JP2013007295A - Pressure accumulation type egr system - Google Patents

Pressure accumulation type egr system Download PDF

Info

Publication number
JP2013007295A
JP2013007295A JP2011139260A JP2011139260A JP2013007295A JP 2013007295 A JP2013007295 A JP 2013007295A JP 2011139260 A JP2011139260 A JP 2011139260A JP 2011139260 A JP2011139260 A JP 2011139260A JP 2013007295 A JP2013007295 A JP 2013007295A
Authority
JP
Japan
Prior art keywords
egr
pressure
exhaust
gas
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011139260A
Other languages
Japanese (ja)
Other versions
JP5814008B2 (en
Inventor
Koichi Hamaguchi
孝一 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2011139260A priority Critical patent/JP5814008B2/en
Publication of JP2013007295A publication Critical patent/JP2013007295A/en
Application granted granted Critical
Publication of JP5814008B2 publication Critical patent/JP5814008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To achieve exhaust gas recirculation at a high EGR rate while performing supercharging by a supercharging system, and to secure the intake amount required for combustion without giving rise to an extreme increase in exhaust pressure.SOLUTION: A pressure accumulation type EGR system 17 to be applied to an engine 1 including a supercharging system comprises: an EGR port 21 dedicated to exhaust gas recirculation, provided at each cylinder 8 of the engine 1 separately from an intake port; an EGR rail 22 extended in an arrangement direction of the respective cylinders 8 of the engine 1 and connected to the EGR port 21 via an EGR valve 21v to accumulate the pressure of EGR gas 11'; an EGR line 23 extracting some of EGR gas 11 in the middle of the exhaust pipe 13 as the EGR gas 11' and recirculating it to the EGR rail 22; and an EGR pump 24 provided in the middle of the EGR line 23 and boosting the pressure of the EGR gas 11' to introduce it into the EGR rail 22.

Description

本発明は、蓄圧式EGRシステムに関するものである。   The present invention relates to an accumulator EGR system.

従来より、自動車のエンジン等では、排気側から排気ガスの一部を抜き出して吸気側へと戻し、その吸気側に戻された排気ガスでエンジン内での燃料の燃焼を抑制させて燃焼温度を下げることによりNOxの発生を低減するようにした、いわゆる排気ガス再循環(EGR:Exhaust Gas Recirculation)が行われている。   2. Description of the Related Art Conventionally, in an automobile engine or the like, a part of exhaust gas is extracted from the exhaust side and returned to the intake side, and combustion of fuel in the engine is suppressed by the exhaust gas returned to the intake side so that the combustion temperature is increased. So-called exhaust gas recirculation (EGR) is performed in which the generation of NOx is reduced by lowering.

図4は前述した排気ガス再循環を行うためのEGR装置の一例を模式的に示すもので、図中1はターボチャージャ2を過給システムとして搭載したディーゼル機関であるエンジンを示し、エアクリーナ3から導いた吸気4を吸気管5を通し前記ターボチャージャ2のコンプレッサ2aへ送り、該コンプレッサ2aで加圧された吸気4をインタークーラ6へと送って冷却し、該インタークーラ6から更に吸気マニホールド7へと吸気4を導いてエンジン1の各気筒8の吸気ポート9(図示では模式的に示しているが通常は各気筒8につき二つずつ)に吸気バルブ9vを介して分配するようにしてある。   FIG. 4 schematically shows an example of the EGR device for performing the exhaust gas recirculation described above. In FIG. 4, reference numeral 1 denotes an engine which is a diesel engine equipped with a turbocharger 2 as a supercharging system. The guided intake air 4 is sent to the compressor 2 a of the turbocharger 2 through the intake pipe 5, the intake air 4 pressurized by the compressor 2 a is sent to the intercooler 6, and the intake manifold 7 is further cooled from the intercooler 6. The intake air 4 is guided to the intake port 9 of each cylinder 8 of the engine 1 (which is schematically shown in the figure, but usually two for each cylinder 8) via an intake valve 9v. .

また、このエンジン1の各気筒8の排気ポート10(図示では模式的に示しているが通常は各気筒8につき二つずつ)から排気バルブ10vを介して排出された排気ガス11を排気マニホールド12を介して前記ターボチャージャ2のタービン2bへと送り、該タービン2bを駆動した排気ガス11を排気管13を介して車外へ排出するようにしてある。   Further, exhaust gas 11 discharged from an exhaust port 10 of each cylinder 8 of the engine 1 (shown schematically in the figure but usually two for each cylinder 8) through an exhaust valve 10v is supplied to an exhaust manifold 12. The exhaust gas 11 that is sent to the turbine 2b of the turbocharger 2 is driven through the exhaust pipe 13 and discharged to the outside of the vehicle through the exhaust pipe 13.

そして、排気マニホールド12の各気筒8の並び方向の一端部と、吸気管5のインタークーラ6より下流の中途部との間がEGRライン14により接続されており、排気マニホールド12から排気ガス11の一部を抜き出して吸気管5に導き得るようにしてある。   An end portion of the exhaust manifold 12 in the arrangement direction of the cylinders 8 and a midway portion downstream of the intercooler 6 of the intake pipe 5 are connected by an EGR line 14. A part can be extracted and guided to the intake pipe 5.

ここで、前記EGRライン14には、該EGRライン14を適宜に開閉するEGR制御弁15と、再循環されるEGRガス11’を冷却するためのEGRクーラ16とが装備され、該EGRクーラ16では、冷却水とEGRガス11’とを熱交換させることによりEGRガス11’の温度を低下し得るようになっており、この水冷したEGRガス11’のエンジン1への再循環により燃焼温度の低下を図り得るようにしてある。   Here, the EGR line 14 is equipped with an EGR control valve 15 for opening and closing the EGR line 14 as appropriate, and an EGR cooler 16 for cooling the recirculated EGR gas 11 ′. Then, the temperature of the EGR gas 11 ′ can be lowered by heat exchange between the cooling water and the EGR gas 11 ′, and the combustion temperature of the EGR gas 11 ′ can be reduced by recirculation to the engine 1. It can be reduced.

ただし、前述した如きターボチャージャ2付きのエンジン1においては、吸気側が過給されているために高負荷域等で排気側との圧力差が少なくなってしまい、高いEGR率を実現することが難しいという問題があるが、ターボチャージャ2として、タービン2b側のノズル部に角度調整可能な多数のノズルベーンを環状に備えてノズル開度を任意に変更し得るようにしたマルチベーンタイプの可変ノズルターボ(バリアブルジオメトリターボチャージャ)を採用し、必要に応じタービン2b側のノズル開度を小さく絞り込んでノズル部における排気ガス11の通過抵抗を増やし、これにより排気マニホールド12の圧力を高めて吸気側と排気側との圧力差を確保することが行われている。   However, in the engine 1 with the turbocharger 2 as described above, since the intake side is supercharged, the pressure difference from the exhaust side is reduced in a high load region or the like, and it is difficult to realize a high EGR rate. However, as the turbocharger 2, a multi-vane type variable nozzle turbo (which has an annular nozzle nozzle on the turbine 2b side that can be adjusted in angle so that the nozzle opening can be arbitrarily changed) A variable geometry turbocharger), and if necessary, the nozzle opening on the turbine 2b side is narrowed down to increase the passage resistance of the exhaust gas 11 at the nozzle, thereby increasing the pressure of the exhaust manifold 12 to increase the intake side and exhaust side. The pressure difference is secured.

ただし、タービン2b側のノズル開度を小さく絞り込んで排気マニホールド12の圧力を高める操作は、タービン2bにおける排気ガス11の旋速を上げてタービン2bの回転数を上げる操作でもあり、コンプレッサ2a側の出口圧力(過給圧)も上昇してしまうことになるが、タービン2bでの効率が悪くなることで排気マニホールド12の方がコンプレッサ2aの出口よりも圧力上昇の度合が高くなるため、比較的高い圧力領域で吸気側と排気側との圧力差が確保されて高いEGR率が実現されることになる。   However, the operation of increasing the pressure of the exhaust manifold 12 by narrowing the nozzle opening on the turbine 2b side is also an operation of increasing the rotational speed of the turbine 2b by increasing the rotational speed of the exhaust gas 11 in the turbine 2b. Although the outlet pressure (supercharging pressure) will also increase, the efficiency of the turbine 2b will deteriorate, and the exhaust manifold 12 will have a higher pressure rise than the outlet of the compressor 2a. A pressure difference between the intake side and the exhaust side is ensured in a high pressure region, and a high EGR rate is realized.

尚、排気マニホールド12から抜き出した排気ガス11の一部を吸気管5へ再循環するようにした例を開示する先行技術文献情報としては下記の特許文献1等がある。   As prior art document information that discloses an example in which a part of the exhaust gas 11 extracted from the exhaust manifold 12 is recirculated to the intake pipe 5, there is the following Patent Document 1 and the like.

特開2001−123889号公報JP 2001-123889 A

しかしながら、このように比較的高い圧力領域で吸気側と排気側との圧力差を確保して排気ガス再循環を行うと、多量のEGRガス11’を再循環することができて高いEGR率を実現できる一方、吸気4(新気)が入り難くなって燃焼に必要な吸気4が量的に不足する虞れが生じるため、必要な量の吸気4を確保し得るようEGR制御弁15の開度を絞り込んでEGRガス11’の再循環量を抑制する措置が採られているが、多量のEGRガス11’が再循環することでバランスしている排気側と吸気側との関係が、前記EGR制御弁15の開度を絞り込むことでエンジン1の排気圧が過給圧よりも大幅に高くなるような極端な状態となり、これによりエンジン1の排気抵抗が大きくなってポンピングロスが過大となり、燃費の大幅な悪化を招いてしまうという問題があった。   However, if the exhaust gas recirculation is performed while ensuring the pressure difference between the intake side and the exhaust side in a relatively high pressure region in this way, a large amount of EGR gas 11 'can be recirculated and a high EGR rate can be obtained. On the other hand, the intake 4 (fresh air) is difficult to enter, and there is a risk that the intake 4 necessary for combustion may be insufficient in quantity, so that the EGR control valve 15 can be opened so that the necessary amount of intake 4 can be secured. Although measures have been taken to reduce the recirculation amount of the EGR gas 11 ′ by narrowing the degree, the relationship between the exhaust side and the intake side balanced by recirculation of a large amount of the EGR gas 11 ′ By narrowing the opening of the EGR control valve 15, the engine 1 has an extreme state in which the exhaust pressure of the engine 1 becomes significantly higher than the supercharging pressure. As a result, the exhaust resistance of the engine 1 increases and the pumping loss becomes excessive. Significant deterioration in fuel consumption There is a problem that invited.

また、近年においては、エンジンのダウンサイジングやトルクアップを実現するために、過給システムを高圧段ターボチャージャと低圧段ターボチャージャとから成る二段式の過給システムとしたものがあるが、このような二段式の過給システムにおいては、図に示した単段式のものよりも更に圧力比が高くなるので、前述の如き運転状態で必要な量の吸気4を確保するためにEGR制御弁15の開度を絞り込んでしまうと、ポンピングロスがより一層過大となって燃費の悪化が更に顕著なものとなる虞れがあった。   In recent years, in order to realize engine downsizing and torque increase, the supercharging system is a two-stage supercharging system composed of a high-pressure turbocharger and a low-pressure turbocharger. In such a two-stage supercharging system, the pressure ratio is higher than that of the single-stage type shown in the figure, so that EGR control is performed in order to secure the necessary amount of intake air 4 in the operating state as described above. If the opening degree of the valve 15 is narrowed, there is a possibility that the pumping loss is further excessive and the fuel consumption is further deteriorated.

本発明は上述の実情に鑑みてなしたもので、過給システムにより過給を行いながらも高いEGR率での排気再循環を実現し且つ燃焼に必要な吸気の量を極端な排気圧の上昇を招くことなく確保することを目的とする。   The present invention has been made in view of the above circumstances, and realizes exhaust gas recirculation at a high EGR rate while performing supercharging by a supercharging system, and extremely increases the amount of intake air necessary for combustion. It aims to secure without incurring.

本発明は、適宜な段数のターボチャージャから成る過給システムを備えたエンジンに適用するための蓄圧式EGRシステムであって、エンジンの各気筒に吸気ポートとは別に設けられた排気再循環専用のEGRポートと、前記エンジンの各気筒の並び方向に延在して前記各EGRポートに対しEGRバルブを介して接続されたEGRガスを蓄圧するためのEGRレールと、排気通路の途中から排気ガスの一部をEGRガスとして抜き出して前記EGRレールに再循環するEGRラインと、該EGRラインの途中に装備され且つ前記EGRガスを昇圧して前記EGRレールに導入するEGRポンプとを備えたことを特徴とする蓄圧式EGRシステム、に係るものである。   The present invention is an accumulator EGR system to be applied to an engine having a supercharging system composed of a turbocharger having an appropriate number of stages, and is dedicated to exhaust gas recirculation provided in each cylinder of the engine separately from an intake port. An EGR port, an EGR rail extending in the direction in which the cylinders of the engine are arranged and connected to the EGR ports via an EGR valve, and an EGR rail for accumulating the EGR gas; An EGR line that extracts a part as EGR gas and recirculates to the EGR rail, and an EGR pump that is provided in the middle of the EGR line and that pressurizes the EGR gas and introduces the EGR gas into the EGR rail. The pressure accumulation type EGR system.

而して、このようにした場合に、排気通路の途中から排気ガスの一部をEGRガスとしてEGRラインに抜き出し、このEGRガスをEGRポンプにより昇圧してEGRレールに導入すると、該EGRレール内にEGRガスが蓄圧されるので、高負荷域等で吸気側と排気側との圧力差が少ない運転条件となっていても、吸気工程で吸気バルブと一緒にEGRポートのEGRバルブを開ければ、EGRレール内に蓄圧されたEGRガスが気筒内に開放され且つ吸気工程でのピストンの下降により無理なく引き込まれることになり、排気絞りにより排気圧を高めるような措置を採らなくても、EGRガスが吸気と共に気筒内に直接導入されて高いEGR率での排気再循環が実現されることになる。   Thus, in this case, when a part of the exhaust gas is extracted as EGR gas into the EGR line from the middle of the exhaust passage, and this EGR gas is boosted by the EGR pump and introduced into the EGR rail, EGR gas is accumulated in the engine, so even if the operating conditions have a small pressure difference between the intake side and the exhaust side in a high load range, etc., if the EGR valve of the EGR port is opened together with the intake valve in the intake process, The EGR gas accumulated in the EGR rail is released into the cylinder and is easily pulled in by the lowering of the piston in the intake process, and the EGR gas can be obtained without taking measures to increase the exhaust pressure by the exhaust throttle. Is directly introduced into the cylinder together with the intake air, thereby realizing exhaust gas recirculation at a high EGR rate.

また、既存のEGR装置では、急加速時等において、必要な吸気量を確保するためにEGR制御弁を閉じなければならなかったが、このような運転条件下でも、EGRバルブを開けてEGRガスを各気筒内に直接導入し、排気再循環を休止することなく継続することが可能となる。   In addition, in the existing EGR device, the EGR control valve had to be closed in order to secure a necessary intake amount during sudden acceleration, etc. Even under such operating conditions, the EGR valve was opened and the EGR gas Can be introduced directly into each cylinder, and exhaust gas recirculation can be continued without pausing.

更に、本発明においては、EGRラインにおけるEGRポンプの前後にEGRクーラを備えるようにしても良く、このようにすれば、前段のEGRクーラにより排気ガスが冷却されて容積が小さくなることによりEGRポンプでの圧縮効率が上がるので、該EGRポンプの駆動力を低減することが可能であり、しかも、このEGRポンプでの昇圧により温度上昇した排気ガスを後段のEGRクーラで再び冷却して容積を小さくした上でEGRレールに導入することにより各気筒へのEGRガスの充填効率が上がるので、各気筒内での燃焼悪化を招くことなく燃焼温度を低下して効果的にNOxの発生を抑制することが可能となる。   Furthermore, in the present invention, an EGR cooler may be provided before and after the EGR pump in the EGR line, and in this way, the exhaust gas is cooled by the preceding EGR cooler and the volume is reduced, thereby the EGR pump. Therefore, the driving force of the EGR pump can be reduced, and the exhaust gas whose temperature has been raised by the pressure increase by the EGR pump is cooled again by the EGR cooler at the subsequent stage to reduce the volume. In addition, the introduction efficiency of EGR gas into each cylinder is increased by introducing it into the EGR rail, so that the combustion temperature is lowered and the generation of NOx is effectively suppressed without causing deterioration of combustion in each cylinder. Is possible.

上記した本発明の蓄圧式EGRシステムによれば、下記の如き種々の優れた効果を奏し得る。   According to the above-described pressure accumulation type EGR system of the present invention, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、過給システムにより過給を行いながらも高いEGR率での排気再循環を実現し且つ燃焼に必要な吸気の量を極端な排気圧の上昇を招くことなく確保することができるので、エンジンの排気圧が過給圧よりも大幅に高くなるような極端な状態を未然に回避することができ、これによりエンジンのポンピングロスを著しく低減して燃費の大幅な改善を図ることができる。   (I) According to the invention described in claim 1 of the present invention, exhaust gas recirculation is realized at a high EGR rate while supercharging is performed by the supercharging system, and the amount of intake air required for combustion is extremely reduced. Since it can be ensured without causing an increase in atmospheric pressure, it is possible to avoid an extreme situation in which the exhaust pressure of the engine becomes significantly higher than the supercharging pressure, thereby significantly reducing the pumping loss of the engine. This can reduce the fuel consumption significantly.

(II)本発明の請求項1に記載の発明によれば、これまでの既存のEGR装置で排気再循環を休止しなければならなかったような急加速時等の運転条件下であっても、任意のタイミングでEGRガスを各気筒内に直接導入して排気再循環を継続することができるので、特定の運転条件下でNOx排出量が突発的に増加してしまうような事態を未然に防止することができる。   (II) According to the invention described in claim 1 of the present invention, even under operating conditions such as during rapid acceleration where exhaust gas recirculation had to be stopped with the existing EGR devices so far Since the EGR gas can be directly introduced into each cylinder at any timing and the exhaust gas recirculation can be continued, a situation in which the NOx emission amount suddenly increases under a specific operating condition. Can be prevented.

(III)本発明の請求項2に記載の発明によれば、前段のEGRクーラにより排気ガスを冷却して容積を小さくすることができるので、EGRポンプでの圧縮効率を上げて該EGRポンプの駆動力を低減することができ、しかも、このEGRポンプでの昇圧により温度上昇した排気ガスを後段のEGRクーラで再び冷却して容積を小さくした上でEGRレールに導入することにより各気筒へのEGRガスの充填効率を上げることができ、各気筒内での燃焼悪化を招くことなく燃焼温度を低下して効果的にNOxの発生を抑制することができる。   (III) According to the invention described in claim 2 of the present invention, the exhaust gas can be cooled by the EGR cooler in the previous stage to reduce the volume. Therefore, the compression efficiency of the EGR pump is increased and the EGR pump The driving force can be reduced, and the exhaust gas whose temperature has been raised by the pressure increase by the EGR pump is cooled again by the EGR cooler at the subsequent stage to reduce the volume, and then introduced into the EGR rail, thereby introducing each cylinder. EGR gas charging efficiency can be increased, and the combustion temperature can be lowered and the generation of NOx can be effectively suppressed without deteriorating combustion in each cylinder.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 図1の要部の詳細を示す拡大図である。It is an enlarged view which shows the detail of the principal part of FIG. EGRバルブの開弁タイミングを説明するグラフである。It is a graph explaining the valve opening timing of an EGR valve. 従来例を示す概略図である。It is the schematic which shows a prior art example.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図3は本発明を実施する形態の一例を示すもので、図4と同一の符号を付した部分は同一物を表わしている。   1 to 3 show an example of an embodiment for carrying out the present invention, and the portions denoted by the same reference numerals as those in FIG. 4 represent the same items.

図1は本発明を実施する形態の一例を示すもので、本形態例においては、前述した図4と略同様のエンジン1に後述の蓄圧式EGRシステム17を搭載した場合を例示しており、このエンジン1には、既存のEGR装置を成すEGRライン14とEGR制御弁15とEGRクーラ16とが装備されており、このような既存のEGR装置と併用して前記蓄圧式EGRシステム17が用いられるようになっている。   FIG. 1 shows an example of an embodiment for carrying out the present invention. In this embodiment, a case in which an accumulator EGR system 17 described later is mounted on the engine 1 substantially the same as that in FIG. The engine 1 is equipped with an EGR line 14, an EGR control valve 15, and an EGR cooler 16 that constitute an existing EGR device, and the pressure accumulating EGR system 17 is used in combination with such an existing EGR device. It is supposed to be.

また、ここに図示している例では、前述した図4の従来例で単段のターボチャージャ2により構成されていた過給システムを、エンジン1から送出される排気ガス11によって高圧段タービン18bを作動させ且つ高圧段コンプレッサ18aで圧縮した吸気4をエンジン1へ送給する高圧段ターボチャージャ18と、該高圧段ターボチャージャ18の高圧段タービン18bから送出される排気ガス11によって低圧段タービン19bを作動させ且つ低圧段コンプレッサ19aで圧縮した吸気4を前記高圧段コンプレッサ18aへ送給する低圧段ターボチャージャ19とにより二段式の過給システムに変更した場合を例示しており、高圧段コンプレッサ18aと低圧段コンプレッサ19aとの間にインタークーラ6を配置し且つ前記高圧段コンプレッサ18aの下流側にアフタークーラ20を新設した構造としてある。   Further, in the example shown here, the high-pressure turbine 18b is replaced by the exhaust gas 11 delivered from the engine 1 in the supercharging system constituted by the single-stage turbocharger 2 in the conventional example of FIG. A high-pressure stage turbocharger 18 that feeds the intake air 4 that is operated and compressed by the high-pressure stage compressor 18 a to the engine 1, and a low-pressure stage turbine 19 b by the exhaust gas 11 delivered from the high-pressure stage turbine 18 b of the high-pressure stage turbocharger 18. The case where the intake air 4 that is operated and compressed by the low-pressure compressor 19a is changed to a two-stage supercharging system by the low-pressure turbocharger 19 that supplies the high-pressure compressor 18a to the high-pressure compressor 18a is illustrated. And an intercooler 6 between the low-pressure compressor 19a and the high-pressure compressor There the new structure of the aftercooler 20 to the downstream side of the suppressor 18a.

そして、このような二段式の過給システムを搭載したエンジン1に既存のEGR装置と併用して用いられる本形態例の蓄圧式EGRシステム17は、エンジン1の各気筒8に吸気ポート9とは別に設けられた排気再循環専用のEGRポート21と、前記エンジン1の各気筒8の並び方向に延在して前記各EGRポート21に対しEGRバルブ21vを介して接続されたEGRガス11’を蓄圧するためのEGRレール22と、高圧段タービン18b出側の排気管13’から排気ガス11の一部をEGRガス11’として抜き出して前記EGRレール22に再循環するEGRライン23と、該EGRライン23の途中に装備され且つ前記EGRガス11’を昇圧して前記EGRレール22に導入するEGRポンプ24とを備えて構成されており、特に本形態例では、EGRライン23におけるEGRポンプ24の前後にEGRクーラ25,26を備えた構成を採用している。   An accumulator EGR system 17 according to this embodiment used in an engine 1 equipped with such a two-stage supercharging system in combination with an existing EGR device includes an intake port 9 in each cylinder 8 of the engine 1. In addition, an EGR port 21 dedicated to exhaust gas recirculation provided separately, and an EGR gas 11 ′ extending in the direction in which the cylinders 8 of the engine 1 are arranged and connected to the EGR ports 21 via an EGR valve 21v. EGR rail 22 for accumulating pressure, EGR line 23 for extracting a part of exhaust gas 11 as EGR gas 11 ′ from exhaust pipe 13 ′ on the outlet side of high-pressure turbine 18b, and recirculating it to EGR rail 22, And an EGR pump 24 that is installed in the middle of the EGR line 23 and pressurizes the EGR gas 11 ′ and introduces it into the EGR rail 22. Particularly in the present embodiment employs a configuration in which an EGR cooler 25 and 26 before and after the EGR pump 24 in EGR line 23.

ここで、図1では模式的な図示となっているが、実際には図2に拡大して示す如く、各気筒8ごとに吸気ポート9を二つずつ、EGRポート21を一つずつ設けており、排気ポート10については、設置の都合上から各気筒8ごとに一つずつしか設けられない場合は、ポート有効径を極力大きくとることで排気効率低下を防ぐようにする。   Here, although it is schematically shown in FIG. 1, actually, as shown in an enlarged view in FIG. 2, two intake ports 9 and one EGR port 21 are provided for each cylinder 8. When only one exhaust port 10 is provided for each cylinder 8 for the convenience of installation, the exhaust efficiency is prevented from decreasing by setting the effective port diameter as large as possible.

尚、吸気バルブ9v,排気バルブ10v,EGRバルブ21vの駆動は通常のカム駆動でも良いが、制御性を上げるためには、油圧や電磁力等を利用したカムレス方式で任意に開弁操作を行い得るようにすることが好ましく、特にEGRバルブ21vについては、エンジン1の定常運転、過渡運転でEGR率の精密制御を行う必要性が考えられるため、カムレス方式で任意に開弁操作を行い得るようにしておくと良い。   The intake valve 9v, the exhaust valve 10v, and the EGR valve 21v may be driven by ordinary cam drive. However, in order to improve controllability, the valve opening operation is arbitrarily performed by a camless method using hydraulic pressure or electromagnetic force. In particular, with respect to the EGR valve 21v, since it may be necessary to perform precise control of the EGR rate during steady operation and transient operation of the engine 1, the valve opening operation can be arbitrarily performed in a camless manner. It is good to keep it.

また、前記EGRレール22は、例えば、エンジン1のシリンダヘッド内に構成することが可能であり、このシリンダヘッド内のウォータージャケットでの冷却効果が十分であるならば、前記EGRポンプ24の後段のEGRクーラ26を省くことも可能である。   Further, the EGR rail 22 can be configured, for example, in the cylinder head of the engine 1. If the cooling effect by the water jacket in the cylinder head is sufficient, the EGR rail 22 is provided at the rear stage of the EGR pump 24. It is also possible to omit the EGR cooler 26.

更に、前記EGRライン23の最終端には、調圧機能を備えた逆止弁27が備えられており、EGRポンプ24によりEGRレール22に導入されたEGRガス11’が前記EGRレール22内に確実に封入されると共に、該EGRレール22内が過剰に圧力上昇しないようになっている。   Further, a check valve 27 having a pressure adjusting function is provided at the final end of the EGR line 23, and the EGR gas 11 ′ introduced into the EGR rail 22 by the EGR pump 24 is contained in the EGR rail 22. The EGR rail 22 is prevented from excessively increasing pressure while being securely sealed.

また、前記EGRポンプ24は、例えば、車両搭載のバッテリを電源とする電動機により駆動させるようにすれば良いが、エンジン1の動力をギヤトレーン等を介して導くことにより駆動させるようにしても良く、必要時に作動させて不要時には休止できるようにしておくことが好ましい。   The EGR pump 24 may be driven by, for example, an electric motor that uses a vehicle-mounted battery as a power source, but may be driven by guiding the power of the engine 1 through a gear train or the like. It is preferable to operate it when necessary and to be able to stop when it is unnecessary.

而して、高圧段タービン18b出側の排気管13’から排気ガス11の一部をEGRガス11’としてEGRライン23に抜き出し、このEGRガス11’をEGRポンプ24により昇圧してEGRレール22に導入すると、該EGRレール22内にEGRガス11’が蓄圧されるので、高負荷域等で吸気側と排気側との圧力差が少ない運転条件となった場合に、図3に一例を示す如き排気上死点(TDC)直後の吸気工程の前半で吸気バルブ9vと一緒にEGRポート21のEGRバルブ21vを開ければ、EGRレール22内に蓄圧されたEGRガス11’が気筒8内に開放され且つ吸気工程でのピストンの下降により無理なく引き込まれることになり、排気絞りにより排気圧を高めるような措置を採らなくても、EGRガス11’が吸気4と共に気筒8内に直接導入されて高いEGR率での排気再循環が実現されることになる。   Thus, a part of the exhaust gas 11 is extracted as the EGR gas 11 ′ from the exhaust pipe 13 ′ on the outlet side of the high-pressure turbine 18b to the EGR line 23, and the EGR gas 11 ′ is pressurized by the EGR pump 24 to be EGR rail 22 3, EGR gas 11 ′ is accumulated in the EGR rail 22, and therefore an example is shown in FIG. 3 when the operating condition has a small pressure difference between the intake side and the exhaust side in a high load region or the like. If the EGR valve 21v of the EGR port 21 is opened together with the intake valve 9v in the first half of the intake process immediately after the exhaust top dead center (TDC), the EGR gas 11 ′ accumulated in the EGR rail 22 is released into the cylinder 8. In addition, the EGR gas 11 ′ is sucked even if no measures are taken to increase the exhaust pressure by the exhaust throttle. 4 exhaust gas recirculation at a high EGR rate is introduced directly into the cylinder 8 is to be implemented with.

尚、吸気側と排気側との圧力差が十分に確保できる低・中負荷域等では、EGRライン14とEGR制御弁15とEGRクーラ16とから成る既存のEGR装置を利用して排気再循環を行えば良い。   In a low / medium load range where a sufficient pressure difference between the intake side and the exhaust side can be ensured, exhaust gas recirculation is performed using an existing EGR device including the EGR line 14, the EGR control valve 15, and the EGR cooler 16. Just do it.

また、既存のEGR装置では、急加速時等において、必要な吸気量を確保するためにEGR制御弁15を閉じなければならなかったが、このような運転条件下でも、EGRバルブ21vを開けてEGRガス11’を各気筒8内に直接導入し、排気再循環を休止することなく継続することが可能となる。   Further, in the existing EGR device, the EGR control valve 15 had to be closed in order to ensure a necessary intake amount during sudden acceleration or the like, but the EGR valve 21v is opened even under such operating conditions. The EGR gas 11 ′ can be directly introduced into each cylinder 8 and the exhaust gas recirculation can be continued without pausing.

更に、本形態例においては、EGRライン23におけるEGRポンプ24の前後にEGRクーラ25,26を備えているので、前段のEGRクーラ25により排気ガス11が冷却されて容積が小さくなることによりEGRポンプ24での圧縮効率が上がり、該EGRポンプ24の駆動力を低減することが可能となる。   Further, in the present embodiment, since the EGR coolers 25 and 26 are provided before and after the EGR pump 24 in the EGR line 23, the exhaust gas 11 is cooled by the preceding EGR cooler 25, and the volume is reduced. The compression efficiency at 24 increases, and the driving force of the EGR pump 24 can be reduced.

しかも、このEGRポンプ24での昇圧により温度上昇した排気ガス11を後段のEGRクーラ26で再び冷却して容積を小さくした上でEGRレール22に導入することにより各気筒8へのEGRガス11’の充填効率が上がり、各気筒8内での燃焼悪化を招くことなく燃焼温度を低下して効果的にNOxの発生を抑制することが可能となる。   Moreover, the exhaust gas 11 whose temperature has been increased by the pressure increase by the EGR pump 24 is cooled again by the EGR cooler 26 at the subsequent stage to reduce the volume, and then introduced into the EGR rail 22, thereby introducing the EGR gas 11 ′ to each cylinder 8. The charging efficiency is increased, and the combustion temperature can be lowered and the generation of NOx can be effectively suppressed without deteriorating the combustion in each cylinder 8.

従って、上記形態例によれば、過給システムにより過給を行いながらも高いEGR率での排気再循環を実現し且つ燃焼に必要な吸気の量を極端な排気圧の上昇を招くことなく確保することができるので、エンジン1の排気圧が過給圧よりも大幅に高くなるような極端な状態を未然に回避することができ、これによりエンジン1のポンピングロスを著しく低減して燃費の大幅な改善を図ることができる。   Therefore, according to the above-described embodiment, exhaust gas recirculation is achieved at a high EGR rate while supercharging is performed by the supercharging system, and the amount of intake air necessary for combustion is ensured without causing an extreme increase in exhaust pressure. Therefore, it is possible to avoid an extreme state in which the exhaust pressure of the engine 1 is significantly higher than the supercharging pressure, thereby significantly reducing the pumping loss of the engine 1 and significantly increasing the fuel consumption. Can be improved.

また、これまでの既存のEGR装置で排気再循環を休止しなければならなかったような急加速時等の運転条件下であっても、任意のタイミングでEGRガス11’を各気筒8内に直接導入して排気再循環を継続することができるので、特定の運転条件下でNOx排出量が突発的に増加してしまうような事態を未然に防止することができる。   Further, the EGR gas 11 ′ can be put into each cylinder 8 at an arbitrary timing even under operating conditions such as during rapid acceleration where exhaust gas recirculation had to be stopped with the existing EGR devices. Since direct introduction and exhaust gas recirculation can be continued, a situation in which the NOx emission amount suddenly increases under specific operating conditions can be prevented.

更に、前段のEGRクーラ25により排気ガス11を冷却して容積を小さくすることができるので、EGRポンプ24での圧縮効率を上げて該EGRポンプ24の駆動力を低減することができ、しかも、このEGRポンプ24での昇圧により温度上昇した排気ガス11を後段のEGRクーラ26で再び冷却して容積を小さくした上でEGRレール22に導入することにより各気筒8へのEGRガス11’の充填効率を上げることができ、各気筒8内での燃焼悪化を招くことなく燃焼温度を低下して効果的にNOxの発生を抑制することができる。   Furthermore, since the exhaust gas 11 can be cooled by the EGR cooler 25 in the previous stage to reduce the volume, the compression efficiency of the EGR pump 24 can be increased and the driving force of the EGR pump 24 can be reduced. The exhaust gas 11 whose temperature has risen due to the pressure increase by the EGR pump 24 is cooled again by the EGR cooler 26 at the subsequent stage to reduce the volume, and then introduced into the EGR rail 22 to fill each cylinder 8 with the EGR gas 11 ′. The efficiency can be increased, and the combustion temperature can be lowered and the generation of NOx can be effectively suppressed without deteriorating the combustion in each cylinder 8.

また、以上に述べた説明では、高圧段タービン18b出側の排気管13’から排気ガス11の一部をEGRガス11’としてEGRライン23に抜き出す場合で説明しているが、図1中に仮想線で示す如く、低圧段タービン19b出側の排気管13からEGRガス11’を抜き出す分岐ライン28や、高圧段タービン18b入側の排気管13からEGRガス11’を抜き出す分岐ライン29とを備え、流路切換弁30によりEGRガス11’の抜き出し位置を適宜に変更し得るようにしても良い。   In the above description, a part of the exhaust gas 11 is extracted from the exhaust pipe 13 ′ on the outlet side of the high-pressure turbine 18b to the EGR line 23 as the EGR gas 11 ′. As indicated by phantom lines, a branch line 28 for extracting the EGR gas 11 ′ from the exhaust pipe 13 on the outlet side of the low-pressure turbine 19b and a branch line 29 for extracting the EGR gas 11 ′ from the exhaust pipe 13 on the inlet side of the high-pressure turbine 18b are provided. It is also possible to change the extraction position of the EGR gas 11 ′ appropriately by the flow path switching valve 30.

即ち、EGRポンプ24のポンプ仕事を減らすためには、ポンプ前後の圧力差が少ないことが望ましいが、運転条件によっては、EGRガス11’をタービンに流すことによるターボ効率の向上分の仕事がポンプ仕事を上回ることで燃費改善が見込まれるので、このような運転条件においては、流路切換弁30により分岐ライン28を選択して低圧段タービン19b出側の排気管13からEGRガス11’を抜き出すようにしても良い。   That is, in order to reduce the pump work of the EGR pump 24, it is desirable that the pressure difference before and after the pump is small. However, depending on the operation conditions, the work for improving the turbo efficiency by flowing the EGR gas 11 ′ to the turbine may be the pump. Since the fuel efficiency is expected to exceed the work, under such operating conditions, the branch line 28 is selected by the flow path switching valve 30 and the EGR gas 11 ′ is extracted from the exhaust pipe 13 on the outlet side of the low-pressure turbine 19b. You may do it.

また、過渡時(急加速等)では、排気再循環の応答性から極力短い経路を選択することが有効であるため、流路切換弁30により分岐ライン29を選択して高圧段タービン18b入側の排気管13からEGRガス11’を抜き出すようにしても良い。   Further, during transition (sudden acceleration, etc.), it is effective to select a path as short as possible from the responsiveness of exhaust gas recirculation. Therefore, the branch line 29 is selected by the flow path switching valve 30 to enter the high-pressure turbine 18b. The EGR gas 11 ′ may be extracted from the exhaust pipe 13.

尚、本発明の蓄圧式EGRシステムは、上述の形態例にのみ限定されるものではなく、単段のターボチャージャ或いは三段以上のターボチャージャにより構成された過給システムを備えたエンジンに適用しても良いこと、また、過給システムは機械式過給器であっても良いこと、更に、吸気ポート,吸気バルブ,排気ポート,排気バルブ,EGRポート,EGRバルブの数は必ずしも図2の例に限定されないこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The pressure-accumulation EGR system of the present invention is not limited to the above-described embodiment, and is applied to an engine having a supercharging system constituted by a single-stage turbocharger or a three-stage turbocharger. In addition, the supercharging system may be a mechanical supercharger, and the number of intake ports, intake valves, exhaust ports, exhaust valves, EGR ports, EGR valves is not necessarily the example of FIG. Of course, the invention is not limited thereto, and various modifications can be made without departing from the scope of the present invention.

1 エンジン
8 気筒
9 吸気ポート
9v 吸気バルブ
10 排気ポート
10v 排気バルブ
11 排気ガス
11’ EGRガス
13 排気管(排気通路)
17 蓄圧式EGRシステム
18 高圧段ターボチャージャ
18a 高圧段コンプレッサ
18b 高圧段タービン
19 低圧段ターボチャージャ
19a 低圧段コンプレッサ
19b 低圧段タービン
21 EGRポート
21v EGRバルブ
22 EGRレール
23 EGRライン
24 EGRポンプ
25 EGRクーラ
26 EGRクーラ
1 engine 8 cylinder 9 intake port 9v intake valve 10 exhaust port 10v exhaust valve 11 exhaust gas 11 'EGR gas 13 exhaust pipe (exhaust passage)
17 Accumulated EGR System 18 High Pressure Stage Turbocharger 18a High Pressure Stage Compressor 18b High Pressure Stage Turbine 19 Low Pressure Stage Turbocharger 19a Low Pressure Stage Compressor 19b Low Pressure Stage Turbine 21 EGR Port 21v EGR Valve 22 EGR Rail 23 EGR Line 24 EGR Pump 25 EGR Pump 25 EGR EGR cooler

Claims (2)

適宜な段数のターボチャージャから成る過給システムを備えたエンジンに適用するための蓄圧式EGRシステムであって、エンジンの各気筒に吸気ポートとは別に設けられた排気再循環専用のEGRポートと、前記エンジンの各気筒の並び方向に延在して前記各EGRポートに対しEGRバルブを介して接続されたEGRガスを蓄圧するためのEGRレールと、排気通路の途中から排気ガスの一部をEGRガスとして抜き出して前記EGRレールに再循環するEGRラインと、該EGRラインの途中に装備され且つ前記EGRガスを昇圧して前記EGRレールに導入するEGRポンプとを備えたことを特徴とする蓄圧式EGRシステム。   An accumulator EGR system for application to an engine having a supercharging system composed of a turbocharger having an appropriate number of stages, and an EGR port dedicated to exhaust gas recirculation provided separately from an intake port in each cylinder of the engine; An EGR rail for accumulating EGR gas that extends in the arrangement direction of the cylinders of the engine and is connected to the EGR ports via an EGR valve, and a part of the exhaust gas from the middle of the exhaust passage. An EGR line that is extracted as gas and recirculated to the EGR rail, and an EGR pump that is provided in the middle of the EGR line and that boosts the EGR gas and introduces it into the EGR rail. EGR system. EGRラインにおけるEGRポンプの前後にEGRクーラを備えたことを特徴とする請求項1に記載の蓄圧式EGRシステム。   The pressure-accumulation EGR system according to claim 1, further comprising an EGR cooler before and after the EGR pump in the EGR line.
JP2011139260A 2011-06-23 2011-06-23 Accumulated EGR system Active JP5814008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139260A JP5814008B2 (en) 2011-06-23 2011-06-23 Accumulated EGR system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011139260A JP5814008B2 (en) 2011-06-23 2011-06-23 Accumulated EGR system

Publications (2)

Publication Number Publication Date
JP2013007295A true JP2013007295A (en) 2013-01-10
JP5814008B2 JP5814008B2 (en) 2015-11-17

Family

ID=47674843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139260A Active JP5814008B2 (en) 2011-06-23 2011-06-23 Accumulated EGR system

Country Status (1)

Country Link
JP (1) JP5814008B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140026563A1 (en) * 2010-05-18 2014-01-30 Achates Power, Inc. EGR Constructions for Opposed-Piston Engines
JP2015068256A (en) * 2013-09-30 2015-04-13 ダイハツ工業株式会社 Internal combustion engine
US9869258B2 (en) 2011-05-16 2018-01-16 Achates Power, Inc. EGR for a two-stroke cycle engine without a supercharger
CN108571403A (en) * 2017-03-14 2018-09-25 丰田自动车株式会社 The emission-control equipment of internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117665A (en) * 1989-09-29 1991-05-20 Hino Motors Ltd Egr device of turbosupercharge engine
JPH0571428A (en) * 1991-09-10 1993-03-23 Yanmar Diesel Engine Co Ltd Exhaust gas reflux device of diesel engine
JPWO2006043502A1 (en) * 2004-10-20 2008-05-22 耕一 畑村 engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117665A (en) * 1989-09-29 1991-05-20 Hino Motors Ltd Egr device of turbosupercharge engine
JPH0571428A (en) * 1991-09-10 1993-03-23 Yanmar Diesel Engine Co Ltd Exhaust gas reflux device of diesel engine
JPWO2006043502A1 (en) * 2004-10-20 2008-05-22 耕一 畑村 engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140026563A1 (en) * 2010-05-18 2014-01-30 Achates Power, Inc. EGR Constructions for Opposed-Piston Engines
US9410506B2 (en) * 2010-05-18 2016-08-09 Achates Power, Inc. EGR constructions for opposed-piston engines
US9951725B2 (en) 2010-05-18 2018-04-24 Achates Power, Inc. EGR constructions for opposed-piston engines
US9869258B2 (en) 2011-05-16 2018-01-16 Achates Power, Inc. EGR for a two-stroke cycle engine without a supercharger
JP2015068256A (en) * 2013-09-30 2015-04-13 ダイハツ工業株式会社 Internal combustion engine
CN108571403A (en) * 2017-03-14 2018-09-25 丰田自动车株式会社 The emission-control equipment of internal combustion engine
JP2018150894A (en) * 2017-03-14 2018-09-27 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JP5814008B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
JP4168809B2 (en) Exhaust turbocharged engine with EGR
JP5315416B2 (en) Exhaust structure for engine
JP6007504B2 (en) diesel engine
EP3179079B1 (en) Engine system
JP2001295701A (en) Internal combustion engine with turbo charger
JP2007154684A (en) Two-stage supercharging type engine
EP2667006A1 (en) Engine boosting system
CN104870788A (en) Method and control device for torque-neutral switching between two engine operating states in an internal combustion engine with disconnectable cylinders and at least one connectable compressor
CN105840355A (en) All-working-condition EGR rate adjustable two-stage booster system of internal combustion engine and control method thereof
CN105386856A (en) Two-stage sequential turbocharging system used for internal combustion engine and internal combustion engine
CN103615309A (en) All-work-condition adjustable two-stage pressurizing system of internal combustion engine
JP5814008B2 (en) Accumulated EGR system
JP2009115089A (en) Engine with supercharger and its operating method
JP2013170455A (en) Internal combustion engine, exhaust circulating method therefor, and control method therefor
CN205225437U (en) A two -stage is turbocharging system and internal -combustion engine in succession for internal -combustion engine
JP2012197716A (en) Exhaust loss recovery device
JP2007077900A (en) Two-stage supercharging system
JP2007071179A (en) Two stage supercharging system
CN102418593B (en) Single-vortex double-pressure turbocharging system
KR101526388B1 (en) Engine system
JP4616707B2 (en) Exhaust gas recirculation structure for turbocharged engines
JP2011007051A (en) Diesel engine
JP2010127126A (en) Two-stage supercharging system
CN205349509U (en) Compound pressure intensifying structure in succession of supercharged diesel engine
CN205618263U (en) Adjustable two stage supercharging system is rateed to full operating mode EGR of internal -combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150917

R150 Certificate of patent or registration of utility model

Ref document number: 5814008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250