JP2013019699A - Method for survey between power transmission line support points of iron tower - Google Patents

Method for survey between power transmission line support points of iron tower Download PDF

Info

Publication number
JP2013019699A
JP2013019699A JP2011151175A JP2011151175A JP2013019699A JP 2013019699 A JP2013019699 A JP 2013019699A JP 2011151175 A JP2011151175 A JP 2011151175A JP 2011151175 A JP2011151175 A JP 2011151175A JP 2013019699 A JP2013019699 A JP 2013019699A
Authority
JP
Japan
Prior art keywords
transmission line
point
line support
power transmission
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011151175A
Other languages
Japanese (ja)
Other versions
JP5736260B2 (en
Inventor
Fukuji Mikami
福治 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yurtec Corp
Original Assignee
Yurtec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yurtec Corp filed Critical Yurtec Corp
Priority to JP2011151175A priority Critical patent/JP5736260B2/en
Publication of JP2013019699A publication Critical patent/JP2013019699A/en
Application granted granted Critical
Publication of JP5736260B2 publication Critical patent/JP5736260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Cable Installation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for survey that can safely and efficiently survey the horizontal distance and difference of elevation between power transmission line support points even when the power transmission line is a charging line in a hot line state without using a retroreflection sheet nor the need for an operator to climb up an iron tower.SOLUTION: The coordinates of power transmission support points A, B are found by survey respectively, and the horizontal distance Lab and difference of elevation Hab between the two power transmission line support points A, B are found from the found coordinates. The coordinates of an observation point Pdetermined right nearby an iron tower 1 are found by survey, and the coordinates of the power transmission line support point A of the iron tower 1 are found by survey on the basis of the coordinates of the observation point P. The coordinates of an observation point Pdetermined right nearby an iron tower 2 are found by survey on the basis of the coordinates of the observation point P, and the coordinates of a power transmission line support point B of the iron tower 2 are found by survey. Then the horizontal distance and difference of elevation between the two power transmission line support points are found by geometric calculation from the found coordinates of the power transmission line support points A, B.

Description

本発明は、鉄塔の送電線支持点間の測量方法に関し、具体的には、2つの鉄塔の対応する送電線支持点間の水平距離と高低差を測量する方法に関する。   The present invention relates to a surveying method between transmission line support points of a steel tower, and more particularly, to a method of measuring a horizontal distance and a height difference between corresponding transmission line support points of two steel towers.

送電設備は、複数の鉄塔を送電ルートに沿って離間して設け、それらの鉄塔に形成された送電線の支持アームに、碍子を介して送電線を支持させて形成される。送電線は、複数の鉄塔間である緊線区間ごとに切断されて、各鉄塔間に架け渡される。一般に、緊線区間の両端に位置する鉄塔の支持アームには耐張碍子が取り付けられ、耐張碍子には送電線の両端に取り付けられた耐張クランプが連結金具で連結されて、支持アームに送電線が支持されている。また、緊線区間の中継点に位置する鉄塔の支持アームには懸垂碍子が取り付けられ、懸垂碍子に連結金具で連結されている懸垂クランプには送電線が取り付けられて、支持アームに送電線が支持されている。   The power transmission facility is formed by providing a plurality of steel towers separated along the power transmission route, and supporting the power transmission lines via insulators on the support arms of the power transmission lines formed on the steel towers. A power transmission line is cut | disconnected for every close line area between several steel towers, and is spanned between each steel tower. Generally, tension insulators are attached to the support arm of the steel tower located at both ends of the tight wire section, and tension clamps attached to both ends of the transmission line are connected to the support arms by connecting metal fittings. Transmission lines are supported. In addition, a suspension insulator is attached to the support arm of the tower located at the relay point of the tight line section, and a transmission line is attached to the suspension clamp connected to the suspension insulator by a connecting bracket, and the transmission line is attached to the support arm. It is supported.

また、各鉄塔間に架け渡す送電線に、所定の張力に応じた弛みをもたせるため、各鉄塔間の送電線の長さを調整することが行われている。通常、鉄塔間の送電線の長さ調整等の緊線作業は、鉄塔の支持アーム上で行う高所作業が多く、また、作業も長期を要する。これを改善し、高所での作業が短期にできるプレハブ架線工法が開発されている。このプレハブ架線工法での施工においては、予め、一方の鉄塔の支持アームに碍子を取り付ける位置(以下、送電線支持点という)と、他方の鉄塔の支持アームに碍子を取り付ける送電線支持点との間の水平距離と高低差を測量する。測量した水平距離と高低差から、地上又は工場にて、碍子、クランプ金具及び連結金具等の関連部材と送電線の弛みを考慮し各鉄塔径間ごとの電線の長さ(以下、電線実長という)を計尺し、懸垂クランプを装着する位置のマーキング及び緊線区間の電線実長を計尺する。これらの計尺により、地上又は工場にて、送電線を切断し、送電線の両端に耐張クランプを圧縮法によって装着している。これにより、支持アーム上での長さ調整等の作業が不要となる。   Moreover, in order to give the power transmission line spanned between each steel tower a slack according to a predetermined tension, the length of the power transmission line between each steel tower is adjusted. Usually, the work of tying, such as adjusting the length of a transmission line between towers, is often performed at a high place on the support arm of the tower, and the work also takes a long time. To improve this, a prefabricated overhead wire construction method has been developed that allows work at high altitudes in a short period of time. In the construction by this prefabricated overhead wire construction method, a position where an insulator is attached to a support arm of one steel tower (hereinafter referred to as a transmission line support point) and a transmission line support point where an insulator is attached to the support arm of the other steel tower are preliminarily provided. Survey the horizontal distance and height difference between. From the measured horizontal distance and height difference, the length of the wire for each steel tower span (hereinafter referred to as the actual wire length) on the ground or at the factory, taking into account the looseness of the transmission line and related members such as insulators, clamp fittings and connecting fittings Measure the marking of the position where the suspension clamp is mounted and the actual length of the wire in the tight section. With these scales, the transmission line is cut on the ground or at a factory, and tension clamps are attached to both ends of the transmission line by the compression method. This eliminates the need for operations such as length adjustment on the support arm.

ここで、2つの鉄塔の対応する送電線支持点間の水平距離と高低差を測量する方法として、例えば、2つの鉄塔間の中間付近の地上に測距儀を設置し、一方の鉄塔の送電線支持点付近に測量用反射プリズム(以下、プリズムという)を当接保持し、測距儀とプリズムを結ぶ線分の距離、鉛直角及び基準線に対する水平角を測量して、一方の送電線支持点の座標を測量により求める。同様に、他方の送電線支持点の座標を測量により求め、それらの座標に基づいて幾何学的に2つの送電線支持点間の水平距離と高低差を計算により求めることが知られている。   Here, as a method of surveying the horizontal distance and height difference between the corresponding transmission line support points of the two towers, for example, a range finder is installed on the ground near the middle between the two towers, and the transmission of one tower is One of the transmission lines is measured by measuring the distance, vertical angle, and horizontal angle with respect to the reference line by holding a surveying reflection prism (hereinafter referred to as a prism) in the vicinity of the wire support point. The coordinates of the support point are obtained by surveying. Similarly, it is known that the coordinates of the other power transmission line support point are obtained by surveying, and the horizontal distance and height difference between the two power transmission line support points are obtained geometrically based on these coordinates.

しかし、この測量方法によれば、作業者が先端にプリズムを取り付けた測定用ポールを持って鉄塔に登り、その測定用ポールの先端を支持アームの先端にある送電線支持点近傍の碍子取付ボルトのねじ先芯に当接させた状態で測量しなければならない。そのため、送電線が活線状態にあっては、安全な離隔距離の確保が出来ないため測量ができない。また、プリズムが傾いたり、位置がずれたりして、測量誤差が生ずるおそれがある。さらに、作業員が鉄塔に登らなければならず、作業性が悪いという問題がある。   However, according to this surveying method, an operator climbs a steel tower with a measuring pole with a prism attached to the tip, and the tip of the measuring pole is the insulator mounting bolt near the transmission line support point at the tip of the support arm. It must be measured in contact with the screw tip. Therefore, when the transmission line is in a live line state, a safe separation distance cannot be secured, and surveying is not possible. In addition, the prism may be inclined or the position may be shifted, causing a measurement error. Furthermore, there is a problem that the worker has to climb the steel tower and the workability is poor.

このような問題に対応するため、特許文献1によれば、送電線の新設時に、送電線支持点付近に再帰性反射シートを貼り付けておき、再帰性反射シートの座標を上述と同様の測量方法により求め、それらの座標に基づいて幾何学的に2つの送電線支持点間の水平距離と高低差を測量することが提案されている。これによれば、送電線が活線状態であっても、作業員が鉄塔に登らずに送電線支持点間の水平距離と高低差を測量することができ、高所での作業員の手配や危険な作業をなくし、測量時間を短縮することができる。   In order to cope with such a problem, according to Patent Document 1, when a transmission line is newly installed, a retroreflective sheet is pasted in the vicinity of the transmission line support point, and the coordinates of the retroreflective sheet are measured as described above. It has been proposed to measure the horizontal distance and height difference between two transmission line support points geometrically based on the coordinates obtained by the method. According to this, even when the transmission line is in a live line state, the worker can measure the horizontal distance and height difference between the support points of the transmission line without climbing the steel tower. And eliminates dangerous work and shortens survey time.

特開平6―265355号公報JP-A-6-265355

しかし、特許文献1に記載の送電線支持点間の測量方法を適用しようとすると、再帰性反射シートが送電線支持点付近に貼付されていない場合は、送電を停止して再帰性反射シートを貼付する必要があり、停電時期あるいは停電期間の制約によって適用できない場合がある。   However, when trying to apply the surveying method between the transmission line support points described in Patent Document 1, if the retroreflective sheet is not attached near the transmission line support point, the power transmission is stopped and the retroreflective sheet is used. It may need to be affixed and may not be applicable due to power outage timing or power outage restrictions.

例えば、送電線の経年劣化等の理由から、特別高圧(例えば、数万〜数十万ボルト)の既設送電線の張り替えが必要になった場合、この張り替え期間の最短化が要請されることから、プレハブ工法による張り替えを採用することになる。このプレハブ架線工法での各鉄塔間の緊線作業は、地上又は工場にて電線実長を計尺し、送電線の切断等を行うことになる。そのため、2つの送電線支持点間の水平距離と高低差を、予め測量により求める必要がある。このとき、送電線支持点付近に再帰性反射シートが貼られていない場合には、送電線を停電状態にして、再帰性反射シートを貼付するために作業員が鉄塔に登らなければならないことになる。   For example, when it is necessary to replace an existing transmission line with extra high voltage (for example, tens of thousands to hundreds of thousands of volts) for reasons such as aging deterioration of the transmission line, it is required to shorten this replacement period. The re-fabrication by prefabrication method will be adopted. In the prefabricated overhead wire construction method, the wire connection between the steel towers involves measuring the actual length of the wire on the ground or at the factory, and cutting the transmission line. Therefore, it is necessary to obtain the horizontal distance and the height difference between the two transmission line support points in advance by surveying. At this time, when the retroreflective sheet is not pasted near the transmission line support point, the worker must climb the steel tower to put the retroreflective sheet in a power outage state with the power line Become.

ところで、送電線を停電状態にするには、需要家に対する停電が少ない良質の電気を供給する社会的な使命のため、短期間又は短時間に限られる。また、再帰性反射シートの貼付作業は、高所での危険な作業である。   By the way, in order to make a power transmission line into a power failure state, it is limited to a short period or a short time because of a social mission of supplying high-quality electricity with few power outages to consumers. Also, the retroreflective sheeting operation is a dangerous operation at a high place.

本発明が解決しようとする課題は、再帰性反射シートを使用することなく、鉄塔に作業員が登らずに、送電線が活線状態の充電線路でも送電線支持点間の水平距離と高低差を安全かつ効率的に測量できる測量方法を提供することにある。   The problem to be solved by the present invention is that, without using a retroreflective sheet, the worker does not climb the tower, and the horizontal distance and height difference between the transmission line support points even in the charging line where the transmission line is live It is to provide a surveying method capable of surveying safely and efficiently.

上記課題を解決するために本発明では、測量対象点に指向性及び収束性を有する電磁波ビームを照射してその反射波を受波して、測量対象点までの距離と、電磁波ビームの鉛直角と、水平な基準線と電磁波ビームとのなす水平角を計測する測距儀を用いて2つの送電線支持点の座標を測量により求める。すなわち、本発明の鉄塔の送電線支持点間の測量方法は、まず、第1の鉄塔の第1の送電線支持点が視通できる地上に第1の観測点を定め、第1の観測点に設置した測距儀から電磁波ビームを第1の送電線支持点に照射して第1の送電線支持点の座標を測量により求める。次に、第2の鉄塔の第2の送電線支持点が視通できる地上に第2の観測点を定め、第1の観測点を基準として第2の観測点の座標を測量により求める。その後、第2の観測点に設置した測距儀から電磁波ビームを第2の送電線支持点に照射して第2の送電線支持点の座標を測量により求める。第1の送電線支持点の座標と第2の送電線支持点の座標から、それらの送電線支持点間の水平距離と高低差を幾何学計算により求める。このとき、送電線支持点は、送電線を支持する碍子が取り付けられる鉄塔の支持アームの下面又は碍子を支持アームに取り付ける固定金具の下面であることを特徴とする。   In order to solve the above problems, the present invention irradiates the survey target point with an electromagnetic wave beam having directivity and convergence and receives the reflected wave, and determines the distance to the survey target point and the vertical angle of the electromagnetic beam. The coordinates of the two power transmission line support points are obtained by surveying using a distance measuring instrument that measures the horizontal angle formed by the horizontal reference line and the electromagnetic wave beam. That is, according to the surveying method between the transmission line support points of the steel tower of the present invention, first, the first observation point is determined on the ground where the first transmission line support point of the first tower can be seen, and the first observation point is determined. The first power transmission line support point is irradiated with an electromagnetic wave beam from a range finder installed in the first position, and the coordinates of the first power transmission line support point are obtained by surveying. Next, a second observation point is determined on the ground where the second transmission line support point of the second tower can be seen, and the coordinates of the second observation point are obtained by surveying with the first observation point as a reference. Thereafter, the second power transmission line support point is irradiated with an electromagnetic wave beam from a rangefinder installed at the second observation point, and the coordinates of the second power transmission line support point are obtained by surveying. From the coordinates of the first power transmission line support point and the coordinates of the second power transmission line support point, the horizontal distance and height difference between those power transmission line support points are obtained by geometric calculation. At this time, the transmission line support point is characterized in that it is the lower surface of the support arm of the steel tower to which the insulator for supporting the transmission line is attached or the lower surface of the fixing bracket for attaching the insulator to the support arm.

すなわち、指向性及び収束性を有する電磁波ビームは、波長が短く、位相のそろった電磁波である。また、支持アーム下面又は固定金具の下面は、一般に塗装膜又は亜鉛皮膜等が施され、それらの膜表面は細かな凹凸があることから、照射された極超短長の電磁波ビームが凹凸した面により乱反射する。その結果、反射点から計測に十分な強度の電磁波ビームが反射されるから、再帰性反射シートを用いることなく、送電線支持点位置を測量できる。したがって、作業員が鉄塔に登って送電線支持点付近に再帰性反射シートを貼付する必要がないので、送電線が活線状態の充電線路であっても停電せずに、安全かつ効率的に送電線支持点間の水平距離と高低差を測量することができる。   That is, an electromagnetic wave beam having directivity and convergence is an electromagnetic wave having a short wavelength and a uniform phase. Also, the lower surface of the support arm or the lower surface of the fixing bracket is generally provided with a coating film or zinc film, and the surface of the film has fine irregularities, so that the surface of the irradiated ultra-short electromagnetic wave beam is irregular. Diffuse reflection. As a result, since an electromagnetic wave beam having a sufficient intensity for measurement is reflected from the reflection point, the position of the transmission line support point can be measured without using a retroreflective sheet. Therefore, since it is not necessary for workers to climb the steel tower and attach a retroreflective sheet near the transmission line support point, even if the transmission line is a live charging line, it is safe and efficient without a power failure. The horizontal distance and elevation difference between transmission line support points can be measured.

この場合において、測量対象の送電線支持点は、支持アームの下面に固定される金属板、金属板を支持アームの下面に固定するボルト若しくはナット、又は、金属板に碍子の連結金具を取り付けるボルト若しくはナットなどの固定金具の下面とすることができる。これらの固定金具は、前述した固定金具と同様に、照射された極超短長の電磁波ビームがこれらの表面の凹凸により乱反射して計測に十分な強度の反射波が測距儀に入射する。   In this case, the transmission line support point to be surveyed is a metal plate that is fixed to the lower surface of the support arm, a bolt or nut that fixes the metal plate to the lower surface of the support arm, or a bolt that attaches an insulator coupling to the metal plate. Alternatively, it can be the lower surface of a fixture such as a nut. In these fixtures, similarly to the fixture described above, the irradiated ultra-short electromagnetic wave beam is irregularly reflected by the irregularities on the surface, and a reflected wave having sufficient intensity for measurement is incident on the rangefinder.

また、送電線支持点は、金属板又は連結金具の下面と下向きのボルトの頭頂部側面若しくは下向きのナットの側面、又は下向きのボルトのネジ部とこれに螺合するナットにより形成される隅部に設定することができる。これによれば、測距儀が受波する反射波が十分でない場合に、隅部に形成された複数の面で複雑に乱反射する反射波は、照射した電磁波ビームと平行に測距儀に向かう成分が多くなるため、反射波の強度を高めることができる。   Also, the transmission line support point is a corner formed by the lower surface of the metal plate or the coupling metal and the side surface of the top of the downward bolt or the side surface of the downward nut, or the screw portion of the downward bolt and the nut screwed to this. Can be set to According to this, when the reflected wave received by the rangefinder is not sufficient, the reflected wave that is diffusely reflected in a complex manner on the plurality of surfaces formed at the corners is directed to the rangefinder in parallel with the irradiated electromagnetic wave beam. Since the number of components increases, the intensity of the reflected wave can be increased.

支持アームの下面又は、金属板若しくは連結金具の下面に取り付けられている下向きのボルト頭頂部を送電線支持点に設定すると、通常、支持アーム下面又は、金属板若しくは連結金具の下面は、支持アームの下方から見える位置にあり、鉄塔直近から見上げて観測でき、また、支持アーム下方の鉄塔敷地付近は、保安のため管理されており、場所を確保しやすく、さらに、樹木等なども無いため視通障害も無く、観測点の設置場所とすることができる。なお、一つの金属板を複数のボルト若しくはナットで支持アームに固定されている場合には、選定したボルト若しくはナットを送電線支持点として設定することができる。   If the bottom of the support arm or the downward bolt head attached to the bottom surface of the metal plate or connecting bracket is set as the transmission line support point, the bottom surface of the support arm or the bottom surface of the metal plate or connecting bracket is usually the support arm. It can be seen from the bottom of the tower, and it can be observed from the immediate vicinity of the tower, and the vicinity of the tower tower below the support arm is managed for security, it is easy to secure the place, and there are no trees etc. There is no traffic obstruction and it can be used as an installation site for observation points. When one metal plate is fixed to the support arm with a plurality of bolts or nuts, the selected bolt or nut can be set as a transmission line support point.

また、送電線支持点は、支持アームの下面、金属板、金属板を支持アームの下面に固定するボルト若しくはナット、又は、金属板に碍子の連結金具を取り付けるボルト若しくはナットに限られるものではなく、碍子を支持アームに取り付ける位置が予め設計図等で定められているから、碍子を支持アームに取り付ける固定金具の特定の位置を送電線支持点として測量することができる。   Also, the power transmission line support point is not limited to the lower surface of the support arm, the metal plate, the bolt or nut that fixes the metal plate to the lower surface of the support arm, or the bolt or nut that attaches the metal fitting to the metal plate. Since the position at which the insulator is attached to the support arm is determined in advance by a design drawing or the like, the specific position of the fixing bracket for attaching the insulator to the support arm can be measured as the transmission line support point.

また、観測点は、一つの鉄塔に複数の送電線支持点がある場合に、それらすべての送電線支持点を視通できる位置に定めることが好ましい。これにより、一つの観測点から、一つの鉄塔にある全ての送電線支持点の座標を測量により求めることができ、作業員や測距儀の移動回数が減少するため、作業効率を高めることができる。   In addition, when there are a plurality of transmission line support points on a single tower, the observation point is preferably determined at a position where all of the transmission line support points can be seen. As a result, the coordinates of all transmission line support points on a single tower can be obtained from a single observation point by surveying, and the number of movements of workers and rangefinders can be reduced, improving work efficiency. it can.

また、鉄塔には通常、1回線当たり3本単位で送電線が装架されており、それら全ての送電線支持点の近傍に再帰性反射シートを貼りつける作業を省略できるから、送電線支持点間の測量にかかる時間を大幅に短縮させて、作業効率を高めることができる。さらに、送電線を活線状態の充電線路のままで測量ができるので、停電状態にする必要がなく、需要家に良質の電気を供給する事ができる。   In addition, transmission lines are usually mounted on the tower in units of three per line, and the work of attaching a retroreflective sheet in the vicinity of all the transmission line support points can be omitted. The time required for surveying in the meantime can be greatly shortened, and work efficiency can be increased. Furthermore, since the survey can be performed while the transmission line is in a live state, it is not necessary to make a power outage, and high quality electricity can be supplied to consumers.

なお、測量対象点までの距離と鉛直角と水平角を測距儀で計測するため測量対象点への照射に用いる指向性及び収束性を有する電磁波ビームとして、例えばレーザー光を用いることができる。   For example, a laser beam can be used as an electromagnetic wave beam having directivity and convergence used for irradiation to the survey target point in order to measure the distance to the survey target point, the vertical angle, and the horizontal angle with the rangefinder.

本発明によれば、再帰性反射シートを使用することなく、鉄塔に作業員が登らずに、送電線が活線状態の充電線路でも送電線支持点間の水平距離と高低差を安全かつ効率的に測量することができる。   According to the present invention, without using a retroreflective sheet, the horizontal distance and height difference between transmission line support points can be safely and efficiently reduced even if a transmission line is in a live line state without an operator climbing on a steel tower. Can be surveyed.

本発明の一実施形態である測量方法の説明図である。It is explanatory drawing of the surveying method which is one Embodiment of this invention. 本発明の一実施形態である耐張碍子連を取り付けた鉄塔の支持アームの先端部の側面図(a)と下面図(b)である。It is the side view (a) and bottom view (b) of the front-end | tip part of the support arm of the steel tower which attached the tension insulator series which is one Embodiment of this invention. 本発明の一実施形態である懸垂碍子連を取り付けた鉄塔の支持アームの先端部の正面図(a)、側面図(b)、下面図(c)である。It is the front view (a) of the front-end | tip part of the support arm of the steel tower which attached the suspension insulator series which is one Embodiment of this invention, a side view (b), and a bottom view (c). 本発明の一実施形態である測量方法を説明するXYZ座標図である。It is an XYZ coordinate diagram explaining the surveying method which is one Embodiment of this invention. 測量基準点Pと観測点Pとの水平距離と高低差を表す図面である。Is a diagram representing the horizontal distance and difference in height between the survey reference point P 0 and the observation point P 1. 観測点Pと送電線支持点Aとの水平距離と高低差を表す図面である。Is a diagram representing the horizontal distance and difference in height between the observation point P 1 and the transmission line support points A. 観測点Pと観測点Pとの水平距離と高低差を表す図面である。It is a diagram representing the horizontal distance and difference in height between the observation point P 1 and the observation point P 2. 観測点Pと送電線支持点Bとの水平距離と高低差を表す図面である。It is a diagram representing the horizontal distance and difference in height between the observation point P 2 and the power line support point B.

以下、本発明の鉄塔の送電線支持点間の測量方法を、実施形態に基づいて説明する。
(実施形態1)
送電設備は、広域にわたって設けられた水力発電所、沿岸部の火力発電所及び原子力発電所などを結んで、発電された電力を需要家へ供給するものであり、平野部及び山間部等に計画された送電ルートに沿って設けられる。しかし、送電線支持点間の測量は、隣り合う2つの鉄塔間ごとに行われることから、図1に示す2つの鉄塔1と鉄塔2の送電線支持点間の測量を例に、送電設備を説明する。図1に示すように、鉄塔1には、上部の両側に腕のように水平方向へ突き出された支持アーム3、4、5が、上下方向にそれぞれ間隔をあけて設けられている。同様に、鉄塔2の上部にも、支持アーム6、7、8が設けられている。
Hereinafter, the surveying method between the transmission line support points of the steel tower of the present invention will be described based on the embodiments.
(Embodiment 1)
The power transmission facilities connect hydropower stations, coastal thermal power stations, nuclear power stations, etc. over a wide area to supply the generated power to customers. Planned for plains and mountainous areas Provided along the transmitted power transmission route. However, since surveying between transmission line support points is performed between two adjacent steel towers, surveying between the transmission line support points of the two steel towers 1 and 2 shown in FIG. explain. As shown in FIG. 1, the tower 1 is provided with support arms 3, 4, and 5 that protrude in the horizontal direction like arms on both sides of the upper portion, with an interval in the vertical direction. Similarly, support arms 6, 7, and 8 are also provided on the upper portion of the steel tower 2.

支持アーム3の一方の先端部には耐張碍子連9が取り付けられ、支持アーム6の一方の先端部には懸垂碍子連10が取り付けられている。それぞれの碍子連には送電線11が支持されている。同様に、支持アーム3、6の他方の先端部及び他の支持アーム4、5、7、8のそれぞれの両端部にも、図示されていない送電線が、耐張碍子連12、13、及び懸垂碍子連14、15を介して支持されている。ここで、耐張碍子連9は、支持アーム3の一方の先端部に2つ取り付けられ、ジャンパー線16で互いに接続されている。   A tension insulator series 9 is attached to one end of the support arm 3, and a suspended insulator series 10 is attached to one end of the support arm 6. A transmission line 11 is supported on each insulator series. Similarly, power transmission lines (not shown) are connected to the other end portions of the support arms 3 and 6 and the other end portions of the other support arms 4, 5, 7, and 8. It is supported via the suspension insulators 14 and 15. Here, two tension insulators 9 are attached to one end of the support arm 3 and are connected to each other by jumper wires 16.

送電線11が耐張碍子連9を介して支持アーム3に支持されている構成を、支持アーム3、耐張碍子連9、送電線11を例にして、図2を用いて説明する。図2(a)は支持アーム3の先端部を拡大して示した側面図であり、同図(b)は支持アーム3の先端部の下面図である。支持アーム3の先端部20の下面に耐張碍子用腕金プレート23が取付ボルト21とナット22で固定されている。耐張碍子用腕金プレート23には、耐張碍子用取付ボルト24とナット25でU字型連結金具26が取り付けられ、U字型連結金具26に係合されたU字型連結金具27が連結されている。U字型連結金具27には、耐張碍子連連結金具28が接続金具29で接続されている。耐張碍子連連結金具28に耐張碍子連9の一端の端部金具30が接続金具31で接続されている。   A configuration in which the power transmission line 11 is supported by the support arm 3 via the tension insulators 9 will be described with reference to FIG. 2 using the support arm 3, the tension insulators 9, and the power transmission line 11 as an example. FIG. 2A is an enlarged side view of the distal end portion of the support arm 3, and FIG. 2B is a bottom view of the distal end portion of the support arm 3. An arm metal plate 23 for a tension insulator is fixed to the lower surface of the distal end portion 20 of the support arm 3 with a mounting bolt 21 and a nut 22. A U-shaped connecting bracket 26 is attached to the tension lever arm plate 23 with a tension insulator mounting bolt 24 and a nut 25, and a U-shaped connecting bracket 27 engaged with the U-shaped connecting bracket 26 is provided. It is connected. The U-shaped connecting bracket 27 is connected with a tension insulator continuous connecting bracket 28 by a connecting bracket 29. An end fitting 30 at one end of the tension insulator series 9 is connected to the tension insulator series connection fitting 28 by a connection fitting 31.

耐張碍子連9の他端の端部金具41には、耐張碍子連連結金具42が接続金具43で接続され、耐張碍子連連結金具42に耐張クランプ44が接続金具45で接続されている。耐張クランプ44は、略L字形に形成され、略L字型の角部46が耐張碍子連連結金具42に連結されている。略L字型の長腕部47は、送電線11を挟み込み、圧縮法により送電線11を把持している。略L字型の短腕部48は、ジャンパー線16の一端を圧縮法により把持し、ジャンパー線16の他端は、図示していないが、耐張碍子用腕金プレート23に連結されているもう一方の耐張碍子連9に接続されている耐張クランプ44の略L字型の短腕部48に把持されている。   The end insulator 41 of the other end of the tension insulator series 9 is connected to a tension insulator link connecting bracket 42 by a connection bracket 43, and the tension clamp 44 is connected to the tension insulator link connecting bracket 42 by a connection bracket 45. ing. The tension clamp 44 is formed in a substantially L shape, and a substantially L-shaped corner portion 46 is connected to the tension insulator continuous connection fitting 42. The substantially L-shaped long arm portion 47 sandwiches the power transmission line 11 and holds the power transmission line 11 by a compression method. The substantially L-shaped short arm portion 48 holds one end of the jumper wire 16 by a compression method, and the other end of the jumper wire 16 is connected to the armature plate 23 for a tension insulator, not shown. It is gripped by a substantially L-shaped short arm portion 48 of a tension clamp 44 connected to the other tension insulator series 9.

送電線11が懸垂碍子連10を介して支持アームに支持されている構成を、支持アーム6、懸垂碍子連10、送電線11を例にして、図3を用いて説明する。図3(a)と(b)は、それぞれ支持アーム6の先端部を拡大して示した正面図(懸垂碍子連10の上部)と側面図(懸垂碍子連10の下部)であり、同図(c)は、支持アーム6の先端部51の下面図である。支持アーム6の先端部51の下面に懸垂碍子用腕金プレート54が取付ボルト52とナット53で固定されている。懸垂碍子用腕金プレート54は、図3(c)に示すように、複数の取付ボルト52とナット53で支持アーム6の先端部51に固定されている。懸垂碍子用腕金プレート54の下面には、U字型連結金具55が溶接して固定され、U字型連結金具55に係合されたU字型連結金具56が連結されている。U字型連結金具56には、懸垂碍子連連結金具57が接続金具58で接続され、懸垂碍子連連結金具57に懸垂碍子連10の上端の端部金具59が接続金具60で接続されている。   A configuration in which the power transmission line 11 is supported by the support arm via the suspended insulator series 10 will be described using the support arm 6, the suspended insulator series 10, and the power transmission line 11 as an example with reference to FIG. 3 (a) and 3 (b) are respectively a front view (upper part of the suspended insulator series 10) and a side view (lower part of the suspended insulator series 10) showing an enlarged tip of the support arm 6. FIG. 4C is a bottom view of the distal end portion 51 of the support arm 6. A suspension lever arm metal plate 54 is fixed to the lower surface of the distal end portion 51 of the support arm 6 by mounting bolts 52 and nuts 53. As shown in FIG. 3C, the suspension lever arm plate 54 is fixed to the distal end portion 51 of the support arm 6 with a plurality of mounting bolts 52 and nuts 53. A U-shaped connecting metal 55 is fixed by welding to the lower surface of the suspension lever arm plate 54, and a U-shaped connecting metal 56 engaged with the U-shaped connecting metal 55 is connected. The U-shaped connecting bracket 56 is connected to a suspended insulator series connecting bracket 57 by a connection fitting 58, and the end fitting 59 of the upper end of the suspended insulator series 10 is connected to the hanging insulator series connecting bracket 57 by a connection fitting 60. .

懸垂碍子連10の下端の端部金具71には、懸垂碍子連連結金具72が接続金具73で接続され、懸垂碍子連連結金具72に懸垂クランプ74が接続金具75で接続されている。懸垂クランプ74は、略逆T字形に形成され、T字型の脚部76の端部が懸垂碍子連連結金具72に連結されている。T字型の腕部77は、送電線11を挟み込み、送電線11を把持している。   A suspended insulator continuous connection fitting 72 is connected to the end fitting 71 at the lower end of the suspended insulator series 10 by a connection fitting 73, and a suspension clamp 74 is connected to the suspension insulator continuous connection fitting 72 by a connection fitting 75. The suspension clamp 74 is formed in a substantially inverted T shape, and the end of the T-shaped leg portion 76 is connected to the suspension insulator continuous connection fitting 72. The T-shaped arm portion 77 sandwiches the power transmission line 11 and holds the power transmission line 11.

ここで、鉄塔1、2間に送電線11を架け渡す手順を説明する。送電線11は、地上又は工場にて、所定の張力に応じた弛み等を考慮した電線実長を計尺し、耐張碍子連9を取り付ける位置においては切断し、懸垂碍子連10を取り付ける位置においては、懸垂クランプ74で把持する位置にマーキングし、送電線11の両端に耐張クランプ44が圧縮法により装着される。マーキングされて、両端に耐張クランプ44が装着された送電線11は、鉄塔1、2間に延線され、マーキングした位置において懸垂クランプ74で把持され懸垂碍子連10を介して支持アーム6に支持される。耐張クランプ44は、耐張碍子連9を介して支持アーム3に支持され、送電線11が鉄塔1、2間に緊線される。   Here, a procedure for bridging the transmission line 11 between the steel towers 1 and 2 will be described. The power transmission line 11 measures the actual length of the electric wire in consideration of slack according to a predetermined tension on the ground or in a factory, cuts at the position where the tension insulators 9 are attached, and attaches the suspension insulators 10. In FIG. 2, the positions to be held by the suspension clamp 74 are marked, and the tension clamps 44 are attached to both ends of the transmission line 11 by the compression method. The transmission line 11 that is marked and has tension clamps 44 attached to both ends is extended between the towers 1 and 2, is gripped by the suspension clamp 74 at the marked position, and is attached to the support arm 6 via the suspension insulator 10. Supported. The tension clamp 44 is supported by the support arm 3 via the tension insulator series 9, and the power transmission line 11 is connected between the steel towers 1 and 2.

次に、本発明の特徴である送電線支持点間の測量方法の一実施形態について、説明する。鉄塔1、2の間に架け渡される送電線11の電線実長を決めて、送電線11の懸垂クランプ74を装着する位置のマーキングと送電線11の端を切断し耐張クランプ44を装着し圧縮する作業を地上又は工場で行うために、2つの送電線支持点A、B間の水平距離と高低差を測量により求める。本実施形態では、送電線支持点Aは、下向きの耐張碍子用取付ボルト24の頭頂部に設定し、送電線支持点Bは、下向きの懸垂碍子用腕金プレート取付ボルト52の頭頂部に設定する。これらの送電線支持点A、Bをピンポイントで測量する。ただし、送電線支持点A、Bは、これらに限られるものではなく、支持アーム3、6の下面、又は、腕金プレート23、54などの固定金具の下面に設定することもできる。ところで、送電線支持点Aに設定する耐張碍子用取付ボルト24の頭頂部から耐張クランプ44までと、送電線支持点Bに設定する懸垂碍子用腕金プレート取付ボルト52の頭頂部から懸垂クランプ74までのそれぞれの位置関係の寸法は、予め設計図等で定められている。したがって、対応する2つの送電線支持点A、B間の水平距離と高低差を測量により求めれば、鉄塔1、2の間に架け渡される送電線11の電線実長を決めることができる。   Next, an embodiment of a surveying method between transmission line support points, which is a feature of the present invention, will be described. The actual wire length of the transmission line 11 spanned between the steel towers 1 and 2 is determined, the marking of the position where the suspension clamp 74 of the transmission line 11 is attached and the end of the transmission line 11 are cut and the tension clamp 44 is attached. In order to perform the compression work on the ground or in a factory, the horizontal distance and the height difference between the two transmission line support points A and B are obtained by surveying. In this embodiment, the transmission line support point A is set at the top of the downward tension insulator mounting bolt 24, and the transmission line support point B is at the top of the downward suspension arm plate mounting bolt 52. Set. These power transmission line support points A and B are measured pinpointly. However, the power transmission line support points A and B are not limited to these, and can be set on the lower surfaces of the support arms 3 and 6 or the lower surfaces of the fixtures such as the armature plates 23 and 54. By the way, from the top of the tension insulator mounting bolt 24 set to the transmission line support point A to the tension clamp 44 and from the top of the suspension lever arm plate mounting bolt 52 to be set to the transmission line support point B. The dimension of each positional relationship up to the clamp 74 is determined in advance by a design drawing or the like. Therefore, if the horizontal distance and height difference between two corresponding transmission line support points A and B are obtained by surveying, the actual wire length of the transmission line 11 spanned between the steel towers 1 and 2 can be determined.

以下、図1〜図8を用いて、詳しく説明する。図1のレーザー測距儀81は、水平軸と鉛直軸に全周回転する倍率の高い望遠鏡と気泡管を備え、地面に対して水平にする整準台により三脚82の上部に取り付けられている公知のものを適用することができる。望遠鏡には、パルスレーザー光を照射する送信器部と、反射光を受光する受信器部が併設されており、望遠鏡で測量対象点を視準したときの鉛直軸に対する角度(鉛直角)と、基準線に対する時計回りの水平回転角(水平角)がおのおの電子的に計測できるようになっている。気泡管は、レーザー測距儀81を観測点に据え付けて水平にする整準のため使用するものである。レーザー測距儀81は、パルスレーザー光を測量対象点に照射して、測量対象点から反射してくるパルスレーザー光の往復時間等から測量対象点までの距離を計測するようになっている。なお、レーザー光は、指向性及び収束性を有する電磁波ビームで、その波長は一般に、180nmから1mmである。ただし、指向性及び収束性を有し、波長が短く、位相のそろった電磁波ビームであれば波長域はこれに限られない。   Hereinafter, it demonstrates in detail using FIGS. 1-8. The laser range finder 81 of FIG. 1 includes a high-magnification telescope that rotates around the horizontal axis and the vertical axis and a bubble tube, and is attached to the top of the tripod 82 by a leveling table that is level with respect to the ground. A well-known thing can be applied. The telescope is equipped with a transmitter unit that emits pulsed laser light and a receiver unit that receives reflected light, and the angle (vertical angle) with respect to the vertical axis when the survey target point is collimated with the telescope, The clockwise horizontal rotation angle (horizontal angle) with respect to the reference line can be measured electronically. The bubble tube is used for leveling by setting the laser range finder 81 at the observation point and leveling it. The laser range finder 81 irradiates a measurement target point with pulse laser light, and measures the distance to the measurement target point from the round trip time of the pulse laser light reflected from the measurement target point. The laser beam is an electromagnetic beam having directivity and convergence, and its wavelength is generally 180 nm to 1 mm. However, the wavelength range is not limited to this as long as the electromagnetic wave beam has directivity and convergence, a short wavelength, and a uniform phase.

このように構成されるレーザー測距儀81を用いて、図4の送電線支持点A(Xa、Ya、Za)とBの座標(Xb、Yb、Zb)をそれぞれ測量により求めて、送電線支持点A、B間の水平距離Labと高低差Habを幾何学計算により求める。図4は、図1における観測点と送電線支持点との水平距離及び水平角等の位置関係を示したXYZ座標図である。まず、鉄塔1付近に観測点Pを定め、予め定めた測量基準点P(X、Y、Z)を基準として、観測点Pの座標(X、Y、Z)を測量により求める。次いで、観測点Pを基準として、鉄塔1の送電線支持点Aの座標(Xa、Ya、Za)を測量により求める。次に、鉄塔2付近に観測点Pを定め、観測点Pを基準として観測点Pの座標(X、Y、Z)を測量により求める。次いで、観測点Pを基準として、鉄塔2の送電線支持点Bの座標(Xb、Yb、Zb)を測量により求める。 Using the laser range finder 81 configured as described above, the transmission line support point A (Xa, Ya, Za) and the coordinates (Xb, Yb, Zb) of B in FIG. The horizontal distance Lab and the height difference Hab between the support points A and B are obtained by geometric calculation. FIG. 4 is an XYZ coordinate diagram showing a positional relationship such as a horizontal distance and a horizontal angle between the observation point and the transmission line support point in FIG. First, define the observation point P 1 in the vicinity of tower 1, on the basis of the predetermined surveying reference point P 0 (X 0, Y 0 , Z 0), the coordinates of the observation point P 1 (X 1, Y 1, Z 1 ) By surveying. Then, based on the observation point P 1, obtains the coordinates of the transmission line support points A of the tower 1 (Xa, Ya, Za) of the survey. Next, an observation point P 2 is determined in the vicinity of the tower 2, and the coordinates (X 2 , Y 2 , Z 2 ) of the observation point P 2 are obtained by surveying using the observation point P 1 as a reference. Then, based on the observation point P 2, we obtain the coordinates of the transmission line supporting point B of the steel tower 2 (Xb, Yb, Zb) of the survey.

まず、北方向をX軸の正方向、東方向をY軸の正方向とし、XY平面に対し鉛直上向きをZ軸の正方向として、XYZ座標軸を設定する。測量基準点Pは、測量基準点Pと観測点Pが互いに見通すことができる点とし、XY座標が既知の三角点に定める。ただし、測量基準点Pは、三角点に限らず測量上の便宜を考慮して任意に定めることができる。また、観測点Pと観測点Pは、互いに見通すことができ、かつ、Pにおいては送電線支持点Aを、また、PにおいてはBを見通すことができるように、それぞれ鉄塔1、2直近の地上に定める。また、本実施形態において、レーザー測距儀81を測量基準点P、観測点P、又は、観測点Pに水平に整準したとき、望遠鏡の水平面の回転軸と鉛直面の回転軸との交点の位置を測距儀視準点R、R、Rとして説明する。 First, the XYZ coordinate axes are set with the north direction as the positive direction of the X-axis, the east direction as the positive direction of the Y-axis, and the vertically upward direction with respect to the XY plane as the positive direction of the Z-axis. The survey reference point P 0 is a point at which the survey reference point P 0 and the observation point P 1 can see each other, and the XY coordinates are determined as known triangle points. However, the survey reference point P 0 is not limited to the triangular point and can be arbitrarily determined in consideration of the convenience of surveying. Further, the observation point P 1 and the observation point P 2 can be seen from each other, and the transmission line support point A can be seen at P 1 , and B can be seen at P 2 . 2. Determined on the nearest ground. In this embodiment, when the laser rangefinder 81 is leveled horizontally to the survey reference point P 0 , the observation point P 1 , or the observation point P 2 , the horizontal axis and the vertical axis of rotation of the telescope The position of the intersection with the distance measuring sight collimation points R 0 , R 1 and R 2 will be described.

次に、観測点Pの座標(X、Y、Z)を求めるために、測量基準点Pにレーザー測距儀81を設置し、観測点Pの位置に、例えば、レーザー測距儀81の測距儀視準点Rから視準できる、一定の高さを有する測量ターゲットQを立てる。測量基準点Pに設置したレーザー測距儀81で、測量ターゲットQを視準して、測距儀視準点Rと測量ターゲットQとの斜距離D、望遠鏡の鉛直角φと水平角αを測量する。水平角αは、望遠鏡をX軸に対し、時計回りに回転させて測量ターゲットQを視準したときの水平回転角である。 Next, in order to determine the coordinate observation point P 1 (X 1, Y 1 , Z 1), established the laser rangefinder 81 to the surveying reference points P 0, the position of the observation point P 1, for example, a laser A surveying target Q 1 having a certain height that can be collimated from the distance measuring collimation point R 0 of the distance measuring instrument 81 is set up. Laser rangefinder 81 installed in surveying reference point P 0, and collimate the surveying target Q 1, slope distance D 0 between the rangefinder collimating points R 0 and surveying target Q 1, a vertical angle of the telescope φ Measure 0 and horizontal angle α 0 . Horizontal angle alpha 0, compared X axis telescope, a horizontal rotation angle when the collimating the surveying target Q 1 is rotated clockwise.

図5のように、測量基準点Pと観測点Pとの水平距離L、及び、測量基準点Pと観測点Pとの高低差Hは、式(1)により表せる。式(1)において、rは、測量基準点Pと測距儀視準点Rとの高さの差で、hは、観測点Pと測量ターゲットQとの高さの差である。

Figure 2013019699
As shown in FIG. 5, the horizontal distance L 0, and the height difference H 1 between the surveying reference points P 0 and the observation point P 1 of the surveying reference points P 0 and the observation point P 1 is expressed by Equation (1). In equation (1), r 0 is the difference in height between the survey reference point P 0 and the distance measuring collimation point R 0, and h 1 is the height of the observation point P 1 and the survey target Q 1. It is a difference.
Figure 2013019699

観測点Pの座標(X、Y、Z)は、式(2)により表せる。

Figure 2013019699
The coordinates (X 1 , Y 1 , Z 1 ) of the observation point P 1 can be expressed by Expression (2).
Figure 2013019699

観測点Pを基準として、送電線支持点Aの座標(Xa、Ya、Za)を求めるために、観測点Pに設置したレーザー測距儀81で、送電線支持点Aを視準して、観測点Pに設置したレーザー測距儀81の測距儀視準点Rと送電線支持点Aとの斜距離Da、望遠鏡の鉛直角φaと水平角θaを測量する。水平角θaは、測量基準点Pと観測点Pとを結ぶ線分を基準とし、望遠鏡を時計回りに回転させて、送電線支持点Aを視準したときの水平回転角である。 In order to obtain the coordinates (Xa, Ya, Za) of the transmission line support point A with the observation point P 1 as a reference, the transmission line support point A is collimated with the laser rangefinder 81 installed at the observation point P 1. Then, the oblique distance Da between the distance measuring collimation point R 1 of the laser distance measuring instrument 81 installed at the observation point P 1 and the transmission line support point A, the vertical angle φa and the horizontal angle θa of the telescope are measured. The horizontal angle θa is a horizontal rotation angle when the transmission line support point A is collimated by rotating the telescope clockwise with the line segment connecting the surveying reference point P 0 and the observation point P 1 as a reference.

図6のように、観測点Pと送電線支持点Aとの水平距離La、及び、観測点Pと送電線支持点Aとの高低差Haは、式(3)により表せる。式(3)において、rは、観測点Pと測距儀視準点Rとの高さの差である。

Figure 2013019699
As shown in FIG. 6, the horizontal distance La between the observation point P 1 and the transmission line support points A, and height difference Ha of the observation point P 1 and the transmission line support point A can be expressed by Equation (3). In Equation (3), r 1 is the difference in height between the observation point P 1 and the distance measuring collimation point R 1 .
Figure 2013019699

観測点Pを中心軸として、X軸に対し、時計回りに送電線支持点Aの方向まで回転させたときの水平角αaは、式(4)により表せる。

Figure 2013019699
Around axis observation point P 1, with respect to the X-axis, horizontal angle αa when rotating to the direction of the transmission line support points A clockwise, represented by formula (4).
Figure 2013019699

送電線支持点Aの座標(Xa、Ya、Za)は、式(5)により表せる。

Figure 2013019699
The coordinates (Xa, Ya, Za) of the transmission line support point A can be expressed by Expression (5).
Figure 2013019699

送電線支持点Aと同様に、鉄塔1の支持アーム3の他方の先端部の送電線支持点、及び、鉄塔1の支持アーム4、5のそれぞれの両端の送電線支持点の座標を求めることができる。   Similarly to the transmission line support point A, the coordinates of the transmission line support point at the other end of the support arm 3 of the tower 1 and the transmission line support points at both ends of the support arms 4 and 5 of the tower 1 are obtained. Can do.

次に、観測点Pを基準として、観測点Pの座標(X、Y、Z)を求めるために、測量ターゲットQと同様に、観測点Pの位置に、測量ターゲットQを立てる。観測点Pに設置したレーザー測距儀81で、測量ターゲットQを視準して、観測点Pに設置したレーザー測距儀81の測距儀視準点Rと測量ターゲットQとの斜距離D、望遠鏡の鉛直角φと水平角θを測量する。水平角θは、測量基準点Pと観測点Pとを結ぶ線分を基準とし、望遠鏡を時計回りに回転させて、測量ターゲットQを視準したときの水平角とする。 Next, in order to obtain the coordinates (X 2 , Y 2 , Z 2 ) of the observation point P 2 using the observation point P 1 as a reference, the survey target is located at the position of the observation point P 2 in the same manner as the survey target Q 1. make a Q 2. Laser rangefinder 81 installed in the observation point P 1, surveying the target Q 2 collimates, surveying the rangefinder collimating points R 1 laser rangefinders 81 installed in the observation point P 1 Target Q 2 And the oblique angle D 1 and the vertical angle φ 1 and horizontal angle θ 1 of the telescope are measured. The horizontal angle θ 1 is a horizontal angle when the survey target Q 2 is collimated by rotating the telescope clockwise with the line segment connecting the survey reference point P 0 and the observation point P 1 as a reference.

図7のように、観測点Pと観測点Pとの水平距離L1、及び、観測点Pと観測点Pとの高低差Hは、式(6)により表せる。式(6)において、rは、観測点Pと測距儀視準点Rとの高さの差で、hは、観測点Pと測量ターゲットQとの高さの差である。

Figure 2013019699
As shown in FIG. 7, the horizontal distance L 1 between the observation point P 1 and the observation point P 2, and the height difference of H 2 and the observation point P 1 and the observation point P 2 is expressed by the equation (6). In Equation (6), r 1 is the difference in height between the observation point P 1 and the distance measuring collimation point R 1, and h 2 is the difference in height between the observation point P 2 and the survey target Q 2. It is.
Figure 2013019699

観測点Pを中心軸として、X軸に対し、時計回りに測量ターゲットQの方向まで回転させたときの水平角αは、式(7)により表せる。

Figure 2013019699
The horizontal angle α 1 when rotated clockwise to the direction of the survey target Q 2 with respect to the X axis with the observation point P 1 as the central axis can be expressed by Expression (7).
Figure 2013019699

観測点Pの座標(X、Y、Z)は、式(8)により表せる。

Figure 2013019699
The coordinates (X 2 , Y 2 , Z 2 ) of the observation point P 2 can be expressed by Expression (8).
Figure 2013019699

観測点Pを基準として、送電線支持点Bの座標(Xb、Yb、Zb)を求めるために、観測点Pに設置したレーザー測距儀81で、送電線支持点Bを視準して、観測点Pに設置したレーザー測距儀81の測距儀視準点Rと送電線支持点Bとの斜距離Db、望遠鏡の鉛直角φbと水平角θbを測量する。水平角θbは、観測点Pと観測点Pとを結ぶ線分を基準とし、望遠鏡を時計回りに回転させて、送電線支持点Bを視準したときの水平角である。 In order to obtain the coordinates (Xb, Yb, Zb) of the transmission line support point B using the observation point P 2 as a reference, the transmission line support point B is collimated with the laser rangefinder 81 installed at the observation point P 2. Te, surveying the rangefinder collimating points R 2 laser rangefinders 81 installed in the observation point P 2 slope distance Db between the power line support point B, and a vertical angle φb and the horizontal angle θb of the telescope. Horizontal angle θb is the line segment connecting the observation point P 1 and the observation point P 2 as a reference, by rotating the telescope clockwise, a horizontal angle when the collimating the transmission line support point B.

図8のように、観測点Pと送電線支持点Bとの水平距離Lb、及び、観測点Pと送電線支持点Bとの高低差Hbは、式(9)により表せる。式(9)において、rは、観測点Pと測距儀視準点Rとの高さの差である。

Figure 2013019699
As shown in FIG. 8, the horizontal distance Lb between the observation point P 2 and the power line support point B, and height difference Hb between observation point P 2 and the power line support point B can be expressed by Equation (9). In equation (9), r 2 is the difference in height between the observation point P 2 and the distance measuring collimation point R 2 .
Figure 2013019699

観測点Pを中心軸として、X軸に対し、時計回りに送電線支持点Bの方向まで回転させたときの水平角αbは、式(10)により表せる。

Figure 2013019699
Around axis observation point P 2, with respect to the X-axis, horizontal angle αb when rotating clockwise until the direction of the transmission line support point B can be expressed by Equation (10).
Figure 2013019699

送電線支持点Bの座標(Xb、Yb、Zb)は、式(11)により表せる。

Figure 2013019699
The coordinates (Xb, Yb, Zb) of the transmission line support point B can be expressed by Expression (11).
Figure 2013019699

送電線支持点Bと同様に、鉄塔2の支持アーム6の他方の先端部の送電線支持点、及び、鉄塔2の支持アーム7、8のそれぞれの両端の送電線支持点の座標を求めることができる。   Similarly to the transmission line support point B, the coordinates of the transmission line support point at the other end of the support arm 6 of the tower 2 and the transmission line support points at both ends of the support arms 7 and 8 of the tower 2 are obtained. Can do.

上述の通り、式(1)から(11)を用い、測量によって、送電線支持点Aの座標(Xa、Ya、Za)と送電線支持点Bの座標(Xb、Yb、Zb)を求める。求めた送電線支持点A、Bの座標から、送電線支持点A、B間の水平距離Labを式(12)により求める。
Lab=√{(Xa−Xb)+(Ya−Yb)}・・・(12)
送電線支持点A、Bの高低差Habを式(13)により求める。
Hab=Zb−Za・・・(13)
鉄塔1と鉄塔2のその他の対応する2つの送電線支持点間の水平距離と高低差も、それぞれ同様に式(12)、(13)で求めることができる。
As described above, the coordinates (Xa, Ya, Za) of the transmission line support point A and the coordinates (Xb, Yb, Zb) of the transmission line support point B are obtained by surveying using the equations (1) to (11). The horizontal distance Lab between the transmission line support points A and B is determined from the coordinates of the determined transmission line support points A and B by the equation (12).
Lab = √ {(Xa−Xb) 2 + (Ya−Yb) 2 } (12)
The height difference Hab between the transmission line support points A and B is obtained by the equation (13).
Hab = Zb−Za (13)
Similarly, the horizontal distance and the height difference between the other two corresponding transmission line support points of the tower 1 and the tower 2 can also be obtained by equations (12) and (13), respectively.

すなわち、レーザー光は、指向性及び収束性を有し、波長が短く、位相のそろった光である。また、耐張碍子用取付ボルト24の頭頂部と懸垂碍子用腕金プレート取付ボルト52の頭頂部は、一般に塗装膜又は亜鉛皮膜等が施され、それらの膜表面は細かな凹凸があることから、照射された極超短長のレーザー光が凹凸した面により乱反射する。その結果、反射点から計測に十分な強度の反射光が反射されるから、再帰性反射シートを用いることなく、送電線支持点A、B間の水平距離と高低差を測量できる。したがって、作業員が鉄塔1、2に登って送電線支持点A、B付近に再帰性反射シートを貼付する必要がないので、送電線11が活線状態の充電線路であっても停電せずに、安全かつ効率的に送電線支持点A、B間の水平距離と高低差を測量して、幾何学計算により求めることができる。なお、送電線支持点A、Bは、支持アーム3、6の下面、又は、耐張碍子用腕金プレート23又は,懸垂碍子用腕金プレート54などの固定金具の下面とする場合も同様に、照射された極超短長のレーザー光がこれらの表面の凹凸により乱反射して、計測に十分な強度の反射光がレーザー測距儀81に入射する。   In other words, laser light is light having directivity and convergence, short wavelength, and uniform phase. Also, the top of the tension insulator mounting bolt 24 and the top of the suspension arm armature plate mounting bolt 52 are generally coated with a coating film or zinc film, and the surface of the film has fine irregularities. The irradiated ultra-short laser beam is irregularly reflected by the uneven surface. As a result, since the reflected light having a sufficient intensity for measurement is reflected from the reflection point, the horizontal distance and height difference between the transmission line support points A and B can be measured without using a retroreflective sheet. Therefore, since it is not necessary for the worker to climb up the towers 1 and 2 and attach the retroreflective sheet near the transmission line support points A and B, even if the transmission line 11 is a live charging line, no power failure occurs. In addition, the horizontal distance and height difference between the transmission line support points A and B can be measured safely and efficiently, and obtained by geometric calculation. The transmission line support points A and B are similarly used when the lower surfaces of the support arms 3 and 6 or the lower surfaces of the fixing metal fittings such as the tension lever arm plate 23 or the suspension lever arm plate 54 are used. The irradiated ultra-short laser beam is irregularly reflected by the irregularities on these surfaces, and the reflected light having a sufficient intensity for measurement is incident on the laser rangefinder 81.

また、送電線支持点A、Bは、腕金プレート23、54の下面と下向きの取付ボルト21、52の頭頂部側面若しくは下向きのナット22、53の側面や、U字型連結金具26の下面と下向きの取付ボルト24の頭頂部側面若しくは下向きのナット25の側面、又は下向きのボルト21、24、52のネジ部とこれにそれぞれ螺合するナット22、25、53により形成される隅部に設定することができる。これによれば、レーザー測距儀81が受光する反射光が十分でない場合に、隅部に形成された複数の面で複雑に乱反射する反射光は、照射したレーザー光と平行にレーザー測距儀81に向かう成分が多くなるため、反射光の強度を高めることができる。なお、本実施形態では、送電線支持点A、Bの測量にレーザー光を用いたが、これに限られず、指向性及び収束性を有する電磁波ビームを用いてもよい。   Further, the transmission line support points A and B are the lower surfaces of the armature plates 23 and 54, the side surfaces of the tops of the downward mounting bolts 21 and 52, the side surfaces of the downward nuts 22 and 53, and the lower surface of the U-shaped connecting bracket 26. And at the corner formed by the nut 22, 25, 53 screwed to the screw bolt of the bolt 21, 24, 52, and the screw of the bolt 25, 24, 52, respectively. Can be set. According to this, when the reflected light received by the laser distance measuring probe 81 is not sufficient, the reflected light that is diffusely reflected in a complicated manner on the plurality of surfaces formed at the corners is parallel to the irradiated laser light. Since the component toward 81 increases, the intensity of reflected light can be increased. In this embodiment, laser light is used for surveying the transmission line support points A and B. However, the present invention is not limited to this, and an electromagnetic wave beam having directivity and convergence may be used.

支持アーム3、6の下面又は、腕金プレート23、54の下面や、耐張碍子用取付ボルト24の頭頂部と懸垂碍子用腕金プレート取付ボルト52の頭頂部を送電線支持点A、Bに設定すると、通常、送電線支持点A、Bは、支持アーム3、6の下方から良く見える位置にあり、鉄塔1、2付近から見上げて観測できるため、設置場所を確保しやすい鉄塔1、2直近に観測点P、Pを設置することができる。なお、一つの懸垂碍子用腕金プレート54を複数の懸垂碍子用腕金プレート取付ボルト52とナット53で取付けられている場合は、その内の1つのボルト52を測量対象点として選定、測量し、設計図等により取付ボルトと碍子を取付ける位置との関係より送電線支持点Bを求めることができる。その他の送電線支持点についても同様に求めることができる。 Transmission line support points A and B are provided on the lower surface of the support arms 3 and 6, the lower surface of the armature plates 23 and 54, the top of the tension insulator mounting bolt 24 and the top of the suspension armature plate mounting bolt 52. The transmission line support points A and B are usually in a position where they can be seen well from below the support arms 3 and 6 and can be observed from the vicinity of the towers 1 and 2, so that the tower 1 can easily secure the installation location. Two observation points P 1 and P 2 can be installed in the immediate vicinity. If one suspension lever arm plate 54 is attached with a plurality of suspension lever arm plate mounting bolts 52 and nuts 53, one of the bolts 52 is selected and surveyed. The transmission line support point B can be obtained from the relationship between the mounting bolt and the position at which the insulator is attached according to the design drawing or the like. It can obtain | require similarly about another transmission line support point.

観測点P、Pは、一つの鉄塔に複数の送電線支持点がある場合に、それら全ての送電線支持点を視通できる位置に定めることができる。また、鉄塔1、2には通常、1回線当たり3本単位で送電線11が装架されており、それら全ての送電線支持点の近傍に再帰性反射シートを貼りつける作業を省略できるから、送電線支持点間の測量に係る時間を大幅に短縮させて、作業効率を高めることができる。また、送電線を活線状態の充電線路のままで測量できるので、停電状態にする必要がなく、需要家に良質の電気を供給することができる。 The observation points P 1 and P 2 can be determined at positions where all of the power transmission line support points can be seen when there are a plurality of power transmission line support points on one tower. In addition, since the transmission lines 11 are usually mounted on the towers 1 and 2 in units of three per line, the work of pasting the retroreflective sheet near all the transmission line support points can be omitted. The time required for surveying between transmission line support points can be greatly shortened, and work efficiency can be improved. In addition, since the power transmission line can be surveyed with the charging line in a live line state, it is not necessary to make a power outage state, and high-quality electricity can be supplied to consumers.

本実施形態では、支持アームは、各鉄塔に3本ずつ取り付けられているが、支持アームの本数は、これに限られない。なお、鉄塔の1、2の碍子は耐張碍子、懸垂碍子どれでもよい。送電線11の電線実長を決定するため送電線支持点A、Bの座標を求める観測点P、Pの選定は、取付ボルトの頭頂部が視通できる任意の位置とすることができる。また、観測点Pの位置より、鉄塔1の全ての送電線支持点を視通できる位置が望ましいが、できない場合は2以上の観測点を設け、それぞれの位置関係を測量した座標より送電線支持点の座標を求めることができる。観測点Pについても同様に求めることができる。 In this embodiment, three support arms are attached to each steel tower, but the number of support arms is not limited to this. The steel towers 1 and 2 may be either a tension insulator or a suspended insulator. The selection of the observation points P 1 and P 2 for obtaining the coordinates of the transmission line support points A and B in order to determine the actual wire length of the transmission line 11 can be set at any position where the top of the mounting bolt can be seen. . Also, the position of the observation point P 1, all of the transmission line support points of view through it the position of the tower 1 is desired, two or more observation points If you can not provided, the transmission line from the coordinates survey their positional relationship The coordinates of the support point can be obtained. It can be obtained similarly for the observation point P 2.

さらに、観測点Pから観測点Pが視通できない場合には、鉄塔1と鉄塔2のそれぞれの鉄塔直近に観測点P1、を定め、観測点P1、の間に1又は2以上の中継点となる観測点を設けて測量を行うことができる。なお、観測点Pと観測点Pの位置関係はGPS等を利用しても測量を行なうこともできる。 Furthermore, when the observation point P 2 from the observation point P 1 can not through visual are each the tower nearest tower 1 and tower 2 defines the observation point P 1, P 2, between the observation point P 1, P 2 Surveying can be performed with one or more observation points serving as relay points. The positional relationship between the observation point P 1 and the observation point P 2 can be carried out the survey be utilized GPS or the like.

本実施形態を用いれば、活線状態の充電線路であっても、停電することなく送電線支持点間を測量できるため、新設及び既設のどちらの送電線路の場合においても、予め送電線支持点間の水平距離と高低差を測量し、送電線の電線実長を計尺決定してから鉄塔間に送電線を緊線するプレハブ架線工法を適用することができる。なお、送電線支持点の座標を求める測量の方法は、本実施形態に限られない。   If this embodiment is used, even if it is a charging line in a live line state, it is possible to survey between transmission line support points without a power outage. Therefore, in both cases of newly installed and existing transmission lines, transmission line support points are previously provided. It is possible to apply the prefabricated wire method that measures the horizontal distance and height difference between them, determines the actual length of the transmission line, and then connects the transmission line between the towers. Note that the surveying method for obtaining the coordinates of the transmission line support point is not limited to this embodiment.

(実施形態2)
次に、本発明の他の実施形態を示す。本実施形態が実施形態1と相違する点は、鉄塔1、2の支持アーム3、6の両方に、懸垂碍子連10が取り付けられるときの、送電線支持点A、Bを設定する位置にある。その他の点は、実施形態1と同一であることから、説明を省略する。
(Embodiment 2)
Next, another embodiment of the present invention will be described. This embodiment is different from the first embodiment in the position where the transmission line support points A and B are set when the suspended insulator series 10 is attached to both the support arms 3 and 6 of the towers 1 and 2. . Since other points are the same as those of the first embodiment, description thereof is omitted.

本実施形態では、2つの送電線支持点A、Bは、支持アーム3、6のそれぞれに懸垂碍子用腕金プレート54を取り付けている懸垂碍子用腕金プレート取付ボルト52の頭頂部に設定して、送電線支持点A、Bを測量する。これにより、実施形態1と同様に、送電線支持点A、Bに照射された極超短長のレーザー光が取付ボルト52の頭頂部の表面の凹凸により乱反射して、計測に十分な強度の反射光がレーザー測距儀81に入射する。その結果、反射点から計測に十分な強度の反射光が反射されるから、再帰性反射シートを用いることなく、送電線支持点A、B間の水平距離と高低差を測量できる。   In the present embodiment, the two power transmission line support points A and B are set at the top of the suspension lever arm plate mounting bolt 52 that attaches the suspension lever arm plate 54 to each of the support arms 3 and 6. Then, survey the transmission line support points A and B. As a result, as in the first embodiment, the ultrashort laser beam irradiated to the transmission line support points A and B is irregularly reflected by the irregularities on the surface of the top of the mounting bolt 52, and has sufficient intensity for measurement. The reflected light enters the laser rangefinder 81. As a result, since the reflected light having a sufficient intensity for measurement is reflected from the reflection point, the horizontal distance and height difference between the transmission line support points A and B can be measured without using a retroreflective sheet.

以上、本発明を実施形態1、2を用いて説明したが、本発明はこれらに限られない。要するに、本発明に係る送電線支持点間の測量方法は、再帰性反射シートを使用することなく、鉄塔に作業員が登らずに、送電線が活線状態の充電線路でも送電線支持点間の水平距離と高低差を安全かつ効率的にピンポイントで測量ができる。   As mentioned above, although this invention was demonstrated using Embodiment 1, 2, this invention is not limited to these. In short, the surveying method between the transmission line support points according to the present invention does not use a retroreflective sheet, the worker does not climb the steel tower, and even between the transmission line support points even when the transmission line is in a live line state. The horizontal distance and height difference can be measured safely and efficiently.

1、2 鉄塔
3〜8 支持アーム
9、12、13 耐張碍子連
10、14、15 懸垂碍子連
11 送電線
20 支持アームの先端部
21 耐張碍子用腕金プレート取付ボルト
22 ナット
23 耐張碍子用腕金プレート
24 耐張碍子用取付ボルト
25 ナット
26、27 U字型連結金具
28、42 耐張碍子連連結金具
44 耐張クランプ
51 支持アームの先端部
52 懸垂碍子用腕金プレート取付ボルト
53 ナット
54 懸垂碍子用腕金プレート
55、56 U字型連結金具
57、72 懸垂碍子連連結金具
74 懸垂クランプ
81 レーザー測距儀
A、B 送電線支持点
測量基準点
、P 観測点
0、R、R 測量視準点
1, 2 Steel tower 3-8 Support arm 9, 12, 13 Tensile insulator series
10, 14, 15 Suspended lever chain 11 Transmission line 20 Tip of support arm 21 Armature plate mounting bolt for tension lever 22 Nut
23 Armature plate for tension insulator 24 Mounting bolt for tension insulator 25 Nut 26, 27 U-shaped coupling bracket 28, 42 Tensile tension lever coupling bracket 44 Tensile clamp 51 End of support arm 52 Armrest for suspension lever Plate mounting bolt 53 Nut 54 Armature plate for suspension lever 55, 56 U-shaped connection bracket 57, 72 Suspension lever connection bracket 74 Suspension clamp 81 Laser rangefinder A, B Transmission line support point P 0 Survey reference point
P 1 and P 2 observation points R 0 , R 1 and R 2 surveying collimation points

Claims (5)

測量対象点に指向性及び収束性を有する電磁波ビームを照射してその反射波を受波して、前記測量対象点までの距離と前記電磁波ビームの鉛直角と水平角を計測する測距儀を用い、
第1の鉄塔の第1の送電線支持点が視通できる地上に第1の観測点を定め、前記第1の観測点に設置した前記測距儀から前記電磁波ビームを前記第1の送電線支持点に照射して前記第1の送電線支持点の座標を測量により求め、
第2の鉄塔の第2の送電線支持点が視通できる地上に第2の観測点を定め、前記第1の観測点を基準として前記第2の観測点の座標を測量により求め、
前記第2の観測点に設置した前記測距儀から前記電磁波ビームを前記第2の送電線支持点に照射して前記第2の送電線支持点の座標を測量により求め、
前記第1の送電線支持点の座標と前記第2の送電線支持点の座標から、それらの送電線支持点間の水平距離と高低差を求め、
前記送電線支持点は、前記送電線を支持する碍子が取り付けられる前記鉄塔の支持アームの下面又は前記碍子を前記支持アームに取り付ける固定金具の下面であることを特徴とする鉄塔の送電線支持点間の測量方法。
A distance measuring instrument that irradiates an electromagnetic beam having directivity and convergence to a survey target point, receives the reflected wave, and measures the distance to the survey target point and the vertical angle and horizontal angle of the electromagnetic beam. Use
A first observation point is defined on the ground where the first transmission line support point of the first steel tower can be seen, and the electromagnetic wave beam is transmitted from the range finder installed at the first observation point to the first transmission line. Irradiating a support point to determine the coordinates of the first transmission line support point by surveying,
Determining a second observation point on the ground through which the second transmission line support point of the second tower can be seen, and determining the coordinates of the second observation point by surveying based on the first observation point;
Irradiating the second power transmission line support point with the electromagnetic wave beam from the range finder installed at the second observation point to determine the coordinates of the second power transmission line support point by surveying,
From the coordinates of the first power transmission line support point and the coordinates of the second power transmission line support point, obtain the horizontal distance and height difference between those power transmission line support points,
The transmission line support point of the tower is a lower surface of a support arm of the tower to which an insulator for supporting the transmission line is attached or a lower surface of a fixing metal fitting to which the insulator is attached to the support arm. Survey method between.
前記送電線支持点とする前記固定金具は、前記支持アームの下面に固定される金属板を固定するボルト若しくはナット、又は、前記金属板に前記碍子の連結金具を取り付けるボルト若しくはナットであることを特徴とする請求項1に記載の鉄塔の送電線支持点間の測量方法。   The fixing bracket as the power transmission line support point is a bolt or a nut for fixing a metal plate fixed to the lower surface of the support arm, or a bolt or a nut for attaching the coupling connector of the insulator to the metal plate. The surveying method between the transmission line support points of the steel tower according to claim 1 characterized by the above-mentioned. 前記送電線支持点は、前記金属板若しくは前記連結金具の下面と前記ボルトの頭頂部側面若しくは前記ナットの側面により形成される隅部に設定することを特徴とする請求項2に記載の鉄塔の送電線支持点間の測量方法。   3. The tower according to claim 2, wherein the transmission line support point is set at a corner formed by a lower surface of the metal plate or the coupling metal and a top surface of the bolt or a side surface of the nut. Survey method between transmission line support points. 前記観測点は、一つの鉄塔に複数の前記送電線支持点がある場合に、それら全ての前記送電線支持点を視通できる位置に定められることを特徴とする請求項1乃至3のいずれか1項に記載の鉄塔の送電線支持点間の測量方法。   The said observation point is defined in the position which can see all the said power transmission line support points, when there exist several said power transmission line support points in one steel tower. A surveying method between transmission line support points of the steel tower described in item 1. 前記送電線は、活線状態の充電線路であることを特徴とする請求項1乃至4のいずれか1項に記載の鉄塔の送電線支持点間の測量方法。   The surveying method between transmission line support points of a tower according to any one of claims 1 to 4, wherein the transmission line is a live charging line.
JP2011151175A 2011-07-07 2011-07-07 Survey method between transmission line support points of steel tower Expired - Fee Related JP5736260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011151175A JP5736260B2 (en) 2011-07-07 2011-07-07 Survey method between transmission line support points of steel tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011151175A JP5736260B2 (en) 2011-07-07 2011-07-07 Survey method between transmission line support points of steel tower

Publications (2)

Publication Number Publication Date
JP2013019699A true JP2013019699A (en) 2013-01-31
JP5736260B2 JP5736260B2 (en) 2015-06-17

Family

ID=47691287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151175A Expired - Fee Related JP5736260B2 (en) 2011-07-07 2011-07-07 Survey method between transmission line support points of steel tower

Country Status (1)

Country Link
JP (1) JP5736260B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175492A (en) * 2013-03-14 2013-06-26 河南省电力公司平顶山供电公司 Power transmission line by-pass jumper length measuring device and power transmission line by-pass jumper length measuring method
CN103401183A (en) * 2013-07-25 2013-11-20 国家电网公司 Assembled-type stringing method
JP2017040560A (en) * 2015-08-20 2017-02-23 大成建設株式会社 Method and system for measuring displacement
KR101928081B1 (en) * 2016-09-23 2018-12-12 한전케이피에스 주식회사 Apparatus and method for measuring dip of transmission line
CN109443247A (en) * 2018-12-03 2019-03-08 国家电网有限公司 A kind of method and device of measurement iron tower of power transmission line rotation angle
JP6487983B1 (en) * 2017-10-03 2019-03-20 東光電気工事株式会社 Sag ground observation system, portable terminal, computer and sag ground observation method
CN110198009A (en) * 2019-05-20 2019-09-03 鼎力联合(深圳)高新技术有限公司 A kind of power grid laser foreign matter remove device
CN112525927A (en) * 2020-11-23 2021-03-19 赵�衍 Detection device and detection method for suspension insulator
CN113758465A (en) * 2021-11-08 2021-12-07 通号通信信息集团有限公司 Iron tower state detection method and system
CN113809686A (en) * 2021-11-05 2021-12-17 国家电网有限公司 Electric wire foreign matter removing device for power transmission tower in severe terrain
CN116625219A (en) * 2023-07-25 2023-08-22 北京华力方元科技有限公司 Distance monitoring method and system for insulator string of electric power iron tower

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168316A (en) * 1990-10-31 1992-06-16 Furukawa Electric Co Ltd:The Measuring method for slack of overhead wire
JPH07198384A (en) * 1993-12-28 1995-08-01 Seieishiya:Kk Surveying system between steel tower support points
JP2001165660A (en) * 1999-12-06 2001-06-22 Tohoku Electric Power Co Inc Survey target apparatus, mounting device of surveying apparatus, and iron tower surveying method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168316A (en) * 1990-10-31 1992-06-16 Furukawa Electric Co Ltd:The Measuring method for slack of overhead wire
JPH07198384A (en) * 1993-12-28 1995-08-01 Seieishiya:Kk Surveying system between steel tower support points
JP2001165660A (en) * 1999-12-06 2001-06-22 Tohoku Electric Power Co Inc Survey target apparatus, mounting device of surveying apparatus, and iron tower surveying method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175492A (en) * 2013-03-14 2013-06-26 河南省电力公司平顶山供电公司 Power transmission line by-pass jumper length measuring device and power transmission line by-pass jumper length measuring method
CN103401183A (en) * 2013-07-25 2013-11-20 国家电网公司 Assembled-type stringing method
CN103401183B (en) * 2013-07-25 2015-12-02 国家电网公司 A kind of assembly type overhead method
JP2017040560A (en) * 2015-08-20 2017-02-23 大成建設株式会社 Method and system for measuring displacement
KR101928081B1 (en) * 2016-09-23 2018-12-12 한전케이피에스 주식회사 Apparatus and method for measuring dip of transmission line
JP6487983B1 (en) * 2017-10-03 2019-03-20 東光電気工事株式会社 Sag ground observation system, portable terminal, computer and sag ground observation method
JP2019066382A (en) * 2017-10-03 2019-04-25 東光電気工事株式会社 Degree-of-sag ground observation system, portable terminal, computer and degree-of-sag ground observation method
CN109443247B (en) * 2018-12-03 2023-10-13 国家电网有限公司 Method and device for measuring rotation angle of transmission line iron tower
CN109443247A (en) * 2018-12-03 2019-03-08 国家电网有限公司 A kind of method and device of measurement iron tower of power transmission line rotation angle
CN110198009A (en) * 2019-05-20 2019-09-03 鼎力联合(深圳)高新技术有限公司 A kind of power grid laser foreign matter remove device
CN112525927A (en) * 2020-11-23 2021-03-19 赵�衍 Detection device and detection method for suspension insulator
CN113809686A (en) * 2021-11-05 2021-12-17 国家电网有限公司 Electric wire foreign matter removing device for power transmission tower in severe terrain
CN113809686B (en) * 2021-11-05 2023-10-20 国家电网有限公司 Wire foreign matter removing device for power transmission tower in dangerous terrain
CN113758465A (en) * 2021-11-08 2021-12-07 通号通信信息集团有限公司 Iron tower state detection method and system
CN116625219A (en) * 2023-07-25 2023-08-22 北京华力方元科技有限公司 Distance monitoring method and system for insulator string of electric power iron tower
CN116625219B (en) * 2023-07-25 2023-10-03 北京华力方元科技有限公司 Distance monitoring method and system for insulator string of electric power iron tower

Also Published As

Publication number Publication date
JP5736260B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5736260B2 (en) Survey method between transmission line support points of steel tower
CN105698776A (en) Two-dimensional benchmark vertical transmission device and measurement method thereof
CN102914278B (en) A kind of total powerstation of applying carries out to boats and ships axis the method that irradiation looks for middle location
WO2006011386A1 (en) Displacement measuring method, displacement measuring instrument, displacement measuring target and structure
CN104120656B (en) Method for automatically controlling bridge high pier construction perpendicularity
CN102778893B (en) Precise locating detecting method for truss girder
KR20100063236A (en) T/l dip diagnosis method
CN104457716A (en) Measurement and control method for bridge construction
RU2357205C1 (en) System for determining deformations of building structures
CN108827158A (en) A kind of Large Span Bridges king-tower deviation laser monitoring device and method
CN110319777A (en) A kind of High Precision Long-distance surveys the multiple reflections formula measuring device and method of displacement
CN107238377B (en) A kind of measurement method suitable for large underground hole speedy lofting bolthole position
KR101709679B1 (en) Equipment for leveling
CN205482963U (en) Two dimension benchmark vertical transmission device
CN210424399U (en) Positioner for radar convenient to adjust
KR20160000462U (en) Tilting Test Apparatus for shipbuilding
KR20120088974A (en) Prism-target For Rail-road
KR100949201B1 (en) Apparatus to measure gradient of iron tower foundation post and method to found iron tower foundation post using the apparatus
KR100911047B1 (en) Laser horizontality-perpendicularity equipment type trivet
CN109112936A (en) A kind of surface evenness fining rapid measurement device
KR101012399B1 (en) Laser horizontality-perpendicularity equipment
JP5769055B2 (en) Mirror adjustment jig and structural deformation detection system
CN111326861B (en) Directional antenna alignment system and method for wireless communication system of stacker-reclaimer
Miertsch New approaches in the use of laser trackers for measurements of geodetic networks
KR102225551B1 (en) Device for displaying horizontality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5736260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees