JP2013062535A - Semiconductor light-emitting device and method of manufacturing the same - Google Patents

Semiconductor light-emitting device and method of manufacturing the same Download PDF

Info

Publication number
JP2013062535A
JP2013062535A JP2012275569A JP2012275569A JP2013062535A JP 2013062535 A JP2013062535 A JP 2013062535A JP 2012275569 A JP2012275569 A JP 2012275569A JP 2012275569 A JP2012275569 A JP 2012275569A JP 2013062535 A JP2013062535 A JP 2013062535A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
layer
semiconductor
type
electrode
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012275569A
Other languages
Japanese (ja)
Inventor
Eiji Muramoto
衛司 村本
Shinya Nunoue
真也 布上
Original Assignee
Toshiba Corp
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting device that has an electrode structure with high ohmic property and a high reflection ratio, is driven by a low driving voltage, and has excellent light extraction efficiency, and to provide a method of manufacturing the same.SOLUTION: The semiconductor light-emitting element includes an n-type semiconductor layer, a p-type semiconductor layer, an active layer provided between the n-type semiconductor layer and the p-type semiconductor layer, an n-electrode provided in contact with the n-type semiconductor layer, and a p-electrode provided in contact with the p-type semiconductor layer. The p-electrode includes, on the p-type semiconductor layer, an NiO layer in which at least a part is formed in a mesh shape and an Ag layer formed in contact with the NiO layer.

Description

本発明は、半導体発光装置に係り、特に、低駆動電圧で駆動し、光取り出し効率の高い半導体発光装置に関する。 The present invention relates to a semiconductor light emitting device, in particular, driven at a low driving voltage, a semiconductor light emitting device having high light extraction efficiency.

半導体発光素子として、基板上にn型半導体層、活性層およびp型半導体層を積層し、それぞれの半導体層に対し、オーミック電極を形成した構造が知られている。 As the semiconductor light-emitting device, n-type semiconductor layer on a substrate, laminating an active layer and a p-type semiconductor layer, for each of the semiconductor layers, the structure forming the ohmic electrode has been known. 従来、基板側から光を取り出すための反射電極を備える発光素子では、反射電極材料として高い反射率を有するAgが使用されることが一般的であった。 Conventionally, in the light-emitting device having a reflective electrode for extracting light from the substrate side, it has been common to Ag having a high reflectance as a reflective electrode material is used. 即ち、Agの反射率が96.6%と非常に高いのに対し、同様に電極に使用される金属であるAuの反射率は38.7%、Cuの反射率は55.2%、Niの反射率は41.2%と非常に低いものである。 That is, while the reflectivity of Ag is very high 96.6%, as well as the reflectance of Au is a metal used for the electrode 38.7% reflectance of Cu is 55.2% Ni the reflectance is very low and 41.2%.

しかし、Ag単層により反射電極を構成した場合には、反射電極の密着性及びオーミック性が劣り、良好な特性を有する半導体発光素子を作製することが困難であった。 However, in case where the reflection electrode with Ag monolayer adhesion and ohmic reflective electrode inferior, it is difficult to manufacture a semiconductor light-emitting device having good characteristics.

このような反射電極の密着性とオーミック性を改善するため、Ag層と窒化物半導体層の間にNi層を設けることが提案されている(例えば、特許文献1参照)。 Such order to improve the adhesion and ohmic reflective electrode, it has been proposed to provide a Ni layer between the Ag layer and the nitride semiconductor layer (for example, see Patent Document 1).

しかし、この提案に係る半導体発光素子では、Ni層を介在させるため反射率が低下し、Ag本来の反射率が活かせないという問題があった。 However, in the semiconductor light-emitting device according to this proposal, the reflectance decreases due to intervening Ni layer, there is a problem that Ag original reflectance not capitalize.

特開2000−294837号公報 JP 2000-294837 JP

本発明は、以上のような事情の下になされ、高いオーミック性と反射率を併せ有する電極構造を備える、低駆動電圧で駆動し、良好な光取り出し効率を有する半導体発光装置及びその製造方法を提供することを目的とする。 The present invention is made under the above circumstances, comprising an electrode structure having both a high ohmic resistance and reflectance, driven at a low driving voltage, a semiconductor light-emitting device having a good light extraction efficiency an object of the present invention is to provide.

上記課題を解決するため、本発明の第1の態様は、n型半導体層と、p型半導体層と、前記n型半導体層と前記p型半導体層との間に設けられた活性層と、前記n型半導体層に接して設けられたn電極と、前記p型半導体層に接して設けられたp電極とを具備する半導体発光素子において、前記p電極が前記p型半導体層上に少なくとも一部が網目状に形成されたNiO層と、このNiO層に接して形成されたAg層とを含むことを特徴とする半導体発光素子を提供する。 To solve the above problems, a first aspect of the present invention, the n-type semiconductor layer, and a p-type semiconductor layer, an active layer provided between the p-type semiconductor layer and the n-type semiconductor layer, and n electrode provided in contact with the n-type semiconductor layer, the p-type semiconductor light-emitting element and a p-electrode provided in contact with the semiconductor layer, at least one in the p-electrode is the p-type semiconductor layer parts provides the NiO layer formed in a mesh shape, a semiconductor light-emitting device which comprises a this NiO layer Ag layer formed in contact.

本発明の第2の態様は、n型半導体層と、p型半導体層と、前記n型半導体層と前記p型半導体層との間に設けられた活性層と、前記n型半導体層に接して設けられたn電極と、前記p型半導体層に接して設けられたp電極とを具備する半導体発光素子の製造方法において、前記p電極は、少なくとも一部が網目状Ni層を形成する工程、この網目状Ni層上にAg層を形成する工程、及び350℃以上、600℃未満の温度で、酸素を含む雰囲気中で熱処理して前記Ni層の一部をNiOに変換する工程により形成されることを特徴とする半導体発光素子の製造方法を提供する。 A second aspect of the present invention, the n-type semiconductor layer, and a p-type semiconductor layer, an active layer provided between the p-type semiconductor layer and the n-type semiconductor layer, in contact with the n-type semiconductor layer step and n electrode provided, in the manufacturing method of the semiconductor light emitting element and a p-electrode provided in contact with the p-type semiconductor layer, the p-electrode is at least partially form a mesh-like Ni layer Te , formed by a process of converting step of forming an Ag layer on the mesh-like Ni layer, and 350 ° C. or higher, at a temperature below 600 ° C., and heat-treated in an atmosphere containing oxygen a portion of the Ni layer to NiO is the provide a method of manufacturing a semiconductor light emitting device characterized by.

本発明によれば、p電極として、ドット状金属層と、このドット状金属層上に形成された反射オーミック金属層を含むものを用いることにより、高いオーミック性と反射率を併せ有する電極構造を備える、低駆動電圧で駆動し、良好な光取り出し効率を有する半導体発光装置及びその製造方法を提供することが出来る。 According to the present invention, as the p-electrode, and the dot-like metal layer, by using those containing reflective ohmic metal layer formed on the dot-like metal layer, an electrode structure having both a high ohmic resistance and reflectance provided, driven at a low driving voltage, it is possible to provide a semiconductor light-emitting device having a good light extraction efficiency.

本発明の一実施形態に係る半導体発光素子を示す断面図。 Sectional view showing a semiconductor light emitting device according to an embodiment of the present invention. ドット状Ni層及び連続膜Ni層の表面状態を示す模式図。 Model diagram showing the surface state of the dot-like Ni layer and the continuous film Ni layer. ドット状Ni層の膜厚によるコンタクト抵抗の変化を示す特性図。 Characteristic diagram showing a change in contact resistance due to the thickness of the dot-like Ni layer.

以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.

図1は、本発明の第1の実施の形態に係る半導体発光素子としての青色LEDの構成を示す断面図である。 Figure 1 is a cross-sectional view illustrating a blue LED configuration of a semiconductor light emitting device according to a first embodiment of the present invention. 図1において、基板、例えばサファイヤ基板1上には、GaNからなるバッファ層2、n型GaN層(n型クラッド層)3、InGaNからなる多重量子井戸層(活性層)5、及びAlGaNからなるp型クラッド層6、p型GaN層7が順次、エピタキシャル成長により形成されている。 In Figure 1, a substrate, for example, on a sapphire substrate 1 is made of a multi-quantum well layer (active layer) 5, and AlGaN that a buffer layer 2, n-type GaN layer (n-type cladding layer) 3, InGaN of GaN p-type cladding layer 6, p-type GaN layer 7 are sequentially formed by epitaxial growth. n型GaN層3の一部にはメサが形成されて、n電極4が形成され、p型GaN層7上には、p電極8が形成されている。 Some of the n-type GaN layer 3 is formed mesas, n electrode 4 is formed on the p-type GaN layer 7, p electrode 8 is formed. なお、メサの表面、及びn型GaN層3、多重量子井戸層5、p型クラッド層6、並びにp型GaN層7の側面には、絶縁膜10が設けられている。 The surface of the mesa, and n-type GaN layer 3, a multiple quantum well layer 5, p-type cladding layer 6, and the side surface of the p-type GaN layer 7, the insulating film 10 is provided.

以上のように構成される半導体発光素子において、p電極8は、ドット状の金属層と、その上に形成された反射オーミック金属層の連続膜からなる。 In the semiconductor light emitting device constructed as described above, p electrode 8, a dot-like metal layer, consisting of a continuous film of reflective ohmic metal layer formed thereon. ドット状の金属層としては、Niを用いることができ、反射オーミック金属層としては、Ag、Alを用いることが出来る。 The dot-like metal layer, can be used Ni, as the reflective ohmic metal layer, Ag, can be used Al.

また、n側電極4としては、Ti/Al/Ni/Au等の積層金属膜を用いることが出来る。 As the n-side electrode 4 can be used a laminated metal film such as Ti / Al / Ni / Au.

ドット状の金属層は、連続膜ではなく、多数の金属ドット体が配置され、ドット間に空隙が存在し、そこから下地が露出している膜である。 Dot-like metal layer is not a continuous film, is arranged a number of metal dots body, there is a gap between dots, a film base is exposed therefrom. その面積率は、50〜85%であることが望ましい。 The area ratio is preferably 50 to 85%. 面積率が50%未満では、密着性が劣る傾向となり、85%を超えると、連続膜に近くなり、反射率が低下する傾向となる。 The area ratio is less than 50%, tends to adhesion is poor, exceeds 85%, the closer to the continuous film, the reflectance tends to decrease.

なお、ドット状の金属層では、ドット同士が完全に離隔していて、独立したドットとして存在している必要は必ずしもない。 In the dot-like metal layer, though the dots are completely spaced, they need not necessarily be present as a separate dots. ドット同士が繋がって網目状となっていても、上記面積率の範囲内にあれば、良好な密着性及び高い反射率を得ることは可能である。 Even leading the dots have a net-like, if within the scope of the area ratio, it is possible to obtain a good adhesion and high reflectivity.

ドット状の金属層の膜厚は、1〜3nmであることが望ましい。 The film thickness of the dot-like metal layer is desirably 1 to 3 nm. 膜厚が1nm未満の膜は成膜が困難であるとともに、密着性改善効果が劣る傾向となる。 With the film thickness is less than 1nm film is difficult to film formation, tends to adhesion improvement is poor. また、膜厚が3nmを超えると、連続膜となり易く、また反射率が低下する傾向となる。 Further, if the film thickness exceeds 3 nm, it tends to be a continuous film, also the reflectance tends to decrease.

ドット状の金属層例えばNi層と、反射オーミック金属層例えばAg層とからなるp電極8は、次のようにして形成することが出来る。 p electrode 8 consisting of a dot-like metal layer such as Ni layer, and a reflective ohmic metal layer eg Ag layer can be formed as follows.

まず、p型GaN層7の表面に、真空蒸着法によりドット状のNi層を形成する。 First, the surface of the p-type GaN layer 7, to form a dot-like Ni layer by vacuum deposition. ドット状のNi層は、例えば約1.0〜5.0A/秒の成膜速度で、約2秒〜30秒という短時間でNiを真空蒸着することによる得ることが出来る。 Dot-like Ni layer, for example at a deposition rate of about 1.0~5.0A / sec, can be obtained by vacuum-depositing a Ni in a short time of about 2 seconds to 30 seconds. これよりも成膜速度が速く、成膜時間が長い場合には、ドット状のNi層を得にくくなり、連続膜のNi層になり易い。 This faster deposition rate than if the film-forming time long, it becomes difficult to obtain a dot-like Ni layer, tends to Ni layer of the continuous film.

即ち、上述した面積率、膜厚のドット状のNi層を得るには、成膜速度、成膜時間を適宜制御すればよい。 That is, the above-mentioned area ratio, to obtain a dot-like Ni layer thickness, it may be controlled deposition rate, the deposition time appropriately.

このようにして成膜されたドット状のNi層の表面状態を示す模式図を図2(a)に示す。 A schematic diagram showing the surface state of the thus dot-like Ni layer formed in FIG. 2 (a). また、連続膜であるNi層の表面状態を示す模式図を図2(b)に示す。 Further, a schematic view showing the surface state of the Ni layer is a continuous film in FIG. 2 (b). 図2(a)と図2(b)の比較から、ドット状のNi層は、連続膜であるNi層とは、全く異なる表面性状を有していることがわかる。 Figure 2 (a) and from a comparison of FIG. 2 (b), the dot-like Ni layer, the Ni layer is a continuous film, it is found to have quite different surface properties.

次に、ドット状のNi層上にやはり真空蒸着法により、Agの連続膜を形成する。 Then, also by vacuum evaporation method in a dot-like Ni layer to form a continuous film of Ag. その後、赤外線ランプアニール装置等の熱処理装置により、ドット状Ni層/Ag連続膜に350〜600℃、例えば400℃の熱処理を施すと、一部のドット状Niはp型GaN層7表面に残留する酸素や熱処理雰囲気中の酸素と結合し、NiOに変換される。 Thereafter, a heat treatment apparatus such as an infrared lamp annealing device, 350 to 600 ° C. in a dot shape Ni layer / Ag continuous film, for example, subjected to a heat treatment at 400 ° C., a part of the dot-like Ni is remaining on the p-type GaN layer 7 surface combines with oxygen in the oxygen or heat treatment atmosphere, is converted into NiO.

NiOは青色発光素子の発光波長(400〜500nm程度)に対して高い透過率を示すため、p電極の反射率をより向上させることが可能となる。 NiO is to show a high transmittance with respect to the emission wavelength of the blue light-emitting device (about 400-500 nm), it is possible to further improve the reflectance of the p-electrode.

また、Niは、AgやGaN領域に拡散し、アロイ化するため、それによって電極密着性が向上するという効果も得られる。 Further, Ni is diffused into the Ag or GaN region, for alloying, thereby there is also an effect that the electrodes so as to improve the adhesive property.

熱処理の望ましい条件は、下記の通りである。 Desirable conditions of heat treatment are as follows.

温度:400℃、 Temperature: 400 ℃,
雰囲気:酸素:窒素=8:2、 Atmosphere: oxygen: nitrogen = 8: 2,
処理時間:1分。 Processing time: 1 minute.

処理温度は、高すぎるとAgのマイグレーションが大きくなり、電極表面の凹凸が数μmのオーダーで発生してしまう。 Treatment temperature is too high, the Ag migration increases, the unevenness of the electrode surface occurs in several μm order. また、処理時間も長すぎると同様の現象が見られる。 In addition, a similar phenomenon when the processing time is also too long can be seen.

Ni膜の膜厚を変化させて形成したNi/Ag電極について、コンタクト抵抗を測定したところ、図3に示す結果を得た。 For Ni / Ag electrode which is formed by changing the film thickness of the Ni film was measured for contact resistance, with the results shown in FIG. 図3から、Ni膜を設けることにより、コンタクト抵抗が低下すること、またかなり薄い膜厚でもコンタクト抵抗が低下することがわかる。 3, by providing the Ni film, the contact resistance is lowered, the contact resistance at a fairly small thickness decreased.

なお、Ni膜の膜厚は、1nm〜3nmの範囲で良好な結果が得られることがわかっている。 The thickness of the Ni film, it has been found that good results can be obtained in the range of 1 nm to 3 nm. Ni膜の膜厚が3nmを超えると、ドット状のNi膜が得られず、反射率が低下してしまう。 If the thickness of the Ni film exceeds 3 nm, not obtained dot-like Ni film, the reflectance is lowered.

次に、Ni/Ag電極の密着性を評価するピールテスト及び反射率を評価するテストを以下のように行った。 Next, tests were carried out to evaluate the peel test and the reflectance to evaluate the adhesion of the Ni / Ag electrode as follows.

ピールテスト ピールテストは、基板上に1nm〜3nmの膜厚のドット状Ni膜を成膜した後、200nmのAg層を成膜してNi/Ag電極サンプルを作製し、スクライバー等で100箇所(1mm角)にケガキをいれて、Ni/Ag電極部のみを分割し、セロテープ(登録商標)(JIS Z1522)を貼り付け、はがした際に、100箇所中何箇所が剥がれたかをカウントすることにより行った。 Peel Test Peel test after forming a dot-like Ni film with a thickness of 1nm~3nm on the substrate, to prepare a Ni / Ag electrode sample by forming an Ag layer of 200 nm, 100 places at scriber or the like ( 1mm square) to put scribed to divide only Ni / Ag electrode section, paste the adhesive tape (registered trademark) (JIS Z1522), when peeling off, counting whether the peeled several places in 100 locations by went.

その結果、剥がれた箇所は全く無かった。 As a result, peeling was place was totally not.

比較のため、ドット状のNi膜を形成しない、200nmのAg単層のみのサンプルを形成し、ピールテストを行ったところ、100箇所すべてが剥がれた。 For comparison, does not form a dot-like Ni film, to form a sample of the Ag single layer of 200 nm, was subjected to peel test, 100 places all peeled. また、ドット状のNi膜の代わりに層状のNi膜(膜厚3nm)を形成したNi/Ag電極サンプルについて、ピールテストを行ったところ、剥離箇所は3箇所と少なかった。 Further, the Ni / Ag electrode samples form a layered Ni film (thickness 3 nm) instead of the dot-like Ni film was subjected to a peel test, peeling off was small and places 3. 従って、ドット状のNi膜でなくとも層状のNi膜を形成しても、ある程度の密着性の改善効果は得られることがわかる。 Thus, even without a dot-like Ni film be formed Ni film layered, it can be seen that the effect of improving the degree of adhesion is obtained. なお、層状のNi膜よりもドット状のNi膜のほうが密着性の改善効果が良好であるのは、ドット状のNi膜の凹凸面とAg面との接触面積が大きいためと考えられる。 Incidentally, improvement of adhesion towards the dot-like Ni film than Ni film layered that is good is probably because a large contact area between the uneven surface and the Ag surface of the dot-like Ni film.

反射率評価テスト ピールテストで用いたサンプルを用い、表面の反射率を測定した。 Using a sample used in the reflectance evaluation test peel test to measure the reflectance of the surface. 測定はハロゲンランプ光源をφ5mmの円形領域に照射し、サンプルからの反射強度を測定することで行った。 The measurement was carried out by irradiating the halogen lamp light source in a circular area of ​​5 mm in diameter, measuring the reflection intensity from the sample. また、反射率はAg単層膜を蒸着成膜したときの反射強度を100として求めた。 The reflectance was determined the reflection intensity when the deposited film of Ag monolayer 100.

その結果、ドット状Ni/Ag電極サンプルの反射率は94.4%であった。 As a result, the reflectance of the dot-like Ni / Ag electrode samples was 94.4%.

ドット状のNi膜の代わりに層状のNi膜(膜厚3nm)を形成したNi/Ag電極サンプルについて、反射率を測定したところ、反射率は74.6%と低い値であった。 For Ni / Ag electrode samples formed a Ni film (thickness 3 nm) layered instead of dot-like Ni film was measured for reflectance, reflectance was 74.6 percent and a low value.

以上のピールテスト及び反射率測定結果より、Ag単層のみのサンプルでは、反射率は高いが密着性が非常に悪く、層状のNi膜を形成したNi/Ag電極サンプルでは、密着性の改善効果は認められるが、反射率が非常に低く、反射電極としての機能は発揮することが出来ないことがわかる。 The above peel test and reflectance measurements, the sample of the Ag single layer, the reflectivity is high adhesion is very poor, with the Ni / Ag electrode samples Ni film was formed of a layered, adhesion improvement it is recognized, but the reflection rate is very low, function as a reflective electrode, it can be seen that can not be exhibited.

これは、層状のNi膜を形成した場合には、p型GaN表面とAg層との間の全面にわたってNi層が存在するため、高反射率のAg層の機能が十分に発揮されないためである。 This, in the case of forming the Ni film layered, since the Ni layer is present over the entire surface between the p-type GaN surface and the Ag layer, is because the function of the Ag layer having a high reflectivity is not sufficiently exhibited . これに対し、ドット状のNi膜を形成した場合には、Ag層がp型クラッド層に対し、Ni層を介在せずに直接接触するため、高反射率のAg層の機能が十分に発揮することが出来る。 In contrast, in the case of forming dot-like Ni film, compared Ag layer is p-type cladding layer, for contacting directly without intervening Ni layer, functions sufficiently exhibit the Ag layer with a high reflectance to it can be.

1…サファイヤ基板、2…n型クラッド層、3…多重量子井戸層、4…p型クラッド層、5…n電極、6…p電極、7…絶縁膜。 1 ... sapphire substrate, 2 ... n-type cladding layer, 3 ... multiple quantum well layer, 4 ... p-type cladding layer, 5 ... n electrode, 6 ... p electrode, 7: insulating film.

Claims (4)

  1. n型半導体層と、 And an n-type semiconductor layer,
    p型半導体層と、 And a p-type semiconductor layer,
    前記n型半導体層と前記p型半導体層との間に設けられた活性層と、 An active layer provided between the p-type semiconductor layer and the n-type semiconductor layer,
    前記n型半導体層に接して設けられたn電極と、 And n electrode provided in contact with the n-type semiconductor layer,
    前記p型半導体層に接して設けられたp電極とを具備する半導体発光素子において、 In the semiconductor light-emitting element and a p-electrode provided in contact with the p-type semiconductor layer,
    前記p電極が前記p型半導体層上に少なくとも一部が網目状に形成されたNiO層と、このNiO層に接して形成されたAg層とを含むことを特徴とする半導体発光素子。 The semiconductor light emitting element characterized in that at least a portion the p electrode on the p-type semiconductor layer comprises a NiO layer formed in a mesh shape, and a Ag layer formed in contact with the NiO layer.
  2. 前記NiO層は、1nm以上、3nm以下の膜厚を有することを特徴とする請求項1に記載の半導体発光素子。 The NiO layer, 1 nm or more, the semiconductor light-emitting device according to claim 1, characterized in that it has a thickness of less 3 nm.
  3. 前記NiO層は、前記p電極の全面積に対し、50%以上、85%以下の面積率を有することを特徴とする請求項1または2に記載の半導体発光素子。 The NiO layer, the relative to the total area of ​​the p-electrode, 50% or more, the semiconductor light-emitting device according to claim 1 or 2, characterized in that it has an area ratio of 85% or less.
  4. n型半導体層と、 And an n-type semiconductor layer,
    p型半導体層と、 And a p-type semiconductor layer,
    前記n型半導体層と前記p型半導体層との間に設けられた活性層と、 An active layer provided between the p-type semiconductor layer and the n-type semiconductor layer,
    前記n型半導体層に接して設けられたn電極と、 And n electrode provided in contact with the n-type semiconductor layer,
    前記p型半導体層に接して設けられたp電極とを具備する半導体発光素子の製造方法において、 The method for manufacturing a semiconductor light-emitting element and a p-electrode provided in contact with the p-type semiconductor layer,
    前記p電極は、少なくとも一部が網目状Ni層を形成する工程、この網目状Ni層上にAg層を形成する工程、及び 350℃以上、600℃未満の温度で、酸素を含む雰囲気中で熱処理して前記Ni層の一部をNiOに変換する工程により形成されることを特徴とする半導体発光素子の製造方法。 The p electrode may process at least a part of which forms a mesh-like Ni layer, forming a Ag layer on the mesh-like Ni layer, and 350 ° C. or higher, at a temperature below 600 ° C., in an atmosphere containing oxygen the method of manufacturing a semiconductor light emitting device characterized by being formed by a process of converting a portion of the Ni layer by heat treatment NiO.
JP2012275569A 2012-12-18 2012-12-18 Semiconductor light-emitting device and method of manufacturing the same Pending JP2013062535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012275569A JP2013062535A (en) 2012-12-18 2012-12-18 Semiconductor light-emitting device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012275569A JP2013062535A (en) 2012-12-18 2012-12-18 Semiconductor light-emitting device and method of manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011209816 Division 2008-06-30

Publications (1)

Publication Number Publication Date
JP2013062535A true true JP2013062535A (en) 2013-04-04

Family

ID=48186888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012275569A Pending JP2013062535A (en) 2012-12-18 2012-12-18 Semiconductor light-emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013062535A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187772A (en) * 1997-09-01 1999-03-30 Showa Denko Kk Electrode for semiconductor light emitting element
JP2004071655A (en) * 2002-08-01 2004-03-04 Nichia Chem Ind Ltd Light emitting device
JP2005072603A (en) * 2003-08-25 2005-03-17 Kwangju Inst Of Science & Technol Nitride-based light-emitting element and manufacturing method thereof
JP2005129907A (en) * 2003-10-27 2005-05-19 Samsung Electro Mech Co Ltd Electrode structure and semiconductor light emitting element having it
JP2005244207A (en) * 2004-01-30 2005-09-08 Showa Denko Kk Nitride gallium based compound semiconductor luminous element
JP2006024750A (en) * 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd Light emitting element
JP2006135293A (en) * 2004-11-08 2006-05-25 Kwangju Inst Of Science & Technol Method of forming electrode for compound semiconductor device
JP2007036078A (en) * 2005-07-29 2007-02-08 Showa Denko Kk Pn-junction-type light-emitting diode
WO2007120016A1 (en) * 2006-04-18 2007-10-25 Seoul Opto-Device Co., Ltd. Method for forming ohmic electrode and semiconductor light emitting element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187772A (en) * 1997-09-01 1999-03-30 Showa Denko Kk Electrode for semiconductor light emitting element
JP2004071655A (en) * 2002-08-01 2004-03-04 Nichia Chem Ind Ltd Light emitting device
JP2005072603A (en) * 2003-08-25 2005-03-17 Kwangju Inst Of Science & Technol Nitride-based light-emitting element and manufacturing method thereof
JP2005129907A (en) * 2003-10-27 2005-05-19 Samsung Electro Mech Co Ltd Electrode structure and semiconductor light emitting element having it
JP2005244207A (en) * 2004-01-30 2005-09-08 Showa Denko Kk Nitride gallium based compound semiconductor luminous element
JP2006024750A (en) * 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd Light emitting element
JP2006135293A (en) * 2004-11-08 2006-05-25 Kwangju Inst Of Science & Technol Method of forming electrode for compound semiconductor device
JP2007036078A (en) * 2005-07-29 2007-02-08 Showa Denko Kk Pn-junction-type light-emitting diode
WO2007120016A1 (en) * 2006-04-18 2007-10-25 Seoul Opto-Device Co., Ltd. Method for forming ohmic electrode and semiconductor light emitting element

Similar Documents

Publication Publication Date Title
US20070290215A1 (en) Light-emitting semiconductor device protected against reflector metal migration, and method of fabrication
US6287947B1 (en) Method of forming transparent contacts to a p-type GaN layer
US6693352B1 (en) Contact structure for group III-V semiconductor devices and method of producing the same
US6465808B2 (en) Method and structure for forming an electrode on a light emitting device
US20070029561A1 (en) Omni-directional reflector and light emitting diode adopting the same
US20040182914A1 (en) Flip-chip light emitting diode with a thermally stable multiple layer reflective p-type contact
US20100200881A1 (en) Light Emitting Element and Illumination Device
JP2011181834A (en) Semiconductor light emitting element and method for manufacturing the same
US20090026490A1 (en) Light emitting device and manufacturing method thereof
US20110012154A1 (en) Led element and method for manufacturing led element
JPH09129919A (en) Nitride semiconductor light emitting device
JP2006128227A (en) Nitride semiconductor light emitting element
JPH1140846A (en) P-type electrode of gallium nitride semiconductor and manufacture thereof
JP2005064113A (en) Semiconductor light emitting element and its manufacturing method
JP2000294837A (en) Gallium nitride compound semiconductor light emitting element
US20060017060A1 (en) Vertical conducting nitride diode using an electrically conductive substrate with a metal connection
JP2008041866A (en) Nitride semiconductor element
JPH0864871A (en) Gallium nitride compound semiconductor element
JP2008227109A (en) GaN-BASED LED ELEMENT AND LIGHT-EMITTING DEVICE
JP2005259820A (en) Group iii-v compound semiconductor light emitting element and its manufacturing method
JP2008047861A (en) Vertical-structure gallium nitride light-emitting diode device and its manufacturing method
US7829881B2 (en) Semiconductor light emitting device having roughness and method of fabricating the same
US20080230904A1 (en) Gallium Nitride-Based III-V Group Compound Semiconductor Device and Method of Manufacturing the Same
US20050212006A1 (en) GaN-based III - V group compound semiconductor light emitting device and method of fabricating the same
US6946372B2 (en) Method of manufacturing gallium nitride based semiconductor light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140121