JP2013055209A - Resistance change type memory element in mis structure - Google Patents

Resistance change type memory element in mis structure Download PDF

Info

Publication number
JP2013055209A
JP2013055209A JP2011192222A JP2011192222A JP2013055209A JP 2013055209 A JP2013055209 A JP 2013055209A JP 2011192222 A JP2011192222 A JP 2011192222A JP 2011192222 A JP2011192222 A JP 2011192222A JP 2013055209 A JP2013055209 A JP 2013055209A
Authority
JP
Japan
Prior art keywords
reram
current
type
state
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011192222A
Other languages
Japanese (ja)
Other versions
JP5728785B2 (en
Inventor
Kiyosuke Niko
精祐 児子
Yoshio Kido
義勇 木戸
Seiichi Kato
誠一 加藤
Yoshiyuki Harada
善之 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2011192222A priority Critical patent/JP5728785B2/en
Publication of JP2013055209A publication Critical patent/JP2013055209A/en
Application granted granted Critical
Publication of JP5728785B2 publication Critical patent/JP5728785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a ReRAM element that stably operates on an off-state current of 10 μA or less by changing one side of an electrode from metal to p-type Si semiconductor for conversion into MIS type, in a conventional MIM type ReRAM element that cannot avoid unstable off operation because of large off-state currents.SOLUTION: With such a structure that off operations of a ReRAM element are executed using an off structure by conversion into hot electrons, activation energy of electrons is required, which causes enlargement of off-state currents. By reviewing the principle of such an off structure to change the structure into an off mechanism by depletion of a p-n junction section using voltages requiring no activation energy, a ReRAM element of extremely low power consumption can be provided.

Description

本発明は、抵抗変化型メモリ(Resistivi Random Access Memory : ReRAM)の素子構造に関するものである。
詳しくは、ReRAMは絶縁体の両側を電極で挟んだ3層構造をしており、電圧印可によって絶縁体が抵抗変化する現象を利用した不揮発性メモリである。絶縁体には各種金属酸化物が用いられ、電極にはPt、Ni、Ti、Al等の各種金属が用いられる。
本発明は、電極の一方を金属の代わりに導電性p型Si半導体を用いた金属/絶縁体/半導体のMIS構造を特徴とする。
The present invention relates to an element structure of a resistance change type memory (Resistivi Random Access Memory: ReRAM).
Specifically, the ReRAM has a three-layer structure in which both sides of an insulator are sandwiched between electrodes, and is a non-volatile memory that utilizes the phenomenon that the insulator changes its resistance by voltage application. Various metal oxides are used for the insulator, and various metals such as Pt, Ni, Ti, and Al are used for the electrodes.
The present invention is characterized by a metal / insulator / semiconductor MIS structure in which one of the electrodes uses a conductive p-type Si semiconductor instead of a metal.

従来のReRAMの基本構造は金属/絶縁体/金属のMIM構造であり、ReRAMの研究開発の対象は、抵抗変化する絶縁膜として機能する金属酸化膜、及び、それに適した電極金属の探索に関する多くの工夫(例えば、非特許文献1、非特許文献2、非特許文献3参照)更に、絶縁膜を複合積層化することによってスイッチング特性を改善する技術(例えば、非特許文献4参照)等を対象に行われている。しかし、何れも電極にPt等の金属を用いており、MIM構造であることに関しては同じであった。       The basic structure of a conventional ReRAM is a metal / insulator / metal MIM structure, and the research and development of ReRAM is mainly related to the search for metal oxide films that function as insulating films that change resistance, and electrode metals suitable for them. (For example, see Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3) Further, a technique for improving the switching characteristics by compositely laminating insulating films (for example, see Non-Patent Document 4) Has been done. However, in all cases, metals such as Pt were used for the electrodes, and the same was true regarding the MIM structure.

その理由は、MIM構造の金属酸化膜と電極金属の間には、必然的にショットキー障壁が形成され、スイッチング機構に重要な機能を果たしており、金属電極を用いることが必要条件と考えられてきた。(例えば、発明者らの特許文献1参照)       The reason is that a Schottky barrier is inevitably formed between the metal oxide film of the MIM structure and the electrode metal, which plays an important function in the switching mechanism, and the use of a metal electrode has been considered a necessary condition. It was. (For example, refer to Patent Document 1 of the inventors)

しかし、MIM構造のReRAMはオフ電流が大きいため、省電力型不揮発性メモリに要求される50μA以下で動作する条件を満たさないことに加え、抵抗変化膜(絶縁膜)を損傷する原因となり、耐久性が悪く、実用化を阻害している。     However, because the MIM structure of ReRAM has a large off-state current, it does not meet the conditions for operating at 50 μA or less, which is required for power-saving non-volatile memories, and it causes damage to the resistance change film (insulating film). It is poor in performance and hinders practical application.

特開2005-183570号公報JP 2005-183570 A

Z.Wei、T.Takagi et al. IEDM (2008)Highly Reliable TaOx ReRAM and Direct Evidence of Redox Reaction MechanismZ. Wei, T. Takagi et al. IEDM (2008) Highly Reliable TaOx ReRAM and Direct Evidence of Redox Reaction Mechanism 鶴岡徹 他、第70回応物学会(2009)8p-H-3Toru Tsuruoka et al., 70th Society of Natural Sciences (2009) 8p-H-3 田中隼人 他、第72回応物学会(2011)30a-ZK-12Tanaka Hayato et al., 72nd Society of Natural Sciences (2011) 30a-ZK-12 福田夏樹 他、第72回応用物理(2011)31p-ZK-12Natsuki Fukuda et al., 72nd Applied Physics (2011) 31p-ZK-12

本発明が解決する課題は、ReRAMを省電力型にすると同時に耐久性を向上するため、オフ電流を大幅に低下することである。     The problem to be solved by the present invention is to significantly reduce the off-current in order to make the ReRAM a power saving type and at the same time improve the durability.

発明者らは、既にAl陽極酸化膜を用いたショットキー接合型不揮発性メモリ(特許第3897754号)を開発しているが、社会的ニーズの消費電力削減に対応するために、オフ電流を低下するための創意工夫を行ってきた。   The inventors have already developed a Schottky junction type nonvolatile memory (Patent No. 3887754) using an Al anodic oxide film. However, in order to cope with the reduction of power consumption for social needs, the off-current is reduced. I have made ingenuity to do that.

多くのReRAM開発者は、MIM型ReRAMのショットキー障壁を変えることによって、オン・オフ電圧の閾値を制御することを意図して、金属電極の種類を変えた膨大な試作実験を行ってきた。しかし、Ti,Pt、Ru等の希少金属を用いても、安定したオフ電流低下効果を得るに至っていない。 Many ReRAM developers have conducted a large number of prototype experiments with different types of metal electrodes in order to control the threshold of on / off voltage by changing the Schottky barrier of MIM type ReRAM. However, even if rare metals such as Ti, Pt, and Ru are used, a stable off-current lowering effect has not been obtained.

発明者らは、従来のMIM構造(金属/絶縁体/金属)のReRAMにおいて、金属と絶縁体の間に形成されるショットキー障壁は、高抵抗状態から低抵抗状態に変化するオン動作時は、リーク電流をオン状態に遷移する直前まで低いレベルに保つために必要であるが、低抵抗状態から高抵抗状態に変化するオフ動作時にはショットキー障壁は不要である知見を得た。この知見に基づき、電極の一方は従来と同じく金属とし、他方の電極を逆電界で整流性のある半導体を用いた電極に変更した。つまり半導体技術であるpn接合をReRAMの基本構造に組み入れて、ReRAMの課題であったオフ電流低下を実現した。     Inventors of the present invention have a conventional MIM structure (metal / insulator / metal) ReRAM in which the Schottky barrier formed between the metal and the insulator is turned on during the on-state change from the high resistance state to the low resistance state. It was necessary to keep the leakage current at a low level until just before the transition to the on state, but it was found that the Schottky barrier is unnecessary during the off operation in which the low resistance state changes to the high resistance state. Based on this knowledge, one of the electrodes was made of metal as in the conventional case, and the other electrode was changed to an electrode using a semiconductor that has a rectifying property with a reverse electric field. In other words, the pn junction, which is a semiconductor technology, was incorporated into the basic structure of ReRAM, and the reduction in off current, which was a problem of ReRAM, was realized.

本発明者らが本技術を見出した経緯は、この技術を理解する上で有効と考えられるため、以下に記載する。本発明者らは、第一原理計算結果から導いたオン・オフ状態における電子状態を熱刺激電流測定によって検証した。その結果、絶縁膜中にトラップされた電子は伝導帯から0.17〜0.41eV下のレベルにあり、このように深いレベルの電子をホットエレクトロン化して伝導帯に励起する活性化エネルギーは大きいことが分かった。従来のMIM型の電流―電圧(I-V)特性を示す図1を用いて、ReRAM素子の動作を説明する。まず、電流制限ダイオードによって35μAに電流制限した状態で電圧を印可し、閾値(2.5V)に達すると高抵抗状態から低抵抗状態に変化してON状態になる。次に、ON状態で電流制限を外し、電圧を印加すると1Vに達する直前で最大のOFF電流(18mA)が流れてオフ動作する。   The background of the discovery of the present technology by the present inventors is considered to be effective in understanding this technology, and will be described below. The present inventors verified the electronic state in the on / off state derived from the first-principles calculation results by measuring the thermally stimulated current. As a result, the electrons trapped in the insulating film are at a level 0.17 to 0.41 eV below the conduction band, and it can be seen that the activation energy that excites deep-level electrons into hot electrons and excites them in the conduction band is large. It was. The operation of the ReRAM element will be described with reference to FIG. 1 showing current MIM current-voltage (I-V) characteristics. First, a voltage is applied in a state where the current is limited to 35 μA by a current limiting diode, and when the threshold value (2.5 V) is reached, the high resistance state is changed to the low resistance state and the ON state is set. Next, the current limit is removed in the ON state, and when a voltage is applied, the maximum OFF current (18 mA) flows immediately before reaching 1 V, and the operation is turned off.

電子を励起してホットエレクトロン化するための活性化エネルギーが、オフ電流を大きくしている原因であり、この問題を解決するためには、ホットエレクトロン化を必要としない電子放出、つまり、電界によって電極にダイレクトに電子を抽出する方法が有効であることが分かる。電界によって電子を効率的に抽出するためには、電流が流れない状態で電子に電界が作用するpn接合が有効と考えられる。これらの知見に基づき、MIM構造の金属電極の一方を導電性のp型Si半導体に変更した金属/絶縁体/半導体のMIS構造の素子を作製し、ON電圧に対して逆方向の電圧を印可してOFF動作させるバイポーラ動作によって、図2に示すように、桁違いに小さいOFF電流(10μA)でOFF動作するI-V特性を得た。     The activation energy for exciting electrons to make hot electrons is the cause of increasing the off-current, and in order to solve this problem, electron emission that does not require hot electronization, that is, by an electric field It turns out that the method of extracting an electron directly to an electrode is effective. In order to efficiently extract electrons by an electric field, a pn junction in which the electric field acts on the electrons in a state where no current flows is considered effective. Based on these findings, we fabricated a metal / insulator / semiconductor MIS structure element in which one of the MIM structure metal electrodes was changed to a conductive p-type Si semiconductor, and applied a reverse voltage to the ON voltage. As a result of the bipolar operation for the OFF operation, as shown in FIG. 2, an IV characteristic for an OFF operation with an orderly small OFF current (10 μA) was obtained.

図2に示すI-V特性が得られたReRAM素子の断面イメージを図3に示す。
因みに、p型Siの代わりにn型Siを用いた試作実験では、理論的に予想される通り、オフ電流低下効果はなかった。
抵抗変化層になる絶縁膜にAl陽極酸化以外の酸素空孔(Vo)を含む金属酸化膜を用いた場合であっても、MIS構造によるオフ電流低下効果は同じである。その理由は、この効果はMIS構造のpn接合による整流効果に起因する原理的なものと考えられる。そのことを従来のMIM型と本発明のMIS型を対比した図4を用いて説明する。
FIG. 3 shows a cross-sectional image of the ReRAM element in which the IV characteristics shown in FIG. 2 are obtained.
Incidentally, in a prototype experiment using n-type Si instead of p-type Si, there was no effect of reducing the off-current as theoretically expected.
Even when a metal oxide film including oxygen vacancies (Vo) other than Al anodization is used for the insulating film to be the resistance change layer, the effect of reducing the off-current by the MIS structure is the same. The reason is that this effect is in principle due to the rectification effect by the pn junction of the MIS structure. This will be described with reference to FIG. 4 which compares the conventional MIM type and the MIS type of the present invention.

第一原理計算から導いたVoバンドモデルによれば、オン機構に関しては、図4中央列(off→on)に示すように、MIM型とMIS型のどちらも、金属と金属酸化膜の間に形成されたショットキー障壁を電界強化型トンネルした電子がVoサイトに捕捉され、そのVo電子が空間的に重なることによってバンドを形成して金属伝導(オン状態)になる。   According to the Vo band model derived from the first-principles calculation, as shown in the center row (off → on) of FIG. 4, both the MIM type and the MIS type are between the metal and the metal oxide film. Electrons that tunnel through the formed Schottky barrier with an electric field are trapped at the Vo site, and the Vo electrons are spatially overlapped to form a band and become metal conduction (ON state).

一方、オフ機構に関しては、図4右列(on→off)に示すように、MIM型とMIS型で大きく異なる。MIM型では、大きな電流が流れることによって伝導電子の一部がホットエレクトロンになり、増大した電子の運動エネルギーによって一部の電子が上の伝導帯に励起されると、その部分で電子の波動関数の重なりが一瞬切れ、その下流側の電子は電界によって電極に抽出される。励起された電子の一部は、エネルギーを失って、再びVoに捕捉されるが、系全体としてはVoに捕捉された電子が減少して局在化し、バンドが消滅してバンド絶縁体(オフ状態)に戻る。   On the other hand, the off mechanism is greatly different between the MIM type and the MIS type as shown in the right column of FIG. 4 (on → off). In the MIM type, when a large current flows, some of the conduction electrons become hot electrons, and when some electrons are excited to the upper conduction band by the increased kinetic energy, the wave function of the electrons in that part Overlap for a moment and electrons on the downstream side are extracted to the electrode by the electric field. Some of the excited electrons lose energy and are captured by Vo again.However, the entire system loses and localizes the electrons captured by Vo, and the band disappears and becomes a band insulator (off Return to the state.

これに対し、MIS型のオフ機構は、逆電圧によってpn接合部が空乏化し、pn接合部の下流側の電子が電界によって電極に抽出される。MIM型のようにホットエレクトロン化をトリガーとした電子の抽出ではなく、pn接合の整流効果によって、ダイレクトに電子が電界抽出される。このオフ機構の基本的な違い、つまり、ホットエレクトロン化に必要な活性化エネルギーが不要になることによって、オフ電流が大幅に低下すると考えられる。   On the other hand, in the MIS type off mechanism, the pn junction is depleted by the reverse voltage, and electrons on the downstream side of the pn junction are extracted to the electrode by the electric field. Instead of extracting electrons triggered by hot electronization as in the MIM type, electrons are directly extracted by the rectifying effect of the pn junction. It is considered that the off-current is greatly reduced by the basic difference of the off-mechanism, that is, the activation energy required for hot electronization is not required.

この技術は、第一原理計算結果に基づき、ReRAMの動作原理を解明することによって得られた成果であり、Al陽極酸化膜に限らず、Voを含むスパッタ成膜によるAl酸化膜、更には、Voを含む遷移金属酸化膜を用いたReRAMにも適応できる汎用技術である。   This technology is a result obtained by elucidating the operating principle of ReRAM based on the first-principles calculation results, not only the Al anodic oxide film, but also the Al oxide film by sputtering deposition including Vo, It is a general-purpose technology that can be applied to ReRAM using transition metal oxide films containing Vo.

本発明の第1は、MIS構造にすることによって、オフ電流を低下することを特徴とするReRAMを提供する。               According to a first aspect of the present invention, there is provided a ReRAM characterized in that an off current is reduced by adopting an MIS structure.

本発明の第2は、MIS構造に用いる導電性の半導体材料として、p型Siを用いることによって効果が得られる。また、本発明の第3,4は、MIS構造に用いる金属酸化物絶縁体としてAl陽極酸化膜及び、酸素欠損Al酸化膜を使用して効果が得られる。             The second effect of the present invention can be obtained by using p-type Si as a conductive semiconductor material used for the MIS structure. In the third and fourth aspects of the present invention, an effect is obtained by using an Al anodic oxide film and an oxygen-deficient Al oxide film as a metal oxide insulator used in the MIS structure.

電極として用いるp型Siの抵抗値は、10Ω以下、好ましくは、1〜0.1Ωであることが望ましい。その理由は、メモリ読出し時の抵抗比(オン状態とオフ状態の抵抗値の比率)が大きくなり、低い読出し電圧でも電流増幅が不要となり、省電力とデバイス回路の単純化による大きなメリットが得られる。       The resistance value of p-type Si used as an electrode is 10Ω or less, preferably 1 to 0.1Ω. The reason is that the resistance ratio (ratio of the resistance value between the on state and the off state) at the time of memory read increases, and current amplification is not required even at a low read voltage, resulting in significant advantages due to power saving and device circuit simplification. .

本発明に拠るMIS構造のReRAMは、従来のMIM構造のReRAMに比較し、3桁以上少ないオフ電流で動作し、画期的な省電力型不揮発性メモリの技術を提供できる。         The ReRAM with the MIS structure according to the present invention operates with an off-current that is three orders of magnitude less than the conventional ReRAM with the MIM structure, and can provide a revolutionary power-saving nonvolatile memory technology.

典型的なMIM型ReRAMのI-V特性。Typical MIM ReRAM IV characteristics. 典型的なMIS型ReRAMのI-V特性。Typical MIS type ReRAM IV characteristics. MIS型ReRAMの基本構造。Basic structure of MIS type ReRAM. (1)MIM型と(2)MIS型のオン・オフメカニズム比較。Comparison of on / off mechanism between (1) MIM type and (2) MIS type. 酸素欠損型スパッタAl酸化膜を用いたMIS型ReRAMのI-V特性。IV characteristics of MIS type ReRAM using oxygen deficient sputtered Al oxide film.

<実施例1>
(Al陽極酸化膜を用いたMIS型ReRAM素子)
0.1〜1Ωの低抵抗p-Si基板表面に真空蒸着によって成膜した50nm厚のAl膜を用い、20℃の定温に保持した0.3Mのシュウ酸液中で、電圧40Vを印可して12sec間、陽極酸化してp-Si基板表面にAl陽極酸化膜を作製した。純水洗浄し、減圧乾燥したAl陽極酸化膜表面に真空蒸着によってAlを80nm厚成膜して0.2mmΦの上部電極とし、p-Si基板を下部電極としたMIS型ReRAM素子を作製した。
<Example 1>
(MIS type ReRAM device using Al anodized film)
Using a 50 nm thick Al film deposited on the surface of a low resistance p-Si substrate of 0.1 to 1Ω by vacuum deposition, in a 0.3 M oxalic acid solution kept at a constant temperature of 20 ° C., a voltage of 40 V is applied for 12 seconds. Then, anodization was performed to produce an Al anodized film on the surface of the p-Si substrate. A MIS type ReRAM device was fabricated by depositing Al with a thickness of 80 nm on the surface of the Al anodic oxide film that had been washed with pure water and dried under reduced pressure by vacuum deposition to form a 0.2 mmφ upper electrode and a p-Si substrate as the lower electrode.

作製した素子のI-V特性を図2に示す。2Vで高抵抗状態から低抵抗状態になり、−0.7Vで低抵抗状態から高抵抗状態に戻るバイポール動作した。オフ電流は10μAに低下した。オン電流は電流制限ダイオードによって28μAに制御している。MIS型にすることによって、駆動電流を実用化の条件とされる50μA以下に低下することができた。   FIG. 2 shows the IV characteristics of the fabricated device. The bipole operation changed from the high resistance state to the low resistance state at 2V, and returned from the low resistance state to the high resistance state at -0.7V. The off current decreased to 10 μA. The on-current is controlled to 28 μA by a current limiting diode. By using the MIS type, the drive current could be reduced to 50 μA or less, which is a practical condition.

<実施例2>
(酸素欠損型Al酸化膜を用いたMIS型ReRAM素子)
0.1〜1Ωの低抵抗p-Si基板表面に10−3paの低真空状態で抵抗加熱によって酸素欠損を多く含む50nm厚のAl酸化膜を成膜し、その表面に高真空蒸着によってAlを80nm厚成膜して0.2mmΦの上部電極とし、p-Si基板を下部電極としたMIS型ReRAM素子を作製した。作製した素子の4サイクルのI-V特性を図5に示す。実施例1と同様、バイポーラ動作させると、オフ電流がオン電流に比べて2桁以上小さくなり、グラフを見易くするため、図5の縦軸のオフ電流を絶対値に変換し、対数で表示した。
<Example 2>
(MIS-type ReRAM device using oxygen-deficient Al oxide film)
A 50 nm thick Al oxide film containing a large amount of oxygen vacancies was formed on the surface of a low resistance p-Si substrate of 0.1 to 1Ω by resistance heating in a low vacuum state of 10 −3 pa, and Al was deposited on the surface by high vacuum deposition to 80 nm. A MIS-type ReRAM device was fabricated using a thick film to form a 0.2 mmφ upper electrode and a p-Si substrate as a lower electrode. FIG. 5 shows the 4-cycle IV characteristics of the fabricated device. As in the first embodiment, when the bipolar operation is performed, the off-current is reduced by two orders of magnitude or more compared to the on-current, and the off-current on the vertical axis in FIG. .

オン電流は、実施例1と同じく、電流制限ダイオードによって28μAに制限した。
オフ電流は、実施例1より更に低下して0.2μA以下になり、従来のMIM型ReRAMのオフ電流に比べると5桁以上低下した。実施例2によって、本発明技術は、オフ電流を大幅低下させ、画期的な省電力型不揮発性メモリの基本技術であることが明らかになった。
The on-current was limited to 28 μA by a current limiting diode as in Example 1.
The off-state current was further reduced from that of Example 1 to 0.2 μA or less, which was more than 5 orders of magnitude lower than the off-state current of the conventional MIM type ReRAM. According to Example 2, it was revealed that the technology of the present invention is a fundamental technology for a revolutionary power-saving nonvolatile memory that significantly reduces off-state current.

<比較例1>
(Al陽極酸化膜を用いたMIM型ReRAM素子)
0.3mm厚のAl圧延材を用いて、実施例1と同様に20℃の定温に保持した0.3Mのシュウ酸液中で電圧40Vを印可し、64sec間、陽極酸化したAl陽極酸化膜を純水洗浄後、減圧乾燥し、表面に高真空蒸着によってAlを80nm厚成膜して0.2mmΦの上部電極とし、Al地金を下部電極としたMIM型ReRAM素子を作製した。
<Comparative Example 1>
(MIM type ReRAM device using Al anodized film)
Using a 0.3 mm thick Al rolled material, a voltage of 40 V was applied in 0.3 M oxalic acid solution maintained at a constant temperature of 20 ° C. as in Example 1, and an anodized Al anodized film was pure for 64 seconds. After washing with water and drying under reduced pressure, an MIM-type ReRAM device was fabricated by depositing Al with a thickness of 80 nm on the surface to form a 0.2 mmΦ upper electrode and an Al ingot as the lower electrode.

作製した素子のI-V特性を図1に示す。35μAの電流制限ダイオードを用いた状態で、2.5Vで高抵抗状態から低抵抗状態になり、電流制限ダイオードをバイパスした状態で1Vに達する直前に最大オフ電流18mAに達したあと、低抵抗状態から高抵抗状態に戻るユニポール動作をした。この比較例1のオフ電流(18mA)は、実施例1に比べて3桁、実施例2に比べて5桁、大きな値であり、MIS型ReRAM素子の省電力に関する優位性が明らかになった。   FIG. 1 shows the IV characteristics of the fabricated device. With a current limiting diode of 35μA, the resistance state changes from high resistance to 2.5V at 2.5V, and after reaching the maximum off current of 18mA just before reaching 1V with the current limiting diode bypassed, Unipole operation to return to the high resistance state. The off-state current (18 mA) of Comparative Example 1 is three orders of magnitude greater than that of Example 1 and five orders of magnitude greater than that of Example 2, and the superiority of the MIS type ReRAM device in terms of power saving has been clarified. .

本発明のMIS型ReRAM素子を使用すれば、革新的な省電力型不揮発性メモリが可能となり、究極の省電力を可能にするノーマリーオフコンピュータの実現に寄与できる。   If the MIS type ReRAM element of the present invention is used, an innovative power-saving non-volatile memory becomes possible, which can contribute to the realization of a normally-off computer that enables the ultimate power saving.

1 制限オン電流(35μA)
2 オフ電流(18mA)
3 制限オン電流(28μA)
4 オフ電流(10μA)
5 p-Si半導体(下部電極)
6 Al陽極酸化膜
7 Al(上部電極)
8 酸素欠損型Al酸化膜
9 Al地金(下部電極)
10 オフ電流(0.2μA)




















1 Limit on-current (35μA)
2 Off-state current (18mA)
3 Limit on-current (28μA)
4 Off-state current (10μA)
5 p-Si semiconductor (lower electrode)
6 Al anodic oxide film 7 Al (upper electrode)
8 Oxygen deficient Al oxide film 9 Al ingot (lower electrode)
10 Off-state current (0.2μA)




















Claims (5)

抵抗変化型メモリ(ReRAM)素子であって、その構造が金属/絶縁体/導電性p型半導体の
3層よりなることを特徴とするReRAM素子。
A variable resistance memory (ReRAM) device with a metal / insulator / conductive p-type semiconductor structure
A ReRAM device comprising three layers.
請求項1に記載のReRAM素子において、電気抵抗が10Ω以下のp型Siを導電性p型半導体に用いることを特徴とするReRAM素子。       2. The ReRAM element according to claim 1, wherein p-type Si having an electric resistance of 10 [Omega] or less is used for the conductive p-type semiconductor. 請求項1に記載のReRAM素子において、電気抵抗が0.1〜1Ωのp型Siを導電性p型半導体に用いることを特徴とするReRAM素子。   2. The ReRAM element according to claim 1, wherein p-type Si having an electric resistance of 0.1 to 1 [Omega] is used for the conductive p-type semiconductor. 請求項1に記載のReRAM素子の金属酸化物絶縁体が、シュウ酸液中で陽極酸化したAl陽極酸化膜であることを特徴とするReRAM素子。   The ReRAM element according to claim 1, wherein the metal oxide insulator of the ReRAM element is an Al anodic oxide film anodized in an oxalic acid solution. 請求項1に記載のReRAM素子の金属酸化物絶縁体が、低真空中で抵抗加熱処理により生成させた酸素欠損Al酸化膜であることを特徴とするReRAM素子。
2. The ReRAM device according to claim 1, wherein the metal oxide insulator of the ReRAM device is an oxygen-deficient Al oxide film formed by resistance heat treatment in a low vacuum.
JP2011192222A 2011-09-05 2011-09-05 MIS structure variable resistance memory element Active JP5728785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011192222A JP5728785B2 (en) 2011-09-05 2011-09-05 MIS structure variable resistance memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011192222A JP5728785B2 (en) 2011-09-05 2011-09-05 MIS structure variable resistance memory element

Publications (2)

Publication Number Publication Date
JP2013055209A true JP2013055209A (en) 2013-03-21
JP5728785B2 JP5728785B2 (en) 2015-06-03

Family

ID=48131931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011192222A Active JP5728785B2 (en) 2011-09-05 2011-09-05 MIS structure variable resistance memory element

Country Status (1)

Country Link
JP (1) JP5728785B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189115A (en) * 2006-01-16 2007-07-26 Oki Electric Ind Co Ltd Semiconductor memory device, manufacturing method thereof semiconductor device, and manufacturing method thereof
WO2008149493A1 (en) * 2007-06-01 2008-12-11 Panasonic Corporation Resistance change type memory
JP2010199104A (en) * 2009-02-23 2010-09-09 National Institute For Materials Science Non-polar type nonvolatile memory element
JP2011023645A (en) * 2009-07-17 2011-02-03 Sharp Corp Semiconductor storage element using nonvolatile variable-resistance element
JP2011040613A (en) * 2009-08-12 2011-02-24 Toshiba Corp Nonvolatile memory device
JP2011071167A (en) * 2009-09-24 2011-04-07 Toshiba Corp Semiconductor memory device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189115A (en) * 2006-01-16 2007-07-26 Oki Electric Ind Co Ltd Semiconductor memory device, manufacturing method thereof semiconductor device, and manufacturing method thereof
WO2008149493A1 (en) * 2007-06-01 2008-12-11 Panasonic Corporation Resistance change type memory
JP2010199104A (en) * 2009-02-23 2010-09-09 National Institute For Materials Science Non-polar type nonvolatile memory element
JP2011023645A (en) * 2009-07-17 2011-02-03 Sharp Corp Semiconductor storage element using nonvolatile variable-resistance element
JP2011040613A (en) * 2009-08-12 2011-02-24 Toshiba Corp Nonvolatile memory device
JP2011071167A (en) * 2009-09-24 2011-04-07 Toshiba Corp Semiconductor memory device

Also Published As

Publication number Publication date
JP5728785B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5213370B2 (en) Nonvolatile memory device including variable resistance material
JP4588734B2 (en) Nonvolatile memory device and memory array including the same
KR101145332B1 (en) Switching device and memory device with the same
CN101106171B (en) Non-volatile memory device including variable resistance material
Goux et al. Evidences of oxygen-mediated resistive-switching mechanism in TiN\HfO2\Pt cells
JP5154138B2 (en) Variable resistance random access memory device with n + interface layer
KR101338360B1 (en) Selection device and nonvolatile memory cell including the same and method of fabricating the same
Li et al. Utilizing sub-5 nm sidewall electrode technology for atomic-scale resistive memory fabrication
US8362457B2 (en) Semiconductor device and method for fabricating the same
US9203022B2 (en) Resistive random access memory devices with extremely reactive contacts
JP2007300100A (en) Non-volatile memory devices including variable resistance material
KR20110009207A (en) Non-volatile resistive-switching memories
US20130140512A1 (en) Nonvolatile resistive memory element with a passivated switching layer
KR101570742B1 (en) Resistive random access memory and method of fabricating the same
Jo et al. Novel cross-point resistive switching memory with self-formed Schottky barrier
Wang et al. Effects of sidewall etching on electrical properties of SiOx resistive random access memory
US10084015B2 (en) Resistive memory element employing electron density modulation and structural relaxation
JP6196623B2 (en) Resistance change memory element
JP5422675B2 (en) Nonvolatile semiconductor memory device
KR20090076077A (en) Resistive random access memory device
JP5728785B2 (en) MIS structure variable resistance memory element
Cheng et al. Low power resistive random access memory using interface-engineered dielectric stack of SiOx/a-Si/TiOy with 1D1R-like structure
Wu et al. $\hbox {ZrTiO} _ {x} $-Based Resistive Memory With MIS Structure Formed on Ge Layer
CN105336852A (en) RRAM memory cell structure with self rectification effect and preparation method thereof
Lin et al. Enhanced transient behavior in MIS (p) tunnel diodes by trench forming at the gate edge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150320

R150 Certificate of patent or registration of utility model

Ref document number: 5728785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250