JP2013091130A - Grinding abrasive grain collecting device, grinding liquid control system, method of manufacturing glass substrate, and method of collecting grinding abrasive grain - Google Patents

Grinding abrasive grain collecting device, grinding liquid control system, method of manufacturing glass substrate, and method of collecting grinding abrasive grain Download PDF

Info

Publication number
JP2013091130A
JP2013091130A JP2011234416A JP2011234416A JP2013091130A JP 2013091130 A JP2013091130 A JP 2013091130A JP 2011234416 A JP2011234416 A JP 2011234416A JP 2011234416 A JP2011234416 A JP 2011234416A JP 2013091130 A JP2013091130 A JP 2013091130A
Authority
JP
Japan
Prior art keywords
bowl
screw conveyor
abrasive
polishing
abrasive grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011234416A
Other languages
Japanese (ja)
Inventor
Raita Tasaki
雷太 田先
Masahiko Tamura
昌彦 田村
Tomoyoshi Narikawa
智義 成川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2011234416A priority Critical patent/JP2013091130A/en
Priority to CN2012104101017A priority patent/CN103072085A/en
Publication of JP2013091130A publication Critical patent/JP2013091130A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a grinding abrasive grain collecting device even in damage to a screw and a bowl, excellent in control accuracy, and having high collecting efficiency.SOLUTION: The grinding abrasive grain collecting device separates a concentrated liquid including grinding abrasive grains from slurry including the grinding abrasive grains. The grinding abrasive grain collecting device includes: a bowl which holds the slurry; a screw conveyor for scraping out the concentrated liquid from the bowl; a driving means for driving the bowl and the screw conveyor to rotate; and a control means for controlling the driving means. The control means controls a difference between the rotating speed of the bowl and the rotating speed of the screw conveyor based on a driving current value of the driving means which drives the bowl or the screw conveyor to rotate.

Description

本発明は研磨砥粒回収装置、研磨液の管理システム、ガラス基板の製造方法及び研磨砥粒回収方法に関する。   The present invention relates to a polishing abrasive recovery device, a polishing liquid management system, a glass substrate manufacturing method, and a polishing abrasive recovery method.

磁気ディスク記録装置などに使用されるガラス基板、半導体ウエハ及びそれらの上に形成された被膜の表面は、高度に平坦であることが望まれる。通常、ガラス基板や半導体ウエハの平坦化には、研磨砥粒を含有する研磨液を用いて研磨(CMPなど)する方法が採用されている。この時、研磨砥粒としては、酸化セリウム、酸化アルミニウム、酸化ケイ素(コロイダルシリカ)などの砥粒が使用される。また、研磨液中には、pH調整剤、界面活性剤及びその他の添加剤が添加される。   It is desired that the surfaces of glass substrates, semiconductor wafers, and films formed thereon used in magnetic disk recording devices and the like be highly flat. Usually, a method of polishing (CMP or the like) using a polishing liquid containing polishing abrasive grains is employed for flattening a glass substrate or a semiconductor wafer. At this time, abrasive grains such as cerium oxide, aluminum oxide, and silicon oxide (colloidal silica) are used as the abrasive grains. Further, a pH adjuster, a surfactant and other additives are added to the polishing liquid.

ガラス基板や半導体ウエハなどの研磨工程後に回収される排水などは、研磨対象物、研磨パッド、研磨砥粒などの研磨屑を含む。これらの研磨屑は研磨対象物表面にキズを発生させ、また、研磨砥粒濃度の低下などにより研磨速度が低下することから、これらの研磨工程後に排水などを、そのまま再利用できない。そこで、研磨工程後の排水などの再利用を目的に、不純物の除去、研磨砥粒の濃縮などの処理を行い、研磨砥粒を回収し、所定の組成の研磨砥粒を含有する研磨液を再調整する研究が行われている。   Wastewater collected after the polishing process for glass substrates and semiconductor wafers includes polishing debris such as a polishing object, a polishing pad, and abrasive grains. These polishing scraps cause scratches on the surface of the object to be polished, and the polishing rate decreases due to a decrease in the concentration of polishing abrasive grains. Therefore, waste water cannot be reused as it is after these polishing steps. Therefore, for the purpose of reusing wastewater after the polishing process, treatment such as removal of impurities and concentration of abrasive grains is performed, and abrasive grains are collected and a polishing liquid containing abrasive grains of a predetermined composition is prepared. Research to readjust is underway.

具体的には、特許文献1では、研磨砥粒回収装置への投入前後のスラリの比重及び流量を検出し、検出結果に基づき、研磨砥粒回収装置による研磨砥粒回収率を演算し、演算結果が所定の値になるように研磨砥粒回収装置の回転速度を制御する技術が開示されている。   Specifically, in Patent Document 1, the specific gravity and flow rate of the slurry before and after being charged into the polishing abrasive recovery device are detected, and the polishing abrasive recovery rate by the polishing abrasive recovery device is calculated based on the detection result. A technique for controlling the rotational speed of the abrasive recovery device so that the result becomes a predetermined value is disclosed.

特許第3408979号公報Japanese Patent No. 3408879

しかしながら、特許文献1の方法では、投入するスラリの条件によっては、研磨砥粒回収装置のスクリューやボウルへの負荷が高くなり、これは早期故障の一因となる。また、スラリの投入条件(例えば、スラリの比重など)に対する制御精度が低くなるなどの問題点を有していた。   However, in the method of Patent Document 1, depending on the conditions of the slurry to be charged, the load on the screw and bowl of the abrasive abrasive recovery device becomes high, which contributes to early failure. Further, there is a problem that the control accuracy with respect to the slurry charging conditions (for example, the specific gravity of the slurry) is lowered.

そこで、本発明は、研磨砥粒回収装置のスクリューやボウルへの負荷が低く、かつ、制御精度が高く、研磨砥粒の回収率が高い研磨砥粒回収装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a polishing abrasive recovery device that has a low load on the screw or bowl of the polishing abrasive recovery device, has high control accuracy, and a high recovery rate of polishing abrasive particles.

本発明によれば、
研磨砥粒を含むスラリから前記研磨砥粒を含む濃縮液を分離する研磨砥粒回収装置であって、
当該研磨砥粒回収装置は、
前記スラリを保持するボウルと、
前記濃縮液をボウルからかき出すためのスクリューコンベアと、
前記ボウル及び前記スクリューコンベアを回転駆動するための駆動手段と、
前記駆動手段を制御する制御手段と、
を有し、
前記制御手段は、前記ボウル又は前記スクリューコンベアを回転駆動するための、前記駆動手段の駆動電流値に基づいて、前記ボウルの回転速度と前記スクリューコンベアの回転速度との差(以下、回転速度の差ともいう。)を制御するものである、
研磨砥粒回収装置が提供される。
According to the present invention,
A polishing abrasive recovery device for separating a concentrated liquid containing abrasive grains from a slurry containing abrasive grains,
The abrasive abrasive recovery device
A bowl holding the slurry;
A screw conveyor for scooping out the concentrate from the bowl;
Drive means for rotationally driving the bowl and the screw conveyor;
Control means for controlling the drive means;
Have
The control means, based on the drive current value of the drive means for rotationally driving the bowl or the screw conveyor, the difference between the rotation speed of the bowl and the rotation speed of the screw conveyor (hereinafter referred to as the rotation speed). (Also called the difference).
An abrasive recovery device is provided.

本発明によれば、以下の効果を奏する。   The present invention has the following effects.

研磨砥粒回収装置のスクリューやボウルへのダメージが少なく、かつ、制御精度が高く、研磨砥粒の回収率が高い研磨砥粒回収装置を提供できる。   It is possible to provide a polishing abrasive recovery device with little damage to the screw or bowl of the polishing abrasive recovery device, high control accuracy, and high polishing abrasive recovery rate.

図1は、本発明に係る研磨砥粒回収装置の一例の概略構成図である。FIG. 1 is a schematic configuration diagram of an example of a polishing abrasive recovery device according to the present invention. 図2は、本発明に係る研磨砥粒回収方法のフローチャートの一例である。FIG. 2 is an example of a flowchart of a polishing abrasive grain recovery method according to the present invention. 図3は、本発明に係る研磨液の管理システムの一例を示す概略図である。FIG. 3 is a schematic diagram showing an example of a polishing liquid management system according to the present invention.

[研磨砥粒回収装置]
まず、本発明に係る研磨砥粒回収装置について説明する。本発明の研磨砥粒回収装置は、研磨工程後の研磨砥粒を含むスラリ(例えば、使用済み研磨液、ドレス水、洗浄水、排水など)を濃縮、再生できる。本発明に係る研磨砥粒回収装置は、投入する材料や、用途、プロセスによって、遠心沈降機及び遠心脱水機を含む遠心分離機と呼ぶことがある。遠心沈降機は、通常、分離板型、円筒型、デカンター型と区分されることがあり、遠心脱水機は、回分式又は連続式と区分されることがある。本実施の形態では、安定して長時間の分離・濃縮性能を有するデカンター型の遠心沈降機を使用したが、本発明はこれに限定されず、上述の全てのタイプの研磨砥粒回収装置に応用できる。
[Abrasive abrasive recovery device]
First, the abrasive grain collection device according to the present invention will be described. The polishing abrasive grain recovery device of the present invention can concentrate and regenerate slurry containing polishing abrasive grains after the polishing process (for example, used polishing liquid, dressing water, washing water, waste water, etc.). The abrasive grain recovery device according to the present invention may be referred to as a centrifugal separator including a centrifugal settling machine and a centrifugal dehydrator depending on the material to be input, application, and process. Centrifugal sedimentators are usually classified as separation plate type, cylindrical type, and decanter type, and centrifugal dehydrators are sometimes classified as batch type or continuous type. In the present embodiment, a decanter type centrifugal settling machine having stable and long-time separation / concentration performance is used, but the present invention is not limited to this, and it is applicable to all types of the above-described abrasive grain collection devices. Can be applied.

図1に、本発明に係る研磨砥粒回収装置の一例の概略構成図を示す。研磨砥粒回収装置1は、主として、高速回転するボウル2と、濃縮液(研磨砥粒を含むスラリを本発明に係る回収方法により処理し、研磨砥粒を濃縮したもの)を連続的に排出するスクリューコンベア3と、を有する。また、研磨砥粒回収装置1は、ボウル2の一方の端壁部にダム板(weir plate)4と、研磨工程後のスラリを研磨砥粒回収装置1に投入するための投入管5と、を有する。   In FIG. 1, the schematic block diagram of an example of the abrasive grain collection | recovery apparatus which concerns on this invention is shown. The abrasive abrasive recovery device 1 mainly continuously discharges the bowl 2 rotating at high speed and the concentrated liquid (the slurry containing the abrasive abrasive is processed by the recovery method according to the present invention and the abrasive abrasive is concentrated). And a screw conveyor 3. Further, the polishing abrasive grain collection device 1 includes a dam plate (weir plate) 4 on one end wall portion of the bowl 2, and an input pipe 5 for introducing the slurry after the polishing process into the polishing abrasive grain recovery device 1; Have

ボウル2は、直胴状のストレート部6と、ストレート部6に続くテーパ状のコーン部7とからなり、その内部にスクリューコンベア3を有する。ダム板4は、ボウル2のストレート部側の端壁部に設置され、ストレート部6の第1先端開口8を形成している。ダム板4は通常、ボウル2の回転軸に対して直交する向きである。投入管5は、コーン部7の第2先端開口9に挿入配置され、投入管5を介して研磨砥粒10などを含むスラリが、研磨砥粒回収装置1内に供給される。   The bowl 2 includes a straight barrel-like straight portion 6 and a tapered cone portion 7 following the straight portion 6, and has a screw conveyor 3 therein. The dam plate 4 is installed on the end wall portion of the bowl 2 on the straight portion side, and forms a first tip opening 8 of the straight portion 6. The dam plate 4 is normally oriented perpendicular to the rotation axis of the bowl 2. The input pipe 5 is inserted and disposed in the second tip opening 9 of the cone portion 7, and a slurry including abrasive grains 10 and the like is supplied into the polishing abrasive collection apparatus 1 through the input pipe 5.

研磨砥粒回収装置1は、図示しないモーターなどの駆動手段に接続され、ボウル2及びスクリューコンベア3は、各々独立して回転される。通常、ボウル2を駆動する駆動手段をメインドライブと呼び、スクリューコンベア3を駆動する駆動手段をバックドライブと呼ぶ。また、研磨砥粒回収装置1は、制御手段11を有する。制御手段11は、例えばCPUよりなる図示しない演算処理装置と、例えばハードディスクよりなる図示しない記録媒体と、を備えている。制御手段11のCPUが、例えば制御手段11のハードディスクに記録されている、後述するプログラムなどに応じて、駆動手段の動作を制御する。   The abrasive grain recovery device 1 is connected to a driving means such as a motor (not shown), and the bowl 2 and the screw conveyor 3 are independently rotated. Usually, the driving means for driving the bowl 2 is called a main drive, and the driving means for driving the screw conveyor 3 is called a back drive. Further, the polishing abrasive grain recovery device 1 has a control means 11. The control means 11 includes an arithmetic processing unit (not shown) made of, for example, a CPU and a recording medium (not shown) made of, for example, a hard disk. The CPU of the control unit 11 controls the operation of the drive unit in accordance with a program or the like recorded on the hard disk of the control unit 11, for example.

なお、スラリの濃縮率は、ストレート部6の第1先端開口8側と、コーン部7の第2先端開口9側との、流量比の影響を大きく受ける。そのため、ダム板4の高さを変更することで、研磨砥粒回収装置1内の液面レベルを調整し、濃縮率を変化させることができる。本実施の形態では、ダム板4の高さを略100mm程度の一定の長さにした。   The concentration rate of the slurry is greatly affected by the flow rate ratio between the first tip opening 8 side of the straight portion 6 and the second tip opening 9 side of the cone portion 7. Therefore, by changing the height of the dam plate 4, the liquid level in the abrasive grain collecting device 1 can be adjusted and the concentration rate can be changed. In the present embodiment, the height of the dam plate 4 is set to a constant length of about 100 mm.

[研磨砥粒回収方法]
次に、本発明に係る研磨砥粒回収装置を使用した研磨砥粒回収方法について、図を参照して説明する。具体的には、前述の制御手段による、ボウル2及びスクリューコンベア3の回転速度の制御方法について、詳細に説明する。図2に、本発明に係る研磨砥粒回収方法のフローチャートの一例を示す。
[Abrasive grain recovery method]
Next, a polishing abrasive grain collection method using the abrasive grain collection device according to the present invention will be described with reference to the drawings. Specifically, a method for controlling the rotation speed of the bowl 2 and the screw conveyor 3 by the above-described control means will be described in detail. FIG. 2 shows an example of a flowchart of the polishing abrasive grain recovery method according to the present invention.

研磨砥粒を含むスラリから研磨砥粒を濃縮・分離するために、ボウル2及びスクリューコンベア3が回転すると、投入されたスラリ(本実施の形態では、砥粒として酸化セリウムを含有する使用済み研磨液、ドレス水、洗浄水、排水など)の一部(酸化セリウムなど)が、研磨砥粒回収装置1のボウル2の内壁に堆積する。なお、通常、ボウル2の回転方向と、スクリューコンベア3の回転方向は同方向であり、本発明はその回転方向に限定されない。ボウル2の回転速度に対して、回転速度の異なるスクリューコンベア3により、ボウル2の内壁に堆積した研磨砥粒10(酸化セリウムなど)をかきだすことで、研磨砥粒が濃縮された濃縮液を回収できる。この時、堆積した研磨砥粒10は、回転するボウル2及びスクリューコンベア3の抵抗となるため、ボウル2及びスクリューコンベア3には負荷が発生する。   When the bowl 2 and the screw conveyor 3 are rotated in order to concentrate and separate the abrasive grains from the slurry containing the abrasive grains, the loaded slurry (in this embodiment, used polishing containing cerium oxide as the abrasive grains). Part of the liquid (dressing water, washing water, drainage, etc.) (such as cerium oxide) is deposited on the inner wall of the bowl 2 of the abrasive grain collection device 1. In addition, normally, the rotation direction of the bowl 2 and the rotation direction of the screw conveyor 3 are the same direction, and this invention is not limited to the rotation direction. By collecting the abrasive grains 10 (cerium oxide, etc.) deposited on the inner wall of the bowl 2 with the screw conveyor 3 having a different rotational speed with respect to the rotational speed of the bowl 2, the concentrated liquid in which the abrasive grains are concentrated is recovered. it can. At this time, since the accumulated abrasive grains 10 become resistance of the rotating bowl 2 and the screw conveyor 3, a load is generated on the bowl 2 and the screw conveyor 3.

通常、ボウル2及びスクリューコンベア3に対する負荷は、投入するスラリの供給流量(供給速度)、スラリ中の研磨砥粒の濃度、ボウルとスクリューコンベアとの回転速度の差、などに依存する。   Usually, the load on the bowl 2 and the screw conveyor 3 depends on the supply flow rate (supply speed) of the slurry to be charged, the concentration of abrasive grains in the slurry, the difference in rotational speed between the bowl and the screw conveyor, and the like.

本発明においては、図2に示すように、メインドライブに発生した負荷が所定の値の範囲内であれば、そのまま処理を続行し(S20)、発生したメインドライブの負荷が所定の値の範囲外であれば、制御手段が駆動手段を制御し、メインドライブの負荷が所定の値の範囲内となるよう、ボウル2及びスクリューコンベア3の回転速度を変更する(S30)。なお、投入するスラリの投入流量は、ユーザーが制御できる。そのため、投入するスラリ中の研磨砥粒の濃度が一定である場合、又は研磨砥粒の濃度が低い場合、ボウル2に発生するメインドライブの負荷が、メインドライブの駆動電流値換算で、所定値となるように制御しても良い。   In the present invention, as shown in FIG. 2, if the load generated in the main drive is within a predetermined value range, the process is continued (S20), and the generated main drive load is within a predetermined value range. If it is outside, the control means controls the drive means, and changes the rotation speed of the bowl 2 and the screw conveyor 3 so that the load of the main drive falls within a predetermined value range (S30). The user can control the flow rate of the slurry to be charged. Therefore, when the concentration of the abrasive grains in the slurry to be charged is constant or the concentration of the abrasive grains is low, the load of the main drive generated in the bowl 2 is a predetermined value in terms of the drive current value of the main drive. You may control so that it may become.

制御手段による駆動手段の制御は、ボウル2及びスクリューコンベア3の両方の回転速度を変更して、ボウルの回転速度とスクリューコンベアの回転速度との差を制御する構成とすることができる。他にも、ボウル2を一定の回転速度で回転させ、スクリューコンベア3の回転速度を変更することで、ボウルの回転速度とスクリューコンベアの回転速度との差を制御する構成であっても良い。さらに、スクリューコンベア3を一定の回転速度で回転させ、ボウル2の回転速度を変更することで、ボウルの回転速度とスクリューコンベアの回転速度との差を制御する構成であっても良い。本実施の形態では、ボウル2を一定の回転速度で回転させ、スクリューコンベア3の回転速度を変更することで、ボウル2の回転速度とスクリューコンベア3の回転速度との差を制御した。しかしながら、本発明はこの点において、限定されない。   The control of the drive means by the control means can be configured to change the rotational speed of both the bowl 2 and the screw conveyor 3 to control the difference between the rotational speed of the bowl and the rotational speed of the screw conveyor. In addition, the configuration may be such that the difference between the rotation speed of the bowl and the rotation speed of the screw conveyor is controlled by rotating the bowl 2 at a constant rotation speed and changing the rotation speed of the screw conveyor 3. Further, the screw conveyor 3 may be rotated at a constant rotational speed, and the rotational speed of the bowl 2 may be changed to control the difference between the rotational speed of the bowl and the rotational speed of the screw conveyor. In the present embodiment, the difference between the rotation speed of the bowl 2 and the rotation speed of the screw conveyor 3 is controlled by rotating the bowl 2 at a constant rotation speed and changing the rotation speed of the screw conveyor 3. However, the present invention is not limited in this respect.

例えば、ボウル2を一定の回転速度で回転駆動する場合、研磨砥粒回収装置1の内部にスラリが存在すると、このスラリが負荷となり、駆動電流値が増大する。そのため、発生する負荷は、例えば、ボウル2又はスクリューコンベア3を所定の回転速度で回転駆動させるための、駆動電流値で近似できる。この時、発生する負荷は、ボウル2とスクリューコンベア3とで比例関係にあるため、ボウル2又はスクリューコンベア3のいずれか一方の駆動電流値と近似することができ、つまり、ボウル2又はスクリューコンベア3のいずれか一方の駆動電流値に基づいて発生する負荷を評価し、駆動手段を制御すればよい。   For example, when the bowl 2 is rotationally driven at a constant rotational speed, if slurry exists in the abrasive grain collecting apparatus 1, this slurry becomes a load, and the drive current value increases. Therefore, the generated load can be approximated by a drive current value for driving the bowl 2 or the screw conveyor 3 to rotate at a predetermined rotational speed, for example. At this time, since the generated load is proportional to the bowl 2 and the screw conveyor 3, it can be approximated to the driving current value of either the bowl 2 or the screw conveyor 3, that is, the bowl 2 or the screw conveyor. The load generated based on any one of the drive current values of 3 may be evaluated to control the drive means.

実施の形態では、上述の通り、ボウル2を一定の回転速度で回転させ、スクリューコンベア3の回転速度を変更する形態とした。そのため、ボウル2を所定の回転速度で回転するための電流値を測定し、この値をボウル2(即ち、研磨砥粒回収装置1)に対する負荷と近似した。具体的には、ボウル2を所定の回転速度で回転するための、駆動電流値が所定の値の範囲内となるよう、ボウル2とスクリューコンベア3との回転速度の差を制御した。   In the embodiment, as described above, the bowl 2 is rotated at a constant rotation speed, and the rotation speed of the screw conveyor 3 is changed. Therefore, the current value for rotating the bowl 2 at a predetermined rotational speed was measured, and this value was approximated to the load on the bowl 2 (that is, the abrasive abrasive recovery device 1). Specifically, the difference in rotational speed between the bowl 2 and the screw conveyor 3 was controlled so that the drive current value for rotating the bowl 2 at a predetermined rotational speed was within a predetermined value range.

本実施の形態では、研磨砥粒回収装置1のボウル2の定格電流値が、12Aの研磨砥粒回収装置を使用した。この場合、発生する負荷は、ボウル2の駆動電流値換算で、研磨砥粒回収装置1の内部に大気のみが存在する場合の、ボウル2の駆動電流値より大きく、11.4A以下(即ち、研磨砥粒回収装置1の定格電流値の95%以下)であることが好ましい。ボウル2(即ち、研磨砥粒回収装置1)に発生する負荷が、ボウル2の駆動電流値換算で11.4Aを超える場合、研磨砥粒回収装置の内部に研磨砥粒10が過堆積している状態となる。そのため、研磨砥粒回収装置を洗浄し、内部の研磨砥粒10を除去する必要がある。つまり、洗浄に要する時間的なロスと研磨砥粒10のロスとが発生するため、研磨砥粒回収効率が悪化する。また、研磨砥粒回収装置の内部の研磨砥粒10を洗い流すためのコストも要する。さらに、ボウル2及びスクリューコンベア3に対する負荷が高い状態が続くと、スクリューコンベア3(及び他の構成要素)が故障することもある。即ち、本発明では、研磨砥粒回収装置1に発生する負荷を所定の範囲になるよう制御するため、研磨砥粒回収装置1の安定操業を実現できる。発生する負荷は、ボウル2の駆動電流値換算で、9.0A〜11.3A(即ち、研磨砥粒回収装置1の定格電流値の75%〜94%)の範囲内であることがより好ましく、9.6A〜11.2A(即ち、研磨砥粒回収装置1の定格電流値の80%〜93%)の範囲内であることがさらに好ましい。   In the present embodiment, a polishing abrasive recovery device having a rated current value of 12A for the bowl 2 of the polishing abrasive recovery device 1 is used. In this case, the generated load is greater than the drive current value of the bowl 2 when the atmosphere is only present inside the abrasive grain recovery device 1 in terms of the drive current value of the bowl 2, and is 11.4 A or less (that is, It is preferably 95% or less of the rated current value of the abrasive grain recovery device 1. When the load generated in the bowl 2 (that is, the abrasive grain collecting device 1) exceeds 11.4 A in terms of the driving current value of the bowl 2, the abrasive grains 10 are excessively deposited inside the abrasive grain collecting device. It becomes a state. Therefore, it is necessary to clean the polishing abrasive recovery device and remove the polishing abrasive 10 inside. That is, the time loss required for cleaning and the loss of the polishing abrasive grains 10 are generated, so that the abrasive grain recovery efficiency is deteriorated. Moreover, the cost for washing away the abrasive grains 10 inside the abrasive grain recovery device is also required. Further, if the load on the bowl 2 and the screw conveyor 3 continues to be high, the screw conveyor 3 (and other components) may fail. That is, in the present invention, since the load generated in the polishing abrasive grain collection device 1 is controlled to be within a predetermined range, stable operation of the polishing abrasive grain collection device 1 can be realized. The generated load is more preferably in the range of 9.0 A to 11.3 A (that is, 75% to 94% of the rated current value of the abrasive grain recovery device 1) in terms of the drive current value of the bowl 2. 9.6A to 11.2A (that is, 80% to 93% of the rated current value of the abrasive grain recovery device 1) is more preferable.

ボウル2に発生する負荷は、上述の通り、投入するスラリの供給流量(供給速度)、スラリ中の研磨砥粒の濃度、ボウルとスクリューコンベアとの回転速度の差に依存する。ボウル2とスクリューコンベア3との回転速度の差を一定にする場合、投入するスラリの供給流量、スラリ中の研磨砥粒の濃度が高くなると、ボウル2に発生する負荷が増大する。従来の研磨砥粒回収装置では、スラリ中の研磨砥粒の濃度が例えば2%で、投入するスラリの供給流量を25L/min以上にすると、スクリューコンベア3の負荷が定格電流値を超えて高くなり過ぎるため(過負荷)、投入するスラリの供給流量を下げる必要があった。しかしながら、本発明では、スラリ中の研磨砥粒の濃度を2%で、投入するスラリの供給流量が25L/min以上の条件においても、ボウル2の回転速度とスクリューコンベア3の回転速度との差を制御することで、スクリューコンベア3の負荷を低減できる。これにより、研磨砥粒回収装置を連続して安定操業できるため、従来の方法と比較して、研磨砥粒回収の生産性を高くできる。また、この時、スクリューコンベア3の回転速度とボウル2の回転速度との差は大きくなるため、スラリ中の研磨砥粒が高濃度でも十分にボウル2から研磨砥粒10をスクリューコンベア3でかき出すことが可能であり、高い研磨砥粒の回収率を実現できる。さらに、本発明の方法では、スラリ中の研磨砥粒の濃度が5%と高濃度で、投入するスラリの供給流量を25L/minとした場合でも、スクリューコンベア3の負荷を低減し、かつ、高い研磨砥粒回収率を実現することができる(後述の実施例参照)。   As described above, the load generated in the bowl 2 depends on the supply flow rate (supply speed) of the slurry to be added, the concentration of the abrasive grains in the slurry, and the difference in the rotation speed between the bowl and the screw conveyor. When the difference in rotational speed between the bowl 2 and the screw conveyor 3 is made constant, the load generated in the bowl 2 increases as the supply flow rate of the slurry to be introduced and the concentration of abrasive grains in the slurry increase. In the conventional abrasive recovery device, if the abrasive abrasive concentration in the slurry is 2%, for example, and the supply flow rate of the slurry to be added is 25 L / min or more, the load on the screw conveyor 3 exceeds the rated current value and becomes high. Too much (overload), it was necessary to reduce the supply flow rate of the slurry to be added. However, in the present invention, the difference between the rotational speed of the bowl 2 and the rotational speed of the screw conveyor 3 is also obtained under the condition that the concentration of the abrasive grains in the slurry is 2% and the supplied flow rate of the slurry is 25 L / min or more. By controlling this, the load on the screw conveyor 3 can be reduced. As a result, since the polishing abrasive recovery device can be operated continuously and stably, productivity of polishing abrasive recovery can be increased as compared with the conventional method. At this time, since the difference between the rotational speed of the screw conveyor 3 and the rotational speed of the bowl 2 becomes large, the abrasive grains 10 are sufficiently scraped out from the bowl 2 by the screw conveyor 3 even if the abrasive grains in the slurry are high in concentration. And a high recovery rate of abrasive grains can be realized. Furthermore, in the method of the present invention, the load of the screw conveyor 3 is reduced even when the concentration of the abrasive grains in the slurry is as high as 5% and the supply flow rate of the slurry to be added is 25 L / min, and A high polishing abrasive grain recovery rate can be realized (see Examples described later).

一方、ボウル2に発生する負荷が低い場合、即ち、投入するスラリ中の研磨砥粒の濃度が、例えば1%以下と低い場合においても、本発明では、ボウル2に発生する負荷が、ボウル2の駆動電流値換算で、所定の値の範囲となるよう制御する。この実施形態においては、より具体的には、ボウル2に発生する負荷が上がるように、スクリューコンベア3の回転速度とボウル2の回転速度との差が小さくなるよう制御する。即ち、ボウル2を一定の回転速度にする実施形態では、スクリューコンベア3の回転速度を遅くする。これにより、ボウル2の内部に堆積する研磨砥粒10を一定量以上にすることができ、低濃度のスラリにおいても、濃縮率を高くできる。   On the other hand, even when the load generated in the bowl 2 is low, that is, when the concentration of the abrasive grains in the slurry to be charged is as low as 1% or less, for example, the load generated in the bowl 2 is Is controlled so as to be within a predetermined value range in terms of the drive current value. In this embodiment, more specifically, the difference between the rotational speed of the screw conveyor 3 and the rotational speed of the bowl 2 is controlled so as to increase the load generated in the bowl 2. That is, in the embodiment in which the bowl 2 is set to a constant rotation speed, the rotation speed of the screw conveyor 3 is decreased. Thereby, the abrasive grains 10 deposited in the bowl 2 can be made a certain amount or more, and the concentration rate can be increased even in a low concentration slurry.

[研磨液の管理システム]
次に、本発明の研磨砥粒回収装置1を有する、研磨液の管理システムについて、図を参照して説明する。図3は、本発明に係る研磨液の管理システムの一例を示す概略図である。
[Polishing liquid management system]
Next, a polishing liquid management system having the abrasive grain recovery device 1 of the present invention will be described with reference to the drawings. FIG. 3 is a schematic diagram showing an example of a polishing liquid management system according to the present invention.

研磨液の管理システム100は、本発明の研磨砥粒回収装置1、粗大粒子分離装置150、成分調整槽160及び必要に応じてその他の槽を有する。その他の槽としては、例えば、スラリ槽120、排出水槽130、分散槽、用水槽140、などが挙げられる。   The polishing liquid management system 100 includes the abrasive grain collection device 1, the coarse particle separation device 150, the component adjustment tank 160, and other tanks as necessary. Examples of other tanks include a slurry tank 120, a discharge water tank 130, a dispersion tank, and a water tank 140.

本発明の研磨液の管理システム100を使用することで、例えば、磁気記録媒体用ガラス基板を製造する際の、研磨装置110からのスラリ(例えば、使用済み研磨液、ドレス水、洗浄水、排水など)を回収して処理し、再生した研磨液と、研磨砥粒が除去された用水とを、各々、研磨装置に併設されるスラリ槽及び用水槽を介して循環できる。   By using the polishing liquid management system 100 of the present invention, for example, a slurry (for example, used polishing liquid, dressing water, cleaning water, waste water) from the polishing apparatus 110 when a glass substrate for a magnetic recording medium is manufactured. Etc.) can be circulated through the slurry tank and the water tank provided in the polishing apparatus, respectively.

研磨装置110は、研磨砥粒を用いて、ガラスを研磨することができれば特に限定されず、例えば、磁気記録媒体用ガラス基板、光学部品用ガラス、フォトマスク用ガラス、液晶ディスプレイ用ガラスなどのガラスを研磨する、ガラス研磨装置を使用できる。   The polishing apparatus 110 is not particularly limited as long as it can polish the glass using polishing abrasive grains. For example, glass such as a glass substrate for magnetic recording media, glass for optical parts, glass for photomask, glass for liquid crystal display, etc. A glass polishing apparatus can be used.

なお、研磨液に含まれる研磨砥粒としては、例えば、酸化セリウム粒子、シリカ粒子、アルミナ粒子、ジルコニア粒子、ジルコン粒子、炭化ケイ素粒子、炭化ホウ素粒子、ダイヤモンド粒子、酸化マンガン粒子、チタニア粒子及び酸化鉄粒子から選ばれる1種以上の粒子を使用できる。   The abrasive grains contained in the polishing liquid include, for example, cerium oxide particles, silica particles, alumina particles, zirconia particles, zircon particles, silicon carbide particles, boron carbide particles, diamond particles, manganese oxide particles, titania particles, and oxidation. One or more kinds of particles selected from iron particles can be used.

研磨装置で使用される研磨砥粒はスラリ槽120に貯留されており、研磨装置とスラリ槽との間を繰り返し循環する。   Polishing abrasive grains used in the polishing apparatus are stored in the slurry tank 120 and circulate repeatedly between the polishing apparatus and the slurry tank.

ガラス基板などの洗浄の際に使用する用水は、例えば、用水槽140に貯留されており、用水ノズルを介して供給される。   For example, the water used for cleaning the glass substrate or the like is stored in the water tank 140 and supplied through the water nozzle.

排出水槽130は、スラリ(例えば、使用済み研磨液、ドレス水、洗浄水、排水など)を貯留するための槽であり、沈殿及び凝集を防止するため、通常攪拌されている。排出水槽130のスラリは、定期的又は連続的に本発明の研磨砥粒回収装置1に搬送され、上述の研磨砥粒回収方法により、濃縮された研磨砥粒を含む濃縮液と、分離液と、に分離される。その後、濃縮液は、粗大粒子分離装置150に搬送される。分離液は、通常、廃棄されるが、用水槽140に戻して再使用しても良い。   The drainage water tank 130 is a tank for storing slurry (for example, used polishing liquid, dressing water, washing water, drainage, etc.), and is normally stirred to prevent precipitation and aggregation. The slurry in the discharge water tank 130 is conveyed regularly or continuously to the polishing abrasive grain recovery device 1 of the present invention, and the concentrated liquid containing the abrasive grains concentrated by the above-described polishing abrasive grain recovery method, , Separated. Thereafter, the concentrated liquid is conveyed to the coarse particle separator 150. The separation liquid is usually discarded, but may be returned to the water tank 140 and reused.

図3では、本発明の研磨砥粒回収装置1からの濃縮液が、粗大粒子分離装置150に搬送される例を示した。しかしながら、本発明の研磨砥粒回収装置1からの濃縮液は、図示しない分散槽に搬送された後に、粗大粒子分離装置150に搬送されても良い。この場合、分散槽では、定期的又は連続的に分散剤及び水が添加され、再分散処理が行われる。なお、分散槽では通常、沈殿及び凝集を防止するため、攪拌されている。分散剤としては、特に限定されず、例えば、オキシカルボン酸、ポリアクリル酸又はそれらの塩などを使用することができる。   FIG. 3 shows an example in which the concentrated liquid from the abrasive grain collection device 1 of the present invention is conveyed to the coarse particle separation device 150. However, the concentrated liquid from the abrasive grain recovery device 1 of the present invention may be transported to a coarse particle separator 150 after being transported to a dispersion tank (not shown). In this case, in the dispersing tank, a dispersing agent and water are added regularly or continuously, and redispersion processing is performed. The dispersion tank is usually stirred in order to prevent precipitation and aggregation. The dispersant is not particularly limited, and for example, oxycarboxylic acid, polyacrylic acid, or a salt thereof can be used.

濃縮液又は再分散処理された濃縮液は、粗大粒子分離装置150などの遠心分離機に搬送され、粗大粒子(例えば、粒径で5μmより大きいものなど)が除去され、成分調整槽160に搬送される。通常、ここで分離された粗大粒子は破棄される。   The concentrated liquid or the re-dispersed concentrated liquid is transferred to a centrifugal separator such as the coarse particle separator 150, where coarse particles (for example, particles having a particle size larger than 5 μm) are removed and conveyed to the component adjustment tank 160. Is done. Usually, the coarse particles separated here are discarded.

成分調整槽160では、の濃度調整及びpH調整などの成分調整が行われ、必要に応じて分散剤が添加される。このとき、成分調整槽160では、通常、沈殿及び凝集を防止するため、攪拌されている。濃縮液を成分調整することによって再生された研磨液は、スラリ槽120に還流され、再び研磨に使用される。   In the component adjustment tank 160, component adjustment such as concentration adjustment and pH adjustment is performed, and a dispersant is added as necessary. At this time, the component adjustment tank 160 is usually stirred to prevent precipitation and aggregation. The polishing liquid regenerated by adjusting the concentration of the concentrated liquid is returned to the slurry tank 120 and used again for polishing.

必要に応じて、研磨液の管理システム内の任意の場所にフィルターを設置してもよい。   If necessary, a filter may be installed at any place in the polishing liquid management system.

[磁気記録媒体用ガラス基板の製造方法]
研磨液の管理システムは、本発明の研磨砥粒回収装置1を使用して、研磨砥粒を回収、研磨液として再正することで、種々の研磨装置に応用することができる。研磨装置としては、具体的には、上述したように磁気記録媒体用ガラス基板、光学部品用ガラス、フォトマスク用ガラス、液晶ディスプレイ用ガラスなどのガラスを研磨する、研磨装置に使用できる。
[Method for producing glass substrate for magnetic recording medium]
The polishing liquid management system can be applied to various polishing apparatuses by using the polishing abrasive recovery apparatus 1 of the present invention to recover and correct the polishing abrasive as a polishing liquid. Specifically, as described above, the polishing apparatus can be used in a polishing apparatus for polishing glass such as a glass substrate for magnetic recording media, glass for optical parts, glass for photomask, glass for liquid crystal display.

ここでは、特に、磁気記録媒体用ガラス基板の製造方法に、本発明の研磨液の管理システムを応用する場合について、説明する。   Here, the case where the polishing liquid management system of the present invention is applied to a method of manufacturing a glass substrate for a magnetic recording medium will be described.

本発明の磁気記録媒体用ガラス基板の製造方法は、一例を挙げると、
(1)ガラス素基板を、中央部に円孔を有する円盤形状に加工した後、内周側面と外周側面を面取り加工する形状付与工程、
(2)ガラス基板の外周端面を研磨する外周端面研磨工程、
(3)ガラス基板の内周端面を研磨する。内周端面研磨工程、
(4)ガラス基板の上下両主平面を研磨する主平面研磨工程、
(5)ガラス基板を精密洗浄して乾燥し、磁気記録媒体用ガラス基板を得る洗浄工程、
などの工程により製造される。本発明は上記方法に限定されないが、(2)の外周端面研磨工程、(3)の内周端面研磨工程及び(4)の主平面研磨工程で使用した、研磨砥粒を含有するスラリ(例えば、使用済み研磨液、ドレス水、洗浄水、排水など)を、本発明の研磨液の管理システムに適用することで、効率的に研磨砥粒を回収することができる。研磨砥粒としては、例えば、酸化セリウム粒子、シリカ粒子、アルミナ粒子、ジルコニア粒子、ジルコン粒子、炭化ケイ素粒子、炭化ホウ素粒子、ダイヤモンド粒子、酸化マンガン粒子、チタニア粒子及び酸化鉄粒子から選ばれる1種以上の粒子を使用できる。
An example of the method for producing a glass substrate for a magnetic recording medium of the present invention is as follows:
(1) A shape imparting step of chamfering the inner peripheral side surface and the outer peripheral side surface after processing the glass base substrate into a disk shape having a circular hole in the central portion;
(2) An outer peripheral end surface polishing step for polishing the outer peripheral end surface of the glass substrate,
(3) The inner peripheral end face of the glass substrate is polished. Inner peripheral edge polishing process,
(4) a main surface polishing step for polishing the upper and lower main surfaces of the glass substrate;
(5) A cleaning step of precisely cleaning and drying the glass substrate to obtain a glass substrate for a magnetic recording medium,
It is manufactured by such processes. Although this invention is not limited to the said method, the slurry containing the abrasive grain (for example, used in the outer peripheral end surface grinding | polishing process of (2), the inner peripheral end surface grinding | polishing process of (3), and the main plane grinding | polishing process of (4) (for example) By applying the used polishing liquid, dressing water, cleaning water, drainage, etc.) to the polishing liquid management system of the present invention, the abrasive grains can be efficiently recovered. Examples of the abrasive grains include one selected from cerium oxide particles, silica particles, alumina particles, zirconia particles, zircon particles, silicon carbide particles, boron carbide particles, diamond particles, manganese oxide particles, titania particles, and iron oxide particles. The above particles can be used.

なお、(2)外周端面研磨工程と(3)内周端面研磨工程とは、どちらの工程を先に実施しても良い。また、(2)及び(3)の端面研磨工程の前後のうち少なくとも一方で、主平面のラップ(例えば、遊離砥粒ラップ、固定砥粒ラップなど)を実施しても良く、各工程間にガラス基板の洗浄(工程間洗浄)やガラス基板表面のエッチング(工程間エッチング)を実施しても良い。なお、ここで言う主平面のラップは、広義の主平面の研磨である。   Note that (2) the outer peripheral end face polishing step and (3) the inner peripheral end face polishing step may be performed first. In addition, at least one of the end surface polishing steps (2) and (3) before and after the end surface polishing step, a main plane lapping (for example, loose abrasive lapping, fixed abrasive lapping, etc.) may be performed. Glass substrate cleaning (inter-process cleaning) and glass substrate surface etching (inter-process etching) may be performed. Note that the main plane lapping here is polishing of the main plane in a broad sense.

研磨工程は、1次研磨のみでも良く、1次研磨と2次研磨を行っても良く、2次研磨の後に3次研磨を行っても良い。   The polishing step may be only primary polishing, primary polishing and secondary polishing may be performed, or tertiary polishing may be performed after secondary polishing.

本発明において、磁気記録媒体用ガラス基板は、アモルファスガラスでも良く、結晶化ガラスでも良く、ガラス基板の表層に強化層(圧縮応力層)を有する強化ガラス(例えば、化学強化ガラス)でも良い。一例を挙げると、磁気記録媒体用ガラス基板に高い機械的強度が求められる場合、ガラス基板の表層に強化層を形成する強化工程(例えば、化学強化工程)を実施する。強化工程は、最初の研磨工程前、最後の研磨工程後、又は各研磨工程間のいずれで実施しても良い。また、本発明のガラス基板のガラス素基板は、フロート法、フュージョン法、リドロー法、プレス成形法などの方法により作製されるが、本発明はこの点で限定されない。   In the present invention, the glass substrate for a magnetic recording medium may be amorphous glass, crystallized glass, or tempered glass (for example, chemically tempered glass) having a tempered layer (compressive stress layer) on the surface layer of the glass substrate. As an example, when high mechanical strength is required for a glass substrate for magnetic recording media, a strengthening step (for example, a chemical strengthening step) for forming a reinforcing layer on the surface layer of the glass substrate is performed. The strengthening step may be performed either before the first polishing step, after the last polishing step, or between each polishing step. The glass substrate of the glass substrate of the present invention is produced by a method such as a float method, a fusion method, a redraw method, or a press molding method, but the present invention is not limited in this respect.

上記方法により得られた磁気記録媒体用ガラス基板の上に、下地層、磁性層、保護層、潤滑層などの層を積層することで、磁気ディスクを製造できる。各層の積層方法などは、従来の方法などを適宜使用できる。磁気ディスクのサイズとしては、特に限定されず、例えば、0.85インチ型磁気ディスク(内径6mm、外径21.6mm、板厚0.381mm)、1.0インチ型磁気ディスク(内径7mm、外径27.4mm、板厚0.381mm)、1.8インチ型磁気ディスク(内径12mm、外径48mm、板厚0.508mm)、2.5インチ型磁気ディスク(内径20mm、外径65mm、板厚0.635mm、0.8mm)などの、種々の大きさの磁気ディスクを製造できる。   A magnetic disk can be manufactured by laminating layers such as an underlayer, a magnetic layer, a protective layer, and a lubricating layer on the glass substrate for a magnetic recording medium obtained by the above method. A conventional method or the like can be appropriately used as a method for laminating each layer. The size of the magnetic disk is not particularly limited. For example, 0.85 inch type magnetic disk (inner diameter 6 mm, outer diameter 21.6 mm, plate thickness 0.381 mm), 1.0 inch type magnetic disk (inner diameter 7 mm, outer Diameter 27.4 mm, plate thickness 0.381 mm), 1.8 inch type magnetic disk (inner diameter 12 mm, outer diameter 48 mm, plate thickness 0.508 mm), 2.5 inch type magnetic disk (inner diameter 20 mm, outer diameter 65 mm, plate) Magnetic disks of various sizes, such as 0.635 mm and 0.8 mm thick, can be manufactured.

[第1の実施形態]
次に、本発明の研磨砥粒回収装置及び研磨砥粒回収方法の効果を確認した実施形態について、説明する。
[First Embodiment]
Next, an embodiment in which the effects of the abrasive grain collection device and the abrasive grain collection method of the present invention have been confirmed will be described.

表1に、本発明の研磨砥粒回収装置及び研磨砥粒回収方法の効果を確認した実施形態における、実施条件を示す。   Table 1 shows the implementation conditions in the embodiment in which the effects of the abrasive grain collection device and the abrasive grain collection method of the present invention were confirmed.

Figure 2013091130
図1の研磨砥粒回収装置に、研磨砥粒として酸化セリウムを所定の濃度で含有するスラリ(表1参照)を、所定の供給流量(表1参照)で投入し、ボウル及びスクリューコンベアを回転駆動させることで、研磨砥粒(酸化セリウム)を濃縮して回収した。この時、ボウルの回転速度を一定にし、スクリューコンベアの回転速度を変更して、スクリューコンベアとボウルの回転速度の差(差速と呼ぶこともある。)を制御した。例1〜例5においては、ボウル(メインドライブ)の負荷が、ボウルの駆動電流値換算で、表1に示す範囲となるように、回転速度の差を制御した。例6〜例8においては、回転速度の差が15rpmになるようマニュアルで制御し、ボウルの駆動電流値を測定した。
Figure 2013091130
A slurry containing cerium oxide as a polishing abrasive at a predetermined concentration (see Table 1) is put into the polishing abrasive collection device of FIG. 1 at a predetermined supply flow rate (see Table 1), and the bowl and screw conveyor are rotated. By driving, the abrasive grains (cerium oxide) were concentrated and recovered. At this time, the rotation speed of the bowl was kept constant, the rotation speed of the screw conveyor was changed, and the difference between the rotation speeds of the screw conveyor and the bowl (sometimes referred to as differential speed) was controlled. In Examples 1 to 5, the difference in rotational speed was controlled so that the load of the bowl (main drive) was in the range shown in Table 1 in terms of the bowl drive current value. In Examples 6 to 8, manual control was performed so that the difference in rotational speed was 15 rpm, and the drive current value of the bowl was measured.

なお、上述における回転速度の差R1(rpm)は、スクリューコンベアの回転速度R(rpm)と、ボウルの回転速度R(rpm)とを使用して、下記の式(1)で定義した。 The rotational speed difference R1 (rpm) in the above is defined by the following equation (1) using the rotational speed R s (rpm) of the screw conveyor and the rotational speed R b (rpm) of the bowl. .

R1=|R−R|/10 式(1)
[評価]
第1の実施形態の評価は、回収した濃縮液(研磨砥粒である酸化セリウムが濃縮された溶液)中の研磨砥粒(酸化セリウム)の濃度と、研磨砥粒(酸化セリウム)の回収率と、で行った。
R1 = | R s −R b | / 10 Formula (1)
[Evaluation]
The evaluation of the first embodiment is based on the concentration of polishing abrasive grains (cerium oxide) in the collected concentrated liquid (solution in which cerium oxide as polishing abrasive grains is concentrated) and the recovery rate of polishing abrasive grains (cerium oxide). And went on.

なお、スラリ及び回収した濃縮液中の酸化セリウムの濃度は、水分計(Moisture analyzer MX−50;A&D Company,Limited製)で測定した。   In addition, the density | concentration of the cerium oxide in a slurry and the collect | recovered concentrate was measured with the moisture meter (Moisture analyzer MX-50; made by A & D Company, Limited).

酸化セリウムの回収率R2は、回収酸化セリウム重量 Wout ceと、投入酸化セリウム重量 Win ceとを用いて、下記の式(2)で定義した。 The recovery rate R2 of cerium oxide was defined by the following formula (2) using the recovered cerium oxide weight W out ce and the input cerium oxide weight W in ce .

R2=Wout ce/Win ce 式(2)
ここで、回収酸化セリウム重量Wout ce(又はWin ce)は、下記の方法で算出することができる。ここでは、回収酸化セリウム重量Wout ceの算出方法のみを説明するが、投入酸化セリウム重量Win ceについても、同様の方法で算出できる。
R2 = W out ce / W in ce equation (2)
Here, the recovered cerium oxide weight W out ce (or W in ce ) can be calculated by the following method. Here, only the method of calculating the recovered cerium oxide weight W out ce will be described, but the input cerium oxide weight W in ce can also be calculated by the same method.

回収酸化セリウム濃度を(回収した濃縮液中の酸化セリウム濃度)Cout ceとし、排出酸化セリウム溶液流量をVout ceとし、排出酸化セリウム溶液中の水及び酸化セリウムの体積を、各々、V及びVCeとし、酸化セリウムの比重をSGCeとした場合、下記の式(3)及び式(4)が成立する。 The recovered cerium oxide concentration is (outside cerium oxide concentration in the recovered concentrate) C out ce , the discharged cerium oxide solution flow rate is V out ce, and the volume of water and cerium oxide in the discharged cerium oxide solution is V w , respectively. And V Ce and the specific gravity of cerium oxide is SG Ce , the following formulas (3) and (4) hold.

out ce=(VCe×SGCe)/(V+VCe×SGCe) 式(3)
out ce=V+VCe 式(4)
式(4)を式(3)に代入することにより、排出酸化セリウム溶液中の酸化セリウムの体積VCeは、下記の式(5)で表される。
W out ce = (V Ce × SG Ce ) / (V w + V Ce × SG Ce ) Formula (3)
V out ce = V w + V Ce formula (4)
By substituting Equation (4) into Equation (3), the volume V Ce of cerium oxide in the discharged cerium oxide solution is expressed by Equation (5) below.

Ce=(Wout ce×Vout ce)/(SGCe−(SGCe−1)Wout ce) 式(5)
即ち、排出酸化セリウム重量Wout ceは、式(5)に酸化セリウムの比重を乗じた、下記式(6)で算出される。
V Ce = (W out ce × V out ce ) / (SG Ce − (SG Ce −1) W out ce ) Equation (5)
That is, the discharged cerium oxide weight W out ce is calculated by the following formula (6) obtained by multiplying the formula (5) by the specific gravity of cerium oxide.

out ce=SGCe(Wout ce×Vout ce)/(SGCe−(SGCe−1)Wout ce) 式(6)
表1には、各例における、回収した濃縮液中の酸化セリウムの濃度と、酸化セリウムの回収率も示している。
W out ce = SG Ce (W out ce × V out ce ) / (SG Ce − (SG Ce −1) W out ce ) (6)
Table 1 also shows the concentration of cerium oxide in the collected concentrated liquid and the recovery rate of cerium oxide in each example.

表1より明らかであるように、例1〜例5の方法では、研磨砥粒回収装置の負荷により、最適にボウル及びスクリューコンベアの回転速度を制御しているため、投入したスラリ中の酸化セリウム濃度に対して、回収した濃縮液の酸化セリウム濃度が高かった(濃縮率が高い)。また、酸化セリウムの濃度が2質量%以上の高濃度で、かつ、供給流量が25L/minの高供給流量の条件においても、研磨砥粒回収装置の定格電流値を超える(具体的には、ボウルの駆動電流値が12Aを超える)ことなく、安定的に連続操業が可能であることがわかった。即ち、研磨砥粒回収装置内に過堆積したスラリを洗浄除去する必要がなく、かつ、研磨砥粒(酸化セリウム)の回収率も80%以上と高く保持できるため、本発明の研磨砥粒回収装置及び回収方法を使用することで、研磨砥粒回収の生産性が高くなることを確認した。また、本実施の形態の結果により、プロセスの途中で、投入するスラリ中の砥粒濃度が変わる場合においても、ボウル(又はスクリューコンベア)の駆動電流値に基づいて、前記ボウルの回転速度と前記スクリューコンベアの回転速度との差を制御することで、高い砥粒回収率を実現できることがわかった。   As is clear from Table 1, in the methods of Examples 1 to 5, the rotational speed of the bowl and screw conveyor is optimally controlled by the load of the abrasive grain recovery device, so cerium oxide in the slurry that has been charged. The concentrated cerium oxide concentration of the collected concentrate was higher than the concentration (concentration rate was high). Further, even when the concentration of cerium oxide is a high concentration of 2% by mass or more and the supply flow rate is a high supply flow rate of 25 L / min, the rated current value of the abrasive abrasive recovery device is exceeded (specifically, It was found that the continuous operation can be stably performed without the bowl drive current value exceeding 12 A). That is, it is not necessary to clean and remove the slurry that has accumulated excessively in the abrasive abrasive recovery device, and the recovery rate of abrasive abrasives (cerium oxide) can be maintained as high as 80% or more. It was confirmed that the productivity of polishing abrasive grain collection was increased by using the apparatus and the recovery method. Further, according to the result of the present embodiment, even when the abrasive grain concentration in the slurry to be charged is changed during the process, the rotation speed of the bowl and the above-mentioned are based on the driving current value of the bowl (or screw conveyor). It was found that a high abrasive recovery rate can be realized by controlling the difference from the rotational speed of the screw conveyor.

[第2の実施形態]
次に、投入するスラリ中の研磨砥粒の濃度が低い場合において、スクリューコンベアとボウルとの回転速度の差が小さくなるように制御することの効果を実証した実施形態について、説明する。
[Second Embodiment]
Next, an embodiment that demonstrates the effect of controlling the difference in rotational speed between the screw conveyor and the bowl to be small when the concentration of abrasive grains in the slurry to be charged is low will be described.

投入するスラリ中の研磨砥粒の濃度が、例えば1%以下と低い場合、ボウルに発生する負荷が所定の値より低くなることがある。この場合においては、ボウルに発生する負荷が上がるように、スクリューコンベアとボウルとの回転速度の差が小さくなるよう制御する。   When the concentration of the abrasive grains in the slurry to be added is as low as 1% or less, for example, the load generated in the bowl may be lower than a predetermined value. In this case, control is performed to reduce the difference in rotational speed between the screw conveyor and the bowl so that the load generated in the bowl increases.

第1の実施形態と同様、図1の研磨砥粒回収装置に、表2に示す酸化セリウム濃度のスラリを、表2に示す供給流量で投入し、ボウル(メインドライブ)及びスクリューコンベア(バックドライブ)を回転駆動させることで、研磨砥粒を濃縮して回収した。第1の実施形態と同様、ボウルの回転速度を一定にし、スクリューコンベアの回転速度を変更して、回転速度の差を制御した。   As in the first embodiment, the slurry having the cerium oxide concentration shown in Table 2 is introduced into the polishing abrasive grain recovery device of FIG. 1 at the supply flow rate shown in Table 2, and the bowl (main drive) and screw conveyor (back drive) ) Was rotationally driven to concentrate and collect the abrasive grains. As in the first embodiment, the rotational speed of the bowl was kept constant, the rotational speed of the screw conveyor was changed, and the difference in rotational speed was controlled.

Figure 2013091130
表2より明らかであるように、投入するスラリ中の研磨砥粒の濃度が低い場合においても、本発明の研磨砥粒回収装置及び回収方法を使用することで、高い濃縮率を実現することができた。また、研磨砥粒(酸化セリウム)の回収率も65%以上とすることができた。
Figure 2013091130
As is apparent from Table 2, even when the concentration of abrasive grains in the slurry to be added is low, a high concentration ratio can be realized by using the abrasive grain collection device and collection method of the present invention. did it. Moreover, the recovery rate of the abrasive grains (cerium oxide) could be 65% or more.

さらに、投入するスラリ中の研磨砥粒の濃度が低い場合は、回転速度の差を小さくして研磨砥粒回収装置の内部に堆積する研磨砥粒の量を多くさせる(ボウルの駆動電流値換算で、所定の値の範囲内にする)ことにより、より高い回収率が実現できることがわかった。そのため、例えば、投入するスラリ中の研磨砥粒の濃度が低い場合、駆動手段の駆動電流値の範囲を高く設定することにより、より高い回収率を実現することもできる。   Furthermore, when the concentration of abrasive grains in the slurry to be added is low, the difference in rotational speed is reduced to increase the amount of abrasive grains accumulated in the abrasive grain recovery device (converted to the bowl drive current value). Thus, it was found that a higher recovery rate can be realized by setting the value within a predetermined value range. Therefore, for example, when the concentration of the abrasive grains in the slurry to be charged is low, a higher recovery rate can be realized by setting the drive current value range of the drive means high.

本発明の研磨砥粒回収装置及び回収方法を使用して、研磨砥粒回収装置のボウル(又はスクリューコンベア)の駆動電流値に基づいてボウル及びスクリューコンベアの回転速度を制御することにより、研磨砥粒の高い回収率、研磨砥粒回収の高い生産性、安定的な連続操業が実現できることがわかった。より具体的には、投入したスラリの流量が高く、研磨砥粒の濃度が高い条件では、研磨砥粒回収装置の負荷を(所定の範囲まで)下げるように、スクリューコンベアとボウルとの回転速度の差を大きくする。一方、投入したスラリ中の砥粒の濃度が低い条件では、研磨砥粒回収速度の負荷を(所定の範囲まで)上げるように、回転速度の差を小さくする。これにより、研磨砥粒回収装置のスクリューやボウルへのダメージが均一で少なく、制御精度良く、かつ、研磨砥粒の回収率を高くすることができる。   By using the abrasive grain recovery device and recovery method of the present invention, the rotational speed of the bowl and screw conveyor is controlled based on the drive current value of the bowl (or screw conveyor) of the abrasive grain recovery device. It was found that a high recovery rate of grains, high productivity of abrasive grain recovery, and stable continuous operation can be realized. More specifically, the rotation speed of the screw conveyor and the bowl is reduced so that the load of the abrasive grain collecting device is reduced (to a predetermined range) under the condition that the flow rate of the slurry is high and the abrasive grain concentration is high. Increase the difference. On the other hand, under the condition that the concentration of abrasive grains in the added slurry is low, the difference in rotational speed is reduced so as to increase the load of the abrasive grain recovery speed (to a predetermined range). Thereby, the damage to the screw or bowl of the abrasive grain recovery device is uniform and small, the control accuracy is high, and the abrasive grain recovery rate can be increased.

1 研磨砥粒回収装置
2 ボウル
3 スクリューコンベア
4 ダム板(weir plate)
5 投入管
6 ストレート部
7 コーン部
8 第1先端開口
9 第2先端開口
10 研磨砥粒
11 制御手段
DESCRIPTION OF SYMBOLS 1 Abrasive grain collection | recovery apparatus 2 Bowl 3 Screw conveyor 4 Dam plate (weir plate)
5 Input tube 6 Straight portion 7 Cone portion 8 First tip opening 9 Second tip opening 10 Abrasive grain 11 Control means

Claims (6)

研磨砥粒を含むスラリから前記研磨砥粒を含む濃縮液を分離する研磨砥粒回収装置であって、
当該研磨砥粒回収装置は、
前記スラリを保持するボウルと、
前記濃縮液をボウルからかき出すためのスクリューコンベアと、
前記ボウル及び前記スクリューコンベアを回転駆動するための駆動手段と、
前記駆動手段を制御する制御手段と、
を有し、
前記制御手段は、前記ボウル又は前記スクリューコンベアを回転駆動するための、前記駆動手段の駆動電流値に基づいて、前記ボウルの回転速度と前記スクリューコンベアの回転速度との差を制御するものである、
研磨砥粒回収装置。
A polishing abrasive recovery device for separating a concentrated liquid containing abrasive grains from a slurry containing abrasive grains,
The abrasive abrasive recovery device
A bowl holding the slurry;
A screw conveyor for scooping out the concentrate from the bowl;
Drive means for rotationally driving the bowl and the screw conveyor;
Control means for controlling the drive means;
Have
The control means controls the difference between the rotational speed of the bowl and the rotational speed of the screw conveyor based on the drive current value of the driving means for rotationally driving the bowl or the screw conveyor. ,
Polishing abrasive collection device.
前記制御手段は、前記ボウル又は前記スクリューコンベアを回転駆動するための、前記駆動手段の駆動電流値が所定の範囲となるように、前記ボウルの回転速度と前記スクリューコンベアの回転速度との差を制御するものである、
請求項1に記載の研磨砥粒回収装置。
The control means adjusts the difference between the rotational speed of the bowl and the rotational speed of the screw conveyor so that the driving current value of the driving means for rotationally driving the bowl or the screw conveyor is within a predetermined range. To control,
The abrasive grain recovery device according to claim 1.
前記制御手段は、前記ボウルを一定の回転速度で回転駆動するための、前記駆動手段の駆動電流値が所定の範囲となるように、前記スクリューコンベアの回転速度を制御するものであり、
前記駆動電流値が前記所定の範囲より大きい場合、前記スクリューコンベアの回転速度を高くして、前記駆動電流値が前記所定の範囲となるように制御し、
前記駆動電流値が前記所定の範囲より小さい場合、前記スクリューコンベアの回転速度を低くして、前記駆動電流値が前記所定の範囲となるように制御する、
請求項1又は2に記載の研磨砥粒回収装置。
The control means controls the rotational speed of the screw conveyor so that the driving current value of the driving means for rotating the bowl at a constant rotational speed is in a predetermined range.
When the drive current value is larger than the predetermined range, the rotational speed of the screw conveyor is increased, and the drive current value is controlled to be within the predetermined range.
When the drive current value is smaller than the predetermined range, the rotational speed of the screw conveyor is lowered, and the drive current value is controlled to be within the predetermined range.
The abrasive grain collection device according to claim 1 or 2.
請求項1乃至3のいずれか一項に記載の研磨砥粒回収装置と、
粗大粒子分離装置と、
成分調整槽と、
を有する、研磨砥粒を含有する研磨液の管理システム。
Abrasive grain recovery device according to any one of claims 1 to 3,
A coarse particle separator,
An ingredient adjustment tank;
A polishing liquid management system containing abrasive grains.
研磨工程、
洗浄工程、
を有する磁気記録媒体用ガラス基板の製造方法であって、
前記研磨工程は、請求項4に記載の研磨液の管理システムを用いる、
磁気記録媒体用ガラス基板の製造方法。
Polishing process,
Cleaning process,
A method for producing a glass substrate for a magnetic recording medium, comprising:
The polishing process uses the polishing liquid management system according to claim 4.
A method for producing a glass substrate for a magnetic recording medium.
研磨砥粒を含むスラリを保持するボウルと、
前記研磨砥粒を含む濃縮液をボウルからかき出すためのスクリューコンベアと、
前記ボウル及び前記スクリューコンベアを回転駆動するための駆動手段と、
前記駆動手段を制御する制御手段と、
を有する研磨砥粒回収装置を使用した研磨砥粒回収方法であって、
前記ボウル又は前記スクリューコンベアを回転駆動するための、前記駆動手段の駆動電流値に基づいて、前記ボウルの回転速度と前記スクリューコンベアの回転速度との差を制御する、研磨砥粒回収方法。
A bowl for holding a slurry containing abrasive grains;
A screw conveyor for scraping the concentrated liquid containing the abrasive grains from the bowl;
Drive means for rotationally driving the bowl and the screw conveyor;
Control means for controlling the drive means;
A polishing abrasive recovery method using an abrasive recovery device having
A polishing abrasive grain recovery method for controlling a difference between a rotation speed of the bowl and a rotation speed of the screw conveyor based on a drive current value of the driving means for rotationally driving the bowl or the screw conveyor.
JP2011234416A 2011-10-25 2011-10-25 Grinding abrasive grain collecting device, grinding liquid control system, method of manufacturing glass substrate, and method of collecting grinding abrasive grain Withdrawn JP2013091130A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011234416A JP2013091130A (en) 2011-10-25 2011-10-25 Grinding abrasive grain collecting device, grinding liquid control system, method of manufacturing glass substrate, and method of collecting grinding abrasive grain
CN2012104101017A CN103072085A (en) 2011-10-25 2012-10-24 Grinding particle recycling device, grinding fluid management system, manufacturing method of glass substrate, and grinding particle recycling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011234416A JP2013091130A (en) 2011-10-25 2011-10-25 Grinding abrasive grain collecting device, grinding liquid control system, method of manufacturing glass substrate, and method of collecting grinding abrasive grain

Publications (1)

Publication Number Publication Date
JP2013091130A true JP2013091130A (en) 2013-05-16

Family

ID=48148886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234416A Withdrawn JP2013091130A (en) 2011-10-25 2011-10-25 Grinding abrasive grain collecting device, grinding liquid control system, method of manufacturing glass substrate, and method of collecting grinding abrasive grain

Country Status (2)

Country Link
JP (1) JP2013091130A (en)
CN (1) CN103072085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073556A (en) * 2012-10-04 2014-04-24 Dowa Eco-System Co Ltd Regeneration method of cerium oxide-based abrasive, and regenerated cerium oxide-based abrasive

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101706975B1 (en) * 2014-02-14 2017-02-16 주식회사 케이씨텍 Manufacturing method of slurry composition and slurry composition thereby
CN108127801B (en) * 2017-12-07 2020-07-03 上海新欣晶圆半导体科技有限公司 Method for improving centrifugal capacity of centrifugal machine of mortar recovery system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5857955A (en) * 1996-03-27 1999-01-12 M-I Drilling Fluids L.L.C. Centrifuge control system
JP2002239467A (en) * 2001-02-20 2002-08-27 Kubota Corp Powder separating and recovering system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4202799A (en) * 1998-06-18 2000-01-05 Lucid Treatment Systems, Inc. Method and apparatus for recovery of water and slurry abrasives used for chemical and mechanical planarization
JP2002331456A (en) * 2001-05-08 2002-11-19 Kurita Water Ind Ltd Recovering device of abrasive
SG115439A1 (en) * 2001-12-28 2005-10-28 Jetsis Int Pte Ltd Method and apparatus for abrasive recycling and waste separation system
JPWO2008020507A1 (en) * 2006-08-16 2010-01-07 旭硝子株式会社 Abrasive recovery method and apparatus from abrasive slurry waste liquid
JP5454180B2 (en) * 2010-02-02 2014-03-26 旭硝子株式会社 Manufacturing method of glass substrate for magnetic recording medium and glass substrate for magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5857955A (en) * 1996-03-27 1999-01-12 M-I Drilling Fluids L.L.C. Centrifuge control system
JP2002239467A (en) * 2001-02-20 2002-08-27 Kubota Corp Powder separating and recovering system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073556A (en) * 2012-10-04 2014-04-24 Dowa Eco-System Co Ltd Regeneration method of cerium oxide-based abrasive, and regenerated cerium oxide-based abrasive

Also Published As

Publication number Publication date
CN103072085A (en) 2013-05-01

Similar Documents

Publication Publication Date Title
TW544336B (en) Preparation of high performance silica slurry using a centrifuge
JPH09237771A (en) Method and tooling for recycling wafers or substrate materials
WO2020145121A1 (en) Method for regenerating polishing agent, and polishing agent recycling treatment system
JP2002331456A (en) Recovering device of abrasive
JP6406010B2 (en) Abrasive recycling method
JP2013091130A (en) Grinding abrasive grain collecting device, grinding liquid control system, method of manufacturing glass substrate, and method of collecting grinding abrasive grain
JP6292119B2 (en) Abrasive recycling method
JP2008034827A (en) Method and apparatus for recycling chemical-mechanical abrasive
JP2015097997A (en) Centrifugal machine, management system, and method of manufacturing glass substrate
US20010055938A1 (en) Method for the production of glass substrates for magnetic recording mediums
JP2013086204A (en) Method for reproducing cerium oxide-based abrasive slurry and reproduced cerium oxide-based abrasive slurry
JP2008028232A (en) Apparatus and method for polishing semiconductor substrate, and semiconductor device manufacturing method
JP4715880B2 (en) Surface polishing equipment
TWI547552B (en) Abrasive for lapping process and substrate production method using the same
WO2019181498A1 (en) Polishing agent recycle processing system and polishing agent recovery/regeneration method
JP2001225070A (en) Apparatus for recovering abrasive material
JPH11188369A (en) Treatment method of polishing waste liquid of cmp apparatus
KR101105698B1 (en) Apparatus for recycling slurry
JP5803601B2 (en) Polishing slurry supply method and supply apparatus, and polishing apparatus
JP7003897B2 (en) Wafer manufacturing method, quality evaluation method for recycled slurry for wire saw, and quality evaluation method for used slurry for wire saw
KR20100040056A (en) Apparatus for polishing wafer
WO2012176377A1 (en) Polishing method for silicon wafer
JP2010221347A (en) Method for separating foreign matter in coolant for glass substrate polishing
KR19980065750A (en) Slurry feeding means of CMP apparatus
JP5034742B2 (en) Management method of lapping slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150623