JP2013048792A - Endoscopic device - Google Patents

Endoscopic device Download PDF

Info

Publication number
JP2013048792A
JP2013048792A JP2011189142A JP2011189142A JP2013048792A JP 2013048792 A JP2013048792 A JP 2013048792A JP 2011189142 A JP2011189142 A JP 2011189142A JP 2011189142 A JP2011189142 A JP 2011189142A JP 2013048792 A JP2013048792 A JP 2013048792A
Authority
JP
Japan
Prior art keywords
light
pulse
drive signal
endoscope apparatus
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2011189142A
Other languages
Japanese (ja)
Inventor
Akira Mizuyoshi
明 水由
Maki Saito
斎藤  牧
Takayuki Iida
孝之 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2011189142A priority Critical patent/JP2013048792A/en
Priority to CN2012101524537A priority patent/CN102961113A/en
Publication of JP2013048792A publication Critical patent/JP2013048792A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an endoscopic device, capable of regularly stably obtaining illuminating light having a desired tone, in generation of illuminating light using a phosphor having temperature-dependent emission characteristics, while reducing change in the intensity of fluorescence generated from the phosphor.SOLUTION: The endoscopic device has a light source unit including a light emitting element LD1 and wavelength conversion members 59A, 59B, the light source unit outputting an illuminating light by composing a transmitted light emitted from the light emitting element and transmitted by the wavelength conversion members with a light emitted from the wavelength conversion members. The endoscopic device includes: a drive signal generation unit 67 which generates a pulse drive signal for driving the light emitting element; a drive signal conversion unit 69 which divides each pulse of the generated pulse drive signal into a plurality of short pulses having a further short pulse width to generate a divided pulse drive signal so that the light quantity change of the illuminating light resulting from the temperature dependency of emission efficiency of the phosphor is an allowable limit value or less; and a light source control unit 61 which drives the light emitting element with the divided pulse drive signal.

Description

本発明は、内視鏡装置に関する。   The present invention relates to an endoscope apparatus.

半導体レーザや発光ダイオード等の半導体光源から発せられる励起光と、この励起光により発光する蛍光体を含む波長変換部材とを有する光源を備えた内視鏡装置が開発されている。例えば、特許文献1の内視鏡装置では、光源をパルス状の駆動電流で駆動し、駆動電流のパルス数、パルス幅、又はパルス振幅のうちのいずれかを増減させることで、常に適切な積算光量及び色度となるように補正している。これにより、光源の個体差に起因する照明光の積算光量及び色度のばらつきを解消している。   An endoscope apparatus has been developed that includes a light source having excitation light emitted from a semiconductor light source such as a semiconductor laser or a light emitting diode, and a wavelength conversion member including a phosphor that emits light by the excitation light. For example, in the endoscope apparatus disclosed in Patent Document 1, the light source is driven with a pulsed drive current, and the number of pulses of the drive current, the pulse width, or the pulse amplitude is increased or decreased to always perform appropriate integration. Correction is made so that the amount of light and chromaticity are obtained. This eliminates variations in the integrated light quantity and chromaticity of illumination light caused by individual differences in the light source.

特開2009−56248号公報JP 2009-56248 A

しかしながら、波長変換部材の蛍光体の発光特性は温度依存性を有し、蛍光体が励起光を受け続けて温度上昇すると、発生する蛍光の分光プロファイルが変化してしまう。図7に励起光の駆動パルスと蛍光体からの出力光強度との関係を示した。光源は、供給される強度I0の駆動パルス信号により励起光を出力する。この励起光が蛍光体に照射されて蛍光体の温度が上昇すると、蛍光体の発光効率が変化して初期の発光強度からの増減を生じる。このため、光源に供給する駆動パルス通りの出力光強度が得られないことになる。 However, the emission characteristics of the phosphor of the wavelength conversion member have temperature dependence, and when the phosphor continues to receive excitation light and rises in temperature, the spectral profile of the generated fluorescence changes. FIG. 7 shows the relationship between the drive pulse of excitation light and the output light intensity from the phosphor. The light source outputs excitation light in response to the supplied driving pulse signal having an intensity I 0 . When this excitation light is applied to the phosphor and the temperature of the phosphor rises, the luminous efficiency of the phosphor changes and causes an increase or decrease from the initial emission intensity. For this reason, the output light intensity according to the drive pulse supplied to the light source cannot be obtained.

また、波長変換部材が複数種類の蛍光体を含んで構成される場合、発生する蛍光の強度は、温度変化に伴ってそれぞれ個別に変化する。図8にG発光蛍光体と、R発光蛍光体の温度に対する発光効率の変化の様子を概略的に示した。一般にR発光蛍光体はG発光蛍光体より発光効率が低く、温度上昇に伴う発光効率の変化も各蛍光体で異なる。そのため、複数種類の蛍光体を用いる場合には、各蛍光体の発光光量のバランスが崩れ、照明光が動的に変化して設計通りの色味とならないことがある。
そこで本発明は、発光特性に温度依存性を有する蛍光体を用いて照明光を生成する場合に、蛍光体から発生する蛍光強度の変化を軽減して、所望の色調の照明光を常に安定して得られる内視鏡装置を提供することを目的とする。
In addition, when the wavelength conversion member is configured to include a plurality of types of phosphors, the intensity of the generated fluorescence changes individually with a temperature change. FIG. 8 schematically shows changes in luminous efficiency with respect to temperature of the G-emitting phosphor and the R-emitting phosphor. In general, R-emitting phosphors have lower luminous efficiency than G-emitting phosphors, and the change in luminous efficiency with temperature rise is different for each phosphor. For this reason, when a plurality of types of phosphors are used, the balance of the amount of light emitted from each phosphor may be lost, and the illumination light may change dynamically, resulting in a color that is not designed.
Therefore, the present invention reduces the change in the fluorescence intensity generated from the phosphor when the illumination light is generated using the phosphor having the temperature dependence in the light emission characteristics, and always stabilizes the illumination light of a desired color tone. It is an object of the present invention to provide an endoscopic device obtained in this way.

本発明は下記構成からなる。
発光素子、及び該発光素子からの出射光で発光する蛍光体が含まれる波長変換部材を備え、前記発光素子から出射され前記波長変換部材を透過した透過光と、前記波長変換部材からの発光光とを合成した照明光を出力する光源部と、
前記発光素子を駆動するためのパルス駆動信号を生成する駆動信号生成部と、
前記蛍光体の発光効率の温度依存性に起因する前記照明光の光量変化量が許容限度値以下となるように、生成された前記パルス駆動信号の各パルスを、更にパルス幅が短い複数の短パルスに分割した分割パルス駆動信号を生成する駆動信号変換部と、
前記発光素子を前記分割パルス駆動信号で駆動する光源制御部と、
を具備した内視鏡装置。
The present invention has the following configuration.
A wavelength conversion member including a light emitting element and a phosphor that emits light emitted from the light emitted from the light emitting element, transmitted light emitted from the light emitting element and transmitted through the wavelength conversion member, and light emitted from the wavelength conversion member A light source unit that outputs illumination light synthesized with
A drive signal generator for generating a pulse drive signal for driving the light emitting element;
Each pulse of the generated pulse drive signal is further divided into a plurality of short pulses having a shorter pulse width so that the amount of change in the amount of illumination light due to the temperature dependence of the luminous efficiency of the phosphor is not more than an allowable limit value. A drive signal converter for generating a divided pulse drive signal divided into pulses;
A light source controller that drives the light emitting element with the divided pulse drive signal;
An endoscope apparatus comprising:

本発明の内視鏡装置によれば、発光特性に温度依存性を有する蛍光体を用いて照明光を生成する場合に、蛍光体から発生する蛍光強度の変化を軽減して、所望の色調の照明光を常に安定して得ることができる。   According to the endoscope apparatus of the present invention, when the illumination light is generated using the phosphor having the temperature dependency on the light emission characteristic, the change in the fluorescence intensity generated from the phosphor is reduced, and the desired color tone is obtained. Illumination light can always be obtained stably.

本発明の実施形態を説明するための図で、内視鏡及び内視鏡が接続される各装置を表す内視鏡装置の構成図である。It is a figure for describing an embodiment of the present invention, and is a lineblock diagram of an endoscope apparatus showing each apparatus to which an endoscope and an endoscope are connected. 内視鏡装置の具体的な構成例を示す外観図である。It is an external view which shows the specific structural example of an endoscope apparatus. パルス駆動信号の変調制御のタイミングチャートを示す説明図である。It is explanatory drawing which shows the timing chart of the modulation control of a pulse drive signal. (A)はレーザ光源へのパルス駆動信号、(B)は一つのパルスを複数の短パルスに分割した変換パルス駆動信号を表す説明図である。(A) is a pulse drive signal to a laser light source, (B) is explanatory drawing showing the conversion pulse drive signal which divided | segmented one pulse into several short pulses. 図4(B)の分割パルス駆動信号により発光する蛍光体の発光強度を概略的に示す説明図である。FIG. 5 is an explanatory diagram schematically showing the light emission intensity of a phosphor that emits light according to the divided pulse drive signal of FIG. (A)は休止期間Taが残光期間TLより長い場合の駆動パルスに対する波長変換部材からの出力光の強度変化を示す説明図、(B)は休止期間Taが残光期間TL以下である場合の出力光の強度変化を示す説明図である。(A) is explanatory drawing which shows the intensity | strength change of the output light from the wavelength conversion member with respect to a drive pulse when the idle period Ta is longer than the afterglow period TL, (B) is the case where the idle period Ta is below the afterglow period TL It is explanatory drawing which shows the intensity | strength change of the output light of. 従来の励起光の駆動パルスと蛍光体からの出力光強度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the drive pulse of the conventional excitation light, and the output light intensity from a fluorescent substance. 従来のG発光蛍光体と、R発光蛍光体の温度に対する発光効率の変化の様子を概略的に示す説明図である。It is explanatory drawing which shows roughly the mode of the luminous efficiency with respect to the temperature of the conventional G light emission fluorescent substance and R light emission fluorescent substance.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は本発明の実施形態を説明するための図で、内視鏡及び内視鏡が接続される各装置を表す内視鏡装置の構成図、図2は内視鏡装置の具体的な構成例を示す外観図である。
内視鏡装置100は、図1に示すように、内視鏡スコープ(以下、内視鏡と称する)11と、制御装置13と、モニタ等の表示部15と、制御装置13に情報を入力するキーボードやマウス等の入力部17とを備えている。制御装置13は、光源装置19と、撮像画像の信号処理を行うプロセッサ21とを有して構成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram for explaining an embodiment of the present invention. FIG. 1 is a configuration diagram of an endoscope apparatus representing an endoscope and each apparatus to which the endoscope is connected. FIG. 2 is a specific example of the endoscope apparatus. It is an external view which shows a structural example.
As shown in FIG. 1, the endoscope apparatus 100 inputs information to an endoscope scope (hereinafter referred to as an endoscope) 11, a control device 13, a display unit 15 such as a monitor, and the control device 13. And an input unit 17 such as a keyboard and a mouse. The control device 13 includes a light source device 19 and a processor 21 that performs signal processing of a captured image.

内視鏡11は、図2にも示すように、本体操作部23と、この本体操作部23に連設され被検体(体腔)内に挿入される挿入部25とを備える。本体操作部23には、ユニバーサルコード27が接続される。このユニバーサルコード27の先端は、光源装置19にライトガイド(LG)コネクタ29Aを介して接続され、また、ビデオコネクタ29Bを介してプロセッサ21に接続されている。   As shown in FIG. 2, the endoscope 11 includes a main body operation unit 23 and an insertion unit 25 connected to the main body operation unit 23 and inserted into a subject (body cavity). A universal cord 27 is connected to the main body operation unit 23. The distal end of the universal cord 27 is connected to the light source device 19 through a light guide (LG) connector 29A, and is connected to the processor 21 through a video connector 29B.

内視鏡11の本体操作部23には、挿入部25の先端側で吸引、送気、送水を実施するためのボタンや、撮像時のシャッターボタン等の各種操作ボタン31が併設されると共に、一対のアングルノブ33が設けられている。   The main body operation unit 23 of the endoscope 11 is provided with buttons for performing suction, air supply, and water supply on the distal end side of the insertion unit 25 and various operation buttons 31 such as a shutter button at the time of imaging. A pair of angle knobs 33 is provided.

挿入部25は、本体操作部23側から順に軟性部35、湾曲部37、及び先端部(内視鏡先端部)39で構成され、湾曲部37は、本体操作部23のアングルノブ33を回動することによって遠隔的に湾曲操作される。これにより、先端部39を所望の方向に向けることができる。   The insertion portion 25 is composed of a flexible portion 35, a bending portion 37, and a distal end portion (endoscope distal end portion) 39 in order from the main body operation portion 23 side. The bending portion 37 rotates the angle knob 33 of the main body operation portion 23. The bending operation is performed remotely by moving. Thereby, the front-end | tip part 39 can be turned to a desired direction.

図1に示すように、内視鏡先端部39には、撮像光学系の観察窓41と、照明光学系の照明窓43A,43Bが配置されている。各照明窓43A,43Bからは照明光が照射され、被検体からの反射光は、観察窓41を通じて撮像素子45により撮像される。撮像された観察画像は、プロセッサ21に接続された表示部15に表示される。   As shown in FIG. 1, an observation window 41 of an imaging optical system and illumination windows 43A and 43B of an illumination optical system are arranged at the endoscope distal end portion 39. Illumination light is irradiated from each of the illumination windows 43A and 43B, and reflected light from the subject is imaged by the imaging element 45 through the observation window 41. The captured observation image is displayed on the display unit 15 connected to the processor 21.

撮像光学系は、CCD(Charge Coupled Device)型イメージセンサや、CMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の撮像素子45と、撮像素子45に観察像を結像させるレンズ等の光学部材47とを有する。撮像素子45の受光面に結像されて取り込まれる観察像は、電気信号に変換されて信号ケーブル51を通じてプロセッサ21の撮像信号処理部53に入力され、撮像信号処理部53で映像信号に変換される。   The imaging optical system includes an imaging element 45 such as a CCD (Charge Coupled Device) type image sensor or a CMOS (Complementary Metal Oxide Semiconductor) type image sensor, and an optical member 47 such as a lens for forming an observation image on the imaging element 45. Have The observation image formed and captured on the light receiving surface of the image sensor 45 is converted into an electric signal and input to the image signal processing unit 53 of the processor 21 through the signal cable 51, and is converted into a video signal by the image signal processing unit 53. The

撮像素子45は、RGBの原色系カラーフィルタを備えるもの他、CMY,CMYG等の補色系カラーフィルタを備えるものであってもよい。また、撮像素子45は、撮像制御部55によりシャッタ速度や絞り等のAE信号が設定される。   The imaging element 45 may include a primary color system color filter of RGB, or a complementary color system color filter such as CMY or CMYG. In the image sensor 45, an AE signal such as a shutter speed and a diaphragm is set by the image capturing control unit 55.

照明光学系は、光源装置19と、光源装置19に接続される一対の光ファイバ57A,57Bと、光ファイバ57A,57Bの光出射端それぞれに配置された波長変換部材59A,59Bとを有する。光源装置19は、半導体発光素子であるレーザ光源LD1、LD2と、各レーザ光源LD1,LD2を駆動制御する光源制御部61と、レーザ光源LD1,LD2からの出射光を合波するコンバイナ63と、合波した光を一対の光ファイバ57A,57Bによる2つの光路に分岐させるカプラ65とを有する。また、光源装置19は、詳細を後述するパルス駆動信号を生成する駆動信号生成部67、パルス駆動信号を変更する駆動信号変換部69、蛍光体特性情報を記憶する特性情報記憶部71を有する。   The illumination optical system includes a light source device 19, a pair of optical fibers 57A and 57B connected to the light source device 19, and wavelength conversion members 59A and 59B disposed at the light emitting ends of the optical fibers 57A and 57B. The light source device 19 includes laser light sources LD1 and LD2 that are semiconductor light emitting elements, a light source control unit 61 that drives and controls each of the laser light sources LD1 and LD2, a combiner 63 that combines light emitted from the laser light sources LD1 and LD2, And a coupler 65 for branching the combined light into two optical paths by a pair of optical fibers 57A and 57B. The light source device 19 includes a drive signal generation unit 67 that generates a pulse drive signal, which will be described in detail later, a drive signal conversion unit 69 that changes the pulse drive signal, and a characteristic information storage unit 71 that stores phosphor characteristic information.

内視鏡制御部73は、撮像信号処理部53と、撮像信号や各種情報を保存するメモリ75と、画像処理部77が接続されている。内視鏡制御部73は、撮像信号処理部53から出力される画像データを画像処理部77により適宜な画像処理を施して、表示部15に映出する。また、図示しないLAN等のネットワークに接続されて画像データを含む情報を配信する等、内視鏡装置100全体を制御する。   The endoscope control unit 73 is connected to an imaging signal processing unit 53, a memory 75 that stores imaging signals and various information, and an image processing unit 77. The endoscope control unit 73 performs appropriate image processing on the image data output from the imaging signal processing unit 53 by the image processing unit 77 and displays the image data on the display unit 15. In addition, the entire endoscope apparatus 100 is controlled such as being connected to a network such as a LAN (not shown) and distributing information including image data.

レーザ光源LD1は、中心波長445nmの青色発光の半導体レーザである。レーザ光源LD1は、出射光量を光源制御部61により制御された青色レーザ光を出射し、この出射光が光ファイバ57A,57Bを通じて内視鏡先端部39の波長変換部材59A,59Bに照射される。このレーザ光源LD1としては、例えばブロードエリア型のInGaN系レーザダイオードが使用できる。   The laser light source LD1 is a blue-emitting semiconductor laser having a central wavelength of 445 nm. The laser light source LD1 emits blue laser light whose emission light amount is controlled by the light source control unit 61, and the emitted light is irradiated to the wavelength conversion members 59A and 59B of the endoscope distal end portion 39 through the optical fibers 57A and 57B. . As this laser light source LD1, for example, a broad area type InGaN laser diode can be used.

波長変換部材59A,59Bは、レーザ光源LD1から出射されるレーザ光の一部を吸収して緑色〜黄色に励起発光する複数種類の蛍光体(例えばYAG系蛍光体、或いはBAM(BaMgAl10O37)等を含む蛍光体等)を含んで構成される。これにより、レーザ光源LD1からのレーザ光と、このレーザ光が波長変換された緑色〜黄色の励起光とが合成された白色光が生成される。なお、波長変換部材59A,59Bに使用される中心発光波長の異なる複数種類の蛍光体は、できるだけ発光の温度特性が同じ蛍光物質を選定して組み合わされている。 The wavelength conversion members 59A and 59B absorb a part of the laser light emitted from the laser light source LD1 and excite and emit green to yellow light (for example, YAG phosphor or BAM (BaMgAl 10 O 37). ) And the like. As a result, white light is generated by combining the laser light from the laser light source LD1 and the green to yellow excitation light obtained by wavelength-converting the laser light. A plurality of types of phosphors having different central emission wavelengths used for the wavelength conversion members 59A and 59B are combined by selecting phosphors having the same emission temperature characteristics as much as possible.

レーザ光源LD2は、中心波長405nmの紫色発光の半導体レーザである。このレーザ光源LD2も光源制御部61により出射光量が制御され、内視鏡先端部39の波長変換部材59A,59Bを通じて照明窓43A,43Bから出射される。   The laser light source LD2 is a violet-emitting semiconductor laser having a central wavelength of 405 nm. The laser light source LD2 is also controlled by the light source controller 61 to emit light, and is emitted from the illumination windows 43A and 43B through the wavelength conversion members 59A and 59B of the endoscope distal end 39.

次に、上記構成の内視鏡装置100により被検体を観察する際の、各レーザ光源の出射光量比について説明する。
光源制御部61は、レーザ光源LD1(中心波長445nm)による白色照明光と、レーザ光源LD2(中心波長405nm)による狭帯域光とを、内視鏡制御部73からの指示に基づいて、各出射光量をそれぞれ個別に制御する。
Next, the emission light quantity ratio of each laser light source when observing the subject with the endoscope apparatus 100 having the above-described configuration will be described.
The light source controller 61 emits white illumination light from the laser light source LD1 (center wavelength 445 nm) and narrowband light from the laser light source LD2 (center wavelength 405 nm) based on instructions from the endoscope controller 73. The amount of light is controlled individually.

内視鏡の術者は、図2に示す本体操作部23の各種操作ボタン31の操作や、制御装置13側の入力部17等から入力操作を行う。内視鏡制御部73は、術者からの操作信号に基づいて光源制御部61、撮像制御部55へ制御信号を出力する。このとき、観察対象に適した照明光が内視鏡先端部39の照明窓43A,43B(図1参照)から出射される。また、撮像素子45は所望の撮像条件で被検体を撮像する。   The operator of the endoscope performs an input operation from various operation buttons 31 of the main body operation unit 23 illustrated in FIG. 2 or the input unit 17 on the control device 13 side. The endoscope control unit 73 outputs a control signal to the light source control unit 61 and the imaging control unit 55 based on an operation signal from the operator. At this time, illumination light suitable for the observation target is emitted from the illumination windows 43A and 43B (see FIG. 1) of the endoscope distal end portion 39. The imaging element 45 images the subject under desired imaging conditions.

その際、レーザ光源LD1と、レーザ光源LD2からの光の出射光量比を、観察対象に応じて適宜変更することにより、高コントラストで診断に適した観察画像を取得できる。観察画像における血管(観察対象)と粘膜(背景画像)のコントラストは、観察対象/背景画像の比で1.4以上、好ましくは1.6以上である場合に十分な表層血管抽出能力が得られるようになる。このように、レーザ光源LD1とLD2の出射光量比は、組織表層の観察画像に明らかな変化を生じさせる。   At that time, an observation image suitable for diagnosis with high contrast can be acquired by appropriately changing the ratio of the amount of light emitted from the laser light source LD1 and the laser light source LD2 depending on the observation target. When the contrast between the blood vessel (observation object) and the mucous membrane (background image) in the observation image is 1.4 or more, preferably 1.6 or more in the ratio of the observation object / background image, sufficient surface blood vessel extraction ability can be obtained. It becomes like this. Thus, the emission light quantity ratio of the laser light sources LD1 and LD2 causes a clear change in the observation image of the tissue surface layer.

生体組織表層の情報が良好に映出された適正露光の観察画像を取得するためには、レーザ光源LD1とLD2の出射光量比を所望の光量比に高精度に合わせると共に、レーザ光源LD1とLD2からの出射光により生成される照明光を目標光量に精度良く合わせることが重要となる。   In order to obtain an appropriately exposed observation image in which the information on the surface of the living tissue is well projected, the emitted light quantity ratio of the laser light sources LD1 and LD2 is adjusted to the desired light quantity ratio with high accuracy, and the laser light sources LD1 and LD2 are used. It is important to match the illumination light generated by the emitted light from the target light amount with high accuracy.

光源制御部61は、各レーザ光源LD1,LD2の各目標光量P1,P2に対する個別の出射光量を、目標光量がP1,P2と変化しても出射光量比Ra:Rbを常に一定に維持するように制御する。これにより、レーザ光源LD1,LD2の出射光量比が所望の出射光量比に維持されたまま、各レーザ光源LD1,LD2の出射光量の合計が所望の目標光量に制御される。   The light source controller 61 keeps the output light quantity ratio Ra: Rb constant at all times even if the individual emitted light quantity for each target light quantity P1, P2 of each laser light source LD1, LD2 is changed to P1, P2. To control. Thereby, the total of the emitted light amounts of the laser light sources LD1 and LD2 is controlled to the desired target light amount while the emitted light amount ratio of the laser light sources LD1 and LD2 is maintained at the desired emitted light amount ratio.

次に、内視鏡装置100のレーザ光源LD1,LD2の発光強度の増減制御について説明する。
まず、術者が図1に示す内視鏡11の本体操作部23に設けられた操作ボタン31を操作することにより、内視鏡制御部73が、通常観察、狭帯域光観察等の各種観察モードに切り替える制御を行う。即ち、通常観察モードでは、レーザ光源LD1,LD2の出射光量比LD1:LD2を1:0に設定し、狭帯域光観察モードでは、LD1:LD2を予めプリセットされた任意の比率に設定する。
Next, increase / decrease control of the emission intensity of the laser light sources LD1 and LD2 of the endoscope apparatus 100 will be described.
First, when the operator operates the operation button 31 provided on the main body operation unit 23 of the endoscope 11 shown in FIG. 1, the endoscope control unit 73 performs various observations such as normal observation and narrowband light observation. Control to switch to the mode. That is, in the normal observation mode, the emission light quantity ratio LD1: LD2 of the laser light sources LD1 and LD2 is set to 1: 0, and in the narrowband light observation mode, LD1: LD2 is set to an arbitrary preset ratio.

狭帯域光観察モードにおいては、レーザ光源LD1,LD2の双方の出力を上記の出射光量比に保持しつつ、レーザ光源LD1,LD2の合計の出射光量を目標光量にする制御を行う。   In the narrow-band light observation mode, control is performed so that the total emitted light amount of the laser light sources LD1 and LD2 is set to the target light amount while the outputs of both the laser light sources LD1 and LD2 are maintained at the above-described emitted light amount ratio.

術者が、内視鏡観察時に操作ボタン31を操作することで、観察モードを狭帯域光観察モードに切り替えると、内視鏡制御部73は、予めプリセットされた出射光量比を設定する。レーザ光源LD1,LD2の出射光量比Ra:Rbは、観察モードに応じて切り替え可能に予め複数種が用意され、それらの情報がメモリ75に記憶されている。内視鏡制御部73は、切り替えた観察モードに指定された出射光量比Ra:Rbをメモリ75から読み出して、出射光量比の情報を光源制御部61に送信する。   When the surgeon operates the operation button 31 during endoscope observation to switch the observation mode to the narrow-band light observation mode, the endoscope control unit 73 sets a preset emission light amount ratio. A plurality of types of emission light amount ratios Ra: Rb of the laser light sources LD1 and LD2 are prepared in advance so as to be switchable according to the observation mode, and the information is stored in the memory 75. The endoscope control unit 73 reads out the emitted light amount ratio Ra: Rb designated in the switched observation mode from the memory 75 and transmits information on the emitted light amount ratio to the light source control unit 61.

光源制御部61は、内視鏡制御部73から送信された出射光量比Ra:Rbの情報を受け取る。そして、この出射光量比に基づいて、駆動信号生成部67がレーザ光源LD1,LD2を駆動する各パルス駆動信号を生成する。具体的には、標準の駆動電流値から各レーザ光源LD1,LD2の各パルス駆動信号の電流値(振幅値)をそれぞれ増減させ、かつ、各パルス駆動信号の積分強度が、標準の駆動電流値とした場合の積分強度と等しくなるように設定する。   The light source control unit 61 receives the information on the emitted light amount ratio Ra: Rb transmitted from the endoscope control unit 73. And based on this emitted light quantity ratio, the drive signal production | generation part 67 produces | generates each pulse drive signal which drives laser light source LD1, LD2. Specifically, the current value (amplitude value) of each pulse drive signal of each laser light source LD1, LD2 is increased or decreased from the standard drive current value, and the integrated intensity of each pulse drive signal is the standard drive current value. Is set to be equal to the integrated intensity.

一方、レーザ光源LD1,LD2から出射される光量と、波長変換部材59A,59Bからの蛍光光量とを合計した全光量に対する目標光量は、前フレームの撮像画像に対する全照明光量と、その撮像画像に対するAE信号とに基づいて内視鏡制御部73が設定する。   On the other hand, the target light amount with respect to the total light amount obtained by summing the light amounts emitted from the laser light sources LD1 and LD2 and the fluorescent light amounts from the wavelength conversion members 59A and 59B is the total illumination light amount for the captured image of the previous frame and the captured image. The endoscope control unit 73 is set based on the AE signal.

メモリ75には、全照明光量とAE信号に対する目標光量の値がテーブル情報として記憶されている。内視鏡制御部73は、メモリ75を参照して、次フレームに対する目標光量を求める。内視鏡制御部73は、求めた目標光量を光源制御部61に送信する。   The memory 75 stores the total illumination light amount and the target light amount value for the AE signal as table information. The endoscope control unit 73 refers to the memory 75 and obtains a target light amount for the next frame. The endoscope control unit 73 transmits the obtained target light amount to the light source control unit 61.

次に、これら設定された駆動信号の振幅と目標光量に基づいて、駆動信号生成部67はレーザ光源LD1,LD2の各パルス駆動信号を、共通するパルス変調制御により生成する。   Next, based on the set amplitude of the drive signal and the target light amount, the drive signal generation unit 67 generates the pulse drive signals of the laser light sources LD1 and LD2 by common pulse modulation control.

次に、上記共通のパルス変調制御によりパルス駆動信号を生成する具体例について説明する。
図1に示す光源制御部61は、内視鏡制御部73からの指示を受けて、レーザ光源LD1,LD2の発光量をパルス変調制御する。駆動信号生成部67は、内視鏡制御部73に接続されたメモリ75を参照してパルス駆動信号を生成する。このパルス駆動信号の変調制御は、パルス数制御(PNM:Pulse Number Modulation)及びパルス密度制御(PDM:Pulse Density Modulation)と、パルス幅制御(PWM:Pulse Width Modulation)との3種類の制御、或いはパルス振幅制御(PAM:Pulse Amplitude Modulation)を加えた4種類の制御を用いて実施される。
Next, a specific example of generating a pulse drive signal by the common pulse modulation control will be described.
In response to an instruction from the endoscope control unit 73, the light source control unit 61 illustrated in FIG. 1 performs pulse modulation control on the light emission amounts of the laser light sources LD1 and LD2. The drive signal generator 67 generates a pulse drive signal with reference to the memory 75 connected to the endoscope controller 73. There are three types of modulation control of the pulse drive signal: pulse number control (PNM) and pulse density control (PDM: Pulse Density Modulation) and pulse width control (PWM: Pulse Width Modulation). It is implemented using four types of control including pulse amplitude control (PAM).

図3にパルス駆動信号の変調制御のタイミングチャートを示した。垂直同期信号VDにより規定される画像の1フレームの期間内において、電子シャッタの露光期間の少なくとも一部を点灯させる駆動パルス[1]を最大光量としている。ここで、1フレーム期間は33ms、シャッタ速度は1/60sとする。また、駆動パルス[1]の周波数は120kHzであり、電子シャッタの露光期間内に2000個のパルスが含まれているものする。   FIG. 3 shows a timing chart of modulation control of the pulse drive signal. The drive pulse [1] for lighting at least a part of the exposure period of the electronic shutter is set to the maximum light amount within the period of one frame of the image defined by the vertical synchronization signal VD. Here, one frame period is 33 ms, and the shutter speed is 1/60 s. In addition, the frequency of the drive pulse [1] is 120 kHz, and 2000 pulses are included in the exposure period of the electronic shutter.

駆動パルス[1]の最大光量時から光量を減少させる場合、光量の大きい順に、第1のパルス変調領域でPNM制御、第2のパルス変調領域でPDM制御、第3のパルス変調領域でPWM制御を行い、光量を徐々に減少させる。   When reducing the light intensity from the maximum light intensity of the drive pulse [1], PNM control in the first pulse modulation area, PDM control in the second pulse modulation area, and PWM control in the third pulse modulation area in descending order of the light intensity And gradually reduce the amount of light.

まず、PNM制御においては、電子シャッタの露光期間Waの全てから、時間軸における後ろ詰めでパルス数を減少させ、点灯期間を短縮する。つまり、電子シャッタによる1フレーム内の露光期間Waに対し、駆動パルス[2]に示すように、所定の最小割合になるまで駆動パルスのパルス数を駆動開始タイミングが遅れるように減少させ、レーザ光源の点灯期間を短縮する。なお、最大光量は、電子シャッタの露光期間Waの全てでなく、1フレーム全期間の点灯であってもよく、連続点灯状態としてもよい。   First, in the PNM control, the number of pulses is decreased from the entire exposure period Wa of the electronic shutter by the back-alignment on the time axis, and the lighting period is shortened. That is, with respect to the exposure period Wa within one frame by the electronic shutter, as shown in the drive pulse [2], the number of drive pulses is decreased so that the drive start timing is delayed until the predetermined minimum ratio is reached, and the laser light source Reduce the lighting period. Note that the maximum light amount may not be the entire exposure period Wa of the electronic shutter, but may be lit for the entire period of one frame, or may be continuously lit.

次に、駆動パルス[3]に示すように、レーザ光源の点灯期間をPNM制御により所定の点灯期間Wminまで短縮した後、PDM制御により駆動パルスを間引く処理を行う。このPDM制御においては、所定の点灯期間Wminまで短縮された点灯期間に対し、所定間隔で駆動パルスを間引くことで点灯期間内のパルス密度を減少させる。   Next, as shown in drive pulse [3], after the lighting period of the laser light source is shortened to a predetermined lighting period Wmin by PNM control, a process of thinning the drive pulse by PDM control is performed. In this PDM control, the pulse density in the lighting period is reduced by thinning out drive pulses at predetermined intervals with respect to the lighting period shortened to the predetermined lighting period Wmin.

そして、駆動パルス[4]に示すように、駆動パルスのパルス間隔が間引き限界に達するまで、即ち、駆動パルスが所定の最小パルス密度となるまでの範囲はPDM制御を行う。   Then, as shown in the drive pulse [4], PDM control is performed until the pulse interval of the drive pulse reaches the thinning limit, that is, until the drive pulse reaches a predetermined minimum pulse density.

次に、駆動パルスが所定の最小パルス数となった後は、駆動パルス[5]に示すように、PWM制御により駆動パルスのパルス幅を減少させる。駆動パルス[6]に示すように、駆動パルスのパルス幅がPWM制御限界に達するまでの範囲はPWM制御を行う。   Next, after the drive pulse reaches a predetermined minimum number of pulses, as shown in drive pulse [5], the pulse width of the drive pulse is reduced by PWM control. As shown in drive pulse [6], PWM control is performed in the range until the pulse width of the drive pulse reaches the PWM control limit.

このように、光量を減少制御する際、最大光量から最初にPNM制御を行うことで、レーザ光源の点灯期間を短縮して、ブレによる撮像画像の画像ボケ発生を抑制できる。また、レーザ光源の非点灯時間が長くなるので、連続点灯する場合と比較して、光源自体や光路上の各光学部材の発熱を低減する効果も得られる。   As described above, when the light amount is controlled to be reduced, the PNM control is first performed from the maximum light amount, so that the lighting period of the laser light source can be shortened and the occurrence of image blurring of the captured image due to blurring can be suppressed. Further, since the non-lighting time of the laser light source becomes longer, the effect of reducing the heat generation of the light source itself and each optical member on the optical path can be obtained as compared with the case of continuous lighting.

また、所定の点灯期間まで短縮された時点でPNM制御からPDM制御に切り替えることにより、適度に長い点灯期間が維持されて、動画観察時のフリッカ発生を抑制できる。PDM制御の下限であるパルス数は、PDM制御による調光分解能が粗くなることを防止できる。   Also, by switching from PNM control to PDM control when the predetermined lighting period is shortened, a reasonably long lighting period is maintained, and flickering during movie observation can be suppressed. The number of pulses, which is the lower limit of PDM control, can prevent the dimming resolution by PDM control from becoming coarse.

PWM制御では、各駆動パルスそれぞれのデューティ比を変更することで、間引き限界より低光量域における光量をより細かに調整でき、調光分解能が向上する。   In the PWM control, by changing the duty ratio of each drive pulse, the light quantity in the low light quantity region can be adjusted more finely than the thinning limit, and the dimming resolution is improved.

ところで、レーザ光源をパルス点灯制御する際、レーザ光源はスペックルノイズによる照明ムラを生じる。そこで、十分なスペックルノイズ低減効果を得るため、PWM制御におけるデューティ比は上限を設けている。   By the way, when performing pulse lighting control of the laser light source, the laser light source causes illumination unevenness due to speckle noise. Therefore, in order to obtain a sufficient speckle noise reduction effect, the duty ratio in PWM control has an upper limit.

また、実際のレーザ光は駆動の立ち上がり信号に忠実に追随することができず、ある程度の遅れ成分を有して立ち上がる。また、立下り時も同様に遅れ成分を有する。そのため、駆動パルスが極端に狭い狭幅パルスであると目標値に到達する前に立ち下がることが予想されるので、PWM制御が正確に行えるデューティ比の下限を設定している。   Further, the actual laser beam cannot follow the drive rising signal faithfully, and rises with a certain delay component. Similarly, it has a delay component at the time of falling. For this reason, if the drive pulse is an extremely narrow narrow pulse, it is expected that the drive pulse falls before reaching the target value. Therefore, a lower limit of the duty ratio at which PWM control can be accurately performed is set.

上記のPNM/PDM制御、PWM制御は、目標光量に応じて切り替えられ、いずれか一つの制御が他の制御と排他的に使用される。制御可能な光量のダイナミックレンジは、各制御を組み合わせることで、キセノンランプ等の白色ランプのダイナミックレンジと同等か、それ以上になる。   The PNM / PDM control and the PWM control are switched according to the target light amount, and any one of the controls is used exclusively with the other controls. The dynamic range of the controllable light quantity is equal to or greater than the dynamic range of a white lamp such as a xenon lamp by combining each control.

上記の変調制御されたパルス駆動信号は、所定の照明光量が得られるようにパルス数、パルス密度、パルス幅が設定されている。しかし、蛍光体の発光強度に温度依存性がある場合、意図した通りの照明光の強度が得られないことがある。特に複数種類の蛍光体を用いる場合には、各蛍光体の発光効率が個別に変化して、所望の色調からずれた照明光になることがある。   The number of pulses, pulse density, and pulse width of the pulse drive signal subjected to modulation control are set so that a predetermined amount of illumination light can be obtained. However, when the emission intensity of the phosphor has temperature dependency, the intensity of illumination light as intended may not be obtained. In particular, when a plurality of types of phosphors are used, the luminous efficiency of each phosphor may change individually, resulting in illumination light that deviates from a desired color tone.

図4(A)にレーザ光源LD1へのパルス駆動信号を示した。パルス駆動信号81の各パルス83は、振幅強度がI0、パルス幅がWであり、周期Tで連続する信号となっている。このパルス駆動信号81によりレーザ光源LD1を駆動して波長変換部材59A,59Bに光照射すると、波長変換部材59A,59Bから蛍光が生じると共に、各波長変換部材59A,59Bの温度が上昇する。すると、波長変換部材59A,59Bに含まれる蛍光体の発光特性が温度依存性を有するため、温度上昇に伴って蛍光体の発光強度が低下する。 FIG. 4A shows a pulse drive signal to the laser light source LD1. Each pulse 83 of the pulse drive signal 81 is a signal having an amplitude intensity of I 0 , a pulse width of W, and a continuous period T. When the laser light source LD1 is driven by the pulse drive signal 81 to irradiate the wavelength conversion members 59A and 59B with light, fluorescence is generated from the wavelength conversion members 59A and 59B, and the temperatures of the wavelength conversion members 59A and 59B rise. Then, since the light emission characteristics of the phosphors included in the wavelength conversion members 59A and 59B have temperature dependence, the light emission intensity of the phosphors decreases as the temperature rises.

そこで、光源制御部61は、図4(B)に示すように、前述の一つのパルス83を更にパルス幅の短い複数の短パルス87に分割して、波長変換部材59A.59Bに連続して光照射されることを防止する。つまり、駆動信号変換部69(図1参照)は、変換前のパルス駆動信号81のパルス83に対して、そのパルス幅Wに相当する期間内で、パルス幅がW1である複数の短パルス87,87,87,・・・に分割する。短パルスへの分割は、パルス駆動信号81の各パルスに対して同様に行う。   Therefore, as shown in FIG. 4B, the light source controller 61 divides the single pulse 83 into a plurality of short pulses 87 having a shorter pulse width, and converts the wavelength conversion member 59A. 59B is prevented from being continuously irradiated with light. That is, the drive signal converter 69 (see FIG. 1) has a plurality of short pulses 87 with a pulse width of W1 within a period corresponding to the pulse width W of the pulse 83 of the pulse drive signal 81 before conversion. , 87, 87,... The division into short pulses is performed in the same manner for each pulse of the pulse drive signal 81.

駆動信号変換部69は、各短パルス87を、パルス幅Wの期間内における積分強度がパルス83の積分強度と等しくなるように、その振幅強度I1と、休止期間Sとを設定する。パルス駆動信号81における一つのパルス83を、パルス幅の短い複数の短パルス87からなる短パルス群89に変換することで、波長変換部材59A,59Bへの連続光照射期間が短くなり、波長変換部材59A,59Bの温度上昇が抑えられる。これにより、波長変換部材59A,59Bが発生する蛍光の強度によって、照明光の光量や色調が変化することを防止できる。 The drive signal conversion unit 69 sets the amplitude intensity I 1 and the pause period S of each short pulse 87 so that the integrated intensity in the period of the pulse width W is equal to the integrated intensity of the pulse 83. By converting one pulse 83 in the pulse drive signal 81 into a short pulse group 89 composed of a plurality of short pulses 87 having a short pulse width, the continuous light irradiation period to the wavelength conversion members 59A and 59B is shortened, and wavelength conversion is performed. The temperature rise of the members 59A and 59B is suppressed. Thereby, it can prevent that the light quantity and color tone of illumination light change with the intensity | strength of the fluorescence which the wavelength conversion members 59A and 59B generate | occur | produce.

具体的には、図1に示す駆動信号変換部69は、まず駆動信号生成部67で生成されたパルス駆動信号における一つのパルス83の積分強度を求める。そして、駆動信号変換部69は、その一つのパルス83の積分強度が予め定めた光量変化の許容限度値を超える強度であるかを判定する。光量変化の許容限度値とは、蛍光体の発光効率の温度依存性に起因して、蛍光体からの発光光量が変化することで、観察画像の色調や輝度に無視できない影響が及ぶ最小の光量変化値である。   Specifically, the drive signal converter 69 shown in FIG. 1 first obtains the integrated intensity of one pulse 83 in the pulse drive signal generated by the drive signal generator 67. Then, the drive signal conversion unit 69 determines whether or not the integrated intensity of the one pulse 83 is an intensity that exceeds a predetermined allowable limit value of the change in light amount. The permissible limit value for the change in the amount of light is the minimum amount of light that has a non-negligible effect on the color tone and brightness of the observed image due to changes in the amount of light emitted from the phosphor due to the temperature dependence of the luminous efficiency of the phosphor. It is a change value.

ここで、光量変化の許容限度値と、一つのパルスの積分強度と光量変化量との関係を表す蛍光体特性情報は、それぞれ特性情報記憶部71に予め記憶されている。駆動信号変換部69は、一つのパルス83の積分強度に対する光量変化量を、特性情報記憶部71の蛍光体特性情報を参照して求め、得られた光量変化量と、予め定めた光量変化の許容限度値とを比較することで、積分強度の大きさを判定する。   Here, the phosphor characteristic information indicating the relationship between the permissible limit value of the light amount change and the integrated intensity of one pulse and the light amount change amount is stored in advance in the characteristic information storage unit 71, respectively. The drive signal conversion unit 69 obtains a light amount change amount with respect to the integrated intensity of one pulse 83 with reference to the phosphor characteristic information in the characteristic information storage unit 71, and the obtained light amount change amount and a predetermined light amount change amount. The magnitude of the integrated intensity is determined by comparing with an allowable limit value.

駆動信号変換部69が、光量変化が許容限度値を超える積分強度であると判定した場合、図4(B)に示すように、パルス駆動信号81の各パルス83をそれぞれ複数の短パルス87からなる短パルス群89に分割する。短パルス群89の各短パルス87は、一つのパルス83の積分強度値に応じてパルス数、パルス幅、パルス周期等が駆動信号変換部69により設定される。   When the drive signal conversion unit 69 determines that the light intensity change is an integrated intensity exceeding the allowable limit value, each pulse 83 of the pulse drive signal 81 is converted from a plurality of short pulses 87 as shown in FIG. Into short pulse groups 89. For each short pulse 87 in the short pulse group 89, the number of pulses, the pulse width, the pulse period, and the like are set by the drive signal conversion unit 69 according to the integrated intensity value of one pulse 83.

光源制御部61は、上記変換された分割パルス駆動信号85を用いてレーザ光源LD1を駆動する。一方、許容量以下の積分強度であると判定した場合には、駆動信号生成部67で生成されたパルス駆動信号81をそのまま用いてレーザ光源LD1を駆動する。   The light source control unit 61 drives the laser light source LD1 using the converted divided pulse drive signal 85. On the other hand, when it is determined that the integrated intensity is less than or equal to the allowable amount, the laser light source LD1 is driven using the pulse drive signal 81 generated by the drive signal generator 67 as it is.

図5は図4(B)の分割パルス駆動信号により発光する蛍光体の発光強度を概略的に示す説明図である。分割パルス駆動信号85によりレーザ光源LD1を駆動すると、波長変換部材59A,59Bから短パルス87に応じた断続的な照明光が出力される。レーザ光源LD1の出射光による波長変換部材59A,59Bの温度上昇期間は、短いパルス幅W1の短パルスによる駆動であるために、期間W1内に限られる。また、温度上昇期間後の休止期間Sは、波長変換部材59A,59Bの冷却期間となる。そのため、波長変換部材59A,59Bの温度変化は僅かであり、蛍光体の発光特性が大きく変化するまでには至らない。よって、各短パルスに対応して発生する蛍光光は、各短パルスで毎回同等の強度レベルとなる。   FIG. 5 is an explanatory diagram schematically showing the light emission intensity of the phosphor that emits light according to the divided pulse drive signal of FIG. When the laser light source LD1 is driven by the divided pulse drive signal 85, intermittent illumination light corresponding to the short pulse 87 is output from the wavelength conversion members 59A and 59B. The temperature rise period of the wavelength conversion members 59A and 59B by the light emitted from the laser light source LD1 is limited to the period W1 because it is driven by a short pulse having a short pulse width W1. The rest period S after the temperature rise period is a cooling period of the wavelength conversion members 59A and 59B. Therefore, the temperature change of the wavelength conversion members 59A and 59B is slight, and the light emission characteristics of the phosphor do not change greatly. Therefore, the fluorescent light generated corresponding to each short pulse has the same intensity level every time in each short pulse.

従って、分割パルス駆動信号でレーザ光源LD1を駆動した際の波長変換部材59A,59Bからの出力光は、期間W内における積分強度が、変換前のパルス駆動信号における一つのパルス83に対する理想出力光91の積分強度と一致する。このため、照明光の色調を変化させることなく、所望の光量の照明光を安定して生成することができる。   Accordingly, the output light from the wavelength conversion members 59A and 59B when the laser light source LD1 is driven by the divided pulse drive signal has an integrated intensity within the period W, and the ideal output light for one pulse 83 in the pulse drive signal before conversion. This corresponds to an integral intensity of 91. For this reason, it is possible to stably generate a desired amount of illumination light without changing the color tone of the illumination light.

図6(A)は駆動パルスに対する波長変換部材からの出力光の強度変化を示す説明図である。レーザ光源LD1(図1参照)を、短パルス87が含まれるパルス駆動信号で駆動すると、短パルス87の供給タイミングに応じて波長変換部材59A,59Bから断続的な出力光が得られる。しかし、蛍光体の発光応答特性は、厳密には所定の遅れ成分があるため、励起光を受光してから発光が開始するまでの初期期間と、励起光を停止してから発光が止まるまでの残光期間は過渡状態となる。   FIG. 6A is an explanatory diagram showing a change in the intensity of the output light from the wavelength conversion member with respect to the drive pulse. When the laser light source LD1 (see FIG. 1) is driven by a pulse drive signal including the short pulse 87, intermittent output light is obtained from the wavelength conversion members 59A and 59B in accordance with the supply timing of the short pulse 87. However, strictly speaking, the emission response characteristic of the phosphor has a predetermined delay component, so the initial period from when the excitation light is received until the emission starts, and after the excitation light is stopped until the emission stops. The afterglow period is in a transient state.

一方、図6(B)に示すように、休止期間Taが残光期間TL以下に設定される場合には、残光期間における強度波形の波尾が次の短パルスと重なることになる。そのため、一つの短パルスによる出力光が所望の積分強度にならず、設定する光量が得られない。そこで駆動信号変換部69は、図6(A)に示すように、複数の短パルス間の休止期間、即ち、レーザ光源LD1が点灯休止してから次に点灯開始するまでの休止期間Taが、励起光の停止後に蛍光体の発光強度が発光停止状態になるまでの残光期間TLより長くなるように分割パルス駆動信号を生成する。分割パルス駆動信号の短パルスが、それぞれ蛍光体の残光期間TLより長い休止期間Taを空けて設定されることで、各短パルスの積分強度通りの照明光を得ることができる。   On the other hand, as shown in FIG. 6B, when the pause period Ta is set to be less than the afterglow period TL, the wave tail of the intensity waveform in the afterglow period overlaps with the next short pulse. Therefore, the output light by one short pulse does not have a desired integrated intensity, and the set light quantity cannot be obtained. Therefore, as shown in FIG. 6A, the drive signal conversion unit 69 has a pause period between a plurality of short pulses, that is, a pause period Ta from when the laser light source LD1 is turned on to when it is next turned on. After the excitation light is stopped, the divided pulse drive signal is generated so that the emission intensity of the phosphor becomes longer than the afterglow period TL until the emission is stopped. The short pulses of the divided pulse drive signal are set with a pause period Ta longer than the afterglow period TL of the phosphor, so that illumination light according to the integrated intensity of each short pulse can be obtained.

なお、蛍光体発光の応答特性は、使用する蛍光材料によって異なるため、短パルス間の休止期間Taは使用する蛍光体材料に応じて設定する。ここで、以下に一例として示す蛍光体材料に対する蛍光体発光の応答速度は、発光強度が減衰して1/eに達するまでの時間Teで表され、次のようになる。
1)青色発光蛍光体:バリウム マグネシウム アルミネイト(BaMg2Al1627
中心発光波長452nm、Te=2μs
2)赤色発光蛍光体:Y23:Eu2+
中心発光波長611nn、Te=1.1ms
3)緑色発光蛍光体:LaPO4:Ce,Tb
中心発光波長544nm、Te=2.6ms
In addition, since the response characteristic of phosphor emission varies depending on the fluorescent material used, the rest period Ta between short pulses is set according to the phosphor material used. Here, the response speed of the phosphor emission with respect to the phosphor material shown as an example below is expressed by the time Te until the emission intensity attenuates and reaches 1 / e, and is as follows.
1) Blue light emitting phosphor: barium magnesium aluminite (BaMg 2 Al 16 O 27 )
Center emission wavelength 452nm, Te = 2μs
2) Red light emitting phosphor: Y 2 O 3 : Eu 2+
Center emission wavelength 611nn, Te = 1.1ms
3) Green light emitting phosphor: LaPO 4 : Ce, Tb
Center emission wavelength 544nm, Te = 2.6ms

上記例の蛍光体材料では、特に青色発光蛍光体の減衰時間Te が短い。このため、分割パルス駆動信号の短パルスの最大周波数は、上記の青色発光蛍光体を含めて考慮すると500kHz以下であればよい。更には、他の一般的な蛍光体材料を考慮すると240kHz以下であることが望ましい。   In the phosphor material of the above example, the decay time Te of the blue light emitting phosphor is particularly short. For this reason, the maximum frequency of the short pulse of the divided pulse drive signal may be 500 kHz or less in consideration of the blue light emitting phosphor. Furthermore, in consideration of other general phosphor materials, the frequency is preferably 240 kHz or less.

駆動信号変換部69(図1参照)は、駆動信号生成部67によるパルス駆動信号の一つのパルスを、上記最大周波数以下の範囲で分割する。これにより、照明光を常に正確な強度・色調で生成できる。   The drive signal conversion unit 69 (see FIG. 1) divides one pulse of the pulse drive signal by the drive signal generation unit 67 within a range of the maximum frequency or less. Thereby, illumination light can always be generated with accurate intensity and color tone.

上記構成の内視鏡装置によれば、キセノンランプ等の既存構成と同等の光源制御を実現しているので、既存のプロセッサをそのまま使用でき、汎用性を高めた構成にできる。更に、半導体光源の光源寿命はキセノンランプ等の白色ランプより格段に長いため、機器のメンテナンスを軽減できる。   According to the endoscope apparatus having the above configuration, light source control equivalent to that of an existing configuration such as a xenon lamp is realized, so that an existing processor can be used as it is and a configuration with improved versatility can be achieved. Furthermore, since the light source life of the semiconductor light source is much longer than that of a white lamp such as a xenon lamp, maintenance of the equipment can be reduced.

また、狭帯域光照明用の半導体光源としては、中心波長が360〜530nmのレーザ光源を用いることができる。このレーザ光源であれば、生体組織表層の毛細血管や微細構造の強調画像が得られる。そして、白色照明光と狭帯域光とを混合した合計光量を目標光量に設定して、被検体を照明する場合でも、白色照明光の強度を正確に調整できる。そのため、強調度合いを高精度に設定でき、良好な観察画像を得ることができる。   Moreover, as a semiconductor light source for narrow-band light illumination, a laser light source having a center wavelength of 360 to 530 nm can be used. With this laser light source, an enhanced image of capillaries and fine structures on the surface of a living tissue can be obtained. The intensity of the white illumination light can be accurately adjusted even when the subject is illuminated by setting the total light amount obtained by mixing the white illumination light and the narrow band light as the target light amount. Therefore, the degree of enhancement can be set with high accuracy, and a good observation image can be obtained.

本発明は上記の実施形態に限定されるものではなく、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。例えば、本実施形態では発光素子としてレーザ光源を用いた例を説明したが、発光ダイオードを用いてもよい。発光ダイオードには、砲弾型、表面実装型、ハイパワーLED等、各種のタイプがあるが、いずれのタイプに対しても、分割パルス駆動信号を短パルス化することで、照明光を常に正確な強度・色調で生成でき、省電力で高輝度な照明光が得られる。
また、キセノンランプ等の白色光源からの光を、フィルタリングにより特定波長のみ抽出する構成としてもよい。
また、光量制御は、撮像手段の電子シャッタによる露光制御と、発光素子の光量制御とを組み合わせて制御することもできる。また、上記の説明では2つのレーザ光源に対する出射光量の制御を説明したが、光源の数はこれに限らず、任意の数で構成することもできる。更に、出射光量制御は、駆動電流値の制御に代えて、駆動電圧値の制御とすることもできる。
The present invention is not limited to the above-described embodiments, and those skilled in the art can change or apply the present invention based on the description of the specification and well-known techniques. included. For example, in the present embodiment, an example in which a laser light source is used as a light emitting element has been described, but a light emitting diode may be used. There are various types of light-emitting diodes, such as a bullet-type, surface-mount type, and high-power LED. For any type, the split pulse drive signal is shortened to make the illumination light always accurate. It can be generated with intensity and color tone, and it can save illumination with high brightness.
Moreover, it is good also as a structure which extracts only the specific wavelength by filtering the light from white light sources, such as a xenon lamp.
Further, the light amount control can be controlled by combining the exposure control by the electronic shutter of the imaging means and the light amount control of the light emitting element. In the above description, control of the amount of emitted light with respect to the two laser light sources has been described. However, the number of light sources is not limited to this, and any number of light sources may be used. Furthermore, the emitted light quantity control can be replaced with a drive voltage value control instead of a drive current value control.

以上の通り、本明細書には次の事項が開示されている。
(1) 発光素子、及び該発光素子からの出射光で発光する蛍光体が含まれる波長変換部材を備え、前記発光素子から出射され前記波長変換部材を透過した透過光と、前記波長変換部材からの発光光とを合成した照明光を出力する光源部と、
前記発光素子を駆動するためのパルス駆動信号を生成する駆動信号生成部と、
前記蛍光体の発光効率の温度依存性に起因する前記照明光の光量変化量が許容限度値以下となるように、生成された前記パルス駆動信号の各パルスを、更にパルス幅が短い複数の短パルスに分割した分割パルス駆動信号を生成する駆動信号変換部と、
前記発光素子を前記分割パルス駆動信号で駆動する光源制御部と、
を具備した内視鏡装置。
この内視鏡装置によれば、パルス駆動信号の各パルスを、更にパルス幅の短い複数の短パルスに分割した分割パルス駆動信号で発光素子を駆動することにより、発光素子の連続点灯時間が短くなるので、波長変換部材に発光素子からの出射光が連続照射されることが軽減される。そのため、波長変換部材の温度上昇により蛍光体の発光効率が変化して、蛍光体から発生する蛍光強度が変化してしまうことが効率的に防止できる。よって、蛍光体から発生する蛍光強度の変化を軽減して、所望の色調の照明光を常に安定して得ることができる。
As described above, the following items are disclosed in this specification.
(1) A light-emitting element and a wavelength conversion member including a phosphor that emits light by light emitted from the light-emitting element, the transmitted light that is emitted from the light-emitting element and transmitted through the wavelength conversion member, and the wavelength conversion member A light source unit that outputs illumination light synthesized with the emitted light;
A drive signal generator for generating a pulse drive signal for driving the light emitting element;
Each pulse of the generated pulse drive signal is further divided into a plurality of short pulses having a shorter pulse width so that the amount of change in the amount of illumination light due to the temperature dependence of the luminous efficiency of the phosphor is not more than an allowable limit value. A drive signal converter for generating a divided pulse drive signal divided into pulses;
A light source controller that drives the light emitting element with the divided pulse drive signal;
An endoscope apparatus comprising:
According to this endoscope apparatus, the continuous lighting time of the light emitting element is shortened by driving the light emitting element with a divided pulse driving signal obtained by dividing each pulse of the pulse driving signal into a plurality of short pulses having a shorter pulse width. Therefore, it is reduced that the light emitted from the light emitting element is continuously irradiated onto the wavelength conversion member. Therefore, it is possible to efficiently prevent the luminous efficiency of the phosphor from changing due to the temperature rise of the wavelength conversion member and the fluorescence intensity generated from the phosphor from changing. Therefore, it is possible to always stably obtain illumination light having a desired color tone by reducing a change in fluorescence intensity generated from the phosphor.

(2) (1)の内視鏡装置であって、
前記パルス駆動信号における一つのパルスの積分強度と前記光量変化量との関係を表す蛍光体特性情報を記憶する特性情報記憶部を備え、
前記駆動信号変換部が、前記特性情報記憶部から前記蛍光体特性情報を参照して、前記一つのパルスの積分強度に対する前記光量変化量を求める内視鏡装置。
この内視鏡装置によれば、予め用意された特性情報記憶部の蛍光体特性情報を参照して、一つのパルスの積分強度に対する光量変化量を演算処理することなく簡単に求めることができる。
(2) The endoscope apparatus according to (1),
A characteristic information storage unit that stores phosphor characteristic information representing the relationship between the integrated intensity of one pulse in the pulse drive signal and the amount of light change,
An endoscope apparatus in which the drive signal conversion unit refers to the phosphor characteristic information from the characteristic information storage unit and obtains the light amount change amount with respect to the integrated intensity of the one pulse.
According to this endoscope apparatus, it is possible to easily obtain the amount of light quantity change with respect to the integrated intensity of one pulse by referring to the phosphor characteristic information in the characteristic information storage unit prepared in advance without performing arithmetic processing.

(3) (1)又は(2)の内視鏡装置であって、
前記駆動信号変換部が、前記光量変化量が前記許容限度値を超える場合にのみ、前記分割パルス駆動信号を生成する内視鏡装置。
この内視鏡装置によれば、光量変化量が許容限度値を超える場合にのみ、分割パルス駆動信号を生成するので、分割パルス駆動信号が必要なときのみに生成され、駆動信号変換部の演算負担が軽減される。
(3) The endoscope apparatus according to (1) or (2),
An endoscope apparatus in which the drive signal conversion unit generates the divided pulse drive signal only when the light amount change amount exceeds the allowable limit value.
According to this endoscope apparatus, the divided pulse drive signal is generated only when the amount of light change exceeds the allowable limit value. Therefore, the divided pulse drive signal is generated only when necessary, and is calculated by the drive signal conversion unit. The burden is reduced.

(4) (1)〜(3)のいずれか一つの内視鏡装置であって、
前記駆動信号変換部が、前記パルス駆動信号における一つのパルスを分割した前記複数の短パルスの合計積分強度と、前記一つのパルスの積分強度とが一致するように、前記分割パルス駆動信号を生成する内視鏡装置。
この内視鏡装置によれば、パルス駆動信号から分割パルス駆動信号に変換した後の信号強度が一致するので、信号変換による照明光の強度変化がなく、所望の一定光量に維持できる。
(4) The endoscope apparatus according to any one of (1) to (3),
The drive signal conversion unit generates the divided pulse drive signal so that a total integrated intensity of the plurality of short pulses obtained by dividing one pulse in the pulse drive signal matches an integrated intensity of the one pulse. Endoscope device.
According to this endoscope apparatus, since the signal intensity after the conversion from the pulse drive signal to the divided pulse drive signal matches, there is no change in the intensity of the illumination light due to the signal conversion, and the desired constant light quantity can be maintained.

(5) (1)〜(4)のいずれか一つの内視鏡装置であって、
前記駆動信号変換部が、前記複数の短パルス間の休止期間を、前記波長変換部材からの発光光の残光期間より長く設定する内視鏡装置。
この内視鏡装置によれば、波長変換部材からの発光光の残光期間内で、次に短パルスによる発光が開始されることがなくなり、短パルスの積分強度通りの照明光が得られる。
(5) The endoscope apparatus according to any one of (1) to (4),
An endoscope apparatus in which the drive signal conversion unit sets a pause period between the plurality of short pulses longer than an afterglow period of emitted light from the wavelength conversion member.
According to this endoscope apparatus, the light emission by the short pulse is not started next within the afterglow period of the light emission from the wavelength conversion member, and the illumination light having the short pulse integrated intensity can be obtained.

(6) (1)〜(5)のいずれか一つの内視鏡装置であって、
前記駆動信号変換部が、前記短パルスの最大周波数を500kHz以下に設定する内視鏡装置。
この内視鏡装置によれば、蛍光体の応答遅れによる影響を受けることなく、照明光を正確な強度で生成できる。
(6) The endoscope apparatus according to any one of (1) to (5),
An endoscope apparatus in which the drive signal converter sets a maximum frequency of the short pulse to 500 kHz or less.
According to this endoscope apparatus, the illumination light can be generated with an accurate intensity without being affected by the response delay of the phosphor.

(7) (1)〜(6)のいずれか一つの内視鏡装置であって、
前記波長変換部材が、中心発光波長の異なる複数種類の蛍光体を含んで構成される内視鏡装置。
この内視鏡装置によれば、発光効率の温度依存性の違いによる影響を受けることなく、複数種類の蛍光体から発生する蛍光の強度を、それぞれ一定にできる。このため、照明光の色調を常に一定にできる。
(7) The endoscope apparatus according to any one of (1) to (6),
An endoscope apparatus in which the wavelength conversion member includes a plurality of types of phosphors having different central emission wavelengths.
According to this endoscope apparatus, the intensity of fluorescence generated from a plurality of types of phosphors can be made constant without being affected by the difference in temperature dependence of light emission efficiency. For this reason, the color tone of illumination light can always be made constant.

(8) (1)〜(7)のいずれか一つの内視鏡装置であって、
前記発光素子が、半導体発光素子である内視鏡装置。
この内視鏡装置によれば、エネルギ効率よく高輝度の照明光を得ることができる。
(8) The endoscope apparatus according to any one of (1) to (7),
An endoscope apparatus in which the light emitting element is a semiconductor light emitting element.
According to this endoscope apparatus, high-intensity illumination light can be obtained with high energy efficiency.

(9) (1)〜(8)のいずれか一つの内視鏡装置であって、
前記発光素子が青色光を出射し、
前記波長変換部材が発生する蛍光光と前記青色光とを合成することで白色光を生成する内視鏡装置。
この内視鏡装置によれば、蛍光体によるブロードな波長帯の蛍光光を用いて白色光が生成されるため、演色性の高い照明光が得られる。
(9) The endoscope apparatus according to any one of (1) to (8),
The light emitting element emits blue light;
An endoscope apparatus that generates white light by combining the fluorescent light generated by the wavelength conversion member and the blue light.
According to this endoscope apparatus, since white light is generated using fluorescent light in a broad wavelength band by a phosphor, illumination light with high color rendering properties can be obtained.

(10) (1)〜(9)のいずれか一つの内視鏡装置であって、
中心波長360〜530nmの狭帯域光を出射する狭帯域光発光手段を更に備えた内視鏡装置。
この内視鏡装置によれば、可視短波長の狭帯域光を被検体に照射することで、生体組織表層の毛細血管や微細模様を強調して表示できる。
(10) The endoscope apparatus according to any one of (1) to (9),
An endoscope apparatus further comprising narrow band light emitting means for emitting narrow band light having a central wavelength of 360 to 530 nm.
According to this endoscope apparatus, it is possible to emphasize and display capillaries and fine patterns on the surface of a living tissue by irradiating a subject with narrowband light having a visible short wavelength.

(11) (10)の内視鏡装置であって、
前記駆動信号生成部が、前記照明光と前記狭帯域光との合計光量が目標光量になるようにパルス駆動信号を生成する内視鏡装置。
この内視鏡装置によれば、照明光と狭帯域光とを混合した合計光量を目標光量に設定し、被検体を照明することで、混合された狭帯域光の割合に応じて生体組織表層の毛細血管や微細模様の強調度合いを精度よく調整できる。
(11) The endoscope apparatus according to (10),
An endoscope apparatus in which the drive signal generation unit generates a pulse drive signal so that a total light amount of the illumination light and the narrowband light becomes a target light amount.
According to this endoscope apparatus, the total amount of light obtained by mixing the illumination light and the narrow band light is set as the target light amount, and the subject is illuminated to illuminate the subject. It is possible to accurately adjust the degree of emphasis on capillaries and fine patterns.

<付記>
内視鏡挿入部の先端から所望の光量の照明光を出射する内視鏡装置であって、
前記照明光を生成する半導体光源と、
電子シャッタにより露光期間を調整する撮像手段と、
入力される目標光量に応じて前記半導体光源をパルス点灯駆動する光源制御手段と、を備え、
前記光源制御手段が、前記目標光量の高い順に、
前記電子シャッタによる1フレーム内の露光期間に対し、所定の点灯期間になるまで前記駆動パルスのパルス数を減少させて前記半導体光源の点灯期間を短縮する第1のパルス変調制御と、
前記第1のパルス変調領域における所定の点灯期間に対し、所定間隔で前記駆動パルスを間引くことで前記点灯期間内のパルス密度を減少させる第2のパルス変調制御と、
前記第2の制御範囲において最小パルス数とされた各駆動パルスに対し、パルス幅を減少させる第3のパルス変調制御と、
を行う内視鏡装置。
この内視鏡装置によれば、制御パラメータに、目標光量が高い順に、パルス数を減少させて点灯期間を短縮する第1のパルス変調領域、パルスを間引いてパルス密度を減少させる第2のパルス変調領域、パルス幅を減少させる第3のパルス変調領域が設定されることで、目標光量が高い場合には光源の点灯時間を短縮する制御が優先されて、撮像画像の画像ボケが抑制され、発熱が低減される。また、低い目標光量には所定の点灯期間内にパルスが複数存在するため、フリッカの発生を抑制できる。そして、異なる種類の制御を組み合わせることで、広いダイナミックレンジと、高い調光分解能を確保することができる。
<Appendix>
An endoscope apparatus that emits illumination light of a desired light amount from the distal end of an endoscope insertion portion,
A semiconductor light source for generating the illumination light;
An imaging means for adjusting an exposure period by an electronic shutter;
A light source control means for driving the semiconductor light source in a pulsed manner according to the input target light amount,
The light source control means, in order from the highest target light amount,
A first pulse modulation control for shortening the lighting period of the semiconductor light source by reducing the number of pulses of the drive pulse until the predetermined lighting period is reached with respect to the exposure period in one frame by the electronic shutter;
A second pulse modulation control for reducing a pulse density in the lighting period by thinning out the driving pulse at a predetermined interval with respect to a predetermined lighting period in the first pulse modulation region;
A third pulse modulation control for reducing the pulse width for each drive pulse having the minimum number of pulses in the second control range;
An endoscopic device that performs.
According to this endoscope apparatus, the first pulse modulation region in which the number of pulses is decreased and the lighting period is shortened in the descending order of the target light amount, and the second pulse in which the pulse density is decreased by thinning out pulses. By setting the modulation region and the third pulse modulation region for reducing the pulse width, when the target light amount is high, priority is given to control for shortening the lighting time of the light source, and image blur of the captured image is suppressed, Heat generation is reduced. In addition, since a plurality of pulses exist within a predetermined lighting period for a low target light amount, occurrence of flicker can be suppressed. A wide dynamic range and high dimming resolution can be ensured by combining different types of control.

11 内視鏡
13 制御装置
19 光源装置
21 プロセッサ
45 撮像素子
57A,57B 光ファイバ
59A,59B 波長変換部材
61 光源制御部
67 駆動信号生成部
69 駆動信号変換部
71 特性情報記憶部
73 内視鏡制御部
75 メモリ
77 画像処理部
81 パルス駆動信号
83 パルス
85 変換後のパルス駆動信号
87 短パルス
89 短パルス群
91 理想出力光
100 内視鏡装置
LD1,LD2 レーザ光源
DESCRIPTION OF SYMBOLS 11 Endoscope 13 Control apparatus 19 Light source apparatus 21 Processor 45 Image pick-up element 57A, 57B Optical fiber 59A, 59B Wavelength conversion member 61 Light source control part 67 Drive signal generation part 69 Drive signal conversion part 71 Characteristic information storage part 73 Endoscope control Unit 75 Memory 77 Image processing unit 81 Pulse drive signal 83 Pulse 85 Pulse drive signal after conversion 87 Short pulse 89 Short pulse group 91 Ideal output light 100 Endoscope device LD1, LD2 Laser light source

Claims (11)

発光素子、及び該発光素子からの出射光で発光する蛍光体が含まれる波長変換部材を備え、前記発光素子から出射され前記波長変換部材を透過した透過光と、前記波長変換部材からの発光光とを合成した照明光を出力する光源部と、
前記発光素子を駆動するためのパルス駆動信号を生成する駆動信号生成部と、
前記蛍光体の発光効率の温度依存性に起因する前記照明光の光量変化量が許容限度値以下となるように、生成された前記パルス駆動信号の各パルスを、更にパルス幅が短い複数の短パルスに分割した分割パルス駆動信号を生成する駆動信号変換部と、
前記発光素子を前記分割パルス駆動信号で駆動する光源制御部と、
を具備した内視鏡装置。
A wavelength conversion member including a light emitting element and a phosphor that emits light emitted from the light emitted from the light emitting element, transmitted light emitted from the light emitting element and transmitted through the wavelength conversion member, and light emitted from the wavelength conversion member A light source unit that outputs illumination light synthesized with
A drive signal generator for generating a pulse drive signal for driving the light emitting element;
Each pulse of the generated pulse drive signal is further divided into a plurality of short pulses having a shorter pulse width so that the amount of change in the amount of illumination light due to the temperature dependence of the luminous efficiency of the phosphor is not more than an allowable limit value. A drive signal converter for generating a divided pulse drive signal divided into pulses;
A light source controller that drives the light emitting element with the divided pulse drive signal;
An endoscope apparatus comprising:
請求項1記載の内視鏡装置であって、
前記パルス駆動信号における一つのパルスの積分強度と前記光量変化量との関係を表す蛍光体特性情報を記憶する特性情報記憶部を備え、
前記駆動信号変換部が、前記特性情報記憶部から前記蛍光体特性情報を参照して、前記一つのパルスの積分強度に対する前記光量変化量を求める内視鏡装置。
The endoscope apparatus according to claim 1,
A characteristic information storage unit that stores phosphor characteristic information representing the relationship between the integrated intensity of one pulse in the pulse drive signal and the amount of light change,
An endoscope apparatus in which the drive signal conversion unit refers to the phosphor characteristic information from the characteristic information storage unit and obtains the light amount change amount with respect to the integrated intensity of the one pulse.
請求項1又は請求項2記載の内視鏡装置であって、
前記駆動信号変換部が、前記光量変化量が前記許容限度値を超える場合にのみ、前記分割パルス駆動信号を生成する内視鏡装置。
The endoscope apparatus according to claim 1 or 2,
An endoscope apparatus in which the drive signal conversion unit generates the divided pulse drive signal only when the light amount change amount exceeds the allowable limit value.
請求項1〜請求項3のいずれか一項記載の内視鏡装置であって、
前記駆動信号変換部が、前記パルス駆動信号における一つのパルスを分割した前記複数の短パルスの合計積分強度と、前記一つのパルスの積分強度とが一致するように、前記分割パルス駆動信号を生成する内視鏡装置。
The endoscope apparatus according to any one of claims 1 to 3,
The drive signal conversion unit generates the divided pulse drive signal so that a total integrated intensity of the plurality of short pulses obtained by dividing one pulse in the pulse drive signal matches an integrated intensity of the one pulse. Endoscope device.
請求項1〜請求項4のいずれか一項記載の内視鏡装置であって、
前記駆動信号変換部が、前記複数の短パルス間の休止期間を、前記波長変換部材からの発光光の残光期間より長く設定する内視鏡装置。
The endoscope apparatus according to any one of claims 1 to 4,
An endoscope apparatus in which the drive signal conversion unit sets a pause period between the plurality of short pulses longer than an afterglow period of emitted light from the wavelength conversion member.
請求項1〜請求項5のいずれか一項記載の内視鏡装置であって、
前記駆動信号変換部が、前記短パルスの最大周波数を500kHz以下に設定する内視鏡装置。
The endoscope apparatus according to any one of claims 1 to 5,
An endoscope apparatus in which the drive signal converter sets a maximum frequency of the short pulse to 500 kHz or less.
請求項1〜請求項6のいずれか一項記載の内視鏡装置であって、
前記波長変換部材が、中心発光波長の異なる複数種類の蛍光体を含んで構成される内視鏡装置。
The endoscope apparatus according to any one of claims 1 to 6,
An endoscope apparatus in which the wavelength conversion member includes a plurality of types of phosphors having different central emission wavelengths.
請求項1〜請求項7のいずれか一項記載の内視鏡装置であって、
前記発光素子が、半導体発光素子である内視鏡装置。
The endoscope apparatus according to any one of claims 1 to 7,
An endoscope apparatus in which the light emitting element is a semiconductor light emitting element.
請求項1〜請求項8のいずれか一項記載の内視鏡装置であって、
前記発光素子が青色光を出射し、
前記波長変換部材が発生する蛍光光と前記青色光とを合成することで白色光を生成する内視鏡装置。
The endoscope apparatus according to any one of claims 1 to 8,
The light emitting element emits blue light;
An endoscope apparatus that generates white light by combining the fluorescent light generated by the wavelength conversion member and the blue light.
請求項1〜請求項9のいずれか一項記載の内視鏡装置であって、
中心波長360〜530nmの狭帯域光を出射する狭帯域光発光手段を更に備えた内視鏡装置。
The endoscope apparatus according to any one of claims 1 to 9,
An endoscope apparatus further comprising narrow band light emitting means for emitting narrow band light having a central wavelength of 360 to 530 nm.
請求項10記載の内視鏡装置であって、
前記駆動信号生成部が、前記照明光と前記狭帯域光との合計光量が目標光量になるようにパルス駆動信号を生成する内視鏡装置。
The endoscope apparatus according to claim 10, wherein
An endoscope apparatus in which the drive signal generation unit generates a pulse drive signal so that a total light amount of the illumination light and the narrowband light becomes a target light amount.
JP2011189142A 2011-08-31 2011-08-31 Endoscopic device Abandoned JP2013048792A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011189142A JP2013048792A (en) 2011-08-31 2011-08-31 Endoscopic device
CN2012101524537A CN102961113A (en) 2011-08-31 2012-05-16 Endoscopic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011189142A JP2013048792A (en) 2011-08-31 2011-08-31 Endoscopic device

Publications (1)

Publication Number Publication Date
JP2013048792A true JP2013048792A (en) 2013-03-14

Family

ID=47791754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011189142A Abandoned JP2013048792A (en) 2011-08-31 2011-08-31 Endoscopic device

Country Status (2)

Country Link
JP (1) JP2013048792A (en)
CN (1) CN102961113A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167427A (en) * 2014-03-03 2015-09-24 株式会社ダイヘン Power supply device and power supply device for arc processing
JP2015171207A (en) * 2014-03-06 2015-09-28 日本電気株式会社 Power storage device, battery control device, charge and discharge control method, and cell balance method
WO2016056388A1 (en) * 2014-10-10 2016-04-14 オリンパス株式会社 Image capturing system
WO2016084323A1 (en) * 2014-11-27 2016-06-02 パナソニックIpマネジメント株式会社 Distance image generation device, distance image generation method, and distance image generation program
WO2018211705A1 (en) * 2017-05-19 2018-11-22 オリンパス株式会社 Lighting apparatus, imaging system containing said lighting apparatus, and microscope system and endoscope system containing said imaging system
JPWO2020129437A1 (en) * 2018-12-18 2021-09-09 三菱電機株式会社 Image reader
JP2021156973A (en) * 2020-03-25 2021-10-07 富士フイルムビジネスイノベーション株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6210767B2 (en) * 2013-07-17 2017-10-11 オリンパス株式会社 Light source device
JPWO2017221336A1 (en) * 2016-06-21 2019-04-11 オリンパス株式会社 Endoscope system, image processing apparatus, image processing method, and program
DE112017004396T5 (en) * 2016-09-01 2019-05-23 Hoya Corporation ELECTRONIC ENDOSCOPE AND ELECTRONIC ENDOSCOPY SYSTEM
WO2019143668A1 (en) * 2018-01-16 2019-07-25 Welch Allyn, Inc. Physical assessment device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001078175A (en) * 1999-07-07 2001-03-23 Fuji Photo Film Co Ltd Fluorescent observation device
JP2005205195A (en) * 2003-12-22 2005-08-04 Nichia Chem Ind Ltd Light emitting device and endoscopic system
JP2006026135A (en) * 2004-07-16 2006-02-02 Olympus Corp Endoscope apparatus
JP2007135756A (en) * 2005-11-16 2007-06-07 Olympus Corp Endoscope apparatus
JP2009039462A (en) * 2007-08-13 2009-02-26 Hoya Corp Distal end portion of endoscope
JP2009056248A (en) * 2007-09-03 2009-03-19 Fujifilm Corp Light source unit, drive control method of light source unit and endoscope
JP2010278366A (en) * 2009-05-29 2010-12-09 Hitachi Ltd Lighting device and liquid crystal display device
JP2011010998A (en) * 2009-07-06 2011-01-20 Fujifilm Corp Lighting device for endoscope and endoscope apparatus
JP2011125361A (en) * 2009-12-15 2011-06-30 Fujifilm Corp Imaging apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871358B1 (en) * 2004-06-14 2007-02-09 Mauna Kea Technologies Soc Par METHOD AND SYSTEM FOR MICROSCOPIC MULTI-MARKING FIBER FLUORESCENCE IMAGING
JP2006288534A (en) * 2005-04-07 2006-10-26 Olympus Medical Systems Corp Living body treatment system
JP5124978B2 (en) * 2005-06-13 2013-01-23 日亜化学工業株式会社 Light emitting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001078175A (en) * 1999-07-07 2001-03-23 Fuji Photo Film Co Ltd Fluorescent observation device
JP2005205195A (en) * 2003-12-22 2005-08-04 Nichia Chem Ind Ltd Light emitting device and endoscopic system
JP2006026135A (en) * 2004-07-16 2006-02-02 Olympus Corp Endoscope apparatus
JP2007135756A (en) * 2005-11-16 2007-06-07 Olympus Corp Endoscope apparatus
JP2009039462A (en) * 2007-08-13 2009-02-26 Hoya Corp Distal end portion of endoscope
JP2009056248A (en) * 2007-09-03 2009-03-19 Fujifilm Corp Light source unit, drive control method of light source unit and endoscope
JP2010278366A (en) * 2009-05-29 2010-12-09 Hitachi Ltd Lighting device and liquid crystal display device
JP2011010998A (en) * 2009-07-06 2011-01-20 Fujifilm Corp Lighting device for endoscope and endoscope apparatus
JP2011125361A (en) * 2009-12-15 2011-06-30 Fujifilm Corp Imaging apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167427A (en) * 2014-03-03 2015-09-24 株式会社ダイヘン Power supply device and power supply device for arc processing
JP2015171207A (en) * 2014-03-06 2015-09-28 日本電気株式会社 Power storage device, battery control device, charge and discharge control method, and cell balance method
US10531008B2 (en) 2014-10-10 2020-01-07 Olympus Corporation Image pickup system
WO2016056388A1 (en) * 2014-10-10 2016-04-14 オリンパス株式会社 Image capturing system
JPWO2016056388A1 (en) * 2014-10-10 2017-04-27 オリンパス株式会社 Imaging system
EP3187098A4 (en) * 2014-10-10 2018-08-08 Olympus Corporation Image capturing system
WO2016084323A1 (en) * 2014-11-27 2016-06-02 パナソニックIpマネジメント株式会社 Distance image generation device, distance image generation method, and distance image generation program
WO2018211705A1 (en) * 2017-05-19 2018-11-22 オリンパス株式会社 Lighting apparatus, imaging system containing said lighting apparatus, and microscope system and endoscope system containing said imaging system
US11782298B2 (en) 2017-05-19 2023-10-10 Olympus Corporation Illuminating device, imaging system, endoscope system including the imaging system, and microscope system including the imaging system
JPWO2020129437A1 (en) * 2018-12-18 2021-09-09 三菱電機株式会社 Image reader
JP7023383B2 (en) 2018-12-18 2022-02-21 三菱電機株式会社 Image reader
JP2021156973A (en) * 2020-03-25 2021-10-07 富士フイルムビジネスイノベーション株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP7459602B2 (en) 2020-03-25 2024-04-02 富士フイルムビジネスイノベーション株式会社 Electrophotographic photoreceptors, process cartridges, and image forming devices

Also Published As

Publication number Publication date
CN102961113A (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5431294B2 (en) Endoscope device
JP2013048792A (en) Endoscopic device
JP5292379B2 (en) Endoscope device
US10194789B2 (en) Rolling shutter imaging device and endoscope apparatus including the same
JP5709691B2 (en) Endoscope device
JP2009056248A (en) Light source unit, drive control method of light source unit and endoscope
JP6180612B2 (en) Endoscope device
JP6438062B2 (en) Endoscope system
JP2012223376A (en) Control circuit and control method of light-emitting diode for lighting, and electronic endoscope apparatus using the same
JP5622529B2 (en) Endoscope device
JP2012115514A (en) Endoscope unit
JP5694492B2 (en) Endoscope device
JP6353962B2 (en) Endoscope device
JP2016005804A (en) Endoscope apparatus
JP6046854B2 (en) Endoscope device
JP5470224B2 (en) Endoscope device
JP5816765B2 (en) Endoscope device
JP6115967B2 (en) Endoscope system
JP6630777B2 (en) Endoscope device
JP6240700B2 (en) Endoscope device
JP5909591B2 (en) Endoscope device
JP5909571B2 (en) Endoscope device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20141028