JP2013104111A - Composite material including polyacetal as main material and method for producing the same - Google Patents

Composite material including polyacetal as main material and method for producing the same Download PDF

Info

Publication number
JP2013104111A
JP2013104111A JP2011249965A JP2011249965A JP2013104111A JP 2013104111 A JP2013104111 A JP 2013104111A JP 2011249965 A JP2011249965 A JP 2011249965A JP 2011249965 A JP2011249965 A JP 2011249965A JP 2013104111 A JP2013104111 A JP 2013104111A
Authority
JP
Japan
Prior art keywords
polyacetal
electroless
plating
composite material
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011249965A
Other languages
Japanese (ja)
Inventor
Susumu Arai
進 新井
Shota Tachibana
翔太 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2011249965A priority Critical patent/JP2013104111A/en
Publication of JP2013104111A publication Critical patent/JP2013104111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite material including polyacetal as the main material, which requires only one step of plating, electroless plating, thereby achieving cost reduction and also improvement in friction and wear characteristics.SOLUTION: The composite material including polyacetal as the main material is provided, which requires only one step of plating, electroless plating, thereby achieving improvement in friction and wear characteristics. The composite material is obtained by forming an electroless plating film on a surface-roughened polyacetal resin molding, using an electroless plating bath including a carbon nanotube (CNT) and trimethylstearylammonium chloride as a dispersant.

Description

本発明は、ポリアセタール樹脂成形物の摺動特性を向上させ得るポリアセタールを主材とする複合材およびその製造方法に関する。   The present invention relates to a composite material mainly composed of polyacetal that can improve the sliding properties of a polyacetal resin molded product, and a method for producing the same.

ポリアセタールは極めて優れた機械特性を有するエンジニアリングプラスチックであり、プリンタギア等の摺動部品等、金属部品の代替材料として広く利用されている。ところで、摺動部品等に利用する場合には、摩擦・摩耗特性のさらなる向上が求められる。
特許文献1には、ポリアセタールの表面処理として、ポリアセタール樹脂成形物の表面に金属めっき皮膜を形成し、摺動特性を向上させることが記載されている。
Polyacetal is an engineering plastic having extremely excellent mechanical properties, and is widely used as an alternative material for metal parts such as sliding parts such as printer gears. By the way, when using for sliding parts etc., the further improvement of a friction and wear characteristic is calculated | required.
Patent Document 1 describes that as a surface treatment of polyacetal, a metal plating film is formed on the surface of a polyacetal resin molded article to improve sliding characteristics.

特開2007−51334JP2007-51334

特許文献1に示すものでは、ポリアセタール樹脂成形物表面を粗面化し、次いで、無電解めっきを行って無電解めっき皮膜を形成し、この無電解めっき皮膜を給電層として電解めっきを行い、電解めっき皮膜を形成するものである。このように、特許文献1のものでは、ポリアセタール樹脂成形物の表面にめっき皮膜を形成して、摩耗・摩擦特性を向上させるものである。
しかしながら、この特許文献1のものでは、無電解めっきと電解めっきの2段階に亘るめっき処理が必要で、工数が多く、コストが増大するという課題がある。
また、摩擦・摩耗特性のさらなる向上が求められる。
In the one shown in Patent Document 1, the surface of the polyacetal resin molded product is roughened, and then electroless plating is performed to form an electroless plating film, and the electroless plating film is used as a power feeding layer to perform electroplating. A film is formed. Thus, in the thing of patent document 1, a plating film is formed in the surface of a polyacetal resin molding, and an abrasion and a friction characteristic are improved.
However, the thing of this patent document 1 has the subject that the plating process over two steps of electroless plating and electrolytic plating is required, man-hours are many, and cost increases.
In addition, further improvement in friction and wear characteristics is required.

本発明は上記課題を解決すべくなされたものであり、その目的とするところは、無電解めっきだけの1段階のめっきですみ、コストの低減化が図れるとともに、摩擦・摩耗特性の向上が図れるポリアセタールを主材とする複合材およびその製造方法を提供することにある。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is only one-stage plating with only electroless plating, which can reduce costs and improve friction and wear characteristics. An object of the present invention is to provide a composite material mainly composed of polyacetal and a method for producing the same.

本発明に係るポリアセタールを主材とする複合材は、粗面化処理したポリアセタール樹脂成形物上に、カーボンナノチューブ(CNT)を含む無電解めっき皮膜が形成されていることを特徴とする。   The composite material mainly composed of polyacetal according to the present invention is characterized in that an electroless plating film containing carbon nanotubes (CNT) is formed on a roughened polyacetal resin molded product.

また、カーボンナノチューブの一部が無電解めっき皮膜表面から露出しており、かつ、下記条件下、ボールオンディスク法で測定した、前記カーボンナノチューブの一部が露出している前記無電解めっき皮膜表面の動摩擦係数が、0.1〜0.2であることを特徴とする。
前記ボールオンディスク法の条件:
ボール:直径6mmのAl製、荷重:2.00N、摺動半径:2.00mm、速度:1.00cm/sec、温度:室温、雰囲気:大気中、潤滑材:無し、摺動距離:12.6m(1000回転)以内。
In addition, a part of the carbon nanotube is exposed from the surface of the electroless plating film, and the surface of the electroless plating film is exposed by a ball-on-disk method under the following conditions: The dynamic friction coefficient is 0.1 to 0.2.
Conditions for the ball-on-disk method:
Ball: made of Al 2 O 3 having a diameter of 6 mm, load: 2.00 N, sliding radius: 2.00 mm, speed: 1.00 cm / sec, temperature: room temperature, atmosphere: air, lubricant: none, sliding distance : Within 12.6 m (1000 rpm).

あるいは前記動摩擦係数が0.11〜0.13であることを特徴とする。
無電解めっきが、無電解Ni−P−W合金めっきであることを特徴とする。これによれば、めっき皮膜の耐摩耗性も向上できる。
Alternatively, the dynamic friction coefficient is 0.11 to 0.13.
The electroless plating is electroless Ni—P—W alloy plating. According to this, the wear resistance of the plating film can also be improved.

また、本発明に係るポリアセタールを主材とする複合材の製造方法は、ポリアセタール樹脂成形物表面を粗面化する工程と、分散剤によりカーボンナノチューブ(CNT)が分散された無電解めっき液を準備する工程と、該無電解めっき液を用い、前記粗面化されたポリアセタール樹脂成形物表面に、カーボンナノチューブの一部がめっき皮膜表面から露出した無電解めっき皮膜を形成する工程とを含むことを特徴とする。   In addition, the method for producing a composite material mainly composed of polyacetal according to the present invention includes a step of roughening the surface of a polyacetal resin molding and an electroless plating solution in which carbon nanotubes (CNTs) are dispersed by a dispersant. And a step of forming an electroless plating film in which a part of the carbon nanotubes is exposed from the surface of the plating film on the surface of the roughened polyacetal resin molding using the electroless plating solution. Features.

無電解めっきが、無電解Ni−P−W合金めっきであることを特徴とする。これによれば、めっき皮膜の耐摩耗性も向上できる。またこの場合、カーボンナノチューブの分散剤に、トリメチルステアリルアンモニウムクロリドを用いると好適である。   The electroless plating is electroless Ni—P—W alloy plating. According to this, the wear resistance of the plating film can also be improved. In this case, it is preferable to use trimethylstearyl ammonium chloride as the carbon nanotube dispersant.

本発明によれば、無電解めっきだけの1段階のめっきですみ、工数を減らせ、コストの低減化が図れるとともに、摩擦・摩耗特性の向上が図れるポリアセタールを主材とする複合材およびその製造方法を提供できる。   According to the present invention, only one step of electroless plating is required, the number of steps can be reduced, the cost can be reduced, and the composite material mainly composed of polyacetal capable of improving the friction and wear characteristics, and the manufacturing method thereof Can provide.

未処理のポリアセタール樹脂基板の表面のSEM写真である。It is a SEM photograph of the surface of an untreated polyacetal resin substrate. 粗面化処理を5分行ったポリアセタール樹脂基板の表面のSEM写真である。It is a SEM photograph of the surface of the polyacetal resin substrate which performed the roughening process for 5 minutes. 粗面化処理を10分行ったポリアセタール樹脂基板の表面のSEM写真である。It is a SEM photograph of the surface of the polyacetal resin substrate which performed the roughening process for 10 minutes. 粗面化処理を15分行ったポリアセタール樹脂基板の表面のSEM写真である。It is a SEM photograph of the surface of the polyacetal resin substrate which performed the roughening process for 15 minutes. 粗面化処理を20分行ったポリアセタール樹脂基板の表面のSEM写真である。It is a SEM photograph of the surface of the polyacetal resin substrate which performed the roughening process for 20 minutes. 粗面化処理を30分行ったポリアセタール樹脂基板の表面のSEM写真である。It is a SEM photograph of the surface of the polyacetal resin board which performed roughening processing for 30 minutes. 粗面化処理を15分行ったポリアセタール樹脂基板に無電解Ni−P−W/VGCF複合めっきを5分行った場合のめっき皮膜表面の低倍率のSEM写真である。It is a SEM photograph of the low magnification of the plating film surface when electroless Ni-PW / VGCF composite plating is performed for 5 minutes to the polyacetal resin substrate which performed the roughening process for 15 minutes. 粗面化処理を15分行ったポリアセタール樹脂基板に無電解Ni−P−W/VGCF複合めっきを10分行った場合のめっき皮膜表面の低倍率のSEM写真である。It is a SEM photograph of the low magnification of the plating film surface when electroless Ni-PW / VGCF composite plating is performed for 10 minutes to the polyacetal resin substrate which performed the roughening process for 15 minutes. 粗面化処理を15分行ったポリアセタール樹脂基板に無電解Ni−P−W/VGCF複合めっきを30分行った場合のめっき皮膜表面の低倍率のSEM写真である。It is a SEM photograph of the low magnification of the plating film surface when electroless Ni-PW / VGCF composite plating is performed for 30 minutes to the polyacetal resin substrate which performed the roughening process for 15 minutes. 粗面化処理を15分行ったポリアセタール樹脂基板に無電解Ni−P−W/VGCF複合めっきを60分行った場合のめっき皮膜表面の低倍率のSEM写真である。It is a SEM photograph of the low magnification of the plating film surface at the time of performing electroless Ni-PW / VGCF composite plating for 60 minutes to the polyacetal resin board | substrate which performed the roughening process for 15 minutes. 粗面化処理を15分行ったポリアセタール樹脂基板に無電解Ni−P−W/VGCF複合めっきを120分行った場合のめっき皮膜表面の低倍率のSEM写真である。It is a SEM photograph of the low magnification of the plating film surface at the time of performing electroless Ni-PW / VGCF composite plating for 120 minutes to the polyacetal resin substrate which performed the roughening process for 15 minutes. 粗面化処理を15分行ったポリアセタール樹脂基板に無電解Ni−P−W/VGCF複合めっきを240分行った場合のめっき皮膜表面の低倍率のSEM写真である。It is a low-magnification SEM photograph of the plating film surface when electroless Ni-P-W / VGCF composite plating is performed for 240 minutes on a polyacetal resin substrate subjected to roughening treatment for 15 minutes. 図7に示すめっき皮膜表面の高倍率のSEM写真である。It is a high magnification SEM photograph of the plating film surface shown in FIG. 図8に示すめっき皮膜表面の高倍率のSEM写真である。It is a high magnification SEM photograph of the plating film surface shown in FIG. 図9に示すめっき皮膜表面の高倍率のSEM写真である。10 is a high-magnification SEM photograph of the plating film surface shown in FIG. 9. 図10に示すめっき皮膜表面の高倍率のSEM写真である。It is a high magnification SEM photograph of the plating film surface shown in FIG. 図11に示すめっき皮膜表面の高倍率のSEM写真である。It is a high magnification SEM photograph of the plating film surface shown in FIG. 図12に示すめっき皮膜表面の高倍率のSEM写真である。It is a high magnification SEM photograph of the plating film surface shown in FIG. 図13に示すめっき皮膜の断面のSEM写真である。It is a SEM photograph of the section of the plating film shown in FIG. 図14に示すめっき皮膜の断面のSEM写真である。It is a SEM photograph of the cross section of the plating film shown in FIG. 図15に示すめっき皮膜の断面のSEM写真である。It is a SEM photograph of the cross section of the plating film shown in FIG. 図16に示すめっき皮膜の断面のSEM写真である。It is a SEM photograph of the cross section of the plating film shown in FIG. 図17に示すめっき皮膜の断面のSEM写真である。It is a SEM photograph of the section of the plating film shown in FIG. 図18に示すめっき皮膜の断面のSEM写真である。It is a SEM photograph of the cross section of the plating film shown in FIG. 図13〜図18に示すめっき皮膜の密着強度を示すグラフである。It is a graph which shows the adhesive strength of the plating film shown in FIGS. 図17に示すめっき皮膜のボールオンディスク法による動摩擦係数を測定した結果を示すグラフである。It is a graph which shows the result of having measured the dynamic friction coefficient by the ball-on-disk method of the plating film shown in FIG.

以下本発明の好適な実施の形態を添付図面に基づいて詳細に説明する。
上記のように、本実施の形態におけるポリアセタールを主材とする複合材は、粗面化処理したポリアセタール樹脂成形物上に、カーボンナノチューブ(CNT)を含む無電解めっき皮膜が形成されていることを特徴とする。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
As described above, in the composite material mainly composed of polyacetal in the present embodiment, an electroless plating film containing carbon nanotubes (CNT) is formed on a roughened polyacetal resin molded product. Features.

また、摺動性に優れるカーボンナノチューブの一部が無電解めっき皮膜表面から露出しており、これにより、動摩擦係数を小さくすることができ、摩擦特性を向上させることができる。
動摩擦係数の測定は種々の方法があるが、下記条件下、ボールオンディスク法で測定した、前記カーボンナノチューブの一部が露出している前記無電解めっき皮膜表面の動摩擦係数は、0.1〜0.2の範囲にあり、小さく、かつ安定した動摩擦係数が得られた。
≪前記ボールオンディスク法の条件≫
ボール:直径6mmのAl製、荷重:2.00N、摺動半径:2.00mm、速度:1.00cm/sec、温度:室温、雰囲気:大気中、潤滑材:無し、摺動距離:12.6m(1000回転)以内。
In addition, a part of the carbon nanotubes having excellent slidability is exposed from the surface of the electroless plating film, whereby the dynamic friction coefficient can be reduced and the friction characteristics can be improved.
Although there are various methods for measuring the dynamic friction coefficient, the dynamic friction coefficient of the surface of the electroless plating film in which a part of the carbon nanotube is exposed, measured by a ball-on-disk method under the following conditions, is 0.1 to A small and stable dynamic friction coefficient was obtained in the range of 0.2.
≪Conditions of the ball-on-disk method≫
Ball: made of Al 2 O 3 having a diameter of 6 mm, load: 2.00 N, sliding radius: 2.00 mm, speed: 1.00 cm / sec, temperature: room temperature, atmosphere: air, lubricant: none, sliding distance : Within 12.6 m (1000 rpm).

あるいは動摩擦係数が上記条件下、0.11〜0.17、もしくは0.11〜0.17の範囲内とする。
因みに、カーボンナノチューブ自体の動摩擦係数は0.09前後であり、ポリアセタール樹脂成形物の動摩擦係数は0.29程度であるから、本実施の形態における複合材の動摩擦係数は、カーボンナノチューブ単体に近い数値が得られており、優れた摩擦特性が得られている。
Alternatively, the dynamic friction coefficient is within the range of 0.11 to 0.17 or 0.11 to 0.17 under the above conditions.
Incidentally, the dynamic friction coefficient of the carbon nanotube itself is around 0.09, and the dynamic friction coefficient of the polyacetal resin molding is about 0.29. Therefore, the dynamic friction coefficient of the composite material in the present embodiment is a numerical value close to that of the carbon nanotube alone. Is obtained, and excellent friction characteristics are obtained.

無電解めっきの種類は特に限定されるものではないが、無電解Ni−P−W合金めっき、無電解Ni−P合金めっき、無電解Niめっき、無電解Cuめっきが好適に適用できる。特に、無電解Ni−P−W合金めっきの場合、タングステンが共析することから、めっき皮膜の硬度が高くなり、耐摩耗性も向上する。   The type of electroless plating is not particularly limited, but electroless Ni—P—W alloy plating, electroless Ni—P alloy plating, electroless Ni plating, and electroless Cu plating can be suitably applied. In particular, in the case of electroless Ni—P—W alloy plating, since tungsten is eutectoid, the hardness of the plating film is increased and the wear resistance is also improved.

ポリアセタールを主材とする複合材の製造方法は、前記のように、ポリアセタール樹脂成形物表面を粗面化する工程と、分散剤によりカーボンナノチューブ(CNT)が分散された無電解めっき液を準備する工程と、該無電解めっき液を用い、前記粗面化されたポリアセタール樹脂成形物表面に、カーボンナノチューブの一部がめっき皮膜表面から露出した無電解めっき皮膜を形成する工程とを含むことを特徴とする。   As described above, the method for producing a composite material containing polyacetal as a main material prepares an electroless plating solution in which carbon nanotubes (CNTs) are dispersed by a dispersing agent, and a step of roughening the surface of a polyacetal resin molded product. And a step of forming an electroless plating film in which a part of the carbon nanotubes is exposed from the surface of the plating film on the surface of the roughened polyacetal resin molding using the electroless plating solution. And

ポリアセタール樹脂成形物の表面は平滑であって、そのままでは、無電解めっき皮膜がほとんど密着しない。そこで、無電解めっき処理の前に、粗面化処理を行って、ポリアセタール樹脂成形物の表面に凹凸を形成するとよい。これにより、アンカー効果が生じ、ポリアセタール樹脂成形物と無電解めっき皮膜の密着性が向上する。粗面化処理も特に限定されるものではないが、塩酸と硫酸との混酸により粗面化すると好適である。   The surface of the polyacetal resin molding is smooth, and the electroless plating film hardly adheres as it is. Therefore, before the electroless plating treatment, roughening treatment may be performed to form irregularities on the surface of the polyacetal resin molded product. Thereby, an anchor effect arises and the adhesiveness of a polyacetal resin molding and an electroless-plating film improves. The surface roughening treatment is not particularly limited, but it is preferable to roughen the surface with a mixed acid of hydrochloric acid and sulfuric acid.

無電解めっきは通常の工程で行えばよい。すなわち、対象物(ポリアセタール樹脂基板)表面の脱脂を行い、上記粗面化処理を行い、キャタリストを行い、アクセレーターを行って後、無電解めっきを行う。
上記のように、無電解めっきの種類は特に限定されるものではないが、耐摩耗性も向上させるためには、無電解Ni−P−W合金めっきを行うと好適である。
めっき液中へのカーボンナノチューブの分散には分散剤を用いるようにする。無電解Ni−P−W合金めっき液の場合には、カーボンナノチューブの分散剤として、トリメチルステアリルアンモニウムクロリドを好適に用いることができる。
The electroless plating may be performed by a normal process. That is, the surface of the object (polyacetal resin substrate) is degreased, the roughening treatment is performed, the catalyst is performed, the accelerator is performed, and then the electroless plating is performed.
As described above, the type of electroless plating is not particularly limited. However, in order to improve wear resistance, it is preferable to perform electroless Ni—P—W alloy plating.
A dispersant is used to disperse the carbon nanotubes in the plating solution. In the case of an electroless Ni—P—W alloy plating solution, trimethylstearyl ammonium chloride can be suitably used as the carbon nanotube dispersant.

〔粗面化処理(エッチング)〕
通常の脱脂処理を行った後、塩酸:150gdm‐3、硫酸:620gdm‐3の混酸を用い、30℃、5分、10分、15分、20分、30分の粗面化処理を行った。
粗面化処理を行ったポリアセタール樹脂基板(3.3cm×3cm)の表面のSEM写真を図1〜図6に示す(図1は無処理)。図から明らかなように、粗面化処理を行うことによって、ポリアセタール樹脂基板に凹凸が生じる。後に示すように、15分程度粗面化処理を行った場合が、めっき皮膜の密着強度が高かった。
[Roughening treatment (etching)]
After performing normal degreasing treatment, a roughening treatment was performed using a mixed acid of hydrochloric acid: 150 gdm -3 and sulfuric acid: 620 gdm -3 at 30 ° C, 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 30 minutes. .
SEM photographs of the surface of the polyacetal resin substrate (3.3 cm × 3 cm) subjected to the roughening treatment are shown in FIGS. 1 to 6 (FIG. 1 is untreated). As is apparent from the drawing, the roughening treatment causes unevenness on the polyacetal resin substrate. As shown later, the adhesion strength of the plating film was high when the surface was roughened for about 15 minutes.

〔前処理〕
上記粗面化処理後、水酸化ナトリウム:150gdm‐3水溶液で、75℃、6分のアルカリ処理を行い、次いで、有機酸:150gdm‐3水溶液で、75℃、10分の中和処理を行い、さらに塩化スズ−塩化パラジウム溶液で常法によりキャタリストを行った。
〔Preprocessing〕
After the surface roughening treatment, an alkali treatment with sodium hydroxide: 150 gdm -3 aqueous solution is performed at 75 ° C for 6 minutes, and then an organic acid: 150 gdm -3 aqueous solution is subjected to neutralization treatment at 75 ° C for 10 minutes. Further, the catalyst was conducted by a conventional method using a tin chloride-palladium chloride solution.

〔無電解めっき〕
次に、ポリアセタール樹脂基板(3.3cm×3cm)上に無電解Ni−P−W合金/VGCF複合めっきを行った。
無電解めっき液の組成は次のとおり。
NiSO・6HO 0.05M
Na・2HO 0.3M
NaHPO・HO 0.1M
NaWO・2HO 0.3M
トリメチルステアリル−
アンモニウムクロリド 適量
CNT 1g/l
トリメチルステアリルアンモニウムクロリドは、CNTの分散剤である。
なお、CNTは昭和電工製MWCNT(商品名:VGCF)、直径:100〜200nm、長さ:10〜20nmを用いた。
めっき条件は次のとおり。
pH:9.0、浴温:75℃、撹拌:スターラー撹拌(開始から5分は撹拌なし)
[Electroless plating]
Next, electroless Ni—P—W alloy / VGCF composite plating was performed on a polyacetal resin substrate (3.3 cm × 3 cm).
The composition of the electroless plating solution is as follows.
NiSO 4 · 6H 2 O 0.05M
Na 3 C 6 H 5 O 7 · 2H 2 O 0.3M
NaH 2 PO 2 · H 2 O 0.1M
Na 2 WO 4 · 2H 2 O 0.3M
Trimethylstearyl-
Ammonium chloride appropriate amount CNT 1g / l
Trimethylstearyl ammonium chloride is a CNT dispersant.
The CNT used was MWCNT (trade name: VGCF) manufactured by Showa Denko, diameter: 100 to 200 nm, and length: 10 to 20 nm.
The plating conditions are as follows.
pH: 9.0, bath temperature: 75 ° C., stirring: Stirrer stirring (no stirring for 5 minutes from the start)

図7〜図12に、無電解Ni−P−W合金めっき皮膜の低倍率のSEM写真を示し、図13〜図18に高倍率のSEM写真を示し、図19〜図24にその断面のSEM写真を示す。なお、粗面化処理はいずれも15分のものである。めっき時間が長くなるほど、めっき膜の表面の平滑性が増す。図13〜図18からわかるように、めっき時間が120分のものが、十分な量のカーボンナノチューブ(CNT)が無電解めっき皮膜に取り込まれているのがわかる。なお、カーボンナノチューブの一部が無電解めっき皮膜の表面に露出している。また、図19〜図24からわかるように、めっき時間が120分以上の場合に、粗面化処理で形成された凹凸の凹部内にまでめっき皮膜が十分に形成されている。めっき厚は、無電解めっきであるので、それ程厚くはないが、めっき時間が120分のもので10μm程度のめっき厚が得られており、めっき厚としては十分である。   7 to 12 show low-magnification SEM photographs of the electroless Ni—P—W alloy plating film, FIGS. 13 to 18 show high-magnification SEM photographs, and FIGS. 19 to 24 show cross-sectional SEM photographs. Show photos. Note that the roughening treatment is for 15 minutes. The longer the plating time, the more smooth the surface of the plating film. As can be seen from FIG. 13 to FIG. 18, it can be seen that when the plating time is 120 minutes, a sufficient amount of carbon nanotubes (CNT) is taken into the electroless plating film. A part of the carbon nanotube is exposed on the surface of the electroless plating film. Further, as can be seen from FIGS. 19 to 24, when the plating time is 120 minutes or more, the plating film is sufficiently formed even in the concave and convex portions formed by the roughening treatment. Since the plating thickness is electroless plating, it is not so thick, but a plating thickness of about 10 μm is obtained with a plating time of 120 minutes, which is sufficient as the plating thickness.

図25は、無電解めっき時間と、無電解めっき皮膜の密着強度を示すグラフである。この密着試験における密着強度は、ピンを強力な接着剤によりめっき皮膜表面に接着し、垂直に引き上げ、素地(ポリアセタール樹脂基板)とめっき皮膜との間で剥離した際の力:Kg/cmで示した。めっき時間が120分のものが密着強度に優れていることがわかる。 FIG. 25 is a graph showing the electroless plating time and the adhesion strength of the electroless plating film. The adhesion strength in this adhesion test is the force when the pin is adhered to the surface of the plating film with a strong adhesive, pulled up vertically, and peeled between the substrate (polyacetal resin substrate) and the plating film: Kg / cm 2 Indicated. It can be seen that a plating time of 120 minutes is excellent in adhesion strength.

図26は、動摩擦係数を計測したグラフを示す。
試験サンプルは、未処理のポリアセタール基板と、本実施の形態におけるポリアセタール基板(Ni−15at.%、P−2.5at.%、W合金/VGCFの複合めっきをしたポリアセタール樹脂基板:図17に示すポリアセタール樹脂基板)である。
試験方法は、ボールオンディスク法で、次の条件下で行った。
ボール:直径6mmのAl製、
荷重:2.00N、
摺動半径:2.00mm、
速度:1.00cm/sec、
温度:室温、
雰囲気:大気中、
摺動距離:12.6m(1000回転)
FIG. 26 shows a graph obtained by measuring the dynamic friction coefficient.
The test sample was an untreated polyacetal substrate and a polyacetal substrate in the present embodiment (Ni-15 at.%, P-2.5 at.%, Polyacetal resin substrate with composite plating of W alloy / VGCF: polyacetal shown in FIG. Resin substrate).
The test method was a ball-on-disk method and was performed under the following conditions.
Ball: made of Al 2 O 3 with a diameter of 6 mm,
Load: 2.00N
Sliding radius: 2.00 mm,
Speed: 1.00 cm / sec,
Temperature: room temperature,
Atmosphere: in air
Sliding distance: 12.6m (1000 rotations)

図26に示されるように、未処理のポリアセタール基板の動摩擦係数は0.29前後であるのに対し、本実施例におけるポリアセタール基板の場合には、動摩擦係数が0.1〜0.2の範囲(0.11〜0.13の範囲内で安定)であり、摺動距離が12.6m経過後も安定しており、摩擦特性が改善されている。   As shown in FIG. 26, the dynamic friction coefficient of the untreated polyacetal substrate is around 0.29, whereas in the case of the polyacetal substrate in this example, the dynamic friction coefficient is in the range of 0.1 to 0.2. (Stable within a range of 0.11 to 0.13), the sliding distance is stable even after 12.6 m, and the friction characteristics are improved.

以上の実施例では、無電解Ni−P−W合金めっきとVGCFの複合めっきの例で示したが、無電解Ni−P合金めっきとVGCFの複合めっき、無電解NiめっきとVGCFの複合めっき、無電解CuめっきとVGCFの複合めっきの場合にも、ポリアセタール樹脂基板の特に摩擦特性が改善された。   In the above examples, the example of the electroless Ni—P—W alloy plating and VGCF composite plating is shown, but the electroless Ni—P alloy plating and VGCF composite plating, the electroless Ni plating and VGCF composite plating, Also in the case of the electroless Cu plating and VGCF composite plating, the friction characteristics of the polyacetal resin substrate were particularly improved.

因みに、無電解Ni−P合金めっきとVGCFの複合めっきの場合は次のめっき液の組成で行った。
組成 濃度M(mol/l)
NiSO・6HO 0.1
NaHPO・HO 0.2
Na0.5
(NH)SO0.5
TWSAC 0.6(g/l)
MWCNT 2(g/l)
上記のように、界面活性剤(分散剤)として、トリメチルセチルアンモニウムクロリド(TMSAC)を0.6g/l添加した。
Incidentally, in the case of electroless Ni—P alloy plating and VGCF composite plating, the following plating solution composition was used.
Composition Concentration M (mol / l)
NiSO 4 · 6H 2 O 0.1
NaH 2 PO 2 · H 2 O 0.2
C 6 H 5 Na 3 O 7 0.5
(NH 4 ) 2 SO 4 0.5
TWSAC 0.6 (g / l)
MWCNT 2 (g / l)
As described above, 0.6 g / l of trimethylcetylammonium chloride (TMSAC) was added as a surfactant (dispersant).

また、無電解CuめっきとVGCFの複合めっきの場合は次のめっき液の組成で行った。
CuSO・5HO 0.06M
CHOCOOH・HO 0.03M
EDTA・2Na 0.1M
分散剤TMSAC 1.7×10−3、1.7×10−4、1.7×10−5
CNT 2g/l
CNTは、ILIJIN社製のMWCNT:直径10〜15nm、長さ10〜20μmのものを用いた。
In the case of electroless Cu plating and VGCF composite plating, the following plating solution composition was used.
CuSO 4 · 5H 2 O 0.06M
CHOCOOH · H 2 O 0.03M
EDTA · 2Na 0.1M
Dispersant TMSAC 1.7 × 10 −3 , 1.7 × 10 −4 , 1.7 × 10 −5 M
CNT 2g / l
As the CNT, MWCNT manufactured by ILIJIN: 10 to 15 nm in diameter and 10 to 20 μm in length was used.

Claims (7)

粗面化処理したポリアセタール樹脂成形物上に、カーボンナノチューブ(CNT)を含む無電解めっき皮膜が形成されていることを特徴とするポリアセタールを主材とする複合材。   A composite material comprising polyacetal as a main material, wherein an electroless plating film containing carbon nanotubes (CNT) is formed on a surface-roughened polyacetal resin molding. カーボンナノチューブの一部が無電解めっき皮膜表面から露出しており、
かつ、下記条件下、ボールオンディスク法で測定した、前記カーボンナノチューブの一部が露出している前記無電解めっき皮膜表面の動摩擦係数が、0.1〜0.2であることを特徴とする請求項1記載のポリアセタールを主材とする複合材。
前記ボールオンディスク法の条件:
ボール:直径6mmのAl製、荷重:2.00N、摺動半径:2.00mm、速度:1.00cm/sec、温度:室温、雰囲気:大気中、潤滑材:無し、摺動距離:12.6m(1000回転)以内。
A part of the carbon nanotube is exposed from the electroless plating film surface,
And the dynamic friction coefficient of the surface of the electroless plating film in which a part of the carbon nanotube is exposed, measured by a ball-on-disk method under the following conditions, is 0.1 to 0.2. A composite material comprising the polyacetal according to claim 1 as a main material.
Conditions for the ball-on-disk method:
Ball: made of Al 2 O 3 having a diameter of 6 mm, load: 2.00 N, sliding radius: 2.00 mm, speed: 1.00 cm / sec, temperature: room temperature, atmosphere: air, lubricant: none, sliding distance : Within 12.6 m (1000 rpm).
動摩擦係数が0.11〜0.13であることを特徴とする請求項1記載のポリアセタールを主材とする複合材。   2. The composite material comprising polyacetal as a main material according to claim 1, wherein a coefficient of dynamic friction is 0.11 to 0.13. 無電解めっきが、無電解Ni−P−W合金めっきであることを特徴とする請求項1〜3いずれか1項記載のポリアセタールを主材とする複合材。   The composite material mainly comprising polyacetal according to any one of claims 1 to 3, wherein the electroless plating is electroless Ni-PW alloy plating. ポリアセタールを主材とする複合材の製造方法において、
ポリアセタール樹脂成形物表面を粗面化する工程と、
分散剤によりカーボンナノチューブ(CNT)が分散された無電解めっき液を準備する工程と、
該無電解めっき液を用い、前記粗面化されたポリアセタール樹脂成形物表面に、カーボンナノチューブの一部がめっき皮膜表面から露出した無電解めっき皮膜を形成する工程とを含むことを特徴とするポリアセタールを主材とする複合材の製造方法。
In the method for producing a composite material mainly composed of polyacetal,
A step of roughening the surface of the polyacetal resin molding,
Preparing an electroless plating solution in which carbon nanotubes (CNT) are dispersed by a dispersant;
A step of forming an electroless plating film in which a part of the carbon nanotubes is exposed from the surface of the plating film on the surface of the roughened polyacetal resin molding using the electroless plating solution. The manufacturing method of the composite material which uses as a main material.
無電解めっきが、無電解Ni−P−W合金めっきであることを特徴とする請求項5記載のポリアセタールを主材とする複合材の製造方法。   6. The method for producing a composite material comprising polyacetal as a main material according to claim 5, wherein the electroless plating is electroless Ni-P-W alloy plating. カーボンナノチューブの分散剤に、トリメチルステアリルアンモニウムクロリドを用いることを特徴とする請求項6記載のポリアセタールを主材とする複合材の製造方法。   The method for producing a composite material comprising polyacetal as a main material according to claim 6, wherein trimethylstearyl ammonium chloride is used as the carbon nanotube dispersant.
JP2011249965A 2011-11-15 2011-11-15 Composite material including polyacetal as main material and method for producing the same Pending JP2013104111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011249965A JP2013104111A (en) 2011-11-15 2011-11-15 Composite material including polyacetal as main material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011249965A JP2013104111A (en) 2011-11-15 2011-11-15 Composite material including polyacetal as main material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2013104111A true JP2013104111A (en) 2013-05-30

Family

ID=48623891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011249965A Pending JP2013104111A (en) 2011-11-15 2011-11-15 Composite material including polyacetal as main material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2013104111A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185185A (en) * 2012-03-07 2013-09-19 Shinshu Univ Ni-W ALLOY/CNT COMPOSITE PLATING METHOD AND Ni-W ALLOY/CNT COMPOSITE PLATING LIQUID
JP2017052978A (en) * 2015-09-07 2017-03-16 新光電気工業株式会社 Heat radiation part and production method thereof
US10316424B2 (en) 2016-02-23 2019-06-11 Samsung Electronics Co., Ltd. Flexible electrically conductive structure, flexible wiring board, production method thereof, and electronic device includng the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039151B2 (en) * 1981-07-03 1985-09-04 国産金属工業株式会社 Resin surface treatment method
JPH09302476A (en) * 1996-05-10 1997-11-25 Daiwa Kasei Kenkyusho:Kk Electroless tin-silver alloy plating bath
JPH1150295A (en) * 1997-07-28 1999-02-23 Daiwa Kasei Kenkyusho:Kk Plating bath
JP2006523774A (en) * 2003-04-16 2006-10-19 アーハーツェー オーバーフレッヒェンテヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフト ウント コンパニー オッフェネ ハンデルスゲゼルシャフト Use of articles as molding tools
JP2007023316A (en) * 2005-07-13 2007-02-01 Kobe Steel Ltd Wear-resistant member and motive-power transmitting component
JP2010215977A (en) * 2009-03-17 2010-09-30 Shinshu Univ ELECTROLESS Ni-P PLATING LIQUID AND ELECTROLESS Ni-P PLATING METHOD

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039151B2 (en) * 1981-07-03 1985-09-04 国産金属工業株式会社 Resin surface treatment method
JPH09302476A (en) * 1996-05-10 1997-11-25 Daiwa Kasei Kenkyusho:Kk Electroless tin-silver alloy plating bath
JPH1150295A (en) * 1997-07-28 1999-02-23 Daiwa Kasei Kenkyusho:Kk Plating bath
JP2006523774A (en) * 2003-04-16 2006-10-19 アーハーツェー オーバーフレッヒェンテヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフト ウント コンパニー オッフェネ ハンデルスゲゼルシャフト Use of articles as molding tools
JP2007023316A (en) * 2005-07-13 2007-02-01 Kobe Steel Ltd Wear-resistant member and motive-power transmitting component
JP2010215977A (en) * 2009-03-17 2010-09-30 Shinshu Univ ELECTROLESS Ni-P PLATING LIQUID AND ELECTROLESS Ni-P PLATING METHOD

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015024816; 鈴木 好治: '「特集/エンジニアリングプラスチックへのめっき ポリアセタール(POM)へのめっき」' 実務表面技術 Vol.33 No.12, 198612, Page.498-505 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185185A (en) * 2012-03-07 2013-09-19 Shinshu Univ Ni-W ALLOY/CNT COMPOSITE PLATING METHOD AND Ni-W ALLOY/CNT COMPOSITE PLATING LIQUID
JP2017052978A (en) * 2015-09-07 2017-03-16 新光電気工業株式会社 Heat radiation part and production method thereof
US10316424B2 (en) 2016-02-23 2019-06-11 Samsung Electronics Co., Ltd. Flexible electrically conductive structure, flexible wiring board, production method thereof, and electronic device includng the same

Similar Documents

Publication Publication Date Title
Olivera et al. Plating on acrylonitrile–butadiene–styrene (ABS) plastic: a review
Hu et al. Deposition process and properties of electroless Ni-P-Al 2 O 3 composite coatings on magnesium alloy
Sahoo et al. Tribology of electroless nickel coatings–a review
US9453532B2 (en) Sliding bearing
JP6784806B2 (en) Copper foil with carrier foil and copper-clad laminate
Pang et al. A novel Ag catalyzation process using swelling impregnation method for electroless Ni deposition on Kevlar® fiber
JP2013104111A (en) Composite material including polyacetal as main material and method for producing the same
Arai et al. Fabrication of various electroless Ni–P alloy/multiwalled carbon nanotube composite films on an acrylonitrile butadiene styrene resin
JP5437507B2 (en) Manufacturing method of low thermal expansion linear body
JP5986411B2 (en) Mold and its manufacturing method
Wei et al. Scalable preparation of ultrathin graphene-reinforced copper composite foils with high mechanical properties and excellent heat dissipation
JP2013231223A (en) Plated material and method for producing the same
JP2010138452A (en) Sn PLATING MATERIAL AND METHOD FOR PRODUCING THE SAME
US20130177777A1 (en) Coated article and method for making same
JP2006028635A (en) Method for manufacturing surface treated copper foil for microfabrication circuit substrate
JP2014214341A (en) Electroless composite plating film, sliding movement part and rolling movement part formed with the same, and mold
Fatema et al. Iodine-aided palladium-free catalyzation process for durable electroless nickel plating on Kevlar® fiber
JP5544527B2 (en) Composite plating film, method for forming the same, and electrolytic plating solution
JP2008214667A (en) Zinc-nanocarbon composite plating product and method for producing the same
JP5621570B2 (en) Conductive material with Sn plating and manufacturing method thereof
Zhou et al. Corrosion and wear resistance behaviors of electroless Ni–Cu–P–TiN composite coating
JP2007186736A (en) Method for manufacturing metallic wire, metallic cord for reinforcing rubber product, and vehicle tire
JP2008169402A (en) Electrochemical reaction method
CN111411359B (en) Composite coating structure formed on substrate and workpiece
JP2008214666A (en) Screw member and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160126