inside becomes a laminar flow, preferably φ20 mm or less, more preferably φ15 mm or less, and further preferably φ12 mm or less. It is. For example, the first outflow pipe portion 14a of the pure water outflow pipe 14 has the same dimensions as the pure water inflow pipe 13, and the inner diameter of the second outflow pipe portion 14c is φ10 mm.

純水流出管14の第1の純水流出管14aは純水流入管13と同寸法であることがT型継手12の構造上好ましいが、同一の寸法に限定されるものではない。第2の純水流出管14cの寸法も適宜変更できるが、使用される純水流量に対して層流となるだけの内径をもつ配管を用いる必要がある。   The first pure water outflow pipe 14 a of the pure water outflow pipe 14 is preferably the same size as the pure water inflow pipe 13 in terms of the structure of the T-shaped joint 12, but is not limited to the same size. Although the dimension of the second pure water outflow pipe 14c can be changed as appropriate, it is necessary to use a pipe having an inner diameter sufficient to form a laminar flow with respect to the pure water flow rate used.

すなわち、純水と気体が混合される領域では、純水流を乱流とし、気体を速やかに溶解させ、第2の流出管部14c内で純水流を層流とし、配管内壁面へ付着して気泡が結合することを防ぐことができる。   That is, in the region where pure water and gas are mixed, the pure water flow is turbulent, the gas is quickly dissolved, the pure water flow is laminar in the second outflow pipe portion 14c, and adheres to the inner wall surface of the pipe. Air bubbles can be prevented from being combined.

第1の純水流出管14aは直線状の配管が好ましく、第1の流出管部で純水流が乱流となり配管の内壁面への気泡の付着が起きることを防ぐため、短いほど好ましく、装置全体を小型化することも可能となる。   The first pure water outflow pipe 14a is preferably a straight pipe, and is preferably as short as possible in order to prevent the pure water flow from being turbulent in the first outflow pipe portion and causing bubbles to adhere to the inner wall surface of the pipe. It is also possible to reduce the overall size.

第2の純水流出管14cの形状はらせん状であってもよい。   The shape of the second pure water outflow pipe 14c may be helical.

純水流入管13における純水流のレイノルズ数Reは2300以上又は、第2の純水流出管のレイノルズ数の2倍以上、とすることが好ましい。第2の純水流出管14c内における純水流のレイノルズ数Reは好ましくは2300未満、より好ましくは、1500以下である。 The Reynolds number Re 1 of the pure water flow in the pure water inflow pipe 13 is preferably 2300 or more or twice or more than the Reynolds number of the second pure water outflow pipe. The Reynolds number Re 2 is preferably less than 2300 pure water in the second pure water outlet pipe 14c, more preferably 1500 or less.

Reが2300未満であると気体供給管15の先端(出口)での純水による気泡のせん断が不十分となり、気泡が大きくなり溶解が不十分になるため溶解水の比抵抗値が安定しない。Reが2300以上になると気泡が配管の内壁面に付着し、付着した気泡が剥離、溶解するため、溶解水の比抵抗値は安定しない。レイノルズ数を上記のように決定することにより、供給された気体を迅速かつ完全に溶解させて、安定した比抵抗値をもつ気体溶解水を製造することができる。 When Re 1 is less than 2300, the shearing of bubbles by pure water at the tip (exit) of the gas supply pipe 15 becomes insufficient, the bubbles become larger and the dissolution becomes insufficient, so the specific resistance value of the dissolved water is not stable. . When Re 2 is 2300 or more, bubbles adhere to the inner wall surface of the pipe, and the attached bubbles peel and dissolve, so the specific resistance value of the dissolved water is not stable. By determining the Reynolds number as described above, the supplied gas can be rapidly and completely dissolved to produce gas-dissolved water having a stable specific resistance value.

レイノルズ数Reとは、下記(1)に示されるように、液体の動粘度ν(m/s)、速度(流速)V(m/s)および流体の流れる管の直径d(m)によって決定される無次元の定数である。 The Reynolds number Re, as shown in (1) below, depends on the kinematic viscosity ν (m 2 / s) of the liquid, the velocity (flow velocity) V (m / s), and the diameter d (m) of the tube through which the fluid flows. A dimensionless constant to be determined.

Re=Vd/ν …(1)   Re = Vd / ν (1)

一般的に配管断面が円形である場合には、層流で流れている流体のReが2700〜4000の範囲で流体が層流から乱流に変化し、乱流で流れている流体のReが2000以下になると、乱流から層流に変化することが知られている。本明細書では、レイノルズ数2300以上の純水流を乱流といい、レイノルズ数2300未満の純水流を層流という。   In general, when the cross section of the pipe is circular, the fluid changes from laminar flow to turbulent flow in the range of 2700 to 4000 Re of fluid flowing in the laminar flow, and the Re of fluid flowing in the turbulent flow is It is known that when it becomes 2000 or less, it changes from a turbulent flow to a laminar flow. In this specification, a pure water flow having a Reynolds number of 2300 or more is referred to as a turbulent flow, and a pure water flow having a Reynolds number of less than 2300 is referred to as a laminar flow.

図2Aは本発明の第2の実施形態の気体溶解水製造装置21を模式的に示す側断面図であり、二酸化炭素溶解水(炭酸水)を製造するための装置である。図2Aに示される本発明の第2の実施形態の気体溶解水製造装置21は、T型継手22を、直管部22a側を垂直に配置し、枝管部22bに純水流入管23を直管部の中央まで挿入し、純水流入管23とT型継手22との間は、封止部材で液密に封止されている。また、直管部22a側の下方から気体供給管25を枝管部22bの中心線上の位置まで挿入し、気体供給管25とT型継手22との間は、封止部材で液密に封止するとともに、直管部22a側の上方に純水流出管24を接続して構成されている。   FIG. 2A is a side sectional view schematically showing a gas-dissolved water production apparatus 21 according to a second embodiment of the present invention, which is an apparatus for producing carbon dioxide-dissolved water (carbonated water). In the gas-dissolved water production apparatus 21 of the second embodiment of the present invention shown in FIG. 2A, the T-shaped joint 22 is arranged vertically on the straight pipe part 22a side, and the pure water inflow pipe 23 is provided in the branch pipe part 22b. It is inserted to the center of the straight pipe portion, and the space between the pure water inflow pipe 23 and the T-shaped joint 22 is liquid-tightly sealed with a sealing member. Further, the gas supply pipe 25 is inserted from the lower side of the straight pipe section 22a to a position on the center line of the branch pipe section 22b, and the gap between the gas supply pipe 25 and the T-shaped joint 22 is liquid-tightly sealed with a sealing member. The pure water outflow pipe 24 is connected to the upper side of the straight pipe portion 22a.

本実施形態において、T型継手22の下方から気体供給管25を、上方に純水流出管24を挿入して構成しているが、気体供給管25を上方に、純水流出管24を下方に挿入して構成してもよく、気体供給管25を枝管部22bに設置し、純水流入管23を上方もしくは下方のいずれに設置した場合にも、本発明の効果を得ることができる。また、T型継手の直管部22aを垂直方向以外に設置してもよい。   In the present embodiment, the gas supply pipe 25 is inserted from below the T-shaped joint 22 and the pure water outflow pipe 24 is inserted above, but the gas supply pipe 25 is above and the pure water outflow pipe 24 is below. Even if the gas supply pipe 25 is installed in the branch pipe portion 22b and the pure water inflow pipe 23 is installed either above or below, the effect of the present invention can be obtained. . Further, the straight pipe portion 22a of the T-shaped joint may be installed in a direction other than the vertical direction.

気体供給管25から二酸化炭素ガスが供給され、純水供給管23から小流量の純水が供給され、T型継手22の内部において直交方向で混合される。   Carbon dioxide gas is supplied from the gas supply pipe 25, and a small amount of pure water is supplied from the pure water supply pipe 23, and mixed in the orthogonal direction inside the T-shaped joint 22.

この装置における純水の流量、比抵抗、二酸化炭素の供給量は、第1の実施形態における装置と同様である。また、純水流入管23の先端ノズル部の寸法は例えば外径φ4mm、内径φ2mmであり、気体供給管25の外径、内径および材質については、第1の実施形態の装置と同様である。この純水流入管23内において水流は全体として乱流である、又は、純水流出管24のレイノルズ数の2倍以上の層流であることが好ましい。なお、純水流入管23の先端(噴出口)はノズル形状であることが好ましいが、直管状であってもよい。   The flow rate of pure water, the specific resistance, and the supply amount of carbon dioxide in this apparatus are the same as those in the apparatus in the first embodiment. Further, the dimensions of the tip nozzle portion of the pure water inflow pipe 23 are, for example, an outer diameter of 4 mm and an inner diameter of 2 mm, and the outer diameter, inner diameter, and material of the gas supply pipe 25 are the same as those of the apparatus of the first embodiment. In the pure water inflow pipe 23, the water flow is preferably turbulent as a whole, or is preferably a laminar flow that is twice or more the Reynolds number of the pure water outflow pipe 24. In addition, although it is preferable that the front-end | tip (jet outlet) of the pure water inflow tube 23 is a nozzle shape, a straight tube may be sufficient.

純水流入管23は、その延長線上に気体供給管25の先端(出口)があるように設置することが好ましく、図2Bに示す、気体供給管25の先端と、純水流入管23の先端の距離M(mm)は、下記式(2)に示される関係であることが望ましい。なお、Rは純水流入管23の内径(mm)である。   The pure water inflow pipe 23 is preferably installed so that the distal end (exit) of the gas supply pipe 25 is on the extension line. The distal end of the gas supply pipe 25 and the distal end of the pure water inflow pipe 23 shown in FIG. It is desirable that the distance M (mm) in the following relationship be expressed by the following formula (2). R is the inner diameter (mm) of the pure water inflow pipe 23.

M≦9.05/R + 1.02 …(2) M ≦ 9.05 / R + 1.02 (2)

Mは小さいほど好ましく、具体的には、5mm以下が好ましく、2mm以下がより好ましい。   M is preferably as small as possible. Specifically, it is preferably 5 mm or less, and more preferably 2 mm or less.

気体供給管25から供給された気体の気泡は、純水流入管23の先端ノズル部より噴出した純水により、せん断されて微小気泡となるとともに、純水流が全体として乱流であることにより撹拌されるため、速やかに溶解させることができる。   The gas bubbles supplied from the gas supply pipe 25 are sheared by the pure water ejected from the tip nozzle part of the pure water inflow pipe 23 to become microbubbles, and the pure water flow is a turbulent flow as a whole. Therefore, it can be dissolved quickly.

純水流出管24は、内径φ6mmであり、該管24内でその水流は全体として層流となっていることが好ましい。   The pure water outflow pipe 24 has an inner diameter of 6 mm, and the water flow is preferably laminar as a whole in the pipe 24.

T型継手22の下流側には、流入口6a、流出口6bを備えた気体溶解チャンバー6が設置されてもよい。純水流出管24を気体溶解チャンバー6の流入口6aに接続して設置し、内部で気体をさらに溶解させるとともに、純水中の濃度分布をなくすことにより比抵抗値を安定させることができる。   A gas dissolution chamber 6 having an inlet 6a and an outlet 6b may be installed on the downstream side of the T-shaped joint 22. The pure water outflow pipe 24 is connected to the inflow port 6a of the gas dissolution chamber 6 to further dissolve the gas inside and to stabilize the specific resistance value by eliminating the concentration distribution in the pure water.

気体溶解チャンバー6は、T型継手12、22の下流に設けることが可能であるが、純水流出管14、24又は第2の純水流出管14cに、チャンバー6と同じ体積又は、滞留時間を持たせ同様に機能させることもできる。また、チャンバー6の下流又は純水流出管14、24の下流、すなわち、気泡が完全に溶解した後の配管の管径は、任意に選択できる。   The gas dissolution chamber 6 can be provided downstream of the T-shaped joints 12 and 22, but the pure water outflow pipes 14 and 24 or the second pure water outflow pipe 14c have the same volume or residence time as the chamber 6. Can be made to function in the same way. Further, the pipe diameter of the pipe downstream of the chamber 6 or downstream of the pure water outflow pipes 14, 24, that is, after the bubbles are completely dissolved, can be arbitrarily selected.

気体溶解チャンバー6は、内部で気体を完全に溶解させるためのものであり、例えば、その内径をφ20mmとし、内部の容量が20mLとなるように構成されている。   The gas dissolution chamber 6 is for completely dissolving the gas inside, and is configured to have an inner diameter of 20 mm and an internal volume of 20 mL, for example.

純水流出管24の寸法、気体溶解チャンバー6の内径および流量は装置全体の寸法などに従って、適宜変更することができるが、チャンバー6の体積は、チャンバー6での純水の滞留時間が、2〜60秒、より好ましくは、5〜30秒、となるように構成することが好ましい。   The dimensions of the pure water outflow pipe 24, the inner diameter and the flow rate of the gas dissolution chamber 6 can be changed as appropriate according to the overall dimensions of the apparatus, etc. It is preferable to configure so as to be ˜60 seconds, more preferably 5 to 30 seconds.

溶解させる気体としては、純水に溶解することができるものであれば限定されず、例えば、二酸化炭素、窒素、酸素、水素などが挙げられる。   The gas to be dissolved is not limited as long as it can be dissolved in pure water, and examples thereof include carbon dioxide, nitrogen, oxygen, and hydrogen.

溶解させる気体が窒素である場合には、溶解水は、半導体製造工程などの超音波洗浄水などとして用いることができる。   When the gas to be dissolved is nitrogen, the dissolved water can be used as ultrasonic cleaning water for a semiconductor manufacturing process or the like.

これらの中でも特に二酸化炭素が好ましく、二酸化炭素溶解水は、純水流出管14、24又は流出口6bから採取され、比抵抗値を比抵抗値測定装置7などにより測定し、半導体製造工程における基板の帯電防止を必要とする工程、洗浄する工程などに用いることができる。   Among these, carbon dioxide is particularly preferable, and the carbon dioxide-dissolved water is collected from the pure water outflow pipes 14 and 24 or the outlet 6b, and the specific resistance value is measured by the specific resistance value measuring device 7 or the like. It can be used for a process that requires antistatic treatment, a cleaning process, and the like.

また、本発明の気体溶解水製造方法によれば、半導体製造工程等において安定した比抵抗値を持つ気体溶解水を提供することができる。   Moreover, according to the gas-dissolved water manufacturing method of the present invention, gas-dissolved water having a stable specific resistance value in a semiconductor manufacturing process or the like can be provided.

本発明の実施例について説明する。   Examples of the present invention will be described.

実施例1、2、比較例1〜3に使用した気体溶解水製造装置11は、図1に示した第1の実施形態の装置を模擬したものであり、使用した純水、実験装置及び主な実験条件は以下のとおりである。   The gas-dissolved water production apparatus 11 used in Examples 1 and 2 and Comparative Examples 1 to 3 simulates the apparatus of the first embodiment shown in FIG. The experimental conditions are as follows.

[純水]比抵抗値 18MΩ・cm
[溶解させる気体]二酸化炭素ガス
[二酸化炭素ガスの供給圧] 0.15MPa
[水温]20℃
[比抵抗測定装置]HE−480R(株式会社堀場アドバンスドテクノ社製)
[Pure water] Specific resistance 18MΩ · cm
[Gas to be dissolved] Carbon dioxide gas [Supply pressure of carbon dioxide gas] 0.15 MPa
[Water temperature] 20 ℃
[Specific Resistance Measuring Device] HE-480R (Horiba Advanced Techno Co., Ltd.)

(実施例1)
純水の流量0.5L/min、二酸化炭素ガスの流量を0.2mL/min(20℃、1気圧において)とした。
気体供給管15の内径0.13mm、外径2mmとし、純水流入管13は、内径4mm、長さ15mmとした。
第1の純水流出管14aの内径4mm、長さ15mmとし、第2の純水流出管14cの内径φ10mm、長さ100mmとした。
第2の純水流出管14c内でのレイノルズ数Re12は1050であった。また、純水流入管13内のレイノルズ数Re11は、2600であった。
第2の純水流出管14cより流出した二酸化炭素溶解水の比抵抗値を測定し、図3に示した。
なお、純水流出管14cの一部をガラス製のものにして、内部を観察したところ、微小気泡が配管の中央部を流れ、次第に消失する様子が確認された。
Example 1
The flow rate of pure water was 0.5 L / min, and the flow rate of carbon dioxide gas was 0.2 mL / min (at 20 ° C. and 1 atm).
The gas supply pipe 15 had an inner diameter of 0.13 mm and an outer diameter of 2 mm, and the pure water inflow pipe 13 had an inner diameter of 4 mm and a length of 15 mm.
The inner diameter of the first pure water outflow pipe 14a is 4 mm and the length is 15 mm, and the inner diameter of the second pure water outflow pipe 14c is 10 mm and the length is 100 mm.
The Reynolds number Re 12 in the second pure water outflow pipe 14c was 1050. The Reynolds number Re 11 in the pure water inflow tube 13 was 2600.
The specific resistance value of the carbon dioxide-dissolved water flowing out from the second pure water outflow pipe 14c was measured and shown in FIG.
In addition, when a part of the pure water outflow pipe 14c was made of glass and the inside was observed, it was confirmed that micro bubbles flowed through the central part of the pipe and gradually disappeared.

(実施例2)
純水の流量0.2L/min、二酸化炭素ガスの流量を0.08mL/min(20℃、1気圧において)とした。その他の条件は、実施例1と同様とした。
第2の純水流出管14c内でのレイノルズ数Re22は420であった。また、純水流入管13内でのレイノルズ数Re21は、1050であった。
第2の純水流出管14cより流出した二酸化炭素溶解水の比抵抗値を測定し、図4に示した。
この時、純水流出管14の一部をガラス製のものにして、内部を観察したところ、微小気泡が配管内の中心を流れ、次第に消失する様子が確認された。
(Example 2)
The flow rate of pure water was 0.2 L / min, and the flow rate of carbon dioxide gas was 0.08 mL / min (at 20 ° C. and 1 atm). Other conditions were the same as in Example 1.
The Reynolds number Re 22 in the second pure water outflow pipe 14c was 420. The Reynolds number Re 21 in the pure water inflow tube 13 was 1050.
The specific resistance value of the carbon dioxide-dissolved water flowing out from the second pure water outflow pipe 14c was measured and shown in FIG.
At this time, when a part of the pure water outflow pipe 14 was made of glass and the inside was observed, it was confirmed that the microbubbles flow in the center of the pipe and gradually disappear.

(比較例1)
第1の純水流出管14aの内径φ10mm、長さ15mm、第2の純水流出管14cの内径φ10mm、長さ100mmとした。(第1の純水流出管14aと第2の純水流出管14c管の内径を同じとして、一体の形状とした。)また、純水流入管13は内径φ10mmとした。他は、実施例1と同様とした。
なお、純水流入管13内でのレイノルズ数Re31は1050であった。また、第2の純水流出管14c内でのレイノルズ数Re32は1050であった。
純水流出管14cより流出した二酸化炭素溶解水の比抵抗値を測定し、図6に示した。なお、純水流出管14の一部をガラス製のものにして、内部を観察したところ、巨大気泡が配管内を全体的に流れ、かつ、その一部は配管の内壁面に接触し、かつ、壁面に付着している様子が確認された。
(Comparative Example 1)
The inner diameter of the first pure water outflow pipe 14a was 10 mm and the length was 15 mm, and the inner diameter of the second pure water outflow pipe 14c was 10 mm and the length was 100 mm. (The inner diameters of the first pure water outflow pipe 14a and the second pure water outflow pipe 14c are the same as each other.) The pure water inflow pipe 13 has an inner diameter of 10 mm. Others were the same as in Example 1.
The Reynolds number Re 31 in the pure water inflow tube 13 was 1050. The Reynolds number Re 32 in the second pure water outflow tube 14c was 1050.
The specific resistance value of the carbon dioxide-dissolved water flowing out from the pure water outflow pipe 14c was measured and shown in FIG. In addition, when a part of the pure water outflow pipe 14 is made of glass and the inside is observed, the giant bubbles flow through the pipe as a whole, and a part of the pipe contacts the inner wall surface of the pipe. The state of adhering to the wall surface was confirmed.

(比較例2)
第1の純水流出管14aの内径φ4mm、長さ15mm、第2の純水流出管14cの内径φ4mm、長さ100mmとした。(第1の純水流出管14aと第2の純水流出管14c管の内径を同じとして、一体の形状とした。)
また、純水流入管13は内径φ4mmとした。他は、実施例1と同様とした。
純水流入管13内でのレイノルズ数Re41は2600であった。また、第2の純水流出管14c内でのレイノルズ数Re42は2600であった。
第2の純水流出管14cより流出した二酸化炭素溶解水の比抵抗値を測定したところ、図6と同様の結果となった。
この時、純水流出管14の一部をガラス製のものにして、内部を観察したところ、微小気泡が配管内を全体的に流れ、かつ、その一部は配管の内壁面部に接触し、かつ、壁面に付着している様子が確認された。
(Comparative Example 2)
The inner diameter of the first pure water outflow pipe 14a was 4 mm and the length was 15 mm, and the inner diameter of the second pure water outflow pipe 14c was 4 mm and the length was 100 mm. (The first pure water outflow pipe 14a and the second pure water outflow pipe 14c have the same inner diameter, and are formed in an integral shape.)
The pure water inflow pipe 13 has an inner diameter of 4 mm. Others were the same as in Example 1.
The Reynolds number Re 41 in the pure water inflow tube 13 was 2600. The Reynolds number Re 42 in the second pure water outflow tube 14c was 2600.
When the specific resistance value of the carbon dioxide-dissolved water flowing out from the second pure water outflow pipe 14c was measured, the same result as in FIG. 6 was obtained.
At this time, when a part of the pure water outflow pipe 14 is made of glass and the inside is observed, the microbubbles flow through the pipe as a whole, and a part thereof contacts the inner wall surface of the pipe. And it was confirmed that it was attached to the wall surface.

(比較例3)
気体供給管15の内径をφ0.8mmとした以外は、実施例2と同様とした。
第2の純水流出管14cより流出した二酸化炭素溶解水の比抵抗値を測定し、図7に示した。
この時、純水流出管14の一部をガラス製のものにして、内部を観察したところ、巨大気泡が配管の中心を流れ、気泡が消失する様子は確認できなかった。
(Comparative Example 3)
Example 2 was the same as Example 2 except that the inner diameter of the gas supply pipe 15 was set to φ0.8 mm.
The specific resistance value of the carbon dioxide-dissolved water flowing out from the second pure water outflow pipe 14c was measured and shown in FIG.
At this time, when a part of the pure water outflow pipe 14 was made of glass and the inside was observed, it was not confirmed that the giant bubbles flowed through the center of the pipe and the bubbles disappeared.

次に、第2の実施形態である気体溶解水製造装置22を用いた実施例3及び比較例4を示す。使用した気体溶解水製造装置2は、図2に示した第2の実施形態の装置を模擬したものであり、使用した純水および実験装置は以下のとおりである。   Next, Example 3 and Comparative Example 4 using the gas-dissolved water production apparatus 22 according to the second embodiment are shown. The gas dissolved water production apparatus 2 used simulates the apparatus of the second embodiment shown in FIG. 2, and the pure water and the experimental apparatus used are as follows.

[純水]比抵抗値 18MΩ・cm
[純水の流量]0.2L/min
[溶解させる気体]二酸化炭素ガス
[二酸化炭素ガスの流量]0.08mL/min(20℃、1気圧において)
[二酸化炭素ガスの供給圧] 0.15MPa
[水温]20℃
[比抵抗測定装置] HE−480R(株式会社堀場アドバンスドテクノ社製))
[気体溶解チャンバー] 容量20mL、 PVC製
(実施例3)
[Pure water] Specific resistance 18MΩ · cm
[Flow rate of pure water] 0.2L / min
[Gas to be dissolved] Carbon dioxide gas [Flow rate of carbon dioxide gas] 0.08 mL / min (at 20 ° C. and 1 atm)
[Supply pressure of carbon dioxide gas] 0.15 MPa
[Water temperature] 20 ℃
[Specific Resistance Measuring Device] HE-480R (Horiba Advanced Techno Co., Ltd.))
[Gas dissolution chamber] Capacity 20 mL, made of PVC (Example 3)

第2の実施形態の装置において、純水流入管23を内径φ2.5mmの直管、純水流出管24の内径φ10mm、気体供給管25の内径をφ0.13mmとした。
純水流入管23の先端と気体供給管25の距離Mを3(mm)とした。
純水流出管24でのレイノルズ数R52は420であった。また、純水流入管23内でのレイノルズ数R51は1700であった。
純水流出管24の下流には気体溶解チャンバー6を設置した。
気体溶解チャンバー6の流出口6bから流出した二酸化炭素溶解水の比抵抗値を測定し、図5に示した。
なお、純水流出管24の一部をガラス製のものにして、内部を観察したところ、微小気泡が配管の中央部を流れ、次第に消失する様子が確認された。
In the apparatus of the second embodiment, the pure water inflow pipe 23 is a straight pipe having an inner diameter of φ2.5 mm, the pure water outflow pipe 24 has an inner diameter of φ10 mm, and the gas supply pipe 25 has an inner diameter of φ0.13 mm.
The distance M 1 between the tip of the pure water inflow pipe 23 and the gas supply pipe 25 was 3 (mm).
The Reynolds number R 52 in the pure water outflow pipe 24 was 420. The Reynolds number R 51 in the pure water inflow pipe 23 was 1700.
A gas dissolution chamber 6 was installed downstream of the pure water outflow pipe 24.
The specific resistance value of the carbon dioxide-dissolved water flowing out from the outlet 6b of the gas dissolution chamber 6 was measured and shown in FIG.
In addition, when a part of the pure water outflow pipe 24 was made of glass and the inside was observed, it was confirmed that the microbubbles flowed through the central portion of the pipe and gradually disappeared.

(比較例4)
純水流入管23の先端と気体供給管25の距離Mを10(mm)とした以外は、実施例2と同様とした。
気体溶解チャンバー6の流出口6bから流出した二酸化炭素溶解水の比抵抗値を測定し、図8に示した
なお、純水流出管24の一部をガラス製のものにして、内部を観察したところ、巨大気泡が配管内を全体的に流れ、かつ、その一部は配管の内壁面に接触し、かつ、壁面に付着している様子が確認された。
(Comparative Example 4)
Except that the distance M 2 tip and the gas supply pipe 25 of the pure water inlet pipe 23 and 10 (mm), were the same as in Example 2.
The specific resistance value of the carbon dioxide-dissolved water flowing out from the outlet 6b of the gas dissolution chamber 6 was measured and shown in FIG. 8 Note that a part of the pure water outlet pipe 24 was made of glass and the inside was observed. However, it was confirmed that the giant bubbles generally flowed in the pipe, and a part of the bubbles contacted the inner wall surface of the pipe and adhered to the wall surface.

実施例1、2、比較例1〜3の実験条件を表1に、実施例3、比較例4の実験条件を表2に示す。   The experimental conditions of Examples 1 and 2 and Comparative Examples 1 to 3 are shown in Table 1, and the experimental conditions of Example 3 and Comparative Example 4 are shown in Table 2.

Figure 2013128869
Figure 2013128869

Figure 2013128869
Figure 2013128869

M…気体供給管25の先端と純水流入管23の先端の距離(mm)、11…気体溶解水製造装置、12…T型継手、12a…直管部、12b…枝管部、13…純水流入管、14…純水流出管、14a…第1の純水流出管、14b…テーパー管、14c…第2の純水流出管、5…気体供給管、
21…気体溶解水製造装置、22…T型継手、22a…直管部、22b…枝管部、23…純水流入管、24…純水流出管、25…気体供給管、6…気体溶解チャンバー、6a…流入口、6b…流出口、7…比抵抗測定装置
M: distance (mm) between the tip of the gas supply pipe 25 and the tip of the pure water inflow pipe 23, 11 ... a gas dissolved water production apparatus, 12 ... a T-type joint, 12a ... a straight pipe part, 12b ... a branch pipe part, 13 ... Pure water inflow pipe, 14 ... pure water outflow pipe, 14a ... first pure water outflow pipe, 14b ... taper pipe, 14c ... second pure water outflow pipe, 5 ... gas supply pipe,
DESCRIPTION OF SYMBOLS 21 ... Gas dissolved water manufacturing apparatus, 22 ... T-type coupling, 22a ... Straight pipe part, 22b ... Branch pipe part, 23 ... Pure water inflow pipe, 24 ... Pure water outflow pipe, 25 ... Gas supply pipe, 6 ... Gas dissolution Chamber, 6a ... inlet, 6b ... outlet, 7 ... specific resistance measuring device

Claims (8)

純水を供給する純水流入管に気体を注入し、前記気体が一定濃度で溶解する気体溶解水を製造する気体溶解水製造装置において、
T型管路と、
前記T型管路の1つの受口からT型の結合部中心の位置まで挿入されて基部が封止された気体供給管と、
前記T型管路の他の1つの受口から前記気体の供給される方向に垂直に純水を供給させる純水流入管と、
前記T型管路の前記気体供給管と前記純水流入管のいずれも備えない1つの受口に接続された、第1の純水流出管及び第1の純水流出管の下流に接続された第2の純水流出管からなる純水流出管と、
を備えたことを特徴とする気体溶解水製造装置。
In a gas-dissolved water production apparatus for producing gas-dissolved water in which gas is injected into a pure water inflow pipe for supplying pure water and the gas dissolves at a constant concentration,
A T-shaped conduit;
A gas supply pipe which is inserted from one receiving port of the T-shaped pipe line to the position of the center of the T-shaped coupling part and whose base is sealed;
A pure water inflow pipe for supplying pure water perpendicularly to a direction in which the gas is supplied from another one of the T-shaped pipes;
Connected to the downstream of the first pure water outflow pipe and the first pure water outflow pipe, which are connected to one receiving port of the T-shaped pipe line that has neither the gas supply pipe nor the pure water inflow pipe. A pure water outflow pipe comprising a second pure water outflow pipe,
A gas-dissolved water production apparatus comprising:
前記純水の供給流量が、0.1〜2L/minであることを特徴とする請求項1に記載の気体溶解水製造装置。 The gas-dissolved water production apparatus according to claim 1, wherein the pure water supply flow rate is 0.1 to 2 L / min. 前記気体と前記純水が混合された後の流路の一部または全部での純水流が層流であることを特徴とする請求項1又は2記載の気体溶解水製造装置。   The apparatus for producing dissolved gas according to claim 1 or 2, wherein a pure water flow in a part or all of the flow path after the gas and the pure water are mixed is a laminar flow. 第2の純水流出管の管径が、第1の純水流出管の管径より大きくされたことを特徴とする、請求項1乃至3のいずれか1項記載の気体溶解水製造装置。   The gas dissolved water production apparatus according to any one of claims 1 to 3, wherein the diameter of the second pure water outflow pipe is larger than the diameter of the first pure water outflow pipe. 前記純水流出管又は第2の純水流出管におけるレイノルズ数が、2300未満であることを特徴とする請求項1乃至4のいずれか1項記載の気体溶解水製造装置。   5. The gas dissolved water production apparatus according to claim 1, wherein a Reynolds number in the pure water outflow pipe or the second pure water outflow pipe is less than 2300. 6. 前記純水流入管でのレイノルズ数が、2300以上又は第2の純水流出管もしくは前記純水流出管のレイノルズ数の2倍以上、であることを特徴とする請求項1乃至5のいずれか1項記載の気体溶解水製造装置。   The Reynolds number in the pure water inflow pipe is 2300 or more, or 2 times or more of the Reynolds number of the second pure water outflow pipe or the pure water outflow pipe. The gas-dissolved water production apparatus according to item 1. 前記純水流入管が、前記T型管路の結合部の中央まで挿入されて基部が封止されたことを特徴とする請求項1乃至6のいずれか1項記載の気体溶解水製造装置。   The gas-dissolved water production apparatus according to any one of claims 1 to 6, wherein the pure water inflow pipe is inserted to the center of the coupling portion of the T-shaped pipe and the base is sealed. T型管路と、
前記T型管路の1つの受口からT型の結合部中心の位置まで挿入されて基部が封止された気体供給管と、
前記T型管路の他の1つの受口から前記気体の供給される方向に垂直に純水を供給させる純水流入管と、
前記T型管路の前記気体供給管と前記純水流入管のいずれも備えない1つの受口に接続された、第1の純水流出管及び第1の純水流出管の下流に接続された第2の純水流出管からなる純水流出管とを備えた気体溶解水製造装置によって気体溶解水を製造する方法であって、
前記気体と前記純水が混合された後の流路の一部または全部での純水流を層流とすることを特徴とする気体溶解水製造方法。
A T-shaped conduit;
A gas supply pipe which is inserted from one receiving port of the T-shaped pipe line to the position of the center of the T-shaped coupling part and whose base is sealed;
A pure water inflow pipe for supplying pure water perpendicularly to a direction in which the gas is supplied from another one of the T-shaped pipes;
Connected to the downstream of the first pure water outflow pipe and the first pure water outflow pipe, which are connected to one receiving port of the T-type pipe that is not provided with either the gas supply pipe or the pure water inflow pipe. A method for producing gas-dissolved water by a gas-dissolved water production apparatus comprising a pure water outflow pipe comprising a second pure water outflow pipe,
A method for producing gas-dissolved water, wherein a pure water flow in a part or all of the flow path after the gas and the pure water are mixed is a laminar flow.
JP2011278393A 2011-12-20 2011-12-20 Gas dissolved water manufacturing apparatus and gas dissolved water manufacturing method Active JP6105844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278393A JP6105844B2 (en) 2011-12-20 2011-12-20 Gas dissolved water manufacturing apparatus and gas dissolved water manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278393A JP6105844B2 (en) 2011-12-20 2011-12-20 Gas dissolved water manufacturing apparatus and gas dissolved water manufacturing method

Publications (2)

Publication Number Publication Date
JP2013128869A true JP2013128869A (en) 2013-07-04
JP6105844B2 JP6105844B2 (en) 2017-03-29

Family

ID=48906913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278393A Active JP6105844B2 (en) 2011-12-20 2011-12-20 Gas dissolved water manufacturing apparatus and gas dissolved water manufacturing method

Country Status (1)

Country Link
JP (1) JP6105844B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105435697A (en) * 2015-12-30 2016-03-30 上海水谷环保技术有限公司 Mobile gas-liquid nano mixing equipment
CN111417457A (en) * 2018-03-20 2020-07-14 株式会社岛津制作所 Small bubble supply device and small bubble analysis system
WO2023276837A1 (en) * 2021-07-01 2023-01-05 Dic株式会社 Specific resistance value adjustment device and specific resistance value adjustment method
WO2024058036A1 (en) * 2022-09-14 2024-03-21 国立大学法人 鹿児島大学 Nozzle for bubble formation, bubble formation device, bubble formation method, and method for producing nozzle for bubble formation

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699167A (en) * 1992-09-17 1994-04-12 Idec Izumi Corp Flotation separation method for floating particles in liquid and device therefor
JPH09150166A (en) * 1995-11-30 1997-06-10 Meidensha Corp Ozone treating device
JPH10324502A (en) * 1997-05-21 1998-12-08 Dainippon Ink & Chem Inc Device and method for adding carbon dioxide to ultrapure water
JP3066199U (en) * 1999-07-29 2000-02-18 好孝 橋本 Gas-liquid mixing device
JP2000334283A (en) * 1999-05-26 2000-12-05 Ishikawajima Harima Heavy Ind Co Ltd Ozone dissolving method and device
JP2001230062A (en) * 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd Induction heating cooking device
JP2001327958A (en) * 2000-05-19 2001-11-27 Kajima Corp Apparatus for reducing dissolved oxygen in water
JP2003117570A (en) * 2001-10-19 2003-04-22 Nomura Micro Sci Co Ltd Making method and making device for ozone water
JP2005028306A (en) * 2003-07-07 2005-02-03 Institute Of Computational Fluid Dynamics Gas-liquid mixing device, and sewage purifying device
JP2006247469A (en) * 2005-03-08 2006-09-21 Sanyo Electric Co Ltd Sewage treatment apparatus
JP2008036557A (en) * 2006-08-08 2008-02-21 Tokyo Electron Ltd Gas dissolving device, substrate washing unit, gas dissolving method and substrate washing method
JP3139460U (en) * 2007-10-30 2008-02-21 渉 室田 Mass production equipment for gas-dissolved liquid by continuous pressurized flow system
JP2010533582A (en) * 2007-10-31 2010-10-28 ロボタス カンパニー リミテッド Shower and cleaning equipment using fine bubbles
JP2010274181A (en) * 2009-05-27 2010-12-09 Bio Research Inc Method of producing hydrogen-containing drinking water
JP2011143368A (en) * 2010-01-15 2011-07-28 Toraitekku:Kk Specific resistance adjusting method of ultrapure water, and ultrapure water treatment apparatus
JP2011152513A (en) * 2010-01-27 2011-08-11 Panasonic Electric Works Co Ltd Gas-liquid mixture liquid generating apparatus
JP2011230062A (en) * 2010-04-28 2011-11-17 Kawata Mfg Co Ltd Apparatus for producing ozone water

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699167A (en) * 1992-09-17 1994-04-12 Idec Izumi Corp Flotation separation method for floating particles in liquid and device therefor
JPH09150166A (en) * 1995-11-30 1997-06-10 Meidensha Corp Ozone treating device
JPH10324502A (en) * 1997-05-21 1998-12-08 Dainippon Ink & Chem Inc Device and method for adding carbon dioxide to ultrapure water
JP2000334283A (en) * 1999-05-26 2000-12-05 Ishikawajima Harima Heavy Ind Co Ltd Ozone dissolving method and device
JP3066199U (en) * 1999-07-29 2000-02-18 好孝 橋本 Gas-liquid mixing device
JP2001230062A (en) * 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd Induction heating cooking device
JP2001327958A (en) * 2000-05-19 2001-11-27 Kajima Corp Apparatus for reducing dissolved oxygen in water
JP2003117570A (en) * 2001-10-19 2003-04-22 Nomura Micro Sci Co Ltd Making method and making device for ozone water
JP2005028306A (en) * 2003-07-07 2005-02-03 Institute Of Computational Fluid Dynamics Gas-liquid mixing device, and sewage purifying device
JP2006247469A (en) * 2005-03-08 2006-09-21 Sanyo Electric Co Ltd Sewage treatment apparatus
JP2008036557A (en) * 2006-08-08 2008-02-21 Tokyo Electron Ltd Gas dissolving device, substrate washing unit, gas dissolving method and substrate washing method
JP3139460U (en) * 2007-10-30 2008-02-21 渉 室田 Mass production equipment for gas-dissolved liquid by continuous pressurized flow system
JP2010533582A (en) * 2007-10-31 2010-10-28 ロボタス カンパニー リミテッド Shower and cleaning equipment using fine bubbles
JP2010274181A (en) * 2009-05-27 2010-12-09 Bio Research Inc Method of producing hydrogen-containing drinking water
JP2011143368A (en) * 2010-01-15 2011-07-28 Toraitekku:Kk Specific resistance adjusting method of ultrapure water, and ultrapure water treatment apparatus
JP2011152513A (en) * 2010-01-27 2011-08-11 Panasonic Electric Works Co Ltd Gas-liquid mixture liquid generating apparatus
JP2011230062A (en) * 2010-04-28 2011-11-17 Kawata Mfg Co Ltd Apparatus for producing ozone water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105435697A (en) * 2015-12-30 2016-03-30 上海水谷环保技术有限公司 Mobile gas-liquid nano mixing equipment
CN111417457A (en) * 2018-03-20 2020-07-14 株式会社岛津制作所 Small bubble supply device and small bubble analysis system
JPWO2019181765A1 (en) * 2018-03-20 2020-12-03 株式会社島津製作所 Fine bubble supply device and fine bubble analysis system
JP7352913B2 (en) 2018-03-20 2023-09-29 株式会社島津製作所 Fine bubble supply device and fine bubble analysis system
WO2023276837A1 (en) * 2021-07-01 2023-01-05 Dic株式会社 Specific resistance value adjustment device and specific resistance value adjustment method
WO2024058036A1 (en) * 2022-09-14 2024-03-21 国立大学法人 鹿児島大学 Nozzle for bubble formation, bubble formation device, bubble formation method, and method for producing nozzle for bubble formation

Also Published As

Publication number Publication date
JP6105844B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6334434B2 (en) Fine bubble generating apparatus and fine bubble generating method
JP6105844B2 (en) Gas dissolved water manufacturing apparatus and gas dissolved water manufacturing method
US7946299B2 (en) Spray jet cleaning apparatus and method
JP3197149U (en) Generator for dissolving gas in liquid and fluid spray nozzle
KR0173996B1 (en) Apparatus for dissolving a gas into and mixing the same with a liquid
US20100024842A1 (en) Generator for foam to clean substrate
JP2017192995A (en) Nozzle and workpiece polishing device
CN110663100B (en) Apparatus for producing diluted chemical liquid
CN112221368A (en) Micro-nano bubble generating device
TW589226B (en) Ozone mixing device and ozone mixing method
KR101863769B1 (en) apparatus of generating macro or nano bubble
JP4843339B2 (en) Ozone water supply device
KR101688638B1 (en) Apparatus for cleaning organic matter using fine ozone bubble
JP2003154242A (en) Fluid mixing apparatus
JP5989338B2 (en) Processing liquid generating apparatus, processing liquid generating method, substrate processing apparatus, and substrate processing method
JP2010158672A (en) Bubble generation method, bubble generation apparatus, and ozone water producing method
JP2006272096A (en) Fine bubble generator
JP2009291681A (en) Device/method of generating micro bubble and device of fabricating substrate
JP6059871B2 (en) Gas dissolved water manufacturing apparatus and gas dissolved water manufacturing method
WO2010023977A1 (en) Gas dissolver
JP2010029774A (en) Fine bubble generating apparatus
JP2012024719A (en) Device for supplying microscopic bubble-containing liquid
CN113522070B (en) Carbon dioxide dissolving module and substrate processing apparatus including the same
JP6443992B2 (en) Cleaning device and cleaning method
JP2007075674A (en) Microbubble generator and sanitary washing device equipped with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170303

R150 Certificate of patent or registration of utility model

Ref document number: 6105844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250