JP2013040090A - Method of producing metal oxide particle with spherical shape - Google Patents

Method of producing metal oxide particle with spherical shape Download PDF

Info

Publication number
JP2013040090A
JP2013040090A JP2011179971A JP2011179971A JP2013040090A JP 2013040090 A JP2013040090 A JP 2013040090A JP 2011179971 A JP2011179971 A JP 2011179971A JP 2011179971 A JP2011179971 A JP 2011179971A JP 2013040090 A JP2013040090 A JP 2013040090A
Authority
JP
Japan
Prior art keywords
metal oxide
acid
metal
powder
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011179971A
Other languages
Japanese (ja)
Other versions
JP6082868B2 (en
Inventor
Hidetoshi Saito
秀俊 齋藤
Daiki Akasaka
大樹 赤坂
yasuhiro Hasebe
康博 長谷部
Takaaki Tsuchiya
貴晃 土屋
Nobuyoshi Nanbu
信義 南部
Atsushi Nakamura
淳 中村
Tadahiko Nanbu
忠彦 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chelest Corp
Chubu Chelest Co Ltd
Nagaoka University of Technology NUC
Original Assignee
Chelest Corp
Chubu Chelest Co Ltd
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chelest Corp, Chubu Chelest Co Ltd, Nagaoka University of Technology NUC filed Critical Chelest Corp
Priority to JP2011179971A priority Critical patent/JP6082868B2/en
Publication of JP2013040090A publication Critical patent/JP2013040090A/en
Application granted granted Critical
Publication of JP6082868B2 publication Critical patent/JP6082868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of simply and efficiently producing metal oxide particles with spherical shape, the particles comprising a general metal oxide, by using a flame fusion method that can be implemented at low cost and is applicable to industrial mass production.SOLUTION: The method of producing the metal oxide particle with spherical shape includes a step of heating one or more nonvaporizable metal chelate powder in a thermal fluid to pyrolyze an organic component in the powder for removal and to oxidize a metal component.

Description

本発明は、低コストで実施することができ工業的な大量生産にも適用可能な火炎溶融法を用い、一般的な金属の酸化物からなる中実球状金属酸化物粒子を簡便かつ効率的に製造するための方法に関するものである。   The present invention uses a flame melting method that can be carried out at a low cost and can be applied to industrial mass production. Solid spherical metal oxide particles composed of general metal oxides can be easily and efficiently produced. It relates to a method for manufacturing.

球状金属酸化物粒子は、その特徴的な形態に由来する高流動性や高充填性により利用価値が高い。例えば、シリカやアルミナからなる球状金属酸化物粒子は、樹脂に配合するフィラーや、鋳物砂、砥粒、溶射材料など、多岐にわたり使用されている。特に近年、半導体封止材用の添加物など高信頼性を必要とする用途にも広がりつつあり、今後はシリカやアルミナに留まらず、他の金属酸化物に関しても球状化のニーズがますます高まるものと見られる。   Spherical metal oxide particles have a high utility value due to high fluidity and high filling properties derived from their characteristic forms. For example, spherical metal oxide particles made of silica or alumina are widely used, such as fillers blended with resins, foundry sand, abrasive grains, and thermal spray materials. In particular, in recent years, it is also spreading to applications that require high reliability, such as additives for semiconductor encapsulants, and in the future there will be a growing need for spheroidization not only for silica and alumina but also for other metal oxides. It seems to be a thing.

球状金属酸化物粒子の製造方法としては、高温火炎中に原料化合物を導入し、溶融、液状化、冷却を経て球状金属酸化物粒子を得る火炎溶融法がコスト的に最も一般的である。   As a method for producing spherical metal oxide particles, a flame melting method in which a raw material compound is introduced into a high-temperature flame and spherical metal oxide particles are obtained through melting, liquefaction, and cooling is the most common in terms of cost.

しかしながら、これまでに報告されている例は、シリカ(例えば特許文献1)またはアルミナ(例えば特許文献2、3)などに関するものであり、その他の金属酸化物の球状化に関するものの例示はほとんど見られない。   However, examples reported so far relate to silica (for example, Patent Document 1) or alumina (for example, Patent Documents 2 and 3), and there are almost no examples of spheroidization of other metal oxides. Absent.

その理由の一つとしては、従来、火炎溶融法では原料として金属粒子や金属酸化物粒子などが用いられているため、製造条件を厳しくせざるを得ないことが挙げられる。   One reason for this is that, conventionally, metal particles, metal oxide particles, and the like are used as raw materials in the flame melting method, and thus manufacturing conditions have to be strict.

具体的には、金属粒子は周囲から徐々に酸化が起こるため均一性が問題となり、加熱時間を長くする必要がある。また、金属酸化物粒子を用いる場合では、いったんこれらをその融点以上に加熱して溶融しなければならない。   Specifically, since the metal particles are gradually oxidized from the surroundings, uniformity is a problem, and it is necessary to increase the heating time. Moreover, when using metal oxide particles, they must be heated once to their melting points or higher to melt.

上記のとおり、火炎溶融法により球状シリカ粒子が製造された例はある。原料としてシリカを用いる場合、その融点は約1650℃であり、一般的な金属酸化物の融点よりも低いことがその理由と考えられる。しかし、加熱温度を融点近傍に調整する場合、内部まで溶融させるまでの時間を長くせざるを得ないという問題がある。   As described above, there is an example in which spherical silica particles are produced by the flame melting method. When silica is used as a raw material, the melting point is about 1650 ° C., which is considered to be lower than the melting point of a general metal oxide. However, when the heating temperature is adjusted to the vicinity of the melting point, there is a problem that the time until melting to the inside must be lengthened.

また、火炎溶融法による球状アルミナ粒子の製造実績もあるが、アルミナの融点は約2050℃とシリカよりも高い上に熱伝導性が悪い。非特許文献1には、アルミナの場合では火炎温度を高め、且つ火炎中での滞留時間を増大させて原料粉体への伝熱量を増加させる必要があると記載されている。そのため、特殊なノズル構造を有する火炎バーナーや原料粉体の供給制御が必要となり、汎用性に欠ける。   Moreover, although there is a track record of producing spherical alumina particles by the flame melting method, the melting point of alumina is about 2050 ° C., which is higher than that of silica and has poor thermal conductivity. Non-Patent Document 1 describes that in the case of alumina, it is necessary to increase the amount of heat transferred to the raw material powder by increasing the flame temperature and increasing the residence time in the flame. Therefore, it is necessary to control the supply of a flame burner having a special nozzle structure and raw material powder, which lacks versatility.

特開平3−170319号公報Japanese Patent Laid-Open No. 3-170319 特開2008−120673号公報JP 2008-120673 A 特開2008−162825号公報JP 2008-162825 A

村上真二ら,太陽日酸技報,No.28,第34〜35頁(2009年)Shinji Murakami et al. 28, 34-35 (2009)

上述したように、火炎溶融法は球状金属酸化物粒子の製造手段として非常に有用ではあるが、シリカやアルミナなどその原料が溶融し易いものの実績しかなく、一般的な金属酸化物、特に希土類酸化物のような高融点酸化物の球状化における実績は無い。   As described above, the flame melting method is very useful as a means for producing spherical metal oxide particles. However, the raw materials such as silica and alumina are easily melted, but only a general metal oxide, particularly rare earth oxidation is used. There is no track record in spheroidizing high-melting point oxides such as products.

そこで本発明は、低コストで実施することができ工業的な大量生産にも適用可能な火炎溶融法を用い、一般的な金属の酸化物からなる中実球状金属酸化物粒子を簡便かつ効率的に製造できる方法を提供することを目的とする。   Therefore, the present invention uses a flame melting method that can be carried out at a low cost and can be applied to industrial mass production, and enables simple and efficient solid spherical metal oxide particles made of general metal oxides. It is an object to provide a method that can be manufactured.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、原料として従来汎用されていた金属酸化物などではなく非気化性の金属キレート粉体を用いれば、シリカやアルミナ以外の一般的な金属酸化物でも、汎用性の高い火炎溶融法で中実球状粒子を容易に製造できることを見出して、本発明を完成した。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, if non-vaporizable metal chelate powder is used as a raw material instead of metal oxide that has been widely used in the past, even general metal oxides other than silica and alumina can be used in a highly versatile flame melting method. The present invention was completed by finding that real spherical particles can be easily produced.

本発明に係る中実球状金属酸化物粒子の製造方法は、1種以上の非気化性金属キレート粉体を熱流体中で加熱することにより、粉体中の有機成分を熱分解して除去し且つ金属成分を酸化させる工程を含むことを特徴とする。   In the method for producing solid spherical metal oxide particles according to the present invention, one or more non-vaporizable metal chelate powders are heated in a thermal fluid to thermally decompose and remove organic components in the powders. And a step of oxidizing the metal component.

非気化性金属キレート粉体を調製するためのキレート剤としてはアミノカルボン酸系キレート剤が好適であり、さらに具体的には、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、および、ニトリロ三酢酸から選択される少なくとも1種が好ましい。アミノカルボン酸系キレート剤から形成される金属キレートは非気化性である。また、上記キレート剤は低価格であり入手が容易である上に、上記キレート剤から形成される金属キレートは安定性が高く、また、結晶化し易いことから精製が容易であるといった利点がある。   As the chelating agent for preparing the non-vaporizable metal chelate powder, an aminocarboxylic acid chelating agent is suitable, and more specifically, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, and nitrilo At least one selected from triacetic acid is preferred. The metal chelate formed from the aminocarboxylic acid chelating agent is non-vaporizable. In addition, the chelating agent is inexpensive and easily available, and the metal chelate formed from the chelating agent has high stability and has an advantage of being easily purified because it is easily crystallized.

本発明方法によれば、低コストで実施することができ工業的な大量生産にも適用可能な火炎溶融法を用い、従来、製造が困難であった金属酸化物からなる中実球状粒子を簡便かつ効率的に製造することができる。また、本発明方法で製造された中実球状金属酸化物粒子は、多孔率がゼロに等しい上に真球度が高いことから流動性が極めて高く、工業的な利便性が高い。従って本発明は、半導体素子などに用いられる樹脂フィラー、鋳物砂、砥粒、溶射材料などとして有用な中実球状金属酸化物粒子の生産技術として、産業上非常に有用である。   According to the method of the present invention, a solid spherical particle made of a metal oxide, which has been difficult to manufacture, can be easily obtained by using a flame melting method that can be implemented at low cost and can be applied to industrial mass production. And it can manufacture efficiently. In addition, the solid spherical metal oxide particles produced by the method of the present invention have extremely high fluidity because the porosity is equal to zero and the sphericity is high, and industrial convenience is high. Therefore, the present invention is very useful industrially as a production technique for solid spherical metal oxide particles useful as resin fillers, foundry sand, abrasive grains, thermal spray materials and the like used for semiconductor elements.

図1は、本発明方法で使用できる火炎溶融法の溶射ガンの一例を示す模式図である。FIG. 1 is a schematic view showing an example of a flame gun spray gun that can be used in the method of the present invention. 図2は、本発明方法で得られた中実球状酸化イットリウム粒子の電子顕微鏡写真である。(1)は外観写真であり、(2)は断面写真である。FIG. 2 is an electron micrograph of solid spherical yttrium oxide particles obtained by the method of the present invention. (1) is an appearance photograph, and (2) is a cross-sectional photograph. 図3は、本発明方法で得られた中実球状酸化エルビウム粒子の電子顕微鏡写真である。(1)は外観写真であり、(2)は断面写真である。FIG. 3 is an electron micrograph of solid spherical erbium oxide particles obtained by the method of the present invention. (1) is an appearance photograph, and (2) is a cross-sectional photograph. 図4は、本発明方法で得られた中実球状酸化チタン粒子の電子顕微鏡写真である。(1)は外観写真であり、(2)は断面写真である。FIG. 4 is an electron micrograph of solid spherical titanium oxide particles obtained by the method of the present invention. (1) is an appearance photograph, and (2) is a cross-sectional photograph. 図5は、本発明方法で得られた中実球状酸化イットリウム粒子のX線回折チャートである。FIG. 5 is an X-ray diffraction chart of solid spherical yttrium oxide particles obtained by the method of the present invention. 図6は、本発明方法で得られた中実球状酸化エルビウム粒子のX線回折チャートである。FIG. 6 is an X-ray diffraction chart of solid spherical erbium oxide particles obtained by the method of the present invention. 図7は、本発明方法で得られた中実球状酸化チタン粒子のX線回折チャートである。FIG. 7 is an X-ray diffraction chart of solid spherical titanium oxide particles obtained by the method of the present invention.

本発明方法では、非気化性の金属キレート粉体を熱流体中で加熱することにより、粉体中の有機成分を熱分解して除去し且つ金属成分を酸化し、中実球状金属酸化物粒子を得る。   In the method of the present invention, solid vapor metal oxide particles are obtained by heating a non-vaporizable metal chelate powder in a thermal fluid to thermally decompose and remove organic components in the powder and oxidize the metal components. Get.

非気化性金属キレート粉体は、キレート剤と、目的物である金属酸化物粒子に対応する金属化合物から調製することができる。   The non-vaporizable metal chelate powder can be prepared from a chelating agent and a metal compound corresponding to the target metal oxide particles.

本発明方法で用いられるキレート剤は、一般的な金属と常温常圧で固体の非気化性金属キレートを形成できるものであれば、特に制限されない。当該キレート剤としては、例えば、エチレンジアミン四酢酸(EDTA)、1,2−シクロヘキサンジアミン四酢酸、ジヒドロキシエチルグリシン、ジアミノプロパノール四酢酸、ジエチレントリアミン五酢酸、エチレンジアミン二酢酸、エチレンジアミン二プロピオン酸、ヒドロキシエチレンジアミン三酢酸、グリコールエーテルジアミン四酢酸、ヘキサメチレンジアミン四酢酸、エチレンジアミンジ(o−ヒドロキシフェニル)酢酸、ヒドロキシエチルイミノ二酢酸、イミノ二酢酸、1,3−ジアミノプロパン四酢酸、1,2−ジアミノプロパン四酢酸、ニトリロ三酢酸、ニトリロ三プロピオン酸、メチルグリシン二酢酸、トリエチレンテトラミン六酢酸、エチレンジアミン二こはく酸、1,3−ジアミノプロパン二こはく酸、グルタミン酸−N,N−二酢酸、アスパラギン酸−N,N−二酢酸、等の如き水溶性のアミノカルボン酸系キレート剤;ヒドロキシエチリデンジホスホン酸などのホスホン酸系キレート剤;ニトリロトリス(メチレンホスホン酸)やエチレンジアミンテトラ(メチレンホスホン酸)などのアミノホスホン酸系キレート剤;ホスホノブタントリカルボン酸などのカルボン酸−ホスホン酸系キレート剤;グルコン酸、クエン酸、酒石酸、リンゴ酸などのヒドロキシカルボン酸系キレート剤を挙げることができる。また、上記のキレート剤が2以上重合したポリマーも使用可能である。   The chelating agent used in the method of the present invention is not particularly limited as long as it can form a solid non-vaporizable metal chelate with a general metal at normal temperature and pressure. Examples of the chelating agent include ethylenediaminetetraacetic acid (EDTA), 1,2-cyclohexanediaminetetraacetic acid, dihydroxyethylglycine, diaminopropanoltetraacetic acid, diethylenetriaminepentaacetic acid, ethylenediaminediacetic acid, ethylenediaminedipropionic acid, hydroxyethylenediaminetriacetic acid. , Glycol ether diamine tetraacetic acid, hexamethylenediamine tetraacetic acid, ethylenediamine di (o-hydroxyphenyl) acetic acid, hydroxyethyliminodiacetic acid, iminodiacetic acid, 1,3-diaminopropanetetraacetic acid, 1,2-diaminopropanetetraacetic acid Nitrilotriacetic acid, nitrilotripropionic acid, methylglycine diacetic acid, triethylenetetramine hexaacetic acid, ethylenediamine disuccinic acid, 1,3-diaminopropane disuccinic acid, glutami Water-soluble aminocarboxylic acid-based chelating agents such as acid-N, N-diacetic acid, aspartic acid-N, N-diacetic acid, etc .; phosphonic acid-based chelating agents such as hydroxyethylidene diphosphonic acid; nitrilotris (methylenephosphone) Acid) and aminodiamine acid chelating agents such as ethylenediaminetetra (methylenephosphonic acid); carboxylic acid-phosphonic acid chelating agents such as phosphonobutanetricarboxylic acid; hydroxycarboxylic acids such as gluconic acid, citric acid, tartaric acid and malic acid Mention may be made of system chelating agents. A polymer in which two or more of the above chelating agents are polymerized can also be used.

なお、アセチルアセトンなどのジケトン系キレート剤は、得られる金属キレートが気化性となるため本発明では使用できない。   A diketone chelating agent such as acetylacetone cannot be used in the present invention because the resulting metal chelate is vaporizable.

本発明で用いるキレート剤としては、アミノカルボン酸系キレート剤が好適である。アミノカルボン酸系キレート剤は、あらゆる金属イオンと容易に結合して非気化性の金属キレートを得ることができ、さらに金属キレートを結晶として単離して高純度化することができる。より好ましいアミノカルボン酸系キレート剤としては、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、および、ニトリロ三酢酸を挙げることができる。これらキレート剤は低価格であり入手が容易である上に、これらキレート剤から形成される金属キレートは安定性が高く、また、結晶化し易いことから精製が容易であるといった利点がある。   As the chelating agent used in the present invention, an aminocarboxylic acid chelating agent is suitable. The aminocarboxylic acid chelating agent can be easily bonded to any metal ion to obtain a non-vaporizable metal chelate, and the metal chelate can be isolated as a crystal to be highly purified. More preferred aminocarboxylic acid chelating agents include ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, and nitrilotriacetic acid. These chelating agents are inexpensive and readily available, and metal chelates formed from these chelating agents have advantages such as high stability and easy crystallization because they are easily crystallized.

金属キレート粉体の原料である金属化合物は、溶媒中でキレート剤と金属キレートを容易に形成できるものであれば特に制限されない。金属化合物としては、例えば、酸化物;金属単体;水酸化物;塩化物塩や臭化物塩などのハロゲン化物塩;炭酸塩;硝酸塩;硫酸塩などを挙げることができる。   The metal compound that is a raw material of the metal chelate powder is not particularly limited as long as it can easily form a chelating agent and a metal chelate in a solvent. Examples of the metal compound include oxides, simple metals, hydroxides, halide salts such as chloride salts and bromide salts, carbonates, nitrates, sulfates, and the like.

金属化合物を構成する金属、即ち本発明の目的化合物である金属酸化物粒子を構成する金属としては、例えば、カルシウムやマグネシウムなどのアルカリ土類金属;アルミニウムなどの軽金属;チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛などの遷移金属;イットリウム、ランタン、セリウム、エルビウムなどの希土類金属などを挙げることができる。   Examples of the metal constituting the metal compound, that is, the metal constituting the metal oxide particles that are the target compound of the present invention include alkaline earth metals such as calcium and magnesium; light metals such as aluminum; titanium, chromium, manganese, iron , Transition metals such as cobalt, nickel, copper and zinc; rare earth metals such as yttrium, lanthanum, cerium and erbium.

本発明に係る金属キレート粉体は、溶媒中、キレート剤と金属化合物を反応させた後、溶媒から分離することにより製造することができる。   The metal chelate powder according to the present invention can be produced by reacting a chelating agent with a metal compound in a solvent, and then separating from the solvent.

キレート剤と金属化合物の使用量は、キレート剤の配位座数と金属化合物の配位数を考慮して、両者がほぼ過不足無い割合とすればよい。反応溶液中に一方が過剰に存在すると反応後において不純物が多く残留することとなり、不経済であると共に目的化合物である金属キレートの精製が面倒になる。より具体的には、例えばキレート剤と金属化合物が1対1で反応して金属キレートを形成する場合、キレート剤1モルに対して金属化合物のモル数を0.9モル以上、1.1モル以下とすることが好ましく、0.95モル以上、1.05モル以下とすることがより好ましく、0.98モル以上、1.02モル以下とすることがさらに好ましい。   The amount of the chelating agent and the metal compound used may be a ratio in which both are almost not excessive or insufficient in consideration of the coordination number of the chelating agent and the coordination number of the metal compound. If one of them is excessively present in the reaction solution, a large amount of impurities remain after the reaction, which is uneconomical and troublesome to purify the metal chelate as the target compound. More specifically, for example, when a chelating agent and a metal compound react one-on-one to form a metal chelate, the number of moles of the metal compound is 0.9 mol or more and 1.1 mol with respect to 1 mol of the chelating agent. Preferably, the amount is 0.95 mol or more and 1.05 mol or less, more preferably 0.98 mol or more and 1.02 mol or less.

溶媒としては、水を用いればよい。反応溶液におけるキレート剤と金属化合物の濃度は適宜調整すればよいが、例えば、5質量%以上、50質量%以下とすることができる。   Water may be used as the solvent. The concentration of the chelating agent and the metal compound in the reaction solution may be adjusted as appropriate, and may be, for example, 5% by mass or more and 50% by mass or less.

反応温度や反応時間も適宜調整することができ、より具体的には予備実験などにより決定すればよいが、例えば、10℃以上、反応溶液の沸点以下で12時間以下程度反応させることができる。なお、キレート剤や金属化合物の反応性によっては、これらを溶媒に溶解した後、特に反応時間をとらず直ぐに後処理しても、金属キレート粉体が得られる場合がある。   The reaction temperature and reaction time can also be adjusted as appropriate. More specifically, the reaction temperature and reaction time may be determined by preliminary experiments and the like. Depending on the reactivity of the chelating agent and the metal compound, a metal chelate powder may be obtained even if it is dissolved in a solvent and then immediately post-treated without taking any reaction time.

反応終了後は、常法により金属キレート粉体を得ることができる。例えば、貧溶媒の添加、反応溶液の濃縮、冷却、またはこれら2以上の組合せにより目的化合物である金属キレートを晶析させ、これを濾別し、洗浄および乾燥すればよい。或いは、反応溶液を濃縮乾固後、再結晶などを行ってもよい。   After completion of the reaction, a metal chelate powder can be obtained by a conventional method. For example, the metal chelate, which is the target compound, is crystallized by adding a poor solvent, concentrating the reaction solution, cooling, or a combination of two or more of these, filtering this, washing and drying. Alternatively, the reaction solution may be concentrated to dryness and then recrystallized.

なお、金属キレート粉体は、水素塩やアンモニウム塩などの塩であってもよい。   The metal chelate powder may be a salt such as a hydrogen salt or an ammonium salt.

得られた金属キレート粉体は、必要に応じて粒度や形状を調整してもよい。即ち、火炎溶融法においては原料粉体を溶射機へ安定的に供給しなければならないため、アスペクト比が小さい形状とし、且つ粒度をなるべく均一にすることが好ましい。これによって原料粉体の安定送給性は格段に向上する。従って、得られた金属キレート粉体を、ボールミル、ロッドミル、ハンマーミルで処理することにより、粗大な粉体を粉砕してもよい。また、篩過などにより、粗大粒子や過剰に細かい粒子などを除去し、粒度分布が狭く粒径の均一な粉体を得てもよい。   The obtained metal chelate powder may be adjusted in particle size and shape as necessary. That is, in the flame melting method, since the raw material powder must be stably supplied to the thermal spraying machine, it is preferable that the shape has a small aspect ratio and the particle size is as uniform as possible. As a result, the stable feedability of the raw material powder is greatly improved. Therefore, coarse powder may be pulverized by treating the obtained metal chelate powder with a ball mill, a rod mill, or a hammer mill. Alternatively, coarse particles or excessively fine particles may be removed by sieving to obtain a powder having a narrow particle size distribution and a uniform particle size.

金属キレート粉体の粒子径としては、流動性を損なうものでなければ特に制限されないが、10μm以上、150μm以下程度にすることが好ましい。この範囲を外れると粉末供給装置から溶射ガンへ粉末を搬送するパウダーホース内で閉塞し、結果として不均一なフィードとなるため有機成分の熱分解が不完全となるおそれがあり得る。   The particle size of the metal chelate powder is not particularly limited as long as it does not impair the fluidity, but is preferably about 10 μm or more and 150 μm or less. Outside this range, the powder hose that transports the powder from the powder supply device to the thermal spray gun may become clogged, resulting in a non-uniform feed, which may result in incomplete thermal decomposition of the organic components.

金属キレート粉体が熱流体に導入されると、その有機成分が熱分解する。そして、熱分解後に残る金属成分が酸化されて金属酸化物が生成され、その金属酸化物が飛翔中に中実球状粒子となる。   When the metal chelate powder is introduced into the thermal fluid, its organic component is thermally decomposed. Then, the metal component remaining after the thermal decomposition is oxidized to produce a metal oxide, and the metal oxide becomes solid spherical particles during flight.

本発明方法で用いる金属キレートは、非気化性である。即ち、本発明に係る金属キレートは加熱しても気化することはなく、気化する前に有機成分であるキレート剤部分が熱分解する。従って、本発明に係る金属キレートを熱分解温度以上に加熱した場合には、気化する前に必ず熱分解して金属が残り、その金属が酸化されて金属酸化物が生成する。なお、火炎溶融法において原料である金属キレートが熱分解する前に気化してしまう場合、その後に熱分解して生成される酸化物粒子が微細になりすぎてしまったり、酸化物粒子の収率が極端に低下してしまう。   The metal chelate used in the method of the present invention is non-vaporizable. That is, the metal chelate according to the present invention does not vaporize even when heated, and the chelating agent portion, which is an organic component, is thermally decomposed before vaporization. Therefore, when the metal chelate according to the present invention is heated to a temperature equal to or higher than the pyrolysis temperature, the metal chelate is always thermally decomposed before being vaporized, so that the metal is oxidized and a metal oxide is generated. In addition, if the metal chelate that is a raw material in the flame melting method is vaporized before thermal decomposition, the oxide particles generated by thermal decomposition after that become too fine, or the yield of oxide particles Is extremely reduced.

本発明に係る金属キレートの分解温度は、おおよそ250℃以上、400℃以下である。従って、金属キレート粉体の熱流体中における加熱温度は400℃以上であればよい。一方、加熱温度の上限は特に制限されないが、例えば3000℃以下とすることができ、2000℃以下が好ましく、1500℃以下がより好ましく、1000℃以下がさらに好ましい。かかる加熱温度は、金属酸化物などを原料とする従来の火炎溶融法での加熱温度よりも明らかに低いものである。   The decomposition temperature of the metal chelate according to the present invention is approximately 250 ° C. or more and 400 ° C. or less. Accordingly, the heating temperature of the metal chelate powder in the hot fluid may be 400 ° C. or higher. On the other hand, the upper limit of the heating temperature is not particularly limited, but can be, for example, 3000 ° C. or lower, preferably 2000 ° C. or lower, more preferably 1500 ° C. or lower, and further preferably 1000 ° C. or lower. Such a heating temperature is clearly lower than the heating temperature in the conventional flame melting method using a metal oxide or the like as a raw material.

当該工程における原料粉体は、一種類の金属キレートのみで構成してもよいし、複数種類の金属キレートを機械的に混合したものであってもよい。例えば、原料粉体として、エチレンジアミン四酢酸イットリウムアンモニウム塩とエチレンジアミン四酢酸ユウロピウムアンモニウム塩を混合して使う場合には、その原料を熱流体に導入することにより、イットリウムの酸化物とユウロピウムの酸化物とを含む中実球状金属酸化物粒子を形成することができる。   The raw material powder in this step may be composed of only one kind of metal chelate, or may be a mixture of a plurality of kinds of metal chelates mechanically. For example, when mixing and using ethylenediaminetetraacetic acid yttrium ammonium salt and ethylenediaminetetraacetic acid europium ammonium salt as raw material powder, by introducing the raw material into a thermal fluid, yttrium oxide and europium oxide Solid spherical metal oxide particles containing can be formed.

得られた非気化性金属キレート粉体を熱流体中で加熱することにより、粉体中の有機成分を熱分解して除去し且つ金属成分を酸化させ、本発明に係る中実球状金属酸化物粒子を得る。   By heating the obtained non-vaporizable metal chelate powder in a thermal fluid, the organic component in the powder is thermally decomposed and removed, and the metal component is oxidized, and the solid spherical metal oxide according to the present invention Get particles.

上記金属キレート粉体を用いて熱流体に導入する場合に用いられる方法は、有機成分を熱分解し且つ中実球状金属酸化物粒子を得るために必要な温度の熱流体を発生させるものであれば特に限定されないが、例えば一般的に使用されている溶射法や溶射装置の熱流体発生装置を用いることができる。即ち、原料である金属キレート粉体を熱流体としての溶射炎の熱エネルギーで熱分解させることができればよく、金属キレートが熱分解する温度に加熱可能であれば、溶射法や溶射条件は特に限定されない。具体的には、ガスを燃焼させて熱流体としての溶射炎を形成するフレーム溶射法や高速ガスフレーム溶射法、放電によって熱流体としての溶射炎を形成するプラズマ溶射法、或いは、熱流体としての高速の作動ガスによって溶射するコールドスプレー法などが挙げられるが、金属キレート粉体を熱分解可能であり、熱流体(溶射炎)が形成される溶射法であればどのような方法でもよく、特に低コストでの実施が可能なフレーム溶射がより好ましい。   The method used when introducing the metal chelate powder into the thermal fluid is to generate a thermal fluid at a temperature necessary for pyrolyzing the organic components and obtaining solid spherical metal oxide particles. Although not particularly limited, for example, a commonly used thermal spraying method or a thermal fluid generator of a thermal spraying apparatus can be used. That is, it is only necessary that the metal chelate powder as a raw material can be thermally decomposed by the thermal energy of the thermal spray flame as a thermal fluid, and if the metal chelate can be heated to a temperature at which it is thermally decomposed, the thermal spraying method and the thermal spraying conditions are particularly limited. Not. Specifically, a flame spraying method in which gas is burned to form a thermal spray flame as a thermal fluid, a high-speed gas flame spraying method, a plasma spraying method in which a thermal flame is formed as a thermal fluid by discharge, or a thermal fluid as There is a cold spray method that sprays with a high-speed working gas, but any method can be used as long as the metal chelate powder can be pyrolyzed and a thermal fluid (spray flame) is formed. More preferred is flame spraying, which can be performed at low cost.

金属キレート粉体を用いた中実球状金属酸化物粒子の製造方法の一例として、図1に示すような溶射ガン100(例えば、Sulzer Metco社製の6P−II)を用いてフレーム溶射法により本実施形態の原料を用いて中実球状金属酸化物粒子を得ることができる。溶射ガン100は、酸素−可燃性ガスを供給する酸素−可燃性ガス供給孔1と、粉末の原料を搬送する原料搬送ガスを供給する搬送ガス供給孔2と、原料を供給する原料供給孔3と、ノズル4などからなる。原料供給孔3から供給された原料は、搬送ガスによって噴射され、円筒状になった溶射炎(フレーム)5に導入され、均一に加熱・分解されて金属酸化物粒子が生成される。そして、前記溶射炎5によって搬送される間に中実球状を形成し、金属酸化物粉末回収装置により中実球状金属酸化物粒子を得ることができる。金属酸化物粉末回収装置は、特に制限されないが、例えばサイクロン型粉体回収装置、バッグフィルター、およびそれらの併用などが挙げられる。   As an example of a method for producing solid spherical metal oxide particles using a metal chelate powder, this method is performed by flame spraying using a spray gun 100 (for example, 6P-II manufactured by Sulzer Metco) as shown in FIG. Solid spherical metal oxide particles can be obtained using the raw materials of the embodiment. The thermal spray gun 100 includes an oxygen-combustible gas supply hole 1 for supplying an oxygen-combustible gas, a carrier gas supply hole 2 for supplying a raw material carrier gas for conveying a powder raw material, and a raw material supply hole 3 for supplying a raw material. And the nozzle 4 and the like. The raw material supplied from the raw material supply hole 3 is injected by the carrier gas, introduced into a cylindrical spray flame (frame) 5, and uniformly heated and decomposed to generate metal oxide particles. A solid spherical shape can be formed while being conveyed by the thermal spray flame 5, and solid spherical metal oxide particles can be obtained by the metal oxide powder recovery device. The metal oxide powder recovery device is not particularly limited, and examples thereof include a cyclone type powder recovery device, a bag filter, and a combination thereof.

このフレーム溶射法のフレームの最高到達温度は、アセチレン炎の場合約3200℃であり、本実施形態の原料である金属キレートを分解させるのに十分な温度(400℃以上)である。また、その他の溶射方法のフレームの温度は、高速ガスフレーム溶射(灯油)で約2700℃、プラズマ溶射で約10000℃といわれており、いずれの溶射方法でも金属キレートを分解させることができる。従って、本実施形態の原料は、従来の一般的な溶射方法・溶射条件で、容易に原料の金属キレートを分解温度まで加熱し、分解させ、金属酸化物に変化させて、中実球状金属酸化物粒子を得ることができる。   In the flame spraying method, the maximum temperature of the flame is about 3200 ° C. in the case of acetylene flame, which is a sufficient temperature (400 ° C. or higher) to decompose the metal chelate that is the raw material of the present embodiment. Further, the flame temperature of other thermal spraying methods is said to be about 2700 ° C. by high-speed gas flame spraying (kerosene) and about 10,000 ° C. by plasma spraying, and the metal chelate can be decomposed by any thermal spraying method. Therefore, the raw material of the present embodiment is a solid spherical metal oxide by easily heating the metal chelate of the raw material to the decomposition temperature, decomposing it, and converting it into a metal oxide under the conventional general spraying method and spraying conditions. Product particles can be obtained.

以上で説明した本発明方法によって形成される中実球状金属酸化物粒子について、以下、説明する。   The solid spherical metal oxide particles formed by the method of the present invention described above will be described below.

本発明方法で得られる金属酸化物粒子は、細孔のほとんど見られない中実体であり、且つ真球度の高い球状である。例えば、図2には、原料粉体として、イットリウムとエチレンジアミン四酢酸との金属キレートからなる粉体を溶射して得られた、イットリア(Y23)粒子の外観と断面の電子顕微鏡写真を示している。この写真から、真球度の高い中実球状であることがわかる。 The metal oxide particles obtained by the method of the present invention are solid bodies having almost no pores and are spherical with a high sphericity. For example, FIG. 2 shows an electron micrograph of the appearance and cross section of yttria (Y 2 O 3 ) particles obtained by thermal spraying a powder made of a metal chelate of yttrium and ethylenediaminetetraacetic acid as a raw material powder. Show. From this photograph, it can be seen that it is a solid sphere with high sphericity.

以上説明した本発明に係る中実球状金属酸化物粒子溶射皮膜の製造方法によれば、溶射の過程で加熱された原料粉体が気化することなく分解し、非常に粒径の小さい金属酸化物粒子となり、さらに溶融・球状化した後、飛翔しながら冷却結晶化して中実球状金属酸化物粒子を得ることができる。また、上述のように、本発明方法の原料である金属キレート粉体は、400℃以下で分解するため、フレーム溶射法のようなプラズマ溶射法等に比べて非常に低い温度で溶射しても、中実球状金属酸化物粒子を得ることができる。   According to the method for producing a solid spherical metal oxide particle sprayed coating according to the present invention described above, the raw material powder heated in the process of thermal spraying decomposes without vaporizing and has a very small particle size. It becomes particles, and after melting and spheroidizing, it can be cooled and crystallized while flying to obtain solid spherical metal oxide particles. In addition, as described above, the metal chelate powder that is the raw material of the method of the present invention decomposes at 400 ° C. or lower, and therefore, even when sprayed at a very low temperature compared to a plasma spraying method such as flame spraying. Solid spherical metal oxide particles can be obtained.

また、本発明に係る原料粉体によれば、原料である金属キレートを熱によって分解させることができれば金属酸化物被膜の形成が可能なため、どのような溶射方法や溶射装置であっても流用することができる。具体的には、例示したフレーム溶射や、高速ガスフレーム溶射、アーク溶射、プラズマ溶射、コールドスプレーなど、金属キレートの分解温度より高い温度の熱流体によって溶射材料を溶射する溶射方法であれば、どのような溶射方法でもよい。   In addition, according to the raw material powder according to the present invention, a metal oxide film can be formed if the metal chelate as a raw material can be decomposed by heat. can do. Specifically, any thermal spraying method that sprays a thermal spray material with a thermal fluid at a temperature higher than the decomposition temperature of the metal chelate, such as the flame spraying described above, high-speed gas flame spraying, arc spraying, plasma spraying, cold spray, etc. Such a thermal spraying method may be used.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1〜3 中実球状金属酸化物粒子の製造
(1) 原料金属キレート粉体の調製
水溶媒中、酸化イットリウム、酸化エルビウムまたは塩化チタンと、エチレンジアミン四酢酸とを夫々等モル量で反応させた後、この水溶液から晶析させることにより、表1の原料金属キレート粉体を調製した。
Examples 1 to 3 Production of solid spherical metal oxide particles (1) Preparation of raw metal chelate powder In an aqueous solvent, yttrium oxide, erbium oxide or titanium chloride and ethylenediaminetetraacetic acid were reacted in equimolar amounts. Then, the raw material metal chelate powder of Table 1 was prepared by crystallization from this aqueous solution.

(2) 金属酸化物粒子の製造
上記結晶粉末を原料として、表2に示すフレーム溶射法により、金属酸化物粒子を製造した。なお、使用した溶射機は、図1として模式的に示す形状の溶射ガンを有する。原料金属キレート粉体の供給量は、実施例1で10g/分、実施例2で9g/分、実施例3で0.3g/分とした。また、得られた金属酸化物粒子は、自由落下している粒子を粘着テープで捕集することにより回収した。
(2) Production of metal oxide particles Metal oxide particles were produced by the flame spraying method shown in Table 2 using the crystal powder as a raw material. The used thermal spraying machine has a thermal spray gun having a shape schematically shown in FIG. The supply amount of the raw metal chelate powder was 10 g / min in Example 1, 9 g / min in Example 2, and 0.3 g / min in Example 3. Moreover, the obtained metal oxide particles were recovered by collecting the free-falling particles with an adhesive tape.

(3) 分析
上記で得られた金属酸化物粒子の外観を電子顕微鏡で観察した。さらに、得られた金属酸化物粒子を樹脂で包埋した上で切断し、その断面を電子顕微鏡で観察した。その結果、いずれも直径0.2〜50μm程度の中実球であることが確認できた。実施例1〜3の各金属酸化物粒子の電子顕微鏡写真を、それぞれ図2〜4に示す。また、得られた金属酸化物粒子をX線回折で分析した。得られたX線回折チャートを、それぞれ図5〜7に示す。得られた結果より、実施例1〜3の金属酸化物粒子は、それぞれ酸化イットリウム、酸化エルビウム、並びにルチル型およびアナターゼ型の酸化チタン混合物からなることを確認できた。
(3) Analysis The appearance of the metal oxide particles obtained above was observed with an electron microscope. Further, the obtained metal oxide particles were embedded in a resin and cut, and the cross section was observed with an electron microscope. As a result, it was confirmed that all were solid spheres having a diameter of about 0.2 to 50 μm. The electron micrograph of each metal oxide particle of Examples 1-3 is shown in FIGS. The obtained metal oxide particles were analyzed by X-ray diffraction. The obtained X-ray diffraction charts are shown in FIGS. From the obtained results, it was confirmed that the metal oxide particles of Examples 1 to 3 were each composed of yttrium oxide, erbium oxide, and a rutile-type and anatase-type titanium oxide mixture.

1: 酸素―可燃性ガス供給孔
2: 搬送ガス供給孔
3: 原料供給孔
4: ノズル
5: 溶射炎
100: 溶射ガン
1: Oxygen-combustible gas supply hole 2: Carrier gas supply hole 3: Raw material supply hole 4: Nozzle 5: Thermal spray flame 100: Thermal spray gun

Claims (3)

中実球状金属酸化物粒子を製造するための方法であって、
1種以上の非気化性金属キレート粉体を熱流体中で加熱することにより、粉体中の有機成分を熱分解して除去し且つ金属成分を酸化させる工程を含むことを特徴とする中実球状金属酸化物粒子の製造方法。
A method for producing solid spherical metal oxide particles comprising:
A solid comprising a step of heating one or more kinds of non-vaporizable metal chelate powders in a thermal fluid to thermally decompose and remove organic components in the powders and oxidize the metal components A method for producing spherical metal oxide particles.
キレート剤としてアミノカルボン酸系キレート剤を用いる請求項1に記載の製造方法。   The production method according to claim 1, wherein an aminocarboxylic acid chelating agent is used as the chelating agent. アミノカルボン酸系キレート剤として、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、および、ニトリロ三酢酸から選択される少なくとも1種を用いる請求項2に記載の製造方法。   The production method according to claim 2, wherein at least one selected from ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, and nitrilotriacetic acid is used as the aminocarboxylic acid chelating agent.
JP2011179971A 2011-08-19 2011-08-19 Method for producing solid spherical metal oxide particles Active JP6082868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179971A JP6082868B2 (en) 2011-08-19 2011-08-19 Method for producing solid spherical metal oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179971A JP6082868B2 (en) 2011-08-19 2011-08-19 Method for producing solid spherical metal oxide particles

Publications (2)

Publication Number Publication Date
JP2013040090A true JP2013040090A (en) 2013-02-28
JP6082868B2 JP6082868B2 (en) 2017-02-22

Family

ID=47888839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179971A Active JP6082868B2 (en) 2011-08-19 2011-08-19 Method for producing solid spherical metal oxide particles

Country Status (1)

Country Link
JP (1) JP6082868B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310706A (en) * 1987-04-01 1988-12-19 コーニング グラス ワークス Particles of metal oxide and metal sulfide
JPS6424017A (en) * 1987-07-17 1989-01-26 Nippon Telegraph & Telephone Process and device for producing superconductor
JPS6424016A (en) * 1987-07-17 1989-01-26 Nippon Telegraph & Telephone Process and device for producing superconductor
JPH01246110A (en) * 1988-03-28 1989-10-02 Koroido Res:Kk Production of compound oxide
JPH11236607A (en) * 1998-02-24 1999-08-31 Sumitomo Metal Mining Co Ltd Production of spherical powder and spherical powder produced thereby
US5958361A (en) * 1993-03-19 1999-09-28 Regents Of The University Of Michigan Ultrafine metal oxide powders by flame spray pyrolysis
JP2002241180A (en) * 2001-02-09 2002-08-28 Chubu Kiresuto Kk Production process of high-density, metal oxide sintered compact target

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310706A (en) * 1987-04-01 1988-12-19 コーニング グラス ワークス Particles of metal oxide and metal sulfide
JPS6424017A (en) * 1987-07-17 1989-01-26 Nippon Telegraph & Telephone Process and device for producing superconductor
JPS6424016A (en) * 1987-07-17 1989-01-26 Nippon Telegraph & Telephone Process and device for producing superconductor
JPH01246110A (en) * 1988-03-28 1989-10-02 Koroido Res:Kk Production of compound oxide
US5958361A (en) * 1993-03-19 1999-09-28 Regents Of The University Of Michigan Ultrafine metal oxide powders by flame spray pyrolysis
JPH11236607A (en) * 1998-02-24 1999-08-31 Sumitomo Metal Mining Co Ltd Production of spherical powder and spherical powder produced thereby
JP2002241180A (en) * 2001-02-09 2002-08-28 Chubu Kiresuto Kk Production process of high-density, metal oxide sintered compact target

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016010951; TEOH, W. Y. et al: 'Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication' Nanoscale Vol.2, 20100517, p.1324-1347 *

Also Published As

Publication number Publication date
JP6082868B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
CN103801704B (en) A kind of be applicable to 3D print molding copper powder, preparation method and its usage
CN109279896A (en) The thermal spraying of ceramic material
JP6559118B2 (en) Nickel powder
CN107486560A (en) A kind of method that globular metallic powder is prepared in the case where malleation cools down atmosphere
JP2010265144A (en) Method for producing composite tungsten oxide ultrafine particle
JP7217056B2 (en) Method and apparatus for treating exhaust gas containing target gas in plasma phase
CN104583428A (en) Method and device for separating rare earth elements
CN102616826A (en) Pyrolysis method for preparing trivalent rare earth oxide
WO2017006795A1 (en) Method for producing cobalt powder
JP6082868B2 (en) Method for producing solid spherical metal oxide particles
JP2007314867A (en) Manufacturing method of nickel powder
KR101372469B1 (en) Methods and apparatus for manufacturing nano sized low melting glass powder
JP7290176B2 (en) Thermal spray material
JP5894799B2 (en) Thermal spray material and method for forming thermal spray coating
CN111421142A (en) Preparation method of spherical titanium powder
KR101400901B1 (en) Method for preparing 500 ㎚-10 ㎛ sized fine spherical powder using high temperature source
CN105271429A (en) Method for preparing iron oxide red and hydrochloric acid from hot galvanized waste acid
JP5315501B2 (en) Method for producing fluorescent light emitting powder and fluorescent light emitting powder
KR100793163B1 (en) Method for manufacturing nano size powder of iron using RF plasma device
JP6717663B2 (en) Film formation method
Ishigaki Synthesis of ceramic nanoparticles with non-equilibrium crystal structures and chemical compositions by controlled thermal plasma processing
Hong et al. The Effect of flux types on the formation of green light emitting phosphor particles with spherical shape and filled morphology
JP5811002B2 (en) Method and apparatus for producing SiO using hollow carbon electrode
KR102572728B1 (en) Metal powder manufacturing apparatus and metal powder manufacturing method using same
Kim et al. Preparation of mono-disperse Ni powders via the reduction of hydrazine complexes: The effect of source materials and impurities

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6082868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250