JP2013028563A - Titanium dioxide pigment for cosmetic and method for producing the same - Google Patents

Titanium dioxide pigment for cosmetic and method for producing the same Download PDF

Info

Publication number
JP2013028563A
JP2013028563A JP2011166117A JP2011166117A JP2013028563A JP 2013028563 A JP2013028563 A JP 2013028563A JP 2011166117 A JP2011166117 A JP 2011166117A JP 2011166117 A JP2011166117 A JP 2011166117A JP 2013028563 A JP2013028563 A JP 2013028563A
Authority
JP
Japan
Prior art keywords
titanium dioxide
temperature
spherical
dioxide pigment
cosmetics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011166117A
Other languages
Japanese (ja)
Other versions
JP5794852B2 (en
Inventor
Masanori Iida
正紀 飯田
Ai Shimokawa
藍 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2011166117A priority Critical patent/JP5794852B2/en
Publication of JP2013028563A publication Critical patent/JP2013028563A/en
Application granted granted Critical
Publication of JP5794852B2 publication Critical patent/JP5794852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spherical anatase-type titanium dioxide pigment, which has mild concealment and a satisfactory feeling derived from shapes and surface conditions, moderately absorbs sebum secreted from skin, and maintains adhesion to skin when it is used by being blended into a cosmetic, and to provide a method for producing the spherical anatase-type titanium dioxide pigment.SOLUTION: Titanyl sulfate is hydrolyzed under the temperature of ≥170°C and also under the pressure of the saturated vapor pressure or more at the temperature to obtain spherical water-containing titanium dioxide. Next, the spherical water-containing titanium dioxide is fired at the temperature of 600 to 800°C to obtain spherical anatase-type titanium dioxide. In the obtained spherical anatase-type titanium dioxide, the average particle diameter is 0.1 to 5 μm, the peak of the diameter of fine pores in a pore distribution measured by a nitrogen adsorption method is 5 to 50 nm, and further, pore volume lies in the range of 0.05 to 0.3 cm/g.

Description

本発明は、二酸化チタン白色顔料に関する。さらに詳しくは、配合した化粧料に対して、マイルドで自然な隠蔽性と塗布時の伸び、感触性及び塗布後の化粧効果の持続性を与える二酸化チタン白色顔料に関する。   The present invention relates to a titanium dioxide white pigment. More specifically, the present invention relates to a titanium dioxide white pigment that gives a mild and natural hiding property, elongation at the time of application, touch feeling, and durability of a cosmetic effect after application to a blended cosmetic.

近年、ファンデーション、コンシーラー、白粉、頬紅、アイシャドー、アイブロウ、口紅等のメークアップ化粧料においては、塗布時に肌上での伸展性に優れること、感触が良好であること、肌への密着性が良好で、塗布後に自然な仕上がりとなって、それが持続し化粧崩れの少ないこと等が要求されている。しかしながら、従来の二酸化チタン白色顔料は0.2〜0.3μmの不定形粒子であり、塗料やプラスチック中では高い隠蔽性を発揮するが、化粧料中では凝集力が強く、塗布時に伸展性を阻害し、白浮きして仕上がりが不自然となる傾向があった。   In recent years, makeup cosmetics such as foundation, concealer, white powder, blusher, eye shadow, eyebrow, lipstick, etc. have excellent extensibility on the skin when applied, good touch, and good adhesion to the skin. There is a demand for it to be good and have a natural finish after application, and that it will last and have little makeup collapse. However, conventional titanium dioxide white pigments are irregular particles of 0.2 to 0.3 μm and exhibit high hiding properties in paints and plastics. However, they have strong cohesive strength in cosmetics and have excellent extensibility when applied. There was a tendency to hinder, whitening and unnatural finish.

そこで、このような問題に対し、例えば、塗布時に肌上での伸展性に優れた効果のある酸化チタン白色顔料として、特許文献1には、0.5〜2.0μmの一次粒径を有する粒子状二酸化チタンが開示されている。また、例えば、化粧料に配合した際に優れたすべり性を有する二酸化チタンとして、特許文献2には、平均一次粒子径が0.01〜0.07μmの二酸化チタンの小球状粒子から形成される0.1〜3μmの球状二酸化チタン集合体が開示されている。   Therefore, for such a problem, for example, as a titanium oxide white pigment having an effect of excellent extensibility on the skin at the time of application, Patent Document 1 has a primary particle size of 0.5 to 2.0 μm. Particulate titanium dioxide is disclosed. Further, for example, as titanium dioxide having excellent sliding properties when blended in cosmetics, Patent Document 2 is formed from small spherical particles of titanium dioxide having an average primary particle diameter of 0.01 to 0.07 μm. A spherical titanium dioxide aggregate of 0.1 to 3 μm is disclosed.

WO2004/052786公報WO2004 / 052786 特開2000−191325公報JP 2000-191325 A

前記の特許文献1に記載の二酸化チタンは、一次粒径が0.5〜2.0μmと大きいために凝集力が弱く、塗布時の伸展性や仕上がりが改善されるが、粒子表面が平滑であるために、化粧料中の油性成分や肌から分泌される皮脂によるべたつきや、肌からの脱離、いわゆる化粧崩れ等の問題を解決できるものではない。また、特許文献2に記載の球状二酸化チタン集合体は、粒子サイズが大きいことによる肌上での伸展性の改善の他、小球状粒子の隙間への油性成分の浸透によるベタツキ改善が期待できるものの、隙間の大きさが制御されておらず効果が不十分であったり、化粧料の機能を損なうほど油分を吸収したり、また、集合体が壊れて単独の小球状粒子となったものが伸展性や隠蔽性の効果を阻害したりする恐れのあるものであった。   The titanium dioxide described in Patent Document 1 has a large primary particle size of 0.5 to 2.0 μm and thus has a low cohesive force and improves the extensibility and finish during coating, but the particle surface is smooth. For this reason, problems such as stickiness due to oily components in cosmetics and sebum secreted from the skin, detachment from the skin, so-called makeup collapse cannot be solved. In addition, the spherical titanium dioxide aggregate described in Patent Document 2 can be expected to improve the stickiness due to the penetration of oily components into the gaps between the small spherical particles in addition to the improvement of the extensibility on the skin due to the large particle size. The size of the gap is not controlled and the effect is insufficient, the oil is absorbed so as to impair the function of the cosmetic, and the aggregate breaks into single small spherical particles that extend There is a risk of hindering the effects of sex and concealment.

つまり、これまでに改良されてきた二酸化チタン白色顔料は、塗布時の伸び、感触性には優れているものの、化粧料の高機能化、多様化のニーズに対して必ずしも満足のいくものではなく、塗布時の密着性や塗布後の仕上がり及びそれらの効果の持続性の改良が求められていた。   In other words, the titanium dioxide white pigments that have been improved so far have excellent elongation and feel when applied, but they are not always satisfactory for the needs for higher functionality and diversification of cosmetics. There has been a demand for improvement in adhesion during coating, finishing after coating, and sustainability of these effects.

そこで、本発明者らは、かかる課題を解決するため、鋭意研究の結果、窒素吸着法で測定した細孔分布のピークが5〜50nmにあり、しかも、細孔容積が0.05〜0.3cm/gの範囲であり、平均粒子径が0.1〜5μmの球状アナタース型二酸化チタンを化粧料に配合したときに、塗布時の伸展性、感触、密着性、及び塗布後の自然な仕上がりや効果の持続性が大きく改善されることを見出し、本発明を完成した。 Therefore, in order to solve such problems, the present inventors have intensively studied, and as a result, the peak of the pore distribution measured by the nitrogen adsorption method is 5 to 50 nm, and the pore volume is 0.05 to 0.00. When a spherical anatase-type titanium dioxide having a mean particle size of 0.1 to 5 μm in a range of 3 cm 3 / g is blended in cosmetics, the extensibility at the time of application, touch, adhesion, and natural after application The inventors have found that the finish and sustainability of the effect are greatly improved, and have completed the present invention.

また、前記の球状アナタース型二酸化チタンは、従来既知の加水分解方法、即ち、硫酸チタニルを170℃以上の温度下、かつ、該温度の飽和蒸気圧以上の圧力下で加水分解する方法で球状含水二酸化チタンを得、次いで、600〜800℃の温度で焼成したり、前記の球状含水二酸化チタンを塩酸中に浸漬した後に400〜600℃の温度で焼成したりして製造できること等を見出し、本発明を完成した。   The spherical anatase-type titanium dioxide is obtained by a conventionally known hydrolysis method, ie, a method of hydrolyzing titanyl sulfate at a temperature of 170 ° C. or higher and a pressure equal to or higher than the saturated vapor pressure of the temperature. It is found that titanium dioxide can be obtained and then calcined at a temperature of 600 to 800 ° C. or can be produced by immersing the spherical hydrous titanium dioxide in hydrochloric acid and then calcining at a temperature of 400 to 600 ° C. Completed the invention.

すなわち、本発明は、
(1)平均粒子径が0.1〜5μmの球状アナタース型二酸化チタンであって、窒素吸着法で測定した細孔分布における細孔直径のピークが5〜50nmにあり、しかも、細孔容積が0.05〜0.3cm/gの範囲である化粧料用二酸化チタン顔料、
(2)硫酸チタニルを170℃以上の温度下、かつ、該温度の飽和蒸気圧以上の圧力下で加水分解して球状含水二酸化チタンを得、次いで、該球状含水二酸化チタンを600〜800℃の温度で焼成する前記(1)の化粧料用二酸化チタン顔料の製造方法、
(3)硫酸チタニルを170℃以上の温度下、かつ、該温度の飽和蒸気圧以上の圧力下で加水分解して球状含水二酸化チタンを得、次いで、該球状含水二酸化チタンを塩酸中に浸漬した後に400〜600℃の温度で焼成する前記(1)の化粧料用二酸化チタン顔料の製造方法、等である。
That is, the present invention
(1) Spherical anatase-type titanium dioxide having an average particle size of 0.1 to 5 μm, having a pore diameter peak in the pore distribution measured by the nitrogen adsorption method at 5 to 50 nm, and having a pore volume of A titanium dioxide pigment for cosmetics in the range of 0.05 to 0.3 cm 3 / g,
(2) Titanyl sulfate is hydrolyzed at a temperature of 170 ° C. or higher and a pressure equal to or higher than the saturated vapor pressure of the temperature to obtain spherical hydrous titanium dioxide, and then the spherical hydrous titanium dioxide is heated to 600 to 800 ° C. The method for producing a titanium dioxide pigment for cosmetics according to (1), which is fired at a temperature;
(3) Titanyl sulfate was hydrolyzed at a temperature of 170 ° C. or higher and a pressure equal to or higher than the saturated vapor pressure of the temperature to obtain spherical hydrous titanium dioxide, and then the spherical hydrous titanium dioxide was immersed in hydrochloric acid. (1) The method for producing a titanium dioxide pigment for cosmetics according to (1), which is later fired at a temperature of 400 to 600 ° C.

本発明は、窒素吸着法で測定した細孔分布における細孔直径のピーク、細孔容積が特定の範囲であり、しかも、特定の平均粒子径を有する球状アナタース型二酸化チタン顔料であって、化粧料に配合して用いると、形状及び表面状態に由来したマイルドな隠蔽性と良好な感触をもち、肌から分泌される皮脂を適度に吸収して肌への密着性が持続することから、様々な化粧料の顔料として使用できる。   The present invention relates to a spherical anatase-type titanium dioxide pigment having a pore diameter peak and pore volume in a pore distribution measured by a nitrogen adsorption method in a specific range, and having a specific average particle size, When used in a blend, it has a mild hiding property and a good feel derived from its shape and surface condition, and absorbs sebum secreted from the skin to maintain its close contact with the skin. Can be used as a pigment in cosmetics.

本発明の二酸化チタン顔料は、化粧料に配合して用いられるものであって、アナタース型結晶を有する。また、球状の粒子形状を有し、その平均粒子径は0.1〜5μmであり、好ましくは0.1〜1μm、より好ましくは0.3〜0.5μmである。平均粒子径が5μmより大きいと、粒子の粒度分布幅が広くなり、形状係数が小さくなるため望ましくなく、0.1μmより小さいと各粒子が凝集して不定形になりやすく、形状係数が小さくなるため望ましくない。また、球状形状は電子顕微鏡写真で観察して大まかに略球状であればよいが、その形状係数は0.7〜1.0が好ましく、0.9〜1.0である真球状がより好ましい。形状係数が前記範囲より小さいと粒子形状が真球状とはいいがたく望ましいものではない。   The titanium dioxide pigment of the present invention is used in cosmetics and has anatase type crystals. Moreover, it has a spherical particle shape, and the average particle diameter is 0.1 to 5 μm, preferably 0.1 to 1 μm, and more preferably 0.3 to 0.5 μm. If the average particle size is larger than 5 μm, the particle size distribution width of the particles is widened and the shape factor is small, which is not desirable. If the average particle size is smaller than 0.1 μm, the particles tend to aggregate and become irregular, and the shape factor is small. Therefore, it is not desirable. The spherical shape may be roughly spherical when observed with an electron micrograph, but the shape factor is preferably 0.7 to 1.0, more preferably a true sphere of 0.9 to 1.0. . If the shape factor is smaller than the above range, the particle shape is not necessarily desirable although it is a true spherical shape.

本発明において、二酸化チタン顔料の結晶形はX線回折で確認し、粒子形状は電子顕微鏡写真で確認する。また、本発明において、平均粒子径、形状係数は次のようにして具体的に求める。まず、得られた二酸化チタン顔料の透過型電子顕微鏡写真(倍率20000倍)を、ニレコ社製画像解析装置で画像解析し、粒子約100個のそれぞれの面積と最大粒子径(L)を測定する。次に、得られた粒子の面積の値を基に、該粒子を真円と仮定した場合の直径(D)を求める。この直径(D)の個数平均値を粒子の平均粒子径(MD)とする。また、前記の直径(D)と最大粒子径(L)の比(D/L)の平均値を粒子の形状係数とする。   In the present invention, the crystal form of the titanium dioxide pigment is confirmed by X-ray diffraction, and the particle shape is confirmed by an electron micrograph. In the present invention, the average particle size and shape factor are specifically determined as follows. First, a transmission electron micrograph (magnification 20000 times) of the obtained titanium dioxide pigment is subjected to image analysis using an image analysis apparatus manufactured by Nireco, and the area and maximum particle diameter (L) of each of about 100 particles are measured. . Next, based on the value of the area of the obtained particle, the diameter (D) when the particle is assumed to be a perfect circle is obtained. The number average value of the diameters (D) is defined as the average particle diameter (MD) of the particles. Moreover, let the average value of ratio (D / L) of the said diameter (D) and the largest particle diameter (L) be a shape factor of particle | grains.

本発明の二酸化チタン顔料は、多孔性状を有し、直径5〜50nmの範囲のメソ細孔を持ち、具体的には、5〜50nmの範囲に窒素吸着法で測定した細孔分布における細孔直径のピークを有する。しかも、その細孔容積は0.05〜0.3cm/gの範囲である。このような多孔性状を有することにより、化粧料に配合して使用した際に、粒子が肌に適度な強さで付着することで均一で滑らかな仕上がりとなり、また、適度な油分を吸収してベタツキや化粧崩れが改善される等、優れた効果を有する。 The titanium dioxide pigment of the present invention has a porous shape and has mesopores in a diameter range of 5 to 50 nm, specifically, pores in a pore distribution measured by a nitrogen adsorption method in a range of 5 to 50 nm. Has a peak in diameter. Moreover, the pore volume is in the range of 0.05 to 0.3 cm 3 / g. By having such a porous state, when blended in cosmetics and used, the particles adhere to the skin with an appropriate strength, resulting in a uniform and smooth finish, and absorbing an appropriate oil content. It has excellent effects such as improved stickiness and makeup collapse.

細孔直径のピークは10〜30nmの範囲にあることが好ましく、その細孔容積は0.05〜0.15cm/gの範囲がより好ましい。細孔直径や細孔容積が小さすぎると、即ち粒子表面は滑らかとなり、肌への付着力が弱くなり、化粧ムラができる等して白浮きの原因となる他、油分の吸収がなくなって、ベタツキや化粧崩れ改善効果を発揮しなくなる。一方、細孔直径や細孔容積が大きすぎると、化粧料の機能として必要な油分を多量に吸収してしまい、化粧料の機能を損なったり増粘を引き起こしたりするほか、粒子表面が粗く塗布時の感触が悪くなる。 The peak of the pore diameter is preferably in the range of 10 to 30 nm, and the pore volume is more preferably in the range of 0.05 to 0.15 cm 3 / g. If the pore diameter or pore volume is too small, that is, the particle surface will be smooth, the adhesion to the skin will be weak, whitening will occur due to uneven makeup, etc., oil absorption will be lost, The sticky and make-up breakage improvement effect is not exhibited. On the other hand, if the pore diameter or pore volume is too large, it will absorb a large amount of oil necessary for the cosmetic function, impairing the cosmetic function and causing thickening, and the particle surface is coated coarsely. The feeling of time gets worse.

この細孔直径のピーク、細孔容積は、窒素吸着法(BET法)で比表面積を測定するとともに、測定された吸着等温線からBJH解析によりメソ細孔の分布、直径のピーク、容積等を算出する。窒素吸着法(BET法)で測定した比表面積は、10〜100m/g程度が好ましく、10〜70m/g程度がより好ましい。 The pore diameter peak and pore volume are determined by measuring the specific surface area by the nitrogen adsorption method (BET method) and the mesopore distribution, diameter peak, volume, etc. by BJH analysis from the measured adsorption isotherm. calculate. Nitrogen adsorption method specific surface area measured by (BET method) is preferably about 10 to 100 m 2 / g, about 10 to 70 m 2 / g is more preferable.

なお、本発明のアナタース型二酸化チタン顔料は、従来の二酸化チタン顔料と同程度の白色を有しているが、鉄、銅、セリウム、バナジウム、アンチモン、クロム、タングステン、マンガン、コバルト等の金属の化合物を含有してもよく、この場合、種々の色相を有する。特に、酸化鉄等の鉄化合物を含有する場合には、化粧料には好ましいベェージュ色となる。また、二酸化チタン顔料の粒子内部に、アルミニウム、亜鉛、リン、鉄等の金属の化合物を含有してもよく、この場合、二酸化チタン特有の酸化活性や光活性が抑制されるので、好ましい。   The anatase-type titanium dioxide pigment of the present invention has a whiteness comparable to that of conventional titanium dioxide pigments, but is made of a metal such as iron, copper, cerium, vanadium, antimony, chromium, tungsten, manganese, and cobalt. It may contain compounds and in this case has various hues. In particular, when an iron compound such as iron oxide is contained, it becomes a preferred beige color for cosmetics. Further, a metal compound such as aluminum, zinc, phosphorus or iron may be contained inside the titanium dioxide pigment particles. In this case, the oxidation activity and photoactivity peculiar to titanium dioxide are suppressed, which is preferable.

本発明の二酸化チタン顔料の粒子表面には、ケイ素酸化物及び/又はアルミニウム酸化物が被覆されているのが好ましい。ケイ素酸化物、アルミニウム酸化物としては、例えば、ケイ素、アルミニウムの無水酸化物、含水酸化物、水和酸化物から選ばれる少なくとも1つの化合物等が挙げられ、その被覆の様態は、多孔質であっても、緻密であってもよく、適宜選択できる。また、それぞれを単独で被覆することも、これらを積層したり、混合して被覆する等して、組み合わせて用いることもできる。特に、二酸化チタンの粒子表面にケイ素酸化物を被覆した後、更にその表面にアルミニウム酸化物を被覆すると、より好ましい。   The particle surface of the titanium dioxide pigment of the present invention is preferably coated with silicon oxide and / or aluminum oxide. Examples of the silicon oxide and aluminum oxide include at least one compound selected from silicon, an anhydrous oxide of aluminum, a hydrated oxide, and a hydrated oxide. The coating state is porous. Or may be dense and can be selected as appropriate. Each of them can be coated alone, or can be used in combination by laminating or mixing them. In particular, it is more preferable to coat the surface of titanium dioxide particles with silicon oxide and then coat the surface with aluminum oxide.

これらの好ましい被覆量は、TiO換算の二酸化チタン粒子の重量基準に対し、ケイ素酸化物がSiO換算で0〜10重量%の範囲であり、アルミニウム酸化物がAl換算で1〜10重量%の範囲である。より好ましくは、それぞれの被覆量は、TiO換算の二酸化チタン粒子の重量基準に対し、2〜5重量%、1〜6重量%の範囲である。 These preferable coating amounts are in the range of 0 to 10% by weight of silicon oxide in terms of SiO 2 and 1 to 1 in terms of Al 2 O 3 with respect to the weight basis of titanium dioxide particles in terms of TiO 2 . It is in the range of 10% by weight. More preferably, each coating amount is in the range of 2 to 5% by weight and 1 to 6% by weight with respect to the weight basis of the titanium dioxide particles in terms of TiO 2 .

本発明では、ケイ素酸化物、アルミニウム酸化物に加え、更に、これら以外の無機化合物を被覆してもよい。無機化合物としては、例えば、ジルコニウム、スズ、チタン、アンチモン等の酸化物、水酸化物、リン酸塩等が挙げられる。   In the present invention, in addition to silicon oxide and aluminum oxide, inorganic compounds other than these may be coated. Examples of inorganic compounds include oxides such as zirconium, tin, titanium, and antimony, hydroxides, and phosphates.

また、本発明の二酸化チタン顔料の粒子表面には、シリコーン化合物及び/又はフッ素界面活性剤が被覆されているのが好ましい。シリコーン化合物としては、メチルハイドロジェンポリシロキサン、トリメチルシロキシケイ酸、フルオロアルキル・ポリオキシアルキレン共変性シリコーン等が挙げられる。また、フッ素界面活性剤としては、パーフルオロアルキルリン酸エステル、パーフルオロアルキルカルボン酸塩等が挙げられる。シリコーン化合物、フッ素界面活性剤の被覆量は、TiO換算の二酸化チタン粒子の重量基準に対し、0.1〜5重量%の範囲が好ましく、0.1〜2重量%の範囲が更に好ましい。 Moreover, it is preferable that the particle surface of the titanium dioxide pigment of the present invention is coated with a silicone compound and / or a fluorine surfactant. Examples of the silicone compound include methyl hydrogen polysiloxane, trimethylsiloxysilicic acid, fluoroalkyl / polyoxyalkylene co-modified silicone, and the like. Examples of the fluorine surfactant include perfluoroalkyl phosphate esters and perfluoroalkyl carboxylates. The coating amount of the silicone compound and the fluorosurfactant is preferably in the range of 0.1 to 5% by weight and more preferably in the range of 0.1 to 2% by weight with respect to the weight basis of the titanium dioxide particles in terms of TiO 2 .

本発明では、シリコーン化合物、フッ素界面活性剤に加え、更に、これら以外の有機化合物を被覆してもよい。有機化合物としては、例えば、ポリオール化合物(トリメチロールプロパン、トリメチロールエタン、ジトリメチロールプロパン、トリメチロールプロパンエトキシレート、ペンタエリスリトール等)、アルカノールアミン化合物(モノエタノールアミン、モノプロパノールアミン、ジエタノールアミン、ジプロパノールアミン、トリエタノールアミン、トリプロパノールアミン等)及びその誘導体(酢酸塩、シュウ塩、酒石酸塩、ギ酸塩、安息香酸塩等)等が挙げられる。中でも、ポリオール化合物は、分散性を向上させる効果が高いので好ましく、トリメチロールプロパン、トリメチロールエタンであれば更に好ましい。シリコーン化合物、フッ素界面活性剤やその他の有機化合物は、ケイ素酸化物、アルミニウム酸化物等の無機化合物の被覆上に被覆するのがより好ましい。   In the present invention, an organic compound other than these may be coated in addition to the silicone compound and the fluorine surfactant. Examples of organic compounds include polyol compounds (trimethylolpropane, trimethylolethane, ditrimethylolpropane, trimethylolpropane ethoxylate, pentaerythritol, etc.), alkanolamine compounds (monoethanolamine, monopropanolamine, diethanolamine, dipropanolamine). , Triethanolamine, tripropanolamine, etc.) and derivatives thereof (acetate, oxalate, tartrate, formate, benzoate, etc.). Among these, a polyol compound is preferable because it has a high effect of improving dispersibility, and trimethylolpropane and trimethylolethane are more preferable. More preferably, the silicone compound, the fluorine surfactant and other organic compounds are coated on a coating of an inorganic compound such as silicon oxide or aluminum oxide.

本発明の二酸化チタン顔料は、硫酸チタニルを170℃以上の温度下、かつ、該温度の飽和蒸気圧以上の圧力下で加水分解して球状含水二酸化チタンを得、次いで、該球状含水二酸化チタンを600〜800℃の温度で焼成して製造することができる。また別の方法として、前記の方法で加圧加水分解して得られた球状含水二酸化チタンを塩酸中に浸漬した後に400〜600℃の温度で焼成して製造することができる。以下、各工程について詳細を説明する。   The titanium dioxide pigment of the present invention is obtained by hydrolyzing titanyl sulfate at a temperature of 170 ° C. or higher and a pressure equal to or higher than the saturated vapor pressure of the temperature to obtain spherical hydrous titanium dioxide. It can be manufactured by firing at a temperature of 600 to 800 ° C. As another method, the spherical hydrous titanium dioxide obtained by hydrolyzing under pressure by the above method can be produced by immersing it in hydrochloric acid and then baking it at a temperature of 400 to 600 ° C. Details of each step will be described below.

まず、硫酸チタニルを170℃以上の温度下、かつ、該温度の飽和蒸気圧以上の圧力下で加水分解して球状含水二酸化チタンを製造する。   First, spherical water-containing titanium dioxide is produced by hydrolyzing titanyl sulfate at a temperature of 170 ° C. or higher and a pressure equal to or higher than the saturated vapor pressure of the temperature.

硫酸チタニルの溶液は、精製した硫酸チタニル溶液のほか、チタン鉱石を硫酸で浸出した硫酸鉄等の不純物を含む溶液、硫酸チタニルをアルカリで中和する等して得られたメタチタン酸または含水二酸化チタンを硫酸で溶解した溶液等である。   The titanyl sulfate solution is a purified titanyl sulfate solution, a solution containing impurities such as iron sulfate obtained by leaching titanium ore with sulfuric acid, metatitanic acid or hydrous titanium dioxide obtained by neutralizing titanyl sulfate with an alkali, etc. A solution in which

この硫酸チタニルの溶液を耐圧容器に入れ、容器を密閉状態にした後、所定の温度に加熱し、加水分解する。硫酸チタニルの濃度はTiO2 基準に換算して0.05〜5mol/l程度、好ましくは0.5〜3mol/lである。また、必要に応じて、硫酸チタニルの濃度を調整する際、遊離硫酸の濃度を50〜800g/l程度、好ましくは150〜400g/lに調整してもよい。 The titanyl sulfate solution is put in a pressure vessel, and the vessel is sealed, and then heated to a predetermined temperature for hydrolysis. The concentration of titanyl sulfate is about 0.05 to 5 mol / l, preferably 0.5 to 3 mol / l in terms of TiO 2 standard. If necessary, when adjusting the concentration of titanyl sulfate, the concentration of free sulfuric acid may be adjusted to about 50 to 800 g / l, preferably 150 to 400 g / l.

加水分解時の温度は、170℃以上、望ましくは180℃〜300℃の温度である。前記温度が170℃より低い場合、所望の大きさ、形を有する球状含水二酸化チタンが得られ難くなる。   The temperature at the time of hydrolysis is 170 ° C. or higher, desirably 180 ° C. to 300 ° C. When the temperature is lower than 170 ° C., it becomes difficult to obtain spherical hydrous titanium dioxide having a desired size and shape.

加水分解時の圧力は、前記温度の飽和蒸気圧程度または飽和蒸気圧以上の圧力、望ましくは前記温度の飽和蒸気圧より0〜10Kg/cm 程度高い圧力である。加水分解時の温度が300℃より高い場合や、加水分解時の圧力が飽和蒸気圧より大幅に高い場合、使用できる装置が限られるので好ましくない。 The pressure during hydrolysis is about the saturated vapor pressure at the temperature or higher than the saturated vapor pressure, preferably about 0 to 10 kg / cm 2 higher than the saturated vapor pressure at the temperature. When the temperature at the time of hydrolysis is higher than 300 ° C. or when the pressure at the time of hydrolysis is significantly higher than the saturated vapor pressure, it is not preferable because usable devices are limited.

加水分解の反応時間は0.5〜10時間が適当である。このように加水分解した後、適当な温度になるまで冷却し、分別し、必要に応じて、洗浄し、乾燥して球状含水二酸化チタンを得る。   The reaction time for hydrolysis is suitably 0.5 to 10 hours. After being hydrolyzed in this manner, it is cooled to an appropriate temperature, separated, washed as necessary, and dried to obtain spherical hydrous titanium dioxide.

次いで、このようにして得られた球状含水二酸化チタンを、600〜800℃の温度で焼成して、平均粒子径が0.1〜5μmの球状アナタース型二酸化チタンであって、窒素吸着法で測定した細孔分布における細孔直径のピークが5〜50nmにあり、しかも、細孔容積が0.05〜0.3cm/gの範囲である、化粧料用の二酸化チタン顔料を製造することができる。 Subsequently, the spherical hydrous titanium dioxide thus obtained is fired at a temperature of 600 to 800 ° C., and is a spherical anatase type titanium dioxide having an average particle diameter of 0.1 to 5 μm, which is measured by a nitrogen adsorption method. A titanium dioxide pigment for cosmetics having a pore diameter peak in the pore distribution of 5 to 50 nm and a pore volume in the range of 0.05 to 0.3 cm 3 / g. it can.

焼成の温度が800℃より高い場合、細孔直径が大きくなりすぎたり、また、粒子間焼結等により形状係数が小さくなったり、ルチル型二酸化チタンが一部生成して形状が変わったりして望ましくない。また、600℃より低い場合、細孔直径が小さくなりすぎたり、細孔容積が多くなりすぎるため望ましくない。   When the firing temperature is higher than 800 ° C., the pore diameter becomes too large, the shape factor becomes small due to inter-particle sintering, etc., or the rutile type titanium dioxide partially generates and changes its shape. Not desirable. On the other hand, when the temperature is lower than 600 ° C., the pore diameter becomes too small or the pore volume becomes too large.

また、本発明の二酸化チタン顔料は、硫酸チタニルを加圧加水分解して得られた前記の球状含水二酸化チタンを塩酸中に浸漬した後に400〜600℃の温度で焼成して製造することができる。球状含水二酸化チタンは、硫酸根を多く含んでいるが、塩酸中に浸漬すると置換反応により硫酸根の残留量を減少させることができる。このため、塩酸中に浸漬しない場合に比べて低温度で焼成することができる。   In addition, the titanium dioxide pigment of the present invention can be produced by immersing the spherical hydrous titanium dioxide obtained by hydrolyzing titanyl sulfate under pressure, followed by firing at a temperature of 400 to 600 ° C. . Spherical hydrous titanium dioxide contains a large amount of sulfate radicals, but when immersed in hydrochloric acid, the residual amount of sulfate radicals can be reduced by a substitution reaction. For this reason, it can be fired at a lower temperature than when not immersed in hydrochloric acid.

具体的には、塩酸中に浸漬した後、必要に応じて、洗浄し、乾燥して得た球状含水二酸化チタンを、400〜600℃の温度で焼成して、平均粒子径が0.1〜5μmの球状アナタース型二酸化チタンであって、窒素吸着法で測定した細孔分布における細孔直径のピークが5〜50nmにあり、しかも、細孔容積が0.05〜0.3cm/gの範囲である化粧料に配合して用いる二酸化チタン顔料を製造することができる。 Specifically, spherical water-containing titanium dioxide obtained by immersing in hydrochloric acid and then washing and drying, if necessary, is fired at a temperature of 400 to 600 ° C., and the average particle size is 0.1 to 0.1. 5 μm spherical anatase-type titanium dioxide having a pore diameter peak in a pore distribution measured by a nitrogen adsorption method of 5 to 50 nm and a pore volume of 0.05 to 0.3 cm 3 / g The titanium dioxide pigment used by blending with cosmetics in the range can be produced.

焼成の温度が600℃より高い場合、細孔直径が大きくなりすぎたり、また、粒子間焼結等により形状係数が小さくなったり、ルチル型二酸化チタンが一部生成して形状が変わったりして望ましくない。また、400℃より低い場合、細孔直径が小さくなりすぎたり、細孔容積が多くなりすぎるため望ましくない。   When the firing temperature is higher than 600 ° C., the pore diameter becomes too large, the shape factor becomes small due to inter-particle sintering, etc., or the rutile type titanium dioxide partially generates and changes its shape. Not desirable. On the other hand, when the temperature is lower than 400 ° C., the pore diameter becomes too small or the pore volume becomes too large.

上記の焼成の時間は0.5〜10時間程度が適当である。焼成に使用する装置は、回転炉等の一般的な焼成炉が使用できる。焼成して得られる本発明の球状アナタース型二酸化チタン顔料は、焼成時の粒子間焼結がほとんど認められず、球状含水二酸化チタンの形状を保持している。本発明のアナタース型二酸化チタン顔料は、用途に応じて、擂潰機等で解砕又は粉砕が可能である。   The firing time is suitably about 0.5 to 10 hours. As a device used for firing, a general firing furnace such as a rotary furnace can be used. The spherical anatase-type titanium dioxide pigment of the present invention obtained by firing hardly retains the interparticle sintering during firing, and maintains the shape of spherical hydrous titanium dioxide. The anatase-type titanium dioxide pigment of the present invention can be crushed or pulverized with a crusher or the like depending on the application.

また、必要に応じて、球状アナタース型二酸化チタン顔料の粒子表面を、ケイ素酸化物やアルミニウム酸化物で被覆する。それにはまず、球状アナタース型二酸化チタン顔料を水中に分散させて、好ましくは、縦型サンドミル、横型サンドミル等を用いて湿式粉砕を行い、水性スラリーを調製する。この際、水性スラリーのpHを9以上に調整すると、球状アナタース型二酸化チタン顔料が水中に安定して分散するので好ましい。また、必要に応じて、例えば、ヘキサメタリン酸ナトリウム、ピロリン酸ナトリウム等のリン酸化合物、ケイ酸ナトリウム、ケイ酸カリウム等のケイ酸化合物等の分散剤を用いてもよい。水性スラリー中の球状アナタース型二酸化チタン顔料の固形分濃度は、50〜800g/lの範囲であり、好ましくは100〜500g/lの範囲である。   If necessary, the particle surface of the spherical anatase-type titanium dioxide pigment is coated with silicon oxide or aluminum oxide. For this purpose, a spherical anatase-type titanium dioxide pigment is first dispersed in water, and wet pulverization is preferably performed using a vertical sand mill, horizontal sand mill, or the like to prepare an aqueous slurry. At this time, it is preferable to adjust the pH of the aqueous slurry to 9 or more because the spherical anatase-type titanium dioxide pigment is stably dispersed in water. Moreover, you may use dispersing agents, such as silicic acid compounds, such as phosphoric acid compounds, such as sodium hexametaphosphate and sodium pyrophosphate, sodium silicate, and potassium silicate, as needed. The solid content concentration of the spherical anatase-type titanium dioxide pigment in the aqueous slurry is in the range of 50 to 800 g / l, preferably in the range of 100 to 500 g / l.

その後、水性スラリー中に、ケイ素化合物、アルミニウム化合物を添加した後、中和剤を添加したり、あるいは、ケイ素化合物、アルミニウム化合物と中和剤とを同時に添加すれば、ケイ素酸化物、アルミニウム化合物が被覆される。ケイ素化合物の塩としては、ケイ酸ナトリウム、ケイ酸カリウム等が挙げられる。アルミニウム化合物の塩としては、アルミン酸ナトリウム、硫酸アルミニウム、硝酸アルミニウム等が挙げられる。また、中和剤としては、塩基性化合物であれば、アルカリ金属、アルカリ土類金属等の水酸化物や炭酸塩等、アンモニア等のアンモニウム化合物、アミン類等が、酸性化合物であれば、硫酸、塩酸等の無機酸、酢酸、ギ酸等の有機酸等が挙げられる。   Then, after adding a silicon compound and an aluminum compound to an aqueous slurry, a neutralizing agent is added, or if a silicon compound, an aluminum compound and a neutralizing agent are added simultaneously, the silicon oxide and the aluminum compound are added. Covered. Examples of the salt of the silicon compound include sodium silicate and potassium silicate. Examples of the aluminum compound salt include sodium aluminate, aluminum sulfate, and aluminum nitrate. Further, as the neutralizing agent, if it is a basic compound, hydroxides or carbonates such as alkali metals and alkaline earth metals, ammonium compounds such as ammonia, amines, etc., if acidic compounds, sulfuric acid And inorganic acids such as hydrochloric acid, and organic acids such as acetic acid and formic acid.

球状アナタース型二酸化チタン顔料の粒子表面に被覆するケイ素酸化物は、多孔質処理と緻密処理が知られており、前記の方法では多孔質ケイ素酸化物の被覆が得られる。緻密ケイ素酸化物を被覆するのであれば、特開昭53−33228号公報等に記載されている公知の方法を応用できる。特開昭53−33228号公報に記載の方法を用いるのであれば、球状アナタース型二酸化チタン顔料のスラリー80〜100℃の範囲の温度に維持しながら、好ましくは、スラリーのpHを9〜10.5の範囲に維持しながら、ケイ酸ナトリウムを急速に添加した後、9〜10.5のpHで中和し、その後、80〜100℃の範囲の温度を50〜60分間保持する。あるいは、ケイ酸化合物を30分間以上かけて中和する方法を用いることもできる。この方法では、中和は1時間以上かけて行うのが更に好ましい。中和pHは4〜7.5の範囲に、また、中和時の水性スラリーの温度が80℃以上であれば、より緻密な被覆が形成され易いので好ましい。より好ましい中和pHの範囲は4.5〜7であり、中和温度は90℃以上である。   As for the silicon oxide coated on the particle surface of the spherical anatase-type titanium dioxide pigment, porous treatment and dense treatment are known, and the porous silicon oxide coating can be obtained by the above-described method. If the dense silicon oxide is coated, a known method described in JP-A-53-33228 can be applied. If the method described in JP-A-53-33228 is used, the slurry preferably has a pH of 9-10. While maintaining the spherical anatase-type titanium dioxide pigment slurry at a temperature in the range of 80-100 ° C. While maintaining in the range of 5, sodium silicate is added rapidly and then neutralized at a pH of 9-10.5, after which a temperature in the range of 80-100 ° C. is held for 50-60 minutes. Or the method of neutralizing a silicic acid compound over 30 minutes can also be used. In this method, the neutralization is more preferably performed over 1 hour. If the neutralization pH is in the range of 4 to 7.5 and the temperature of the aqueous slurry at the time of neutralization is 80 ° C. or higher, it is preferable because a denser coating is easily formed. The range of more preferable neutralization pH is 4.5-7, and the neutralization temperature is 90 degreeC or more.

また、必要に応じて、球状アナタース型二酸化チタン顔料の粒子表面を、シリコーン化合物及び/又はフッ素界面活性剤で被覆する。例えば、球状アナタース型二酸化チタン顔料とシリコーン化合物及び/又はフッ素界面活性剤とを乾式粉砕機や高速撹拌機を用い、両者を撹拌、混合して被覆することができる。特に、乾式粉砕機を用いる方法は、球状アナタース型二酸化チタン顔料の粉砕と有機化合物の被覆とを同時に行うことができるので好ましい。乾式粉砕機としては、粉砕効率が良く、混合性に優れたジェットミル等の気流式粉砕機を用いるが好ましい。また、球状アナタース型二酸化チタン顔料の水性スラリーにシリコーン化合物及び/又はフッ素界面活性剤を添加して、被覆することもできる。   Moreover, the particle | grain surface of a spherical anatase type titanium dioxide pigment is coat | covered with a silicone compound and / or a fluorosurfactant as needed. For example, a spherical anatase-type titanium dioxide pigment and a silicone compound and / or a fluorine surfactant can be coated by using a dry pulverizer or a high-speed stirrer and stirring and mixing them. In particular, a method using a dry pulverizer is preferable because the pulverization of the spherical anatase-type titanium dioxide pigment and the coating with the organic compound can be performed simultaneously. As the dry pulverizer, an airflow pulverizer such as a jet mill having good pulverization efficiency and excellent mixing properties is preferably used. Moreover, it can also coat | cover by adding a silicone compound and / or a fluorosurfactant to the aqueous | water-based slurry of a spherical anatase type titanium dioxide pigment.

本発明では、球状アナタース型二酸化チタン顔料の粒子表面にケイ素酸化物、アルミニウム酸化物以外の無機化合物を被覆する場合には、ケイ素酸化物、アルミニウム酸化物の被覆と同様の方法を用いることができる。また、球状アナタース型二酸化チタン顔料の粒子表面にシリコーン化合物、フッ素界面活性剤以外の有機化合物を被覆する場合にも、シリコーン化合物、フッ素界面活性剤の被覆と同様の方法を用いることができる。球状アナタース型二酸化チタン顔料の粒子表面に有機化合物を被覆するのであれば、ケイ素酸化物やアルミニウム酸化物を被覆後の球状アナタース型二酸化チタン顔料と、乾式粉砕機や高速撹拌機を用い、両者を撹拌、混合するのが好ましい。ケイ素酸化物、アルミニウム酸化物等の無機化合物、シリコーン化合物、フッ素界面活性剤等の有機化合物を被覆した球状アナタース型二酸化チタン顔料を、脱水してスラリーから固液分離して乾燥し、必要に応じて乾式粉砕を行うことができる。脱水には、例えば、フィルタープレス、ロールプレス等を用いることができる。乾燥には、例えば、バンド式ヒーター、バッチ式ヒーター等を用いることができる。乾式粉砕には、例えば、ハンマーミル、ピンミル等の衝撃粉砕機、解砕機等に摩砕粉砕機、ジェットミル等の気流粉砕機、スプレードライヤー等の噴霧乾燥機等を用いることができる。   In the present invention, when an inorganic compound other than silicon oxide and aluminum oxide is coated on the particle surface of the spherical anatase-type titanium dioxide pigment, the same method as the coating of silicon oxide and aluminum oxide can be used. . Also, when the particle surface of the spherical anatase-type titanium dioxide pigment is coated with an organic compound other than the silicone compound and the fluorine surfactant, the same method as that for coating the silicone compound and the fluorine surfactant can be used. If the surface of spherical anatase-type titanium dioxide pigment particles is coated with an organic compound, use a spherical anatase-type titanium dioxide pigment coated with silicon oxide or aluminum oxide, a dry grinder or a high-speed stirrer. It is preferable to stir and mix. Spherical anatase-type titanium dioxide pigment coated with inorganic compounds such as silicon oxide and aluminum oxide, organic compounds such as silicone compounds and fluorine surfactants, dehydrated and solid-liquid separated from the slurry and dried, if necessary Can be dry pulverized. For dehydration, for example, a filter press, a roll press, or the like can be used. For example, a band heater, a batch heater, or the like can be used for drying. For the dry pulverization, for example, an impact pulverizer such as a hammer mill or a pin mill, a pulverizer or the like, a grinding pulverizer, an airflow pulverizer such as a jet mill, or a spray dryer such as a spray dryer can be used.

本発明の球状アナタース型二酸化チタン顔料は、化粧料に配合して用いる。化粧料への配合量は、化粧料の剤型や、より具体的な目的を鑑みた他の配合成分との兼ね合いにより、一概に規定できるものではないが、概ね化粧料全体の0.1〜60.0重量%が好ましく、1.0〜40.0重量%であることが特に好ましい。0.1重量%未満では、十分な効果が得られないことがあり、また60.0重量%を超えると使用性が悪くなることがある。   The spherical anatase-type titanium dioxide pigment of the present invention is used by blending with cosmetics. The amount blended into the cosmetic can not be defined unconditionally depending on the dosage form of the cosmetic and other blending components in view of a more specific purpose, but is generally 0.1 to 0.1% of the entire cosmetic. 60.0% by weight is preferable, and 1.0 to 40.0% by weight is particularly preferable. If it is less than 0.1% by weight, a sufficient effect may not be obtained, and if it exceeds 60.0% by weight, the usability may be deteriorated.

化粧料には、本発明の球状アナタース型二酸化チタン顔料の他に、効果を損なわない範囲において、通常化粧品や医薬品等に用いられる他の成分、例えば、その他の粉末成分、液体油脂、固体油脂、ロウ、炭化水素、高級アルコール、エステル、シリコーン、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン界面活性剤、保湿剤、水溶性高分子、増粘剤、皮膜剤、紫外線吸収剤、金属イオン封鎖剤、低級アルコール、多価アルコール、糖、アミノ酸、有機アミン、高分子エマルジョン、pH調整剤、皮膚栄養剤、ビタミン、酸化防止剤、酸化防止助剤、香料、水等を必要に応じて適宜配合し、目的とする剤形に応じて常法により製造することができる。   In cosmetics, in addition to the spherical anatase-type titanium dioxide pigment of the present invention, other components usually used in cosmetics and pharmaceuticals, for example, other powder components, liquid fats and oils, solid fats and oils, as long as the effect is not impaired Wax, hydrocarbon, higher alcohol, ester, silicone, anionic surfactant, cationic surfactant, amphoteric surfactant, nonionic surfactant, moisturizer, water-soluble polymer, thickener, film agent, UV absorption Agent, sequestering agent, lower alcohol, polyhydric alcohol, sugar, amino acid, organic amine, polymer emulsion, pH adjuster, skin nutrient, vitamin, antioxidant, antioxidant aid, fragrance, water, etc. are required Depending on the dosage form, it can be prepared by a conventional method according to the intended dosage form.

化粧料は、外皮に適用される化粧品、医薬品、及び医薬部外品に広く適用することが可能である。その剤型は任意であり、溶液系、可溶化系、乳化系、粉末分散系、水−油二層系、水−油−粉末三層系、ゲル、エアゾール、ミスト、及びカプセル等、任意の形態で提供されることができる。また、化粧料の製品形態も任意であり、化粧水、乳液、クリーム、パック等のフェーシャル化粧料;ファンデーション、おしろい、頬紅、口紅、アイシャドー、アイライナー、マスカラ、サンスクリーン等のメーキャップ化粧料;ボディー化粧料;芳香化粧料;メーク落とし、洗顔料、ボディーシャンプー等の皮膚洗浄料;ヘアーリンス、シャンプー等の毛髪化粧料;軟膏;浴用剤;あぶら取り紙等、従来化粧料に用いるものであればいずれの形で適用することもできる。   Cosmetics can be widely applied to cosmetics, pharmaceuticals, and quasi drugs that are applied to the outer skin. The dosage form is arbitrary, such as solution system, solubilization system, emulsification system, powder dispersion system, water-oil two-layer system, water-oil-powder three-layer system, gel, aerosol, mist, capsule, etc. It can be provided in the form. In addition, the product form of the cosmetic is also arbitrary, facial cosmetics such as lotion, milky lotion, cream and pack; makeup cosmetics such as foundation, funny, blusher, lipstick, eye shadow, eyeliner, mascara and sunscreen; Body cosmetics; Aromatic cosmetics; Makeup removers, facial cleansers, skin cleansers such as body shampoos; hair cosmetics such as hair rinses and shampoos; ointments; bath preparations; It can be applied in any form.

以下、本発明の好適な実施例についてさらに詳しく説明する。なお、本発明はこれにより限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in more detail. In addition, this invention is not limited by this.

実施例1
TiO換算で150g/dmの濃度の硫酸チタニル水溶液をオートクレーブに仕込み、加水分解用核剤を添加し、100kg/cmの飽和蒸気圧以上の圧力下、250℃の温度下で、4時間かけて加水分解させた後、濾過、洗浄、乾燥して、球状含水二酸化チタン乾燥粉末を得た。この乾燥粉末を700℃で焼成して、平均粒子径が380nm、窒素吸着法で測定した細孔分布における細孔直径のピークが12nmであり、しかも、細孔容積が0.19cm/gの多孔質球状アナタース型二酸化チタン粒子(a)を得た。この粒子の比表面積は27m/gであり、形状係数は0.95であった。
なお、試料の粒子形状は、透過型電子顕微鏡写真(倍率20000倍)を観察し、確認した。また、平均粒子径、形状係数は透過型電子顕微鏡写真(倍率20000倍)をニレコ社製画像解析装置で粒子約100個を画像解析して算出した。
また、結晶形はX線回折により確認した。比表面積、細孔直径のピーク、細孔容積の測定には、日本ベル社製のBELSOPR−miniIIを使用した。
Example 1
An aqueous solution of titanyl sulfate having a concentration of 150 g / dm 3 in terms of TiO 2 was charged into an autoclave, a nucleating agent for hydrolysis was added, and the pressure was higher than the saturated vapor pressure of 100 kg / cm 2 at a temperature of 250 ° C. for 4 hours. Then, it was hydrolyzed, filtered, washed and dried to obtain a spherical hydrous titanium dioxide dry powder. The dried powder was calcined at 700 ° C., the average particle diameter was 380 nm, the pore diameter peak in the pore distribution measured by the nitrogen adsorption method was 12 nm, and the pore volume was 0.19 cm 3 / g. Porous spherical anatase-type titanium dioxide particles (a) were obtained. The specific surface area of the particles was 27 m 2 / g, and the shape factor was 0.95.
The particle shape of the sample was confirmed by observing a transmission electron micrograph (magnification 20000 times). Further, the average particle diameter and shape factor were calculated by analyzing a transmission electron micrograph (magnification 20000 times) of about 100 particles with an image analysis apparatus manufactured by Nireco.
The crystal form was confirmed by X-ray diffraction. BELSOPR-miniII manufactured by Nippon Bell Co., Ltd. was used for measurement of specific surface area, peak of pore diameter, and pore volume.

実施例2
実施例1において、焼成温度を620℃とすること以外は実施例1と同様にして、平均粒子径が400nm、窒素吸着法で測定した細孔分布における細孔直径のピークが5.2nmであり、しかも、細孔容積が0.12cm/gの多孔質球状アナタース型二酸化チタン粒子(b)を得た。この粒子の比表面積は47m/gであり、形状係数は0.96であった。
Example 2
In Example 1, except that the firing temperature was 620 ° C., the average particle diameter was 400 nm, and the peak of the pore diameter in the pore distribution measured by the nitrogen adsorption method was 5.2 nm. Moreover, porous spherical anatase-type titanium dioxide particles (b) having a pore volume of 0.12 cm 3 / g were obtained. The specific surface area of these particles was 47 m 2 / g, and the shape factor was 0.96.

実施例3
実施例1において、焼成温度を780℃とすること以外は実施例1と同様にして、平均粒子径が350nm、窒素吸着法で測定した細孔分布における細孔直径のピークが40nmであり、しかも、細孔容積が0.13cm/gの多孔質球状アナタース型二酸化チタン粒子(c)を得た。この粒子の比表面積は16m/gであり、形状係数は0.93であった。
Example 3
In Example 1, except that the calcination temperature is 780 ° C., the average particle size is 350 nm, the peak of the pore diameter in the pore distribution measured by the nitrogen adsorption method is 40 nm, and Then, porous spherical anatase-type titanium dioxide particles (c) having a pore volume of 0.13 cm 3 / g were obtained. The specific surface area of these particles was 16 m 2 / g, and the shape factor was 0.93.

実施例4
TiO換算で150g/dmの濃度の硫酸チタニル水溶液をオートクレーブに仕込み、加水分解用核剤を添加し、100kg/cmの飽和蒸気圧以上の圧力下、250℃の温度下で、4時間かけて加水分解させた後、濾過、洗浄、乾燥して、球状含水二酸化チタン乾燥粉末を得た。この乾燥粉末150gを7%塩酸500cmに懸濁させ、60℃に加温して1時間撹拌した後、20%水酸化ナトリウム水溶液で中和して濾過・洗浄した。得られた洗浄ケーキを500℃で焼成して、平均粒子径が400nm、窒素吸着法で測定した細孔分布における細孔直径のピークが12nmであり、しかも、細孔容積が0.14cm/gの多孔質球状アナタース型二酸化チタン粒子(d)を得た。この粒子の比表面積は28m/gであり、形状係数は0.97であった。
Example 4
An aqueous solution of titanyl sulfate having a concentration of 150 g / dm 3 in terms of TiO 2 was charged into an autoclave, a nucleating agent for hydrolysis was added, and the pressure was higher than the saturated vapor pressure of 100 kg / cm 2 at a temperature of 250 ° C. for 4 hours. Then, it was hydrolyzed, filtered, washed and dried to obtain a spherical hydrous titanium dioxide dry powder. 150 g of this dry powder was suspended in 500 cm 3 of 7% hydrochloric acid, heated to 60 ° C. and stirred for 1 hour, then neutralized with 20% aqueous sodium hydroxide solution, filtered and washed. The obtained washed cake was baked at 500 ° C., the average particle size was 400 nm, the peak of the pore diameter in the pore distribution measured by the nitrogen adsorption method was 12 nm, and the pore volume was 0.14 cm 3 / g of porous spherical anatase-type titanium dioxide particles (d) were obtained. The specific surface area of the particles was 28 m 2 / g, and the shape factor was 0.97.

実施例5
実施例4において、焼成温度を420℃とすること以外は実施例4と同様にして、平均粒子径が400nm、窒素吸着法で測定した細孔分布における細孔直径のピークが6.1nmであり、しかも、細孔容積が0.07cm/gの多孔質球状アナタース型二酸化チタン粒子(e)を得た。この粒子の比表面積は51m/gであり、形状係数は0.94であった。
Example 5
In Example 4, the average particle diameter is 400 nm and the peak of the pore diameter in the pore distribution measured by the nitrogen adsorption method is 6.1 nm, except that the firing temperature is 420 ° C. Moreover, porous spherical anatase-type titanium dioxide particles (e) having a pore volume of 0.07 cm 3 / g were obtained. The specific surface area of these particles was 51 m 2 / g, and the shape factor was 0.94.

実施例6
実施例4において、焼成温度を580℃とすること以外は実施例4と同様にして、平均粒子径が390nm、窒素吸着法で測定した細孔分布における細孔直径のピークが38nmであり、しかも、細孔容積が0.10cm/gの多孔質球状アナタース型二酸化チタン粒子(f)を得た。この粒子の比表面積は14m/gであり、形状係数は0.95であった。
Example 6
In Example 4, the average particle diameter was 390 nm, and the peak of the pore diameter in the pore distribution measured by the nitrogen adsorption method was 38 nm, except that the firing temperature was 580 ° C., and Then, porous spherical anatase type titanium dioxide particles (f) having a pore volume of 0.10 cm 3 / g were obtained. The specific surface area of the particles was 14 m 2 / g and the shape factor was 0.95.

実施例7
実施例4で得られた二酸化チタン粒子(d)をTiO濃度200g/dmの水性スラリーに調整し、二酸化チタン重量に対して、ヘキサメタリン酸ナトリウムをPとして0.4重量%加え、ビーズミルにて湿式粉砕し、200メッシュで粗粒分離し、二酸化チタンスラリーを得た。粗粒分離後のスラリーを200g/dmに調整し、70℃に昇温し、TiO分に対してSiO2換算で3重量%のケイ酸ナトリウム水溶液を、30分かけて添加し、85℃に昇温した。30分撹拌後、希硫酸を40分かけてゆっくり滴下しpH7.0 に中和した。
続いて、前記の二酸化チタンスラリーを70℃に冷却し、希硫酸でpH5.5に調整し、TiO分に対してAl換算で1重量%のアルミン酸ナトリウム水溶液を、30分かけて添加した。30分撹拌の後、希硫酸でpH5.5に再調整して濾過洗浄し、120℃で乾燥し、気流粉砕をして、多孔質球状アナタース型二酸化チタン粒子(g)を得た。この粒子は、平均粒子径が400nm、窒素吸着法で測定した細孔分布における細孔直径のピークが8.0nmであり、しかも、細孔容積が0.09cm/gであった。また、この粒子の比表面積は25m/gであり、形状係数は0.96であった。
Example 7
The titanium dioxide particles (d) obtained in Example 4 were adjusted to an aqueous slurry having a TiO 2 concentration of 200 g / dm 3 , and 0.4% by weight of sodium hexametaphosphate as P 2 O 5 was added to the titanium dioxide weight. The mixture was wet pulverized with a bead mill and coarsely separated with 200 mesh to obtain a titanium dioxide slurry. The slurry after coarse grain separation was adjusted to 200 g / dm 3 , heated to 70 ° C., and 3 wt% sodium silicate aqueous solution in terms of SiO 2 was added over 30 minutes to TiO 2 minutes, and 85 ° C. The temperature was raised to. After stirring for 30 minutes, dilute sulfuric acid was slowly added dropwise over 40 minutes to neutralize to pH 7.0.
Subsequently, the titanium dioxide slurry was cooled to 70 ° C., adjusted to pH 5.5 with dilute sulfuric acid, and 1 wt% sodium aluminate aqueous solution in terms of Al 2 O 3 was added to TiO 2 minutes over 30 minutes. Added. After stirring for 30 minutes, the pH was adjusted again to 5.5 with dilute sulfuric acid, washed by filtration, dried at 120 ° C., and air-flow pulverized to obtain porous spherical anatase-type titanium dioxide particles (g). These particles had an average particle diameter of 400 nm, a peak of pore diameter in the pore distribution measured by the nitrogen adsorption method was 8.0 nm, and a pore volume of 0.09 cm 3 / g. Moreover, the specific surface area of this particle | grain was 25 m < 2 > / g, and the shape factor was 0.96.

比較例1
実施例1において、焼成温度を400℃とすること以外は実施例1と同様にして、平均粒子径が400nm、窒素吸着法で測定した細孔分布における細孔直径のピークが2.4nmであり、しかも、細孔容積が0.08cm/gの多孔質球状アナタース型二酸化チタン粒子(h)を得た。この粒子の比表面積は105m/gであり、形状係数は0.96であった。
Comparative Example 1
In Example 1, except that the calcination temperature is 400 ° C., the average particle diameter is 400 nm, and the peak of the pore diameter in the pore distribution measured by the nitrogen adsorption method is 2.4 nm, as in Example 1. Moreover, porous spherical anatase-type titanium dioxide particles (h) having a pore volume of 0.08 cm 3 / g were obtained. The specific surface area of these particles was 105 m 2 / g, and the shape factor was 0.96.

比較例2
実施例1において、焼成温度を900℃とすること以外は実施例1と同様にして、平均粒子径が200nm、窒素吸着法で測定した細孔分布における細孔直径のピークが72nmであり、しかも、細孔容積が0.07cm/gの多孔質球状アナタース型二酸化チタン粒子(i)を得た。この粒子の比表面積は5m/gであり、形状係数は0.77であった。
Comparative Example 2
In Example 1, except that the firing temperature is 900 ° C., the average particle size is 200 nm, the peak of the pore diameter in the pore distribution measured by the nitrogen adsorption method is 72 nm, and Thus, porous spherical anatase-type titanium dioxide particles (i) having a pore volume of 0.07 cm 3 / g were obtained. The specific surface area of these particles was 5 m 2 / g, and the shape factor was 0.77.

比較例3
TiO換算で200g/dmの濃度の硫酸チタニル水溶液に加水分解用核剤を添加し、大気圧下105℃で熱加水分解した。沈殿物を濾過洗浄したケーキに、TiO分に対してAl換算で0.2重量%の硫酸アルミニウム溶液、KCO換算で0.4重量%の水酸化カリウム溶液、そしてZnO換算で0.4重量%になるよう亜鉛華を添加して混合し、蒸発乾固した。乾燥物をサンプルミルで粉砕し、980℃で焼成することにより粒径1μmのルチル形不定形状二酸化チタン粒子(j)が得られた。この二酸化チタン粒子については、窒素吸着法による細孔分布測定を行っても、細孔の存在を示すデータが得られなかった。この粒子の比表面積は2m/gであり、形状係数は0.52であった。
Comparative Example 3
A nucleating agent for hydrolysis was added to an aqueous solution of titanyl sulfate having a concentration of 200 g / dm 3 in terms of TiO 2 , and thermal hydrolysis was performed at 105 ° C. under atmospheric pressure. The cake obtained by filtering and washing the precipitate was added to a 0.2 wt% aluminum sulfate solution in terms of Al 2 O 3 , a 0.4 wt% potassium hydroxide solution in terms of K 2 CO 3 , and ZnO to TiO 2 minutes. Zinc white was added and mixed so as to be 0.4% by weight in terms of conversion, and evaporated to dryness. The dried product was pulverized with a sample mill and fired at 980 ° C. to obtain rutile amorphous titanium dioxide particles (j) having a particle size of 1 μm. With respect to the titanium dioxide particles, data indicating the presence of pores could not be obtained even when the pore distribution was measured by the nitrogen adsorption method. The specific surface area of the particles was 2 m 2 / g, and the shape factor was 0.52.

比較例4
TiO換算で200g/dmの濃度の硫酸チタニル水溶液に過酸化水素水をH換算でTiO分に対して5重量%を添加し、20kg/cmの圧力下、220℃の温度下で、4時間かけて加水分解させた。得られた反応液を40℃まで放冷した後、反応液中から沈殿物を濾過し、洗浄し、乾燥することで、平均粒子径が500nm、窒素吸着法で測定した細孔分布における細孔直径のピークが3.2nmであり、しかも、細孔容積が0.35cm/gの球状二酸化チタン集合体(k)を得た。この粒子の比表面積は370m/gであり、形状係数は0.92であった。
Comparative Example 4
Aqueous hydrogen peroxide in an aqueous titanyl sulfate solution of concentration of 200 g / dm 3 in terms of TiO 2 was added 5% by weight relative to TiO 2 minutes H 2 O 2 converted, under a pressure of 20 kg / cm 2, the 220 ° C. The hydrolysis was carried out at temperature for 4 hours. After the resulting reaction solution was allowed to cool to 40 ° C., the precipitate was filtered from the reaction solution, washed, and dried, so that the average particle size was 500 nm, and the pores in the pore distribution measured by the nitrogen adsorption method A spherical titanium dioxide aggregate (k) having a diameter peak of 3.2 nm and a pore volume of 0.35 cm 3 / g was obtained. The specific surface area of the particles was 370 m 2 / g, and the shape factor was 0.92.

評価例
実施例1〜7、比較例1〜4で得られた二酸化チタンを用いて、クリームファンデーションを作製した。下記の油相成分と水相成分をそれぞれ70℃で加熱混合した後、70℃に保った水相に油相をゆっくり注いでからホモミキサーで乳化した。次いで、撹拌しながら室温まで冷却して化粧品を得た。
<油相>
NIKKOL Decaglyn 5-HS 2.0重量%
NIKKOL Hexaglyn PR-15 0.6重量%
NIKKOL スクワラン 2.0重量%
NIKKOL CIO 8.0重量%
NIKKOL IPM-EX 4.0重量%
デカメチルシクロペンタシロキサン 19.0重量%
酸化鉄 1.0重量%
二酸化チタン 10.0重量%
<水相>
グリセリン 5.0重量%
硫酸マグネシウム・7水和物 MgSOとして0.5重量%
精製水 残部
Evaluation Example A cream foundation was prepared using the titanium dioxide obtained in Examples 1 to 7 and Comparative Examples 1 to 4. The following oil phase component and aqueous phase component were heated and mixed at 70 ° C., respectively, and then the oil phase was slowly poured into the aqueous phase maintained at 70 ° C. and then emulsified with a homomixer. Subsequently, it cooled to room temperature, stirring, and obtained cosmetics.
<Oil phase>
NIKKOL Decaglyn 5-HS 2.0 wt%
NIKKOL Hexaglyn PR-15 0.6% by weight
NIKKOL Squalane 2.0% by weight
NIKKOL CIO 8.0 wt%
NIKKOL IPM-EX 4.0 wt%
Decamethylcyclopentasiloxane 19.0% by weight
Iron oxide 1.0% by weight
Titanium dioxide 10.0% by weight
<Water phase>
Glycerin 5.0% by weight
Magnesium sulfate heptahydrate 0.5% by weight as MgSO 4
Purified water balance

5名のパネラーにて、クリームファンデーションの感触(きしみのないこと、伸展性が良いこと)、仕上がりの自然さ、強すぎず弱すぎないマイルドな隠蔽力、化粧持ちを評価し、各評価項目において優れていると判断したパネラーの数から、下記に示す分類によって評価を行った。評価結果を表1に示す。
◎:4人以上、 ○:2〜3人、△:1人、×:0人
Five panelists evaluated the feel of the cream foundation (no creaking, good extensibility), natural finish, mild hiding power that is not too strong but not too weak, and makeup retention. The number of panelists judged to be excellent was evaluated according to the following classification. The evaluation results are shown in Table 1.
◎: 4 or more people, ○: 2-3 people, △: 1 people, X: 0 people

Figure 2013028563
Figure 2013028563

本発明の二酸化チタン顔料は、多孔質球状アナタース型二酸化チタンであり、化粧料に配合して用いると、形状及び表面状態に由来したマイルドな隠蔽性と良好な感触をもち、肌から分泌される皮脂を適度に吸収して肌への密着性が持続することから、様々な化粧料の顔料として有用である。   The titanium dioxide pigment of the present invention is a porous spherical anatase-type titanium dioxide, and when used in cosmetics, it has a mild hiding property and a good feel derived from the shape and surface state and is secreted from the skin. Since sebum is absorbed moderately and the adhesion to the skin is maintained, it is useful as a pigment for various cosmetics.

Claims (7)

平均粒子径が0.1〜5μmの球状アナタース型二酸化チタンであって、窒素吸着法で測定した細孔分布における細孔直径のピークが5〜50nmにあり、しかも、細孔容積が0.05〜0.3cm/gの範囲である化粧料用二酸化チタン顔料。 Spherical anatase-type titanium dioxide having an average particle diameter of 0.1 to 5 μm, the peak of the pore diameter in the pore distribution measured by the nitrogen adsorption method is 5 to 50 nm, and the pore volume is 0.05 A titanium dioxide pigment for cosmetics in the range of ~ 0.3 cm 3 / g. 細孔直径のピークが10〜30nmにあり、しかも、細孔容積が0.05〜0.15cm/gである請求項1に記載の化粧料用二酸化チタン顔料。 There peak pore diameter in the 10 to 30 nm, moreover, cosmetic titanium dioxide pigment according to claim 1 pore volume is 0.05~0.15cm 3 / g. 形状係数が0.9〜1.0である請求項1又は2に記載の化粧料用二酸化チタン顔料。   The titanium dioxide pigment for cosmetics according to claim 1 or 2, wherein the shape factor is 0.9 to 1.0. 粒子表面に、ケイ素酸化物及び/又はアルミニウム酸化物が被覆されている請求項1〜3のいずれか一項に記載の化粧料用二酸化チタン顔料。   The titanium dioxide pigment for cosmetics according to any one of claims 1 to 3, wherein the particle surface is coated with silicon oxide and / or aluminum oxide. 粒子表面に、シリコーン化合物及び/又はフッ素界面活性剤が被覆されている請求項1〜4のいずれか一項に記載の化粧料用二酸化チタン顔料。   The titanium dioxide pigment for cosmetics according to any one of claims 1 to 4, wherein the particle surface is coated with a silicone compound and / or a fluorine surfactant. 硫酸チタニルを170℃以上の温度下、かつ、該温度の飽和蒸気圧以上の圧力下で加水分解して球状含水二酸化チタンを得、次いで、該球状含水二酸化チタンを600〜800℃の温度で焼成する請求項1〜3のいずれか一項に記載の化粧料用二酸化チタン顔料の製造方法。   Titanyl sulfate is hydrolyzed at a temperature of 170 ° C. or higher and a pressure equal to or higher than the saturated vapor pressure of the temperature to obtain spherical hydrous titanium dioxide, and then the spherical hydrous titanium dioxide is calcined at a temperature of 600 to 800 ° C. The manufacturing method of the titanium dioxide pigment for cosmetics as described in any one of Claims 1-3. 硫酸チタニルを170℃以上の温度下、かつ、該温度の飽和蒸気圧以上の圧力下で加水分解して球状含水二酸化チタンを得、次いで、該球状含水二酸化チタンを塩酸中に浸漬した後に400〜600℃の温度で焼成する請求項1〜3のいずれか一項に記載の化粧料用二酸化チタン顔料の製造方法。   Titanyl sulfate was hydrolyzed at a temperature of 170 ° C. or higher and at a pressure equal to or higher than the saturated vapor pressure of the temperature to obtain spherical hydrous titanium dioxide, and then the spherical hydrous titanium dioxide was immersed in hydrochloric acid after 400 to 400 The manufacturing method of the titanium dioxide pigment for cosmetics as described in any one of Claims 1-3 baked at the temperature of 600 degreeC.
JP2011166117A 2011-07-29 2011-07-29 Titanium dioxide pigment for cosmetics and method for producing the same Active JP5794852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011166117A JP5794852B2 (en) 2011-07-29 2011-07-29 Titanium dioxide pigment for cosmetics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011166117A JP5794852B2 (en) 2011-07-29 2011-07-29 Titanium dioxide pigment for cosmetics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013028563A true JP2013028563A (en) 2013-02-07
JP5794852B2 JP5794852B2 (en) 2015-10-14

Family

ID=47785969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011166117A Active JP5794852B2 (en) 2011-07-29 2011-07-29 Titanium dioxide pigment for cosmetics and method for producing the same

Country Status (1)

Country Link
JP (1) JP5794852B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104297A (en) * 2016-12-22 2018-07-05 花王株式会社 Lip cosmetic
JP2018519309A (en) * 2015-06-30 2018-07-19 アモーレパシフィック コーポレーションAmorepacific Corporation Cosmetic composition
US10278903B2 (en) 2015-03-13 2019-05-07 Amorepacific Corporation Composite powder having inorganic powder impregnated with porous polymer, cosmetic composition containing same, and method for preparing same
WO2019131833A1 (en) 2017-12-28 2019-07-04 住友大阪セメント株式会社 Titanium oxide powder, and dispersion and cosmetic using same
WO2019131871A1 (en) 2017-12-28 2019-07-04 住友大阪セメント株式会社 Titanium oxide powder, and dispersion liquid and cosmetic using said powder
WO2019131830A1 (en) 2017-12-28 2019-07-04 住友大阪セメント株式会社 Titanium oxide powder, and dispersion liquid and cosmetic using said powder
WO2019146783A1 (en) * 2018-01-29 2019-08-01 石原産業株式会社 Titanium dioxide aqueous dispersion and method for producing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194011A (en) * 1985-02-25 1986-08-28 Shiseido Co Ltd Makeup cosmetic
JPS6345123A (en) * 1987-08-13 1988-02-26 Ishihara Sangyo Kaisha Ltd Fine powder titanium dioxide composition
JPH05163022A (en) * 1991-12-11 1993-06-29 Ishihara Sangyo Kaisha Ltd Spherical anatase titanium oxide and its production
JPH08169716A (en) * 1994-12-15 1996-07-02 Titan Kogyo Kk Granular titanium dioxide and its producion
JPH08333117A (en) * 1995-06-06 1996-12-17 Mitsubishi Materials Corp Production of porous globular titanium oxide particle
JPH10167929A (en) * 1996-12-10 1998-06-23 Catalysts & Chem Ind Co Ltd Amber-white pigment particulate compounded cosmetic
JPH11506155A (en) * 1996-02-15 1999-06-02 ロディア シミ Titanium dioxide particles
JP2001026423A (en) * 1999-07-14 2001-01-30 Ishihara Sangyo Kaisha Ltd Production of ultra-fine particle of rutile-type titanium dioxide
JP2002068937A (en) * 2000-08-23 2002-03-08 Pola Chem Ind Inc Powder-containing skin care preparation
JP2013028567A (en) * 2011-07-29 2013-02-07 Kao Corp Powder-containing water-in-oil type emulsion cosmetic

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194011A (en) * 1985-02-25 1986-08-28 Shiseido Co Ltd Makeup cosmetic
JPS6345123A (en) * 1987-08-13 1988-02-26 Ishihara Sangyo Kaisha Ltd Fine powder titanium dioxide composition
JPH05163022A (en) * 1991-12-11 1993-06-29 Ishihara Sangyo Kaisha Ltd Spherical anatase titanium oxide and its production
JPH08169716A (en) * 1994-12-15 1996-07-02 Titan Kogyo Kk Granular titanium dioxide and its producion
JPH08333117A (en) * 1995-06-06 1996-12-17 Mitsubishi Materials Corp Production of porous globular titanium oxide particle
JPH11506155A (en) * 1996-02-15 1999-06-02 ロディア シミ Titanium dioxide particles
JPH10167929A (en) * 1996-12-10 1998-06-23 Catalysts & Chem Ind Co Ltd Amber-white pigment particulate compounded cosmetic
JP2001026423A (en) * 1999-07-14 2001-01-30 Ishihara Sangyo Kaisha Ltd Production of ultra-fine particle of rutile-type titanium dioxide
JP2002068937A (en) * 2000-08-23 2002-03-08 Pola Chem Ind Inc Powder-containing skin care preparation
JP2013028567A (en) * 2011-07-29 2013-02-07 Kao Corp Powder-containing water-in-oil type emulsion cosmetic

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10278903B2 (en) 2015-03-13 2019-05-07 Amorepacific Corporation Composite powder having inorganic powder impregnated with porous polymer, cosmetic composition containing same, and method for preparing same
JP2018519309A (en) * 2015-06-30 2018-07-19 アモーレパシフィック コーポレーションAmorepacific Corporation Cosmetic composition
JP2018104297A (en) * 2016-12-22 2018-07-05 花王株式会社 Lip cosmetic
KR20200102443A (en) 2017-12-28 2020-08-31 스미토모 오사카 세멘토 가부시키가이샤 Titanium oxide powder and dispersion and cosmetics using the same
WO2019131871A1 (en) 2017-12-28 2019-07-04 住友大阪セメント株式会社 Titanium oxide powder, and dispersion liquid and cosmetic using said powder
WO2019131830A1 (en) 2017-12-28 2019-07-04 住友大阪セメント株式会社 Titanium oxide powder, and dispersion liquid and cosmetic using said powder
KR20200101922A (en) 2017-12-28 2020-08-28 스미토모 오사카 세멘토 가부시키가이샤 Titanium oxide powder and dispersion and cosmetics using the same
KR20200102444A (en) 2017-12-28 2020-08-31 스미토모 오사카 세멘토 가부시키가이샤 Titanium oxide powder and dispersion and cosmetics using the same
WO2019131833A1 (en) 2017-12-28 2019-07-04 住友大阪セメント株式会社 Titanium oxide powder, and dispersion and cosmetic using same
US11254583B2 (en) 2017-12-28 2022-02-22 Sumitomo Osaka Cement Co., Ltd. Titanium oxide powder, and dispersion and cosmetic using said powder
WO2019146783A1 (en) * 2018-01-29 2019-08-01 石原産業株式会社 Titanium dioxide aqueous dispersion and method for producing same
JPWO2019146783A1 (en) * 2018-01-29 2021-01-07 石原産業株式会社 Titanium dioxide aqueous dispersion and its manufacturing method
US11702560B2 (en) 2018-01-29 2023-07-18 Ishihara Sangyo Kaisha, Ltd. Titanium dioxide aqueous dispersion and method for producing same

Also Published As

Publication number Publication date
JP5794852B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5794852B2 (en) Titanium dioxide pigment for cosmetics and method for producing the same
KR101441169B1 (en) Porous silica particle having surface smoothness, method for production of the porous silica particle, and cosmetic comprising the porous silica particle
JP6966861B2 (en) Pigment mixture
WO2009142047A1 (en) Surface-treated powder and cosmetic comprising the same
JP5921188B2 (en) Method for producing silica-based particles having an ultraviolet shielding effect, silica-based particles obtained from the method, and a cosmetic comprising the silica-based particles
JP6841236B2 (en) Metal oxide powders, dispersions and cosmetics
WO2004085315A1 (en) Porous titanium oxide powder and method for production thereof
WO1995016637A1 (en) Ultrafine iron-containing rutile titanium dioxide particle and process for producing the same
US8168157B2 (en) Production method of fine particle zinc oxide powder and cosmetics containing the same
JP2016000763A (en) Cosmetic black iron oxide and production method thereof, and cosmetics comprising the same
JP2007308395A (en) Cosmetic
JP5955137B2 (en) Method for producing spherical titanium dioxide
JP5791771B2 (en) Porous silica-based particles having excellent surface smoothness and cosmetics comprising the porous silica-based particles
JP5173245B2 (en) Method for producing surface-coated zinc oxide
JP2010163369A (en) Powder cosmetic
JP5593568B2 (en) Method for producing plate boehmite and plate alumina powder
JP5876979B2 (en) Titanium dioxide pigment, method for producing the same, and printing ink composition
JP2012121835A (en) Lipophilically surface treated powder having excellent smooth feeling and detergency
JP2008094917A (en) Surface-coated zinc oxide and its manufacturing method, and ultraviolet ray-shielding composition comprising the same
JPH11269303A (en) Ultraviolet screening particle, slurry having ultraviolet screening property, production thereof, and cosmetic by using them
US12065571B2 (en) Pigment composed of particles containing calcium-titanium composite oxide as main component, and use thereof
JP6805839B2 (en) Surface-treated zinc oxide powder and its applications
JP4160477B2 (en) Hydrophobic composite powder and cosmetics containing the same
JP6012339B2 (en) Method for producing composite powder
JP2010132493A (en) Composite powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150811

R151 Written notification of patent or utility model registration

Ref document number: 5794852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250