JP2013091056A - System for removing nitrogen oxide in exhaust gas - Google Patents

System for removing nitrogen oxide in exhaust gas Download PDF

Info

Publication number
JP2013091056A
JP2013091056A JP2011248043A JP2011248043A JP2013091056A JP 2013091056 A JP2013091056 A JP 2013091056A JP 2011248043 A JP2011248043 A JP 2011248043A JP 2011248043 A JP2011248043 A JP 2011248043A JP 2013091056 A JP2013091056 A JP 2013091056A
Authority
JP
Japan
Prior art keywords
exhaust gas
active hydrogen
acid
magnesium
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011248043A
Other languages
Japanese (ja)
Inventor
Shigemi Sawada
重美 澤田
Kishiro Akiba
機四郎 秋葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011248043A priority Critical patent/JP2013091056A/en
Publication of JP2013091056A publication Critical patent/JP2013091056A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system for removing nitrogen oxide in an exhaust gas of a combustion gas at a lower temperature with a smaller size than a conventional urea SCR system.SOLUTION: Water containing active hydrogen is made to react with a combustion exhaust gas to reduce and remove the nitrogen oxide in the combustion exhaust gas. The method for generating the active hydrogen comprises using magnesium and an acid.

Description

本発明は、車輌や船舶等の内燃機関や火力発電所やゴミ焼却設備等の燃焼装置から排出される排ガスから窒素酸化物を除去する排ガス処理システムに関するものである。  The present invention relates to an exhaust gas treatment system for removing nitrogen oxides from exhaust gas discharged from an internal combustion engine such as a vehicle or a ship, a combustion apparatus such as a thermal power plant or a garbage incineration facility.

近年、火力発電所やゴミ焼却設備や車輌、船舶のディーゼルエンジン等から排出される窒素酸化物(NO+NO)は酸性雨やスモッグの原因となるため、その除去技術は環境の保全のために極めて重要である。特にディーゼルエンジンは窒素酸化物の抑制が大きな問題となっている。In recent years, nitrogen oxides (NO + NO 2 ) emitted from thermal power plants, garbage incineration facilities, vehicles, marine diesel engines, etc., cause acid rain and smog. is important. In particular, the suppression of nitrogen oxides is a major problem in diesel engines.

例えば、ディーゼルエンジンの場合は、排ガス中の窒素酸化物の抑制方法として、
(1)排ガス処理技術は出来るだけ低温、低圧で燃焼させることで、窒素酸化物の発生を少なく抑え、酸化触媒やDPF(Diesel particulate filter)により、PM,CO,HCを処理する方法と、
(2)出来るだけ高温で完全燃焼させることでCO、HCの生成を抑えその結果増加する窒素酸化物は尿素水により還元処理する尿素SCR(Selective Catalytic Reduction)システムの2つが主流になっている。
For example, in the case of a diesel engine, as a method for suppressing nitrogen oxides in exhaust gas,
(1) Exhaust gas treatment technology suppresses the generation of nitrogen oxides by burning at a low temperature and low pressure as much as possible, and treats PM, CO, HC with an oxidation catalyst or DPF (Diesel particulate filter),
(2) There are two main types of urea SCR (Selective Catalytic Reduction) system that suppresses the generation of CO and HC by completely burning at as high a temperature as possible and reduces the resulting nitrogen oxides with urea water.

尿素SCRシステムの原理はアンモニアと窒素酸化物が反応することにより窒素と水に還元されることを応用したものである。但し、アンモニアを車輌に積み込むのは危険であるので、その代わり尿素水をタンクに入れて搭載し、これを排気ガス中に噴射することにより高温化で加水分解させアンモニアガスを得て、これで窒素酸化物を還元し窒素ガスと水を得るのである。現在、このシステムはディーゼルエンジン搭載の大型車輌の排ガスシステムの主流となっている。  The principle of the urea SCR system applies that ammonia and nitrogen oxides are reduced to nitrogen and water by reaction. However, it is dangerous to load ammonia in a vehicle. Instead, it is loaded with urea water in a tank and injected into exhaust gas to hydrolyze it at a high temperature to obtain ammonia gas. Nitrogen oxide is reduced to obtain nitrogen gas and water. Currently, this system is the mainstream of exhaust gas systems for large vehicles equipped with diesel engines.

特開2000−230414JP 2000-230414 A 特開2005−334681JP-A-2005-334681

しかしながら、このシステムには下記の4つの問題がある。
(1)尿素水タンク及び噴射システムに加え、システムの前後段に酸化触媒の装備が必要で、その為に重量増になる。
(2)結晶化した尿素が凝固してインジェクターが詰まるので、定期的に清掃が必要である。
(3)アンモニアの漏洩防止対策の装置が必要である。
(4)排ガスの温度が低いと触媒が十分働かない。
等の問題がある。
However, this system has the following four problems.
(1) In addition to the urea water tank and the injection system, it is necessary to equip the front and rear stages of the system with an oxidation catalyst, which increases the weight.
(2) Since the crystallized urea coagulates and the injector is clogged, it must be cleaned regularly.
(3) A device for preventing ammonia leakage is necessary.
(4) If the temperature of the exhaust gas is low, the catalyst will not work sufficiently.
There are problems such as.

本発明は以上の(1)〜(4)の各種問題を解決するために為されたもので、ディーゼル機関をはじめ種々の設備から発生する非ガス中の窒素酸化物を効率良く還元除去するシステムを提供することを目的とする。  The present invention was made to solve the various problems (1) to (4) described above, and is a system for efficiently reducing and removing nitrogen oxides in non-gas generated from various facilities such as diesel engines. The purpose is to provide.

以上の課題を解決するために、先ず第1の発明は、活性水素を含む水と燃焼排ガスを反応させて燃焼排ガス中の窒素酸化物を除去することを特徴とする排ガス処理方法である。  In order to solve the above problems, first, the first invention is an exhaust gas treatment method characterized by reacting water containing active hydrogen with combustion exhaust gas to remove nitrogen oxides in the combustion exhaust gas.

また、第2の発明は、活性水素を発生させる方法が、マグネシウムと酸によることを特徴とする前記請求項1の発明に記載の燃焼排ガス中の窒素酸化物を除去することを特徴とする排ガス処理方法である。  Further, according to a second aspect of the present invention, the method for generating active hydrogen is based on magnesium and an acid. The exhaust gas according to claim 1, wherein nitrogen oxides in the combustion exhaust gas are removed. It is a processing method.

また、第3の発明は、活性水素を発生させる方法が、マグネシウムと酸によることを特徴とする前記請求項2の発明に記載の燃焼排ガス中の窒素酸化物を除去することを特徴とする排ガス処理方法である。  Further, according to a third aspect of the present invention, there is provided an exhaust gas characterized by removing nitrogen oxides from the combustion exhaust gas according to the second aspect of the present invention, wherein the method for generating active hydrogen is based on magnesium and acid. It is a processing method.

本発明において、排ガスとは車輌や船舶等の内燃機関や火力発電所やゴミ焼却設備等の燃焼装置から排出されるガスが選ばれる。  In the present invention, the exhaust gas is selected from a gas discharged from a combustion apparatus such as an internal combustion engine such as a vehicle or a ship, a thermal power plant or a garbage incineration facility.

また、本発明において、活性水素とは、原子状水素(水素ラジカル、H・)、あるいはヒドリドイオン(H)であり、例えば、電気分解のとき陰極から発生させたり、金属に酸を作用させたときに発生させることができる。電気分解で活性水素を発生させる方法は、設備も大掛かりで、ランニングコストも高い。金属に酸を作用させて活性水素を発生させる方法は、汎用の材料と簡易な方法で実施できてより好ましい。In the present invention, active hydrogen is atomic hydrogen (hydrogen radical, H.) or hydride ion (H ). For example, it is generated from a cathode during electrolysis or an acid is allowed to act on a metal. Can be generated when The method of generating active hydrogen by electrolysis requires large facilities and high running costs. A method in which an acid is allowed to act on a metal to generate active hydrogen is more preferable because it can be carried out using a general-purpose material and a simple method.

水溶液中の活性水素の分析は、電子スピン共鳴装置(ESR)やラジカルとラップ剤との反応により着色生成物の吸光度を利用する方法、例えば登録特許番号3657535号等の公知の方法で測定することができる。  Analysis of active hydrogen in an aqueous solution should be performed by an electron spin resonance apparatus (ESR) or a method using the absorbance of a colored product by a reaction between a radical and a wrapping agent, for example, a known method such as registered patent No. 3657535. Can do.

また、本発明における金属とは、特に還元性の強い第2族元素の中から選ばれるが、汎用性のある材料としてカルシウム、マグネシウムが好ましい。また、空気中での安定性の点から、また取扱いのし易さの点からマグネシウムがより好ましい。  In addition, the metal in the present invention is selected from group 2 elements having particularly strong reducibility, and calcium and magnesium are preferable as versatile materials. Further, magnesium is more preferable from the viewpoint of stability in air and ease of handling.

また、本発明における酸とは、塩酸、硫酸等の無機酸や、クエン酸、グルコン酸、乳酸、アスコルビン酸、酢酸等の有機酸も可能である。
特に、マグネシウムとの組み合わせで、マグネシウムの酸化皮膜の溶解性が高く、酸性領域でもマグネシウムとの組合せで鉄の腐食を防止する効果が高いクエン酸がより好ましい。マグネシウムは単独で水と反応させて発生水素を少量発生させることはできるが、本発明の場合適応することは現実的でない。
The acid in the present invention can be an inorganic acid such as hydrochloric acid or sulfuric acid, or an organic acid such as citric acid, gluconic acid, lactic acid, ascorbic acid, or acetic acid.
In particular, citric acid is more preferable because of its high solubility in the oxide film of magnesium when combined with magnesium and high effect of preventing iron corrosion when combined with magnesium even in the acidic region. Magnesium can be reacted alone with water to generate a small amount of generated hydrogen, but it is not practical to adapt in the present invention.

マグネシウムの添加量は、本発明の活性水素を生成中においては、未反応の金属マグネシウムが残っていれば良い。過剰に存在していても全く問題ない。  The amount of magnesium added may be any unreacted metallic magnesium remaining during the production of the active hydrogen of the present invention. There is no problem even if it exists in excess.

無機酸及び有機酸の添加量は、金属表面の酸化皮膜を溶解し、金属と反応させて水素を発生させる量で十分で、例えば、マグネシウムとクエン酸の場合、マグネシウムの表面から水素ガスの発生を確認しながらクエン酸を少量づつ添加する方法が好ましい。水溶液の反応温度は特に限定ない。本発明の方法によれは、室温でも反応が十分に進行する。  The amount of inorganic acid and organic acid added is sufficient to dissolve the oxide film on the metal surface and react with the metal to generate hydrogen. For example, in the case of magnesium and citric acid, hydrogen gas is generated from the surface of magnesium. A method of adding citric acid in small portions while confirming the above is preferable. The reaction temperature of the aqueous solution is not particularly limited. According to the method of the present invention, the reaction proceeds sufficiently even at room temperature.

本発明による活性水素による窒素酸化物除去のメカニズムは定かでないが、水素ラジカルにより窒素酸化物が還元されて、窒素ガスと水に変化した為と思われる。  The mechanism of removal of nitrogen oxides by active hydrogen according to the present invention is not clear, but it is thought that nitrogen oxides were reduced by hydrogen radicals and changed into nitrogen gas and water.

本発明において、処理対象の窒素酸化物含有ガスとしては、ディーゼルエンジンの車輌や船舶等の内燃機関、ガソリンエンジンの排ガスや火力発電所やゴミ焼却設備等の燃焼装置から排出される排ガスなどが挙げられる。触媒を併用する前記の尿素SCRシステムの尿素水に置き換えて本発明の活性水素を含んだ水を使用することもできる。  In the present invention, the nitrogen oxide-containing gas to be treated includes an internal combustion engine such as a diesel engine vehicle or ship, an exhaust gas of a gasoline engine, an exhaust gas discharged from a combustion apparatus such as a thermal power plant or a garbage incineration facility, and the like. It is done. The water containing the active hydrogen of the present invention can also be used in place of the urea water of the urea SCR system used in combination with the catalyst.

(1)取扱いが注意を要する尿素(アンモニア)を使用せず、使用する材料(薬剤)が極めて安全である。また、低温で反応が十分可能である。
(2)本発明の活性水素を含む水溶液は非腐食性の還元性水溶液であるため、反応容器、配管に金属腐食の心配がない。
(3)軽量・コンパクトなシステムとして車輌・船舶等の積載量の減少が避けられ、小型車・小型船舶等への適応が可能である。
(1) Urea (ammonia), which requires care, is not used, and the material (drug) used is extremely safe. Moreover, the reaction is sufficiently possible at a low temperature.
(2) Since the aqueous solution containing active hydrogen of the present invention is a non-corrosive reducing aqueous solution, there is no fear of metal corrosion in the reaction vessel and piping.
(3) As a lightweight and compact system, a reduction in the loading capacity of vehicles and ships can be avoided, and it can be applied to small cars and ships.

本発明の実施例のNO除去性能試験装置の概略図Schematic of NO 2 removal performance test apparatus of an embodiment of the present invention 本発明の実施例のNO除去性能を示すグラフGraph showing the NO 2 removal performance of embodiments of the present invention

以下、図面を参照しながら本発明に掛かる排ガス中の窒素酸化物の除去方法の一実施形態を具体的に説明する。尚、本発明はこれらの実施形態によって何ら限定されるものではない。また、本発明のNOXの濃度分析は、HORIBA製NO−A/F分析計MEXA−720NOを使用した。Hereinafter, an embodiment of a method for removing nitrogen oxides in exhaust gas according to the present invention will be specifically described with reference to the drawings. In addition, this invention is not limited at all by these embodiment. The concentration analysis of NOX of the present invention used a HORIBA Ltd. NO X -A / F spectrometer MEXA-720NO X.

上記本発明では、図1に示すように、約1000ppm(v/v)のNOガスを含む窒素バランスの模擬排ガスをボンベ1に充填し、15Lの反応容器5に水道水10L、還元性金属9としてフレーク状のマグネシウム200g、クエン酸150gをそれぞれ反応容器5に入れた。模擬排ガスが毎分40L流れるようにボンベ1に接続された減圧弁を調整し、ガス供給バルブ3を開放して模擬ガスを流して反応を行った。In the present invention, as shown in FIG. 1, the cylinder 1 is filled with a nitrogen balance simulated exhaust gas containing about 1000 ppm (v / v) NO 2 gas, and a 15 L reaction vessel 5 is filled with 10 L of tap water and reducing metal. 9, 200 g of flaky magnesium and 150 g of citric acid were placed in the reaction vessel 5 respectively. The pressure reducing valve connected to the cylinder 1 was adjusted so that the simulated exhaust gas flowed at 40 L / min, the gas supply valve 3 was opened, and the simulated gas was allowed to flow to react.

ガス供給配管4の反応容器5内に挿入した開放末端を最初に活性水素含有水溶液8から出して、活性水素含有水溶液8の上部空間を模擬排ガスで完全置換してから上記反応を行った。また、反応容器5は、ガスが自由に放出できる程度に開放口にカバー10をした。    The open end inserted into the reaction vessel 5 of the gas supply pipe 4 was first taken out from the active hydrogen-containing aqueous solution 8, and the above reaction was performed after the upper space of the active hydrogen-containing aqueous solution 8 was completely replaced with simulated exhaust gas. Moreover, the reaction container 5 was provided with a cover 10 at the opening so that the gas could be released freely.

活性水素含有水溶液8の上部空間を模擬排ガスで完全置換を確認してから約50秒後にガス供給配管4の反応容器5内の開放末端を活性水素含有水溶液8に差し入れた。模擬排ガス処理後のNOガス濃度を測定するため、活性水素含有水溶液8の上部空間部にNOXガスセンサー6を取付け、測定値をNOX濃度分析計で読み取った。About 50 seconds after confirming complete replacement of the upper space of the active hydrogen-containing aqueous solution 8 with the simulated exhaust gas, the open end in the reaction vessel 5 of the gas supply pipe 4 was inserted into the active hydrogen-containing aqueous solution 8. In order to measure the NO 2 gas concentration after the simulated exhaust gas treatment, the NOX gas sensor 6 was attached to the upper space of the aqueous solution 8 containing active hydrogen, and the measured value was read with a NOX concentration analyzer.

活反応時の性水素含有水溶液8のPHは約3〜5、酸化還元電位(ORP)は−250mV〜−500mVの間であった。また、液温は22℃〜23℃であった。また、反応時、活性水素含有水溶液8はマグネシウムから発生した極めて小さな気泡の水素ガスで白濁した。  The pH of the sex hydrogen-containing aqueous solution 8 during the active reaction was about 3 to 5, and the oxidation-reduction potential (ORP) was between -250 mV to -500 mV. The liquid temperature was 22 ° C to 23 ° C. During the reaction, the active hydrogen-containing aqueous solution 8 became cloudy with extremely small bubbles of hydrogen gas generated from magnesium.

模擬排ガス処理後のNOガス濃度の経時変化を図2示す。スタート時、NOガス濃度分析計の濃度は1041ppm(v/v)、排ガス処理開始して約3分後に290ppm(v/v)に低下した。図2から活性水素含有水溶液がNOガスの分解除去に有効であることが分かる。FIG. 2 shows the change over time in the NO 2 gas concentration after the simulated exhaust gas treatment. At the start, the concentration of the NO 2 gas concentration analyzer was 1041 ppm (v / v), and decreased to 290 ppm (v / v) about 3 minutes after the start of the exhaust gas treatment. It can be seen from FIG. 2 that the aqueous solution containing active hydrogen is effective for the decomposition and removal of NO 2 gas.

本発明は、車輌や船舶等の内燃機関や火力発電所やゴミ焼却設備等の燃焼装置から排出される排ガスから窒素酸化物を除去する排ガス処理システムとして、広く工業用の排ガス処理に適応可能である。  INDUSTRIAL APPLICABILITY The present invention is widely applicable to industrial exhaust gas treatment as an exhaust gas treatment system that removes nitrogen oxides from exhaust gas emitted from internal combustion engines such as vehicles and ships, thermal power plants, and garbage incineration equipment. is there.

1・・・ボンベ
2・・・減圧弁
3・・・ガス供給バルブ
4・・・ガス供給配管
5・・・反応容器
6・・・NOXガスセンサー
7・・・気泡(排ガス)
8・・・活性水素含有水溶液
9・・・還元性金属
10・・カバー
11・・NOX濃度分析計
DESCRIPTION OF SYMBOLS 1 ... Cylinder 2 ... Pressure reducing valve 3 ... Gas supply valve 4 ... Gas supply piping 5 ... Reaction container 6 ... NOX gas sensor 7 ... Bubble (exhaust gas)
8 ... Active hydrogen-containing aqueous solution 9 ... Reducing metal 10, ... Cover 11, ... NOX concentration analyzer

Claims (3)

活性水素を含む水と燃焼排ガスを反応させて燃焼排ガス中の窒素酸化物を除去することを特徴とする排ガス処理方法  A method for treating exhaust gas, comprising: reacting water containing active hydrogen with combustion exhaust gas to remove nitrogen oxides in the combustion exhaust gas 活性水素を発生させる方法がマグネシウムと酸によることを特徴とする請求項1の排ガス処理方法  2. The exhaust gas treatment method according to claim 1, wherein the method for generating active hydrogen is based on magnesium and acid. 活性水素を発生させる方法がマグネシウムとクエン酸によることを特徴とする請求項2の排ガス処理方法  3. The exhaust gas treatment method according to claim 2, wherein the method for generating active hydrogen is magnesium and citric acid.
JP2011248043A 2011-10-26 2011-10-26 System for removing nitrogen oxide in exhaust gas Pending JP2013091056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011248043A JP2013091056A (en) 2011-10-26 2011-10-26 System for removing nitrogen oxide in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011248043A JP2013091056A (en) 2011-10-26 2011-10-26 System for removing nitrogen oxide in exhaust gas

Publications (1)

Publication Number Publication Date
JP2013091056A true JP2013091056A (en) 2013-05-16

Family

ID=48614621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011248043A Pending JP2013091056A (en) 2011-10-26 2011-10-26 System for removing nitrogen oxide in exhaust gas

Country Status (1)

Country Link
JP (1) JP2013091056A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671571A (en) * 2015-01-14 2015-06-03 北京华电斯莱克顿技术有限公司 SCR catalyst innocent treatment waste liquor material recovery method
CN107570145A (en) * 2017-10-24 2018-01-12 上海纳米技术及应用国家工程研究中心有限公司 Tin dope cerium zirconium compound oxide Supported Manganese denitrating catalyst preparation method and products thereof and application
US10858984B2 (en) 2018-08-31 2020-12-08 Shigemi SAWADA Combustion system and method of using fuel composition as fuel for remodeled diesel engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671571A (en) * 2015-01-14 2015-06-03 北京华电斯莱克顿技术有限公司 SCR catalyst innocent treatment waste liquor material recovery method
CN107570145A (en) * 2017-10-24 2018-01-12 上海纳米技术及应用国家工程研究中心有限公司 Tin dope cerium zirconium compound oxide Supported Manganese denitrating catalyst preparation method and products thereof and application
US10858984B2 (en) 2018-08-31 2020-12-08 Shigemi SAWADA Combustion system and method of using fuel composition as fuel for remodeled diesel engine

Similar Documents

Publication Publication Date Title
CN109499365B (en) Marine diesel engine tail gas comprehensive treatment system and method based on activated carbon oxidation and wet desulfurization and denitrification
JP5296735B2 (en) Ships equipped with NOx reduction devices
JP6357234B2 (en) In particular, an exhaust gas purification method for an internal combustion engine, especially an automobile, and an apparatus using the same
US11060431B2 (en) Process and apparatus for reducing NOx emissions
ATE432187T1 (en) INTEGRATED UREA TANK, MOTOR VEHICLE EQUIPPED WITH SUCH A TANK AND METHOD FOR STORING UREA SOLUTIONS IN A MOTOR VEHICLE
CN108187480B (en) Ship exhaust gas desulfurization system
JP2010522305A (en) Low temperature urea injection method
JP2013091056A (en) System for removing nitrogen oxide in exhaust gas
JP3638638B2 (en) Denitration equipment using solid reducing agent
Xi et al. A novel combined system using Na2S2O8/urea to simultaneously remove SO2 and NO in marine diesel engine exhaust
KR101672430B1 (en) Vessel engine reduction device using fuel cell system
CN112955243A (en) Integrated waste gas treatment device using metal filter
JP2007145796A (en) Urea water and denitrification apparatus using the same
KR20160084527A (en) EXHAUST GAS TREATMENT DEVICE REDUCING NOx AND SOx
CN105134378A (en) Cleaning method and device for automotive three-way catalytic converter
US10704442B2 (en) Method for optimizing the consumption of reducing agent in a motor vehicle exhaust line
CN108704466A (en) A kind of ammonia process ship tail gas denitration integrated device and method
KR20150117974A (en) Exhaust Gas Treatment Apparatus
CN206845280U (en) A kind of exhaust gas purification system of marine diesel engine
KR102150737B1 (en) Apparatus and method for controlling ammonia slip of scr system
JP2993133B2 (en) Exhaust gas treatment method and apparatus
JP5516445B2 (en) Exhaust gas purification device for internal combustion engine
JP2005226504A (en) Method for controlling exhaust emission control device
CN203476453U (en) Off-gas treatment system
JP2006111602A (en) Stabilized aqueous solution of urea and method for producing the same