JP2013022021A - Plasma cleaning device and operation method of the same - Google Patents

Plasma cleaning device and operation method of the same Download PDF

Info

Publication number
JP2013022021A
JP2013022021A JP2011155981A JP2011155981A JP2013022021A JP 2013022021 A JP2013022021 A JP 2013022021A JP 2011155981 A JP2011155981 A JP 2011155981A JP 2011155981 A JP2011155981 A JP 2011155981A JP 2013022021 A JP2013022021 A JP 2013022021A
Authority
JP
Japan
Prior art keywords
plasma
hemolysis
transmitted light
lower limit
limit threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011155981A
Other languages
Japanese (ja)
Other versions
JP5816014B2 (en
Inventor
Hironari Gotanda
裕也 五反田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Med Tech Inc
Asahi Kasei Medical Co Ltd
Original Assignee
Med Tech Inc
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Med Tech Inc, Asahi Kasei Medical Co Ltd filed Critical Med Tech Inc
Priority to JP2011155981A priority Critical patent/JP5816014B2/en
Priority to CN201210241688.3A priority patent/CN102872488B/en
Publication of JP2013022021A publication Critical patent/JP2013022021A/en
Application granted granted Critical
Publication of JP5816014B2 publication Critical patent/JP5816014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a plasma cleaning device capable of accurately detecting occurrence of hemolysis by using a hemolysis sensor to/from which a plasma flow path is attachable and detachable.SOLUTION: The plasma cleaning device 1 includes: a plasma separator 10 for separating plasma from blood; a plasma flow path 70 through which the plasma separated in the plasma separator 10 flows; a hemolysis sensor 80 to/from which the plasma flow path 70 is attachable and detachable, and which detects a transmission light quantity when light is transmitted through the plasma flow path 70; and a hemolysis determination control part 140 for determining occurrence of the hemolysis on the basis of the transmission light quantity detected by the hemolysis sensor 80. The hemolysis determination control part 140 initializes a lower limit threshold Lm of the transmission light quantity to be the reference of the occurrence of the hemolysis on the basis of the transmission light quantity La detected by the hemolysis sensor 80, and thereafter executes control so as to elevate the lower limit threshold Lm to follow the transmission light quantity when the detected transmission light quantity La increases and to keep the lower limit threshold Lm fixed when the detected transmission light quantity La decreases.

Description

本発明は、血漿浄化装置及び血漿浄化装置の作動方法に関する。   The present invention relates to a plasma purification device and a method for operating the plasma purification device.

患者から血液を取り出し、当該血液から血漿を分離し、血液を浄化して体内に戻す血漿交換療法がある。この血漿交換療法は、血漿浄化装置を用いて行われ、血漿浄化装置は、患者の血液を、中空糸膜などの分離膜を有する血漿分離器に供給し、当該血漿分離器から患者に戻す血液回路と、血漿分離器で分離された血漿を流す血漿回路を備えている(特許文献1参照)。血漿浄化装置では、血漿回路の血漿ポンプにより負圧を発生させ、その負圧により血液中の血漿を血漿分離器の分離膜を通過させて分離している。   There is plasma exchange therapy in which blood is removed from a patient, plasma is separated from the blood, and the blood is purified and returned to the body. This plasma exchange therapy is performed using a plasma purification device, which supplies the patient's blood to a plasma separator having a separation membrane such as a hollow fiber membrane, and returns the blood from the plasma separator to the patient. A circuit and a plasma circuit for flowing the plasma separated by the plasma separator are provided (see Patent Document 1). In the plasma purification apparatus, a negative pressure is generated by a plasma pump of a plasma circuit, and plasma in the blood is separated by passing through a separation membrane of a plasma separator by the negative pressure.

特開2010−125207号公報JP 2010-125207 A 特開2010−172419号公報JP 2010-172419 A

ところで、上記血漿浄化装置では、血漿分離器の分離膜で血漿を分離する際に、血液中の赤血球が破損する溶血が発生することがある。これは、患者の血中の赤血球が破損していくことを意味するため、溶血が発生した際にはそれを検出する必要がある。溶血の発生を検出するため、血漿分離器の下流の血漿流路に溶血センサを取り付けることが考えられる。溶血センサには、溶血が生じた際に血漿中にヘモグロビンの量が増加することを利用して、血漿流路のチューブにヘモグロビンの吸収スペクトルのピークを有する波長の光を透過しその透過光量を検出して溶血の発生を検出する光センサを用いることが考えられる。この場合、溶血センサにより検出された透過光量が、予め定められている透過光量の一定の下限閾値を下回ったときに、溶血の発生が確認される。   By the way, in the said plasma purification apparatus, when plasma is isolate | separated with the separation membrane of a plasma separator, the hemolysis which the erythrocyte in blood breaks may generate | occur | produce. This means that the red blood cells in the patient's blood are damaged, and it is necessary to detect when hemolysis occurs. In order to detect the occurrence of hemolysis, it is conceivable to install a hemolysis sensor in the plasma flow path downstream of the plasma separator. The hemolysis sensor utilizes the increase in the amount of hemoglobin in the plasma when hemolysis occurs, and transmits light having a wavelength having a peak of the absorption spectrum of hemoglobin to the tube of the plasma flow path, and transmits the amount of transmitted light. It is conceivable to use an optical sensor that detects the occurrence of hemolysis. In this case, the occurrence of hemolysis is confirmed when the amount of transmitted light detected by the hemolysis sensor falls below a predetermined lower limit threshold of the amount of transmitted light.

しかしながら、血漿浄化治療において血漿流路には、当初プライミング液が流れその後血漿に置換されていく。このように血漿流路に流れる液体が変動し透明度が変わるため、一定の下限閾値を基準に判断しても溶血の発生の判断を誤ることが考えられる。   However, in the plasma purification treatment, the initial priming solution flows through the plasma flow path and is subsequently replaced with plasma. Since the fluid flowing in the plasma flow path fluctuates in this way and the transparency changes, it is conceivable that the determination of the occurrence of hemolysis is erroneous even if it is determined based on a certain lower threshold.

また、血漿浄化装置に溶血センサを設ける場合には、治療の準備の際に血漿流路のチューブを溶血センサに取り付ける必要がある。この際、例えば血漿流路のチューブに寸法誤差があったり、作業者が誤ってチューブの固定位置がずれたりすることが考えられる。この場合、溶血センサで検出される透過光量が変動するため、溶血の発生を誤って検出することが考えられる。   Further, when a hemolysis sensor is provided in the plasma purification apparatus, it is necessary to attach a tube of the plasma channel to the hemolysis sensor when preparing for treatment. At this time, for example, there may be a dimensional error in the tube of the plasma flow path, or the operator may accidentally shift the fixing position of the tube. In this case, since the amount of transmitted light detected by the hemolysis sensor varies, it is conceivable that the occurrence of hemolysis is erroneously detected.

なお、透析治療を行うための透析装置に漏血や溶血を検出する光センサを設ける技術が開示されているが(特許文献2参照)、この透析装置は、透析液の流路と光センサが予め一体的に装置に内蔵され、透析液流路と光センサの位置関係が一定であることを前提としたものであり、血漿流路を溶血センサに着脱するような血漿浄化装置には採用できない。   In addition, although the technique which provides the optical sensor which detects blood leakage and hemolysis in the dialysis apparatus for performing a dialysis treatment is disclosed (refer patent document 2), this dialysis apparatus has the flow path and optical sensor of a dialysate. Preliminarily built in the device and presupposes that the positional relationship between the dialysate flow path and the optical sensor is constant, and cannot be used in a plasma purification apparatus in which the plasma flow path is attached to or detached from the hemolysis sensor. .

本発明はかかる点に鑑みてなされたものであり、血漿流路を着脱可能な溶血センサを用いて、溶血の発生を精度良く検出できる血漿浄化装置及び血漿浄化装置の作動方法を提供することをその目的とする。   The present invention has been made in view of the above points, and provides a plasma purification apparatus and a method for operating the plasma purification apparatus that can accurately detect the occurrence of hemolysis using a hemolysis sensor that can attach and detach a plasma flow path. For that purpose.

上記目的を達成するための本発明は、体内から取り出された血液中の血漿成分を浄化する血漿浄化装置であって、血液から血漿を分離する血漿分離器と、前記血漿分離器で分離された血漿が流れる血漿流路と、前記血漿流路が着脱自在であり、前記血液流路に光を透過したときの透過光量を検出して溶血を検出する溶血センサと、前記溶血センサにより検出された透過光量に基づいて、当該透過光量が下限閾値を下回るか否かで溶血の発生を判定する溶血判定制御部であって、前記溶血の発生の基準となる透過光量の下限閾値を、前記溶血センサにより検出された透過光量に基づいて初期設定し、その後、前記検出された透過光量が増加したときには、前記下限閾値を前記透過光量に追従するように上昇させ、前記検出された透過光量が減少したときには、前記下限閾値を一定に保つように前記下限閾値を制御する、溶血判定制御部と、を備える、血漿浄化装置である。   To achieve the above object, the present invention provides a plasma purification device for purifying plasma components in blood taken from the body, the plasma separator for separating plasma from blood, and the plasma separator A plasma channel through which plasma flows, the plasma channel is detachable, a hemolysis sensor that detects hemolysis by detecting a transmitted light amount when light is transmitted through the blood channel, and detected by the hemolysis sensor A hemolysis determination control unit that determines the occurrence of hemolysis based on the amount of transmitted light based on whether or not the amount of transmitted light falls below a lower limit threshold value, wherein the lower limit threshold value of the transmitted light amount serving as a reference for the occurrence of hemolysis is set as the hemolysis sensor After that, when the detected transmitted light amount increases, the lower limit threshold is raised so as to follow the transmitted light amount, and the detected transmitted light amount decreases. When the controls said lower limit threshold value so as to maintain the lower threshold constant, comprising a hemolysis determination control unit, and a plasma purifying device.

本発明によれば、透過光量の下限閾値を、溶血センサにより検出された透過光量に基づいて初期設定し、透過光量が増加したときには、当該下限閾値を上昇させ、透過光量が減少したときには、下限閾値を一定に保つので、透過光量の下限閾値を実際に検出した透過光量に応じて変動させる。このため、例えば血漿流路を流れる液体がプライミング液から血漿に変動したり、血漿流路に寸法誤差があったり、溶血センサに対する血漿流路の取り付けが適切に行われなかったような場合でも、それらの要因に左右されず、溶血の発生を適正に検出できる。また、溶血が発生した場合には透過光量が減少するので、溶血の発生と無関係な透過光量の増加の場合には、下限閾値を上昇させ、溶血の発生と関係があり得る透過光量の減少の場合には、下限閾値を一定にしている。この結果、透過光量の変動に応じて下限閾値が適正に変動され、溶血の発生をより精度よく検出できる。   According to the present invention, the lower limit threshold value of the transmitted light amount is initially set based on the transmitted light amount detected by the hemolysis sensor. When the transmitted light amount increases, the lower limit threshold is increased, and when the transmitted light amount decreases, the lower limit threshold value is increased. Since the threshold value is kept constant, the lower limit threshold value of the transmitted light amount is changed according to the actually detected transmitted light amount. For this reason, for example, even when the liquid flowing in the plasma flow path changes from priming liquid to plasma, there is a dimensional error in the plasma flow path, or the plasma flow path is not properly attached to the hemolysis sensor, The occurrence of hemolysis can be detected properly regardless of these factors. In addition, since the amount of transmitted light decreases when hemolysis occurs, in the case of an increase in the amount of transmitted light irrelevant to the occurrence of hemolysis, the lower limit threshold is increased, and the amount of transmitted light that can be related to the occurrence of hemolysis is reduced. In this case, the lower limit threshold is kept constant. As a result, the lower threshold is appropriately changed according to the change in the amount of transmitted light, and the occurrence of hemolysis can be detected with higher accuracy.

また、前記溶血判定制御部は、前記下限閾値の初期設定から30〜90分間経過する毎に、その経過時の前記溶血センサにより検出された透過光量に基づいて前記下限閾値を再設定するものであってもよい。   In addition, the hemolysis determination control unit resets the lower limit threshold value every 30 to 90 minutes from the initial setting of the lower limit threshold value based on the amount of transmitted light detected by the hemolysis sensor at the time. There may be.

上記血漿浄化装置における前記下限閾値は、検出された透過光量の0.2〜0.9倍の値に初期設定されてもよい。   The lower limit threshold in the plasma purification apparatus may be initially set to a value that is 0.2 to 0.9 times the detected transmitted light amount.

前記下限閾値には、不変の下限値が設定されていてもよい。   An invariable lower limit value may be set as the lower limit threshold value.

前記溶血判定制御部は、前記血漿流路内がプライミング液から血漿に置換されたときに、前記下限閾値を初期設定するものであってもよい。   The hemolysis determination control unit may initialize the lower limit threshold when the inside of the plasma channel is replaced with plasma from a priming solution.

前記溶血判定制御部は、前記血漿流路内がプライミング液から血漿に置換されるタイミングを、前記血漿流路に流れる液量に基づいて設定してもよい。   The hemolysis determination control unit may set the timing at which the inside of the plasma channel is replaced with plasma from the priming solution based on the amount of fluid flowing through the plasma channel.

前記溶血判定制御部は、前記血漿流路内がプライミング液から血漿に置換されるタイミングを、前記血漿分離器の容量に基づいて設定してもよい。   The hemolysis determination control unit may set the timing at which the inside of the plasma channel is replaced with the plasma from the priming solution based on the volume of the plasma separator.

前記溶血判定制御部は、前記血漿流路内がプライミング液から血漿に置換されるタイミングを、前記溶血センサにより検出された透過光量の変化に基づいて設定してもよい。   The hemolysis determination control unit may set the timing at which the inside of the plasma channel is replaced with plasma from the priming solution based on a change in the amount of transmitted light detected by the hemolysis sensor.

前記溶血判定制御部は、前記血漿流路内にプライミング液が流れているときの透過光量の不変の下限閾値を設定し、前記血漿流路にプライミング液が流れている間に、前記透過光量と前記不変の下限閾値を比較して溶血の発生を判定してもよい。   The hemolysis determination control unit sets an invariable lower limit threshold of the amount of transmitted light when the priming solution is flowing in the plasma channel, and the transmitted light amount The occurrence of hemolysis may be determined by comparing the invariant lower threshold.

以上の血漿浄化装置は、前記溶血判定制御部により溶血の発生が判定されたときに警報を出力するものであってもよい。   The above plasma purification apparatus may output an alarm when the hemolysis determination control unit determines the occurrence of hemolysis.

別の観点による本発明は、体内から取り出された血液中の血漿成分を浄化する血漿浄化装置の作動方法であって、前記血液浄化装置が、血液から血漿を分離する血漿分離器と、前記血漿分離器で分離された血漿が流れる血漿流路と、前記血漿流路が着脱可能であり、前記血漿流路に光を透過したときの透過光量を検出する溶血センサと、前記溶血センサにより検出された透過光量に基づいて、当該透過光量が下限閾値を下回るか否かで溶血の発生を判定する溶血判定制御部と、を備えたものであり、前記透過光量の下限閾値を、前記溶血センサにより検出された透過光量に基づいて初期設定し、その後、前記検出された透過光量が増加したときには、前記下限閾値を前記透過光量に追従するように上昇させ、前記検出された透過光量が減少したときには、前記下限閾値を一定に保つように前記溶血判定制御部が作動する、血漿浄化装置の作動方法である。   The present invention according to another aspect is a method of operating a plasma purification device for purifying plasma components in blood taken from the body, wherein the blood purification device separates plasma from blood, and the plasma A plasma channel through which plasma separated by the separator flows; a hemolysis sensor that detects the amount of transmitted light when the plasma channel is detachable and transmits light through the plasma channel; and is detected by the hemolysis sensor A hemolysis determination control unit that determines the occurrence of hemolysis based on whether or not the transmitted light amount falls below a lower limit threshold, and the lower limit threshold of the transmitted light amount is determined by the hemolysis sensor. Initially set based on the detected transmitted light amount, and thereafter, when the detected transmitted light amount increases, the lower limit threshold is increased to follow the transmitted light amount, and the detected transmitted light amount decreases. Sometimes, the hemolyzed determination control unit is operated so as to maintain the lower threshold constant, a method of operating a plasma purifying device.

本発明によれば、血漿浄化装置において、溶血の発生を精度良く検出できる。   According to the present invention, the occurrence of hemolysis can be accurately detected in the plasma purification apparatus.

血漿浄化装置の構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of a plasma purification apparatus. 溶血センサの構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of a hemolysis sensor. 検出透過光量の変動例と、下限閾値、下限値の関係を示すグラフである。It is a graph which shows the example of the fluctuation | variation of a detected transmitted light amount, and the relationship between a lower limit threshold value and a lower limit value. 単純血漿交換療法を行う血漿浄化装置の構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the plasma purification apparatus which performs simple plasma exchange therapy. 血漿吸着療法を行う血漿浄化装置の構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the plasma purification apparatus which performs plasma adsorption therapy.

以下、図面を参照して、本発明の好ましい実施の形態について説明する。図1は、本実施の形態に係る血漿浄化装置1の構成の概略を示す説明図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing an outline of the configuration of the plasma purification apparatus 1 according to the present embodiment.

図1に示す血漿浄化装置1は、血漿浄化療法のうちの二重濾過血漿浄化療法(Double Filtration Plasmapheresis(DFPP))を実施するものである。   The plasma purification apparatus 1 shown in FIG. 1 implements double filtration plasmapheresis (DFPP) among plasma purification therapies.

血漿浄化装置1は、例えば患者から取り出された血液を血漿分離器10に送り患者に戻す血液回路11と、血漿分離器10により血液から分離された血漿を血漿成分分離器12に送り血液回路11に戻す血漿回路13を有している。   The plasma purification apparatus 1 sends, for example, a blood circuit 11 that sends blood taken from a patient to the plasma separator 10 and returns it to the patient, and sends plasma separated from the blood by the plasma separator 10 to the plasma component separator 12. The plasma circuit 13 is returned to

血液回路11は、一端が患者の脱血部に接続され、他端が血漿分離器10の入口10aに接続された脱血流路20と、一端が血漿分離器10の出口10bに接続され、他端が患者の返血部に接続される返血流路21を有している。脱血流路20及び返血流路21は、例えば軟質のチューブにより構成されている。脱血流路20には、流路のチューブを外側から扱いて液送する血液ポンプ30、気泡を排出するためのドリップチャンバ31、血液回路11に抗凝固剤を注入するためのシリンジポンプ32等が設けられている。ドリップチャンバ31には、例えば血漿分離器10の入口圧を測定する圧力センサ33が設けられている。返血流路21には、ドリップチャンバ40、気泡検知器41、クランプバルブ42、圧力センサ43等が設けられている。   The blood circuit 11 has one end connected to the blood removal part of the patient and the other end connected to the inlet 10a of the plasma separator 10, and one end connected to the outlet 10b of the plasma separator 10, The other end has a blood return channel 21 connected to the blood return part of the patient. The blood removal flow path 20 and the blood return flow path 21 are configured by, for example, soft tubes. In the blood removal flow path 20, a blood pump 30 that handles the tube of the flow path from the outside and feeds it, a drip chamber 31 for discharging bubbles, a syringe pump 32 for injecting an anticoagulant into the blood circuit 11, etc. Is provided. The drip chamber 31 is provided with a pressure sensor 33 that measures, for example, the inlet pressure of the plasma separator 10. In the blood return channel 21, a drip chamber 40, a bubble detector 41, a clamp valve 42, a pressure sensor 43, and the like are provided.

血漿分離器10は、例えば分離膜としての中空糸膜50を有している。脱血流路20から血漿分離器10に流入した血液は中空糸膜50の一次側を流れ、返血流路21に流出し、中空糸膜50の一次側を流れる際に、血液中の血漿が中空糸膜50の二次側に流れ出て分離される。   The plasma separator 10 has a hollow fiber membrane 50 as a separation membrane, for example. The blood flowing into the plasma separator 10 from the blood removal channel 20 flows through the primary side of the hollow fiber membrane 50, flows out into the blood return channel 21, and flows through the primary side of the hollow fiber membrane 50. Flows out to the secondary side of the hollow fiber membrane 50 and is separated.

血漿分離器10の中空糸膜50の二次側の出口10cには、中空糸膜50の二次側の圧力を検出する圧力センサ51が設けられている。   A pressure sensor 51 that detects the pressure on the secondary side of the hollow fiber membrane 50 is provided at the outlet 10 c on the secondary side of the hollow fiber membrane 50 of the plasma separator 10.

血漿回路11は、一端が血漿分離器10の中空糸膜50の二次側の出口10dに接続され、他端が血漿成分分離器12の入口12aに接続された第1の血漿流路70と、一端が血漿成分分離器12の出口12cに接続され、他端が返血流路21に接続された第2の血漿流路71を有している。第1の血漿流路70及び第2の血漿流路71は、例えば軟質のチューブにより構成されている。   The plasma circuit 11 includes a first plasma channel 70 having one end connected to the secondary outlet 10d of the hollow fiber membrane 50 of the plasma separator 10 and the other end connected to the inlet 12a of the plasma component separator 12. The second plasma channel 71 has one end connected to the outlet 12 c of the plasma component separator 12 and the other end connected to the blood return channel 21. The first plasma flow path 70 and the second plasma flow path 71 are constituted by, for example, soft tubes.

第1の血漿流路70には、例えば溶血センサ80、血漿ポンプ81、ドリップチャンバ82、圧力センサ83等が設けられている。血漿成分分離器12は、例えば中空糸膜90を有し、血漿から所定の病因物質を分離できる。例えば血漿成分分離器12は、血漿が入口12aから中空糸膜90の一次側に流れ込み、中空糸膜90の二次側に流れ出て病因物質が分離される。また、血漿成分分離器12の中空糸膜90一次側の出口12bには、廃液ポンプ100が設けられた廃液流路101が接続されており、分離された病因物質は、廃液流路101を通じて排出される。第2の血漿流路71には、例えば補液バッグ110に通じる補液流路111が接続されている。補液流路111には、補液ポンプ112が設けられている。   In the first plasma channel 70, for example, a hemolysis sensor 80, a plasma pump 81, a drip chamber 82, a pressure sensor 83, and the like are provided. The plasma component separator 12 has, for example, a hollow fiber membrane 90 and can separate a predetermined pathogenic substance from plasma. For example, in the plasma component separator 12, plasma flows from the inlet 12 a to the primary side of the hollow fiber membrane 90 and flows out to the secondary side of the hollow fiber membrane 90 to separate pathogenic substances. The outlet 12b on the primary side of the hollow fiber membrane 90 of the plasma component separator 12 is connected to a waste liquid passage 101 provided with a waste liquid pump 100, and the pathogenic substance thus separated is discharged through the waste liquid passage 101. Is done. For example, a replacement fluid channel 111 that communicates with the replacement fluid bag 110 is connected to the second plasma channel 71. The replacement fluid channel 111 is provided with a replacement fluid pump 112.

溶血センサ80は、例えば図2に示すように発光部120と、受光部121と、それらを支持して固定する支持部材122及びセンサ制御部123を有している。第1の血漿流路70のチューブは、発光部120と受光部121の間に着脱できる。センサ制御部123は、発光部120と受光部121の動作を制御し、発光部120に所定の光量の所定の波長(ヘモグロビンの吸収スペクトルのピークを有する波長)の光を発光させ、第1の血漿流路70を透過した光を受光部121で受光させ、その透過光量を検出できる。溶血センサ80で検出された透過光量の情報は、センサ制御部123から後述の制御装置130に出力できる。   For example, as shown in FIG. 2, the hemolysis sensor 80 includes a light emitting unit 120, a light receiving unit 121, a support member 122 that supports and fixes them, and a sensor control unit 123. The tube of the first plasma channel 70 can be attached and detached between the light emitting unit 120 and the light receiving unit 121. The sensor control unit 123 controls the operations of the light emitting unit 120 and the light receiving unit 121 to cause the light emitting unit 120 to emit light having a predetermined wavelength (a wavelength having a peak of the absorption spectrum of hemoglobin). The light transmitted through the plasma channel 70 is received by the light receiving unit 121, and the amount of transmitted light can be detected. Information on the amount of transmitted light detected by the hemolysis sensor 80 can be output from the sensor control unit 123 to the control device 130 described later.

血漿浄化装置1は、例えば血液ポンプ30、気泡検知器41、血漿ポンプ81、溶血センサ80、廃液ポンプ100、補液ポンプ112等の各装置の動作を制御して血漿交換処理を実行する制御装置130を有している。制御装置130は、汎用コンピュータと同様のCPU、メモリ等を有し、予めメモリに記憶されたプログラムを実行して血漿交換処理を実施できる。   The plasma purification device 1 is a control device 130 that executes the plasma exchange process by controlling the operation of each device such as the blood pump 30, the bubble detector 41, the plasma pump 81, the hemolysis sensor 80, the waste liquid pump 100, the replacement fluid pump 112, and the like. have. The control device 130 has the same CPU, memory, and the like as a general-purpose computer, and can execute a plasma exchange process by executing a program stored in the memory in advance.

制御装置130は、溶血センサ80により検出された透過光量に基づいて、溶血の発生を判定する溶血判定制御部140として機能する。溶血判定制御部140は、溶血の発生の基準となる透過光量の下限閾値Lm(図3に示す)を、溶血センサ80により検出された透過光量(以下、「検出透過光量」とする。)に基づいて初期設定し、その後、検出透過光量が増加したときには、下限閾値Lmを透過光量に追従するように上昇させ、検出透過光量が減少したときには、下限閾値Lmを一定に保つように制御する。下限閾値Lmは、検出透過光量の0.2〜0.9倍の値に設定する。   The control device 130 functions as a hemolysis determination control unit 140 that determines the occurrence of hemolysis based on the amount of transmitted light detected by the hemolysis sensor 80. The hemolysis determination control unit 140 sets the transmitted light amount lower limit threshold Lm (shown in FIG. 3) as a reference for the occurrence of hemolysis to the transmitted light amount detected by the hemolysis sensor 80 (hereinafter referred to as “detected transmitted light amount”). Based on the initial setting, the lower limit threshold Lm is increased so as to follow the transmitted light amount when the detected transmitted light amount increases, and the lower limit threshold Lm is controlled to be constant when the detected transmitted light amount decreases. The lower limit threshold Lm is set to a value 0.2 to 0.9 times the detected transmitted light amount.

下限閾値Lmの初期設定は、第1の血漿流路70内がプライミング液から血漿に置換されたときに行われる。この第1の血漿流路70内がプライミング液から血漿に置換されるタイミングは、第1の血漿流路70に流れる液量に基づいて設定されてもよいし、血漿分離器10の容量に基づいて設定されてもよいし、検出透過光量の変化に基づいて設定されてもよい。   The initial setting of the lower limit threshold Lm is performed when the inside of the first plasma channel 70 is replaced with plasma from the priming solution. The timing at which the inside of the first plasma flow path 70 is replaced with the plasma from the priming liquid may be set based on the amount of liquid flowing in the first plasma flow path 70 or based on the volume of the plasma separator 10. Or may be set based on a change in the detected transmitted light amount.

また、溶血判定制御部140は、下限閾値Lmの初期設定から所定時間T1、例えば30〜90分間経過する毎に、その経過時の検出透過光量に基づいて下限閾値Lmを再設定する。また、下限閾値Lmには、予め不変の下限値Lcを設定しておき、上記初期設定や再設定により下限閾値Lmが不変の下限値Lcより低くなる場合には、下限値Lcを下限閾値Lmとして設定する。   In addition, the hemolysis determination control unit 140 resets the lower limit threshold Lm based on the detected transmitted light amount at the elapse of a predetermined time T1, for example, 30 to 90 minutes after the initial setting of the lower limit threshold Lm. In addition, an invariable lower limit value Lc is set in advance as the lower limit threshold value Lm. When the lower limit threshold value Lm becomes lower than the invariable lower limit value Lc due to the initial setting or resetting, the lower limit value Lc is set to the lower limit threshold value Lm. Set as.

さらに、溶血判定制御部140は、第1の血漿流路70内にプライミング液が流れているときの透過光量の不変の下限閾値Lmを設定し、第1の血漿流路70にプライミング液が流れている間は、検出透過流量と不変の下限閾値Lmに基づいて溶血の発生を判定する。   Furthermore, the hemolysis determination control unit 140 sets a lower limit threshold value Lm that does not change the amount of transmitted light when the priming liquid is flowing in the first plasma flow path 70, and the priming liquid flows in the first plasma flow path 70. In the meantime, the occurrence of hemolysis is determined based on the detected permeation flow rate and the unchanged lower limit threshold Lm.

制御装置130は、警報出力部141を有し、溶血判定制御部140により溶血の発生が判定されたとき、つまり検出透過光量が下限閾値Lmを下回ったときに警報を出力する。   The control device 130 has an alarm output unit 141, and outputs an alarm when the hemolysis determination control unit 140 determines the occurrence of hemolysis, that is, when the detected transmitted light amount falls below the lower limit threshold Lm.

次に、以上のように構成された血漿浄化装置1の動作の一例を説明する。血漿浄化治療が行われる前の準備段階には、図2に示すように第1の血漿流路70のチューブが溶血センサ80に取り付けられる。また、図1に示す血漿分離器10、血液回路11及び血漿回路13内を生理食塩水などのプライミング液に置換するプライミング処理が行われる。   Next, an example of operation | movement of the plasma purification apparatus 1 comprised as mentioned above is demonstrated. In the preparatory stage before the plasma purification treatment is performed, the tube of the first plasma channel 70 is attached to the hemolysis sensor 80 as shown in FIG. Further, a priming process is performed in which the plasma separator 10, blood circuit 11, and plasma circuit 13 shown in FIG. 1 are replaced with a priming solution such as physiological saline.

血漿浄化治療が開始されると、図1に示す血液回路11では、血液ポンプ30が稼働し、患者から取り出された血液が血漿分離器10に送られる。血漿分離器10の血液中の血漿は、中空糸膜50の一次側から二次側に流出し血液から分離される。残りの血液は、血漿分離器10から返血流路21を通って患者に戻される。一方、血漿回路13では、血漿ポンプ81が稼働し、血漿分離器10で分離された血漿が、第1の血漿流路70を通じて溶血センサ80を通過し、血漿成分分離器12に送られる。血漿成分分離器12に流入した血漿は、中空糸膜90の一次側から二次側に流出し、中空糸膜90により病因物質が分離され、当該二次側から第2の血漿流路71に流出する。病因物質は、血漿成分分離器12から廃液流路101を通じて排出される。第2の血漿流路71に流出した血漿は、補液バッグ110から補液が補充され、その後返血流路21に送られる。返血流路21に送られた血漿は、血漿分離器10からの血液と合流して、患者に戻される。   When the plasma purification treatment is started, in the blood circuit 11 shown in FIG. 1, the blood pump 30 is operated, and the blood taken out from the patient is sent to the plasma separator 10. Plasma in the blood of the plasma separator 10 flows from the primary side to the secondary side of the hollow fiber membrane 50 and is separated from the blood. The remaining blood is returned from the plasma separator 10 to the patient through the blood return channel 21. On the other hand, in the plasma circuit 13, the plasma pump 81 is operated, and the plasma separated by the plasma separator 10 passes through the hemolysis sensor 80 through the first plasma channel 70 and is sent to the plasma component separator 12. The plasma that has flowed into the plasma component separator 12 flows out from the primary side to the secondary side of the hollow fiber membrane 90, the pathogenic substance is separated by the hollow fiber membrane 90, and the second side passes into the second plasma channel 71. leak. The pathogenic substance is discharged from the plasma component separator 12 through the waste liquid channel 101. The plasma that has flowed out into the second plasma channel 71 is supplemented with the replacement fluid from the replacement fluid bag 110 and then sent to the blood return channel 21. The plasma sent to the blood return channel 21 merges with the blood from the plasma separator 10 and is returned to the patient.

血漿浄化治療中は、溶血センサ80が作動し、血漿分離器10の出口側の第1の血漿流路70において溶血が発生しているか否かが検出される。溶血の発生の判断は、溶血センサ80により検出された検出透過光量La(図3に示す)が、その下限閾値Lmより下がるか否かで行われる。図3には、血液浄化治療時の検出透過光量Laの一例と、下限閾値Lm及び下限値Lcを示す。   During the plasma purification treatment, the hemolysis sensor 80 operates to detect whether hemolysis has occurred in the first plasma channel 70 on the outlet side of the plasma separator 10. The determination of the occurrence of hemolysis is performed based on whether or not the detected transmitted light amount La (shown in FIG. 3) detected by the hemolysis sensor 80 falls below the lower limit threshold Lm. FIG. 3 shows an example of the detected transmitted light amount La at the time of blood purification treatment, and the lower limit threshold value Lm and the lower limit value Lc.

血漿浄化治療開始直後は、プライミング処理により血漿分離器10等に充填されていたプライミング液が第1の血漿流路70を流れており、プライミング液が血漿に置換されていく間(置換期間T0)は、不変の下限閾値Lmが設定される。この不変の下限閾値Lmは、実験に基づいて低い値に設定されている。例えばこのときの不変の下限閾値Lmは、第1の血漿流路70のチューブ寸法誤差、溶血センサ80に対する第1の血漿流路70のチューブの取り付けによる誤差、血液中のヘモグロビン濃度のバラつきを考慮し、プライミング液から血漿に置換されたときの透過光量を実験より求め、その透過光量に対し余裕のある値(低い値)に設定してもよい。また、不変の下限閾値Lmは、到底許容できない溶血が発生した場合の値に設定してもよい。置換期間T0では、検出透過光量Laは、次第に低下する。   Immediately after the start of the plasma purification treatment, the priming liquid filled in the plasma separator 10 or the like by the priming process flows through the first plasma channel 70, and the priming liquid is replaced with plasma (replacement period T0). Is set to an invariable lower limit threshold Lm. This invariable lower limit threshold Lm is set to a low value based on experiments. For example, the invariable lower limit threshold Lm at this time takes into account the tube size error of the first plasma channel 70, the error due to the attachment of the tube of the first plasma channel 70 to the hemolysis sensor 80, and the variation in hemoglobin concentration in blood. Then, the amount of transmitted light when the priming solution is replaced with plasma may be obtained by experiments, and set to a value (low value) with a margin for the amount of transmitted light. Further, the invariable lower limit threshold Lm may be set to a value when hemolysis that cannot be allowed is generated. In the replacement period T0, the detected transmitted light amount La gradually decreases.

第1の血漿流路70内のプライミング液が血漿に置換されると、この時(置換終了時ta)に下限閾値Lmが初期設定される。初期設定の下限閾値Lmは、この置換終了時taの検出透過光量Laの0.2〜0.9倍の値に設定される。プライミング液が血漿に置換されたタイミング、つまり置換終了時taは、例えば第1の血漿流路70に流れた液量に基づいて設定される。例えば第1の血液流路70の血漿ポンプ81の流量設定値により、血漿浄化治療開始時から第1の血漿流路70で流れた総流量が分かり、当該総流量が、第1の血漿流路70を通過するはずのプライミング液の液量に到達する時間を置換終了時taとする。   When the priming solution in the first plasma channel 70 is replaced with plasma, the lower limit threshold Lm is initialized at this time (replacement completion time ta). The initial lower limit threshold value Lm is set to a value 0.2 to 0.9 times the detected transmitted light amount La at the end of replacement ta. The timing at which the priming solution is replaced with plasma, that is, the replacement end time ta is set based on, for example, the amount of fluid that has flowed into the first plasma channel 70. For example, the flow rate setting value of the plasma pump 81 of the first blood flow channel 70 can be used to determine the total flow rate that has flowed in the first plasma flow channel 70 from the start of plasma purification treatment, and the total flow rate is the first plasma flow channel. The time required to reach the liquid amount of the priming liquid that should pass 70 is defined as ta at the end of replacement.

なお、置換終了時taは、血漿分離器10の容量に基づいて設定してもよい。この場合、例えば溶血判定制御部140が、血漿分離器10の容量を認識し、当該容量に基づいて、血漿分離器10内のプライミング液がすべて第1の血漿流路70を流れ終わる時間を置換終了時taとする。なお、溶血判定制御部140は、例えばユーザが容量を入力することによって血漿分離器10の容量を認識してもよいし、血漿分離器10に予め付された容量に関するコードを読み取り機で読み取ることにより血漿分離器10の容量を認識してもよい。   The replacement end time ta may be set based on the volume of the plasma separator 10. In this case, for example, the hemolysis determination control unit 140 recognizes the volume of the plasma separator 10, and replaces the time when the priming solution in the plasma separator 10 completely flows through the first plasma channel 70 based on the volume. Let ta be the end time. The hemolysis determination control unit 140 may recognize the volume of the plasma separator 10 when the user inputs the volume, for example, or reads a code related to the volume previously attached to the plasma separator 10 with a reader. Thus, the volume of the plasma separator 10 may be recognized.

また、置換終了時taは、検出透過光量Laの変化に基づいて設定してもよい。この場合、例えば第1の血漿流路70にプライミング液が流れている間に溶血センサ80により透過光量が検出され、検出透過光量が下がりきった時間を置換終了時taとする。   Further, the replacement end time ta may be set based on a change in the detected transmitted light amount La. In this case, for example, the time when the transmitted light amount is detected by the hemolysis sensor 80 while the priming solution is flowing in the first plasma flow path 70 and the detected transmitted light amount has been reduced is defined as ta at the end of replacement.

初期設定終了後は、検出透過光量Laに基づいて下限閾値Lmを変動させ、検出透過光量Laが増加したときには、下限閾値Lmをその透過光量に追従するように上昇させ、検出透過光量Laが減少したときには、下限閾値Lmを一定に保つ。   After completion of the initial setting, the lower limit threshold Lm is changed based on the detected transmitted light amount La. When the detected transmitted light amount La increases, the lower limit threshold Lm is increased so as to follow the transmitted light amount, and the detected transmitted light amount La decreases. When this happens, the lower limit threshold Lm is kept constant.

そして、下限閾値Lmの初期設定時(置換終了時ta)から所定時間T1、例えば30〜90分間経過する毎に、その経過時の検出透過光量Laに基づいて下限閾値Lmが再設定される。つまり、置換終了時taから所定時間T1が経過する度に、上述の初期設定時と同様に下限閾値Lmが、その時に検出透過光量Laの0.2〜0.9倍の値に設定される。   Then, every time a predetermined time T1, for example, 30 to 90 minutes elapses from when the lower limit threshold Lm is initially set (replacement completion time ta), the lower limit threshold Lm is reset based on the detected transmitted light amount La at that time. That is, every time the predetermined time T1 elapses from the replacement end time ta, the lower limit threshold value Lm is set to a value 0.2 to 0.9 times the detected transmitted light amount La at the same time as in the initial setting described above. .

また、下限閾値Lmには、不変の下限値Lcが設定されており、上述の初期設定や再設定により下限閾値Lmが予め定められた不変の下限値Lcより低くなる場合には、当該下限値Lcが下限閾値Lmとして用いられる。よって、下限閾値Lmが不変の下限値Lcより下がることはない。   In addition, the lower limit threshold Lm is set to an invariable lower limit Lc, and when the lower limit threshold Lm becomes lower than a predetermined invariable lower limit Lc by the above-described initial setting or resetting, the lower limit value Lc is set. Lc is used as the lower limit threshold Lm. Therefore, the lower limit threshold Lm does not fall below the invariable lower limit Lc.

そして、検出透過光量Laが下限閾値Lmよりも低くなった場合(図3のLa線の点線で示した場合)には、溶血が発生していると判断され、警報が出力される。   When the detected transmitted light amount La is lower than the lower limit threshold Lm (indicated by the dotted line of La line in FIG. 3), it is determined that hemolysis has occurred and an alarm is output.

本実施の形態によれば、透過光量の下限閾値Lmを、溶血センサ80により検出された透過光量に基づいて初期設定し、検出透過光量Laが増加したときには、下限閾値Lmを上昇させ、検出透過光量Laが減少したときには、下限閾値Lmを一定に保つので、透過光量の下限閾値Lmを実際に検出した透過光量に応じて変動させる。このため、例えば第1の血漿流路70を流れる液体がプライミング液から血漿に変動したり、第1の血漿流路70のチューブに寸法誤差があったり、溶血センサ80に対する第1の血漿流路70のチューブの取り付けが適切に行われなかったような場合でも、それらの要因に左右されず、溶血の発生を適正に検出できる。また、溶血が発生した場合には検出透過光量Laが減少するので、溶血の発生と無関係な透過光量の増加の場合には、下限閾値Lmを上昇させ、溶血の発生と関係があり得る透過光量の減少の場合には、下限閾値Lmを一定にしている。この結果、検出透過光量Laの変動に応じて下限閾値Lmが適正に変動され、溶血の発生をより精度よく検出できる。   According to the present embodiment, the lower limit threshold value Lm of the transmitted light amount is initially set based on the transmitted light amount detected by the hemolysis sensor 80, and when the detected transmitted light amount La increases, the lower limit threshold value Lm is increased to detect and transmit light. When the light amount La decreases, the lower limit threshold value Lm is kept constant, so that the lower limit threshold value Lm of the transmitted light amount is changed according to the actually detected transmitted light amount. For this reason, for example, the liquid flowing through the first plasma channel 70 varies from the priming solution to plasma, the tube of the first plasma channel 70 has a dimensional error, or the first plasma channel with respect to the hemolysis sensor 80. Even when 70 tubes are not properly attached, the occurrence of hemolysis can be properly detected regardless of these factors. Further, since the detected transmitted light amount La decreases when hemolysis occurs, the lower limit threshold Lm is increased in the case of an increase in transmitted light amount unrelated to the occurrence of hemolysis, and the transmitted light amount that may be related to the occurrence of hemolysis. In the case of decrease, the lower threshold Lm is kept constant. As a result, the lower limit threshold Lm is appropriately changed according to the change in the detected transmitted light amount La, and the occurrence of hemolysis can be detected with higher accuracy.

下限閾値Lmは、検出透過光量Laの0.2〜0.9倍の値に設定されるので、溶血の発生の検出の精度を向上できる。   Since the lower limit threshold Lm is set to a value 0.2 to 0.9 times the detected transmitted light amount La, the accuracy of detection of the occurrence of hemolysis can be improved.

ところで、溶血が発生した場合には、ある程度の速い速度で検出透過光量Laが低下する(図3のLa線の点線)。また、それより検出透過光量Laの低下速度が遅い場合には、溶血センサの温度特性の変動等の他の要因で検出透過光量Laが低下している可能性が高い。他の要因で検出透過光量Laが緩やかに低下している場合であっても、長時間経過すると、下限閾値Lmに到達する恐れがある。本実施の形態では、下限閾値Lmの初期設定から所定期間T1の30〜90分間経過する毎に、その経過時の検出透過光量Laに基づいて下限閾値Lmを再設定している。こうすることにより、ある程度の速い速度で検出透過光量Laが低下する場合にのみ下限閾値Lmに到達し、それより検出透過光量Laの低下速度が遅い場合には、下限閾値Lmに到達せず、溶血の発生以外の他の要因の場合を排除できるので、溶血の発生をより精度よく検出できる。   By the way, when hemolysis occurs, the detected transmitted light amount La decreases at a certain speed (dotted line of La line in FIG. 3). Further, when the decrease rate of the detected transmitted light amount La is slower than that, it is highly likely that the detected transmitted light amount La is decreased due to other factors such as a change in temperature characteristics of the hemolysis sensor. Even when the detected transmitted light amount La gradually decreases due to other factors, the lower limit threshold Lm may be reached after a long time. In the present embodiment, every time 30 to 90 minutes of the predetermined period T1 have elapsed from the initial setting of the lower limit threshold Lm, the lower limit threshold Lm is reset based on the detected transmitted light amount La at that time. By doing this, the lower limit threshold Lm is reached only when the detected transmitted light amount La decreases at a certain high speed, and when the detected transmitted light amount La decreases more slowly, the lower limit threshold Lm is not reached. Since the case of factors other than the occurrence of hemolysis can be eliminated, the occurrence of hemolysis can be detected with higher accuracy.

下限閾値Lmには、不変の下限値Lcが設定されているので、下限閾値Lmが極端に低くなりすぎることを防止できる。これにより、溶血の発生の検出を適正に行うことができる。   Since the invariable lower limit Lc is set as the lower limit threshold Lm, it is possible to prevent the lower limit threshold Lm from becoming extremely low. Thereby, generation | occurrence | production of hemolysis can be detected appropriately.

第1の血漿流路70内がプライミング液から血漿に置換されたとき(置換完了時ta)に、下限閾値Lmを初期設定するので、実際に血漿が流れてからの溶血の発生を適切に検出できる。また、プライミング液が血漿に置換されていく間の透過光量の低下によって溶血の発生を誤検知することを防止できる。   Since the lower limit threshold Lm is initially set when the inside of the first plasma channel 70 is replaced with plasma from the priming solution (when replacement is complete ta), the occurrence of hemolysis after the plasma actually flows is appropriately detected. it can. Further, it is possible to prevent erroneous detection of hemolysis due to a decrease in the amount of transmitted light while the priming solution is replaced with plasma.

また、第1の血漿流路70内にプライミング液が流れているとき(置換期間T0)の不変の下限閾値Lmを設定し、第1の血漿流路70にプライミング液が流れている間は、検出透過光量Laと不変の下限閾値Lmに基づいて溶血の発生を判定するので、置換期間T0の溶血の発生も検出することができる。また、不変の下限閾値Lmを低く設定しておくことにより、置換期間T0の検出透過光量Laの低下や変動により溶血の発生を誤検知することを防止できる。   Further, an invariable lower limit threshold Lm when the priming solution is flowing in the first plasma channel 70 (replacement period T0) is set, and while the priming solution is flowing in the first plasma channel 70, Since the occurrence of hemolysis is determined based on the detected transmitted light amount La and the unchanged lower limit threshold Lm, the occurrence of hemolysis in the replacement period T0 can also be detected. In addition, by setting the invariable lower limit threshold Lm low, it is possible to prevent erroneous detection of hemolysis due to a decrease or fluctuation in the detected transmitted light amount La during the replacement period T0.

第1の血漿流路70内がプライミング液から血漿に置換されるタイミング(置換完了時ta)を、第1の血漿流路70に流れる液量に基づいて設定しているので、置換完了時taを容易に検出できる。また、置換完了時taを、血漿分離器10の容量に基づいて設定する場合には、置換完了時taを正確に検出できる。さらに、置換完了時taを、溶血センサ80により検出された透過光量の変化に基づいて設定する場合には、より正確に置換完了時taを検出できる。   Since the timing at which the inside of the first plasma channel 70 is replaced with the plasma from the priming solution (replacement completion time ta) is set based on the amount of liquid flowing in the first plasma channel 70, the replacement time ta Can be easily detected. When the replacement completion time ta is set based on the capacity of the plasma separator 10, the replacement completion time ta can be accurately detected. Further, when the replacement completion time ta is set based on the change in the amount of transmitted light detected by the hemolysis sensor 80, the replacement completion time ta can be detected more accurately.

以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

例えば以上の実施の形態では、血漿浄化装置1が血漿交換治療のうちの二重濾過血漿交換療法を行うものであったが、本発明にかかる血漿浄化装置は、単純血漿交換療法、血漿吸着療法などの他の血液交換治療を行うものにも適用できる。単純血漿交換療法を行う血漿浄化装置1は、例えば図4に示すように第1の血漿流路70が血漿成分分離器12に接続されておらず、第1の血漿流路70を通過する血漿が廃液され、補液バッグ110から第2の血漿流路71を通じて新たな血漿が血液に補充される。また、血漿吸着療法を行う血漿浄化装置1は、例えば図5に示すように第1の血漿流路70が血漿吸着器150に接続され、その血漿吸着器150で病因物質が吸着除去された血漿が第2の血漿流路71を通じて血液に戻される。また、血漿浄化装置1は、必ずしも溶血の発生を判定する直接的な動作を行うものである必要はなく、検出透過光量と下限閾値を比較して検出透過光量が下限閾値を下回った場合に警報を出力するなど、溶血の発生を実質的に判定していればよい。   For example, in the above embodiment, the plasma purification apparatus 1 performs the double filtration plasma exchange therapy among the plasma exchange treatments. However, the plasma purification apparatus according to the present invention includes simple plasma exchange therapy and plasma adsorption therapy. It can be applied to other blood exchange treatments. In the plasma purification apparatus 1 that performs simple plasma exchange therapy, for example, as shown in FIG. 4, the first plasma channel 70 is not connected to the plasma component separator 12, and the plasma that passes through the first plasma channel 70 is used. Is drained, and fresh blood is replenished to the blood from the replacement fluid bag 110 through the second plasma channel 71. Further, in the plasma purification apparatus 1 that performs plasma adsorption therapy, for example, as shown in FIG. 5, the first plasma channel 70 is connected to the plasma adsorber 150, and the plasma from which the pathogenic substance is adsorbed and removed by the plasma adsorber 150. Is returned to the blood through the second plasma channel 71. Moreover, the plasma purification apparatus 1 does not necessarily perform a direct operation for determining the occurrence of hemolysis, and compares the detected transmitted light amount with the lower limit threshold value to give an alarm when the detected transmitted light amount falls below the lower limit threshold value. It is only necessary to substantially determine the occurrence of hemolysis.

本発明は、血漿浄化装置において溶血の発生を精度良く検出する際に有用である。   The present invention is useful for accurately detecting the occurrence of hemolysis in a plasma purification apparatus.

1 血漿浄化装置
10 血漿分離器
11 血液回路
12 血漿成分分離器
13 血漿回路
20 脱血流路
21 返血流路
30 血液ポンプ
31 ドリップチャンバ
32 シリンジポンプ
33 圧力センサ
40 ドリップチャンバ
41 気泡検知器
42 クランプバルブ
43 圧力センサ
50 中空糸膜
51 圧力センサ
80 溶血センサ
81 血漿ポンプ
82 ドリップチャンバ
83 圧力センサ
90 中空糸膜
100 廃液ポンプ
101 廃液流路
110 補液バッグ
111 補液流路
112 補液ポンプ
120 発光部
121 受光部
122 支持部材
123 センサ制御部
130 制御装置
140 溶血判定制御部
141 警報出力部
150 血漿吸着器
La 検出透過光量
Lm 下限閾値
Lc 下限値
T0 置換期間
ta 置換終了時間
T1 所定時間
DESCRIPTION OF SYMBOLS 1 Plasma purification apparatus 10 Plasma separator 11 Blood circuit 12 Plasma component separator 13 Plasma circuit 20 Blood removal flow path 21 Blood return flow path 30 Blood pump 31 Drip chamber 32 Syringe pump 33 Pressure sensor 40 Drip chamber 41 Bubble detector 42 Clamp Valve 43 Pressure sensor 50 Hollow fiber membrane 51 Pressure sensor 80 Hemolysis sensor 81 Plasma pump 82 Drip chamber 83 Pressure sensor 90 Hollow fiber membrane 100 Waste fluid pump 101 Waste fluid channel 110 Supplement fluid bag 111 Supplement fluid channel 112 Supplement fluid pump 120 Light emitting unit 121 Light receiving unit 122 support member 123 sensor control unit 130 control device 140 hemolysis determination control unit 141 alarm output unit 150 plasma adsorber La detected transmitted light amount Lm lower threshold Lc lower limit T0 replacement period ta replacement end time T1 predetermined time

Claims (11)

体内から取り出された血液中の血漿成分を浄化する血漿浄化装置であって、
血液から血漿を分離する血漿分離器と、
前記血漿分離器で分離された血漿が流れる血漿流路と、
前記血漿流路が着脱可能であり、前記血漿流路に光を透過したときの透過光量を検出する溶血センサと、
前記溶血センサにより検出された透過光量に基づいて、当該透過光量が下限閾値を下回るか否かで溶血の発生を判定する溶血判定制御部であって、前記透過光量の下限閾値を、前記溶血センサにより検出された透過光量に基づいて初期設定し、その後、前記検出された透過光量が増加したときには、前記下限閾値を前記透過光量に追従するように上昇させ、前記検出された透過光量が減少したときには、前記下限閾値を一定に保つように前記下限閾値を制御する、溶血判定制御部と、を備える、血漿浄化装置。
A plasma purification device for purifying plasma components in blood taken from the body,
A plasma separator for separating plasma from blood;
A plasma channel through which the plasma separated by the plasma separator flows;
A hemolysis sensor, wherein the plasma flow channel is detachable, and detects a transmitted light amount when light is transmitted through the plasma flow channel;
A hemolysis determination control unit that determines the occurrence of hemolysis based on the transmitted light amount detected by the hemolysis sensor based on whether or not the transmitted light amount falls below a lower limit threshold value. After that, when the detected transmitted light amount is increased, the lower limit threshold is increased so as to follow the transmitted light amount, and the detected transmitted light amount is decreased. Sometimes, a plasma purification apparatus comprising: a hemolysis determination control unit that controls the lower threshold value so as to keep the lower threshold value constant.
前記溶血判定制御部は、前記下限閾値の初期設定から30〜90分間経過する毎に、その経過時の前記溶血センサにより検出された透過光量に基づいて前記下限閾値を再設定する、請求項1に記載の血漿浄化装置。   The hemolysis determination control unit resets the lower limit threshold value every 30 to 90 minutes after the initial setting of the lower limit threshold value, based on the amount of transmitted light detected by the hemolysis sensor at the time. The plasma purification apparatus described in 1. 前記下限閾値は、検出された透過光量の0.2〜0.9倍の値に設定される、請求項1又は2に記載の血漿浄化装置。   The plasma purification apparatus according to claim 1 or 2, wherein the lower limit threshold is set to a value 0.2 to 0.9 times the detected amount of transmitted light. 前記下限閾値には、不変の下限値が設定されている、請求項1〜3のいずれか1項に記載の血漿浄化装置。   The plasma purification apparatus according to any one of claims 1 to 3, wherein an invariable lower limit value is set as the lower limit threshold value. 前記溶血判定制御部は、前記血漿流路内がプライミング液から血漿に置換されたときに、前記下限閾値を初期設定する、請求項1〜4のいずれか1項に記載の血漿浄化装置。   The plasma purification apparatus according to any one of claims 1 to 4, wherein the hemolysis determination control unit initially sets the lower limit threshold when the inside of the plasma channel is replaced with plasma from a priming solution. 前記溶血判定制御部は、前記血漿流路内がプライミング液から血漿に置換されるタイミングを、前記血漿流路に流れる液量に基づいて設定している、請求項5に記載の血漿浄化装置。   The plasma purification apparatus according to claim 5, wherein the hemolysis determination control unit sets a timing at which the inside of the plasma channel is replaced with plasma from a priming solution based on the amount of fluid flowing in the plasma channel. 前記溶血判定制御部は、前記血漿流路内がプライミング液から血漿に置換されるタイミングを、前記血漿分離器の容量に基づいて設定している、請求項5に記載の血漿浄化装置。   6. The plasma purification apparatus according to claim 5, wherein the hemolysis determination control unit sets a timing at which the inside of the plasma channel is replaced with priming liquid from plasma based on a capacity of the plasma separator. 前記溶血判定制御部は、前記血漿流路内がプライミング液から血漿に置換されるタイミングを、前記溶血センサにより検出された透過光量の変化に基づいて設定している、請求項5に記載の血漿浄化装置。   The plasma according to claim 5, wherein the hemolysis determination control unit sets a timing at which the inside of the plasma channel is replaced with plasma from a priming solution based on a change in the amount of transmitted light detected by the hemolysis sensor. Purification equipment. 前記溶血判定制御部は、前記血漿流路内にプライミング液が流れているときの透過光量の不変の下限閾値を設定し、前記血漿流路にプライミング液が流れている間に、前記透過光量と前記不変の下限閾値を比較して溶血の発生を判定する、請求項1〜8のいずれかい項に記載の血漿浄化装置。   The hemolysis determination control unit sets an invariable lower limit threshold of the amount of transmitted light when the priming solution is flowing in the plasma channel, and the transmitted light amount The plasma purification apparatus according to any one of claims 1 to 8, wherein occurrence of hemolysis is determined by comparing the invariable lower limit threshold. 前記溶血判定制御部により溶血の発生が判定されたときに警報を出力する、請求項1〜9のいずれか1項に記載の血漿浄化装置。   The plasma purification apparatus according to any one of claims 1 to 9, wherein an alarm is output when the occurrence of hemolysis is determined by the hemolysis determination control unit. 体内から取り出された血液中の血漿成分を浄化する血漿浄化装置の作動方法であって、
前記血液浄化装置が、
血液から血漿を分離する血漿分離器と、
前記血漿分離器で分離された血漿が流れる血漿流路と、
前記血漿流路が着脱可能であり、前記血漿流路に光を透過したときの透過光量を検出する溶血センサと、
前記溶血センサにより検出された透過光量に基づいて、当該透過光量が下限閾値を下回るか否かで溶血の発生を判定する溶血判定制御部と、を備えたものであり、
前記透過光量の下限閾値を、前記溶血センサにより検出された透過光量に基づいて初期設定し、その後、前記検出された透過光量が増加したときには、前記下限閾値を前記透過光量に追従するように上昇させ、前記検出された透過光量が減少したときには、前記下限閾値を一定に保つように前記溶血判定制御部が作動する、血漿浄化装置の作動方法。
A method of operating a plasma purification device for purifying plasma components in blood taken from the body,
The blood purification device is
A plasma separator for separating plasma from blood;
A plasma channel through which the plasma separated by the plasma separator flows;
A hemolysis sensor, wherein the plasma flow channel is detachable, and detects a transmitted light amount when light is transmitted through the plasma flow channel;
A hemolysis determination control unit that determines the occurrence of hemolysis based on whether or not the transmitted light amount is below a lower limit threshold based on the transmitted light amount detected by the hemolysis sensor,
The lower limit threshold value of the transmitted light amount is initially set based on the transmitted light amount detected by the hemolysis sensor. Thereafter, when the detected transmitted light amount increases, the lower threshold value is increased so as to follow the transmitted light amount. When the detected amount of transmitted light decreases, the hemolysis determination control unit operates so as to keep the lower limit threshold constant.
JP2011155981A 2011-07-14 2011-07-14 Plasma purification apparatus and method of operating plasma purification apparatus Active JP5816014B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011155981A JP5816014B2 (en) 2011-07-14 2011-07-14 Plasma purification apparatus and method of operating plasma purification apparatus
CN201210241688.3A CN102872488B (en) 2011-07-14 2012-07-12 Blood plasma purifying device and work method of the blood plasma purifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011155981A JP5816014B2 (en) 2011-07-14 2011-07-14 Plasma purification apparatus and method of operating plasma purification apparatus

Publications (2)

Publication Number Publication Date
JP2013022021A true JP2013022021A (en) 2013-02-04
JP5816014B2 JP5816014B2 (en) 2015-11-17

Family

ID=47474149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011155981A Active JP5816014B2 (en) 2011-07-14 2011-07-14 Plasma purification apparatus and method of operating plasma purification apparatus

Country Status (2)

Country Link
JP (1) JP5816014B2 (en)
CN (1) CN102872488B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3035054A1 (en) * 2014-12-19 2016-06-22 Fenwal, Inc. Systems and methods for determining free plasma hemoglobin
EP3833466A4 (en) * 2018-08-06 2021-08-18 Siemens Healthcare Diagnostics Inc. Method and device for determining the concentration of analytes in whole blood

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6385095B2 (en) * 2014-03-26 2018-09-05 旭化成メディカル株式会社 Blood purification equipment
US10576196B2 (en) * 2017-04-10 2020-03-03 Fresenius Medical Care Holdings, Inc. Optical detection of air bubbles in either saline or blood or a mixture of both

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64450A (en) * 1987-06-22 1989-01-05 Terumo Corp Hemolysis detector
JPH0677745U (en) * 1993-04-19 1994-11-01 日本フエンオール株式会社 Artificial dialysis machine
JP2005253555A (en) * 2004-03-10 2005-09-22 Asahi Kasei Medical Co Ltd Priming method of blood purification system and blood purification system
WO2011015321A1 (en) * 2009-08-04 2011-02-10 Fresenius Medical Care Deutschland Gmbh Device and method for detecting blood or blood constituents in the liquid system of a device for extracorporeal blood treatment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330420A (en) * 1992-01-13 1994-07-19 Therakos, Inc. Hemolysis detector
EP2213376B1 (en) * 2006-06-07 2012-11-28 Terumo BCT, Inc. Method for separating a composite liquid into at least two components
JP2010125207A (en) * 2008-11-28 2010-06-10 Asahi Kasei Kuraray Medical Co Ltd Extracorporeal circulation system
JP5278681B2 (en) * 2009-01-28 2013-09-04 メディカテック株式会社 Dialysis machine sensor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64450A (en) * 1987-06-22 1989-01-05 Terumo Corp Hemolysis detector
JPH0677745U (en) * 1993-04-19 1994-11-01 日本フエンオール株式会社 Artificial dialysis machine
JP2005253555A (en) * 2004-03-10 2005-09-22 Asahi Kasei Medical Co Ltd Priming method of blood purification system and blood purification system
WO2011015321A1 (en) * 2009-08-04 2011-02-10 Fresenius Medical Care Deutschland Gmbh Device and method for detecting blood or blood constituents in the liquid system of a device for extracorporeal blood treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3035054A1 (en) * 2014-12-19 2016-06-22 Fenwal, Inc. Systems and methods for determining free plasma hemoglobin
US9833557B2 (en) 2014-12-19 2017-12-05 Fenwal, Inc. Systems and methods for determining free plasma hemoglobin
EP3833466A4 (en) * 2018-08-06 2021-08-18 Siemens Healthcare Diagnostics Inc. Method and device for determining the concentration of analytes in whole blood

Also Published As

Publication number Publication date
JP5816014B2 (en) 2015-11-17
CN102872488A (en) 2013-01-16
CN102872488B (en) 2015-05-13

Similar Documents

Publication Publication Date Title
CA2683051C (en) Method and apparatus for priming an extracorporeal blood circuit
JP2004174235A (en) Blood purification apparatus
US9950104B2 (en) Method for rinsing and/or for filling a blood treatment device and blood treatment device
WO2008065950A1 (en) State detecting device
JP2016221028A (en) Medical fluid pressure detection device
CN102186514A (en) Method and device for monitoring the introduction of substitution fluids upstream or downstream of a dialyzer or filter
JP5816014B2 (en) Plasma purification apparatus and method of operating plasma purification apparatus
CN107708764B (en) Blood purification device and perfusion method
JP6571234B1 (en) Blood purification equipment
AU2014361162A1 (en) Extracorporeal blood treatment system, disposable set and valve unit for pre/post infusion.
US20170361004A1 (en) Blood purification apparatus
JP6657203B2 (en) Method for removing fluid from a blood filter by increasing flow after completion of a blood processing session and processing equipment for performing the method
JP4757168B2 (en) Method for feeding back-filtered dialysate in hemodialyzer and hemodialyzer
US20170361003A1 (en) Blood purification apparatus
JP6385095B2 (en) Blood purification equipment
JP5514606B2 (en) Continuous hemodialysis machine
US20230270923A1 (en) Blood purification apparatus
JP5276909B2 (en) Blood purification equipment
JP2009297340A (en) Blood purifying device
JP6671159B2 (en) Blood purification device
JP7293761B2 (en) Determining method for dialysis machine and circuit set
JP2019187789A (en) Replenishment control method, control device and dialyzer
JP7176824B2 (en) blood purifier
JP2008068151A (en) Extracorporeal circuit system for circulating blood and method therefor
JP6642695B2 (en) Hemodialysis machine and control program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150925

R150 Certificate of patent or registration of utility model

Ref document number: 5816014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350