JP2012248797A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2012248797A
JP2012248797A JP2011121674A JP2011121674A JP2012248797A JP 2012248797 A JP2012248797 A JP 2012248797A JP 2011121674 A JP2011121674 A JP 2011121674A JP 2011121674 A JP2011121674 A JP 2011121674A JP 2012248797 A JP2012248797 A JP 2012248797A
Authority
JP
Japan
Prior art keywords
conductor
signal
ground
conductors
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011121674A
Other languages
Japanese (ja)
Other versions
JP5897820B2 (en
Inventor
Koki Kawabata
幸喜 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011121674A priority Critical patent/JP5897820B2/en
Publication of JP2012248797A publication Critical patent/JP2012248797A/en
Application granted granted Critical
Publication of JP5897820B2 publication Critical patent/JP5897820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board in which the impedance of a signal through conductor connected with an electrode can be matched.SOLUTION: The wiring board 1 comprises: an insulating substrate 2; a signal wiring layer 3; an electrode 5; a plurality of ground wiring layers 4; a signal through conductor 6; and a plurality of ground through conductors 7. At least the aperture 4b of a ground wiring layer 4 closest to the other principal surface out of the apertures in a plurality of ground wiring layers 4 is larger than the electrode 5 in the plan view. A connection conductor 6c provided corresponding to the first aperture out of a plurality of connection conductors is larger than a connection conductor 6b provided corresponding to an aperture 4a that is smaller than the aperture 6b out of the apertures in the plurality of ground wiring layers 4.

Description

本発明は、高速度化した半導体素子などの電子部品が搭載される配線基板に関する。   The present invention relates to a wiring board on which electronic components such as a semiconductor element with increased speed are mounted.

半導体素子の動作速度の高速化によって、半導体素子をはじめとする電子部品が搭載される配線基板においては、高速信号が配線基板内を伝搬する。高速信号が配線基板内を伝播すると、信号の反射および減衰によって信号品質が劣化し半導体素子やシステムの誤動作を引き起こすといった問題がある。そのため、従来の配線基板では、図6に示すように、信号貫通導体66の周囲を接地貫通導体67で囲んで擬似同軸構造とすることによって配線基板61内の信号配線層63と信号貫通導体66との特性インピーダンスの不連続性を低減するということが行なわれていた。   By increasing the operation speed of the semiconductor element, a high-speed signal propagates in the wiring board on a wiring board on which electronic components such as the semiconductor element are mounted. When a high-speed signal propagates in the wiring board, there is a problem that the signal quality deteriorates due to reflection and attenuation of the signal and causes malfunction of the semiconductor element and the system. Therefore, in the conventional wiring board, as shown in FIG. 6, the signal through layer 66 and the signal through conductor 66 in the wiring board 61 are formed by surrounding the signal through conductor 66 with the ground through conductor 67 to form a pseudo coaxial structure. Reducing the discontinuity of the characteristic impedance is performed.

また、信号貫通導体66の一端に電気的に接続される、配線基板61の外部回路との接続用の電極65と、配線基板61内の接地配線層64との間に発生する容量成分によって特性インピーダンスが低下するという問題点があった。   Further, the characteristics are determined by the capacitance component generated between the electrode 65 for connection to the external circuit of the wiring board 61 and the ground wiring layer 64 in the wiring board 61, which is electrically connected to one end of the signal through conductor 66. There was a problem that the impedance was lowered.

このような問題点に対して、図6に示すように、信号貫通導体66を取り囲むように接地配線層64に設けられた開口部64aの開口径を電極65の径よりも大きくして、電極65と接地配線層64との重なりをなくすことで不要な容量成分を抑えるようにした配線基板がある(例えば、特許文献1を参照。)。また、電極65に最も近い接地貫通導体67の径を他の貫通導体よりも小さくすることで、実効インダクタンスを増加させ、増加した実効インダクタンスによって不要な容量成分を相殺するようにした配線基板がある(例えば、特許文献2を参照。)。   To solve such a problem, as shown in FIG. 6, the opening diameter of the opening 64a provided in the ground wiring layer 64 so as to surround the signal through conductor 66 is made larger than the diameter of the electrode 65, There is a wiring board in which unnecessary capacitance components are suppressed by eliminating the overlap between 65 and the ground wiring layer 64 (see, for example, Patent Document 1). In addition, there is a wiring board in which the effective inductance is increased by making the diameter of the grounding through conductor 67 closest to the electrode 65 smaller than other through conductors, and an unnecessary capacitance component is offset by the increased effective inductance. (For example, see Patent Document 2).

特開2001−160598号公報Japanese Patent Laid-Open No. 2001-160598 特開2008−251784号公報JP 2008-251784

しかしながら、擬似同軸構造を有する配線基板において、図6に示す例ように、電極65に最も近い接地配線層64に設けられる開口部64bを大きくすると、開口部64bの外側で接地配線層64に接続されて信号貫通導体66の周囲を取り囲む接地貫通導体67は、信号貫通導体66との距離が離れてしまうこととなり、これによって特性インピーダンスが上昇してしまい、25Gbpsから40Gbpsの高速信号の伝送が困難になるという問題点があった。この対策として大きい開口部を有する接地配線層の上下に位置する絶縁層を貫通する信号貫通導体の直径を大きくして特性インピーダンスを整合させることが考えられるが、1つの絶縁層に異なる径の貫通導体が存在することで以下のような問題点があった。これは、電極に最も近い接地貫通導体の径を他の貫通導体よりも小さくする場合でも同様であった。   However, in the wiring board having a pseudo-coaxial structure, when the opening 64b provided in the ground wiring layer 64 closest to the electrode 65 is enlarged as shown in the example shown in FIG. 6, it is connected to the ground wiring layer 64 outside the opening 64b. The ground through conductor 67 surrounding the signal through conductor 66 is separated from the signal through conductor 66, which increases the characteristic impedance and makes it difficult to transmit high-speed signals from 25 Gbps to 40 Gbps. There was a problem of becoming. As a countermeasure, it is conceivable to increase the diameter of the signal through conductor that penetrates the insulating layer positioned above and below the ground wiring layer having a large opening so as to match the characteristic impedance. The presence of the conductor has the following problems. This was the same even when the diameter of the grounding through conductor closest to the electrode was made smaller than that of the other through conductors.

例えば、絶縁基板がセラミックスからなる配線基板の場合であれば、配線基板にビア導体を形成する方法としては、絶縁層となるセラミックグリーンシートに形成した貫通孔に、貫通導体となる導体ペーストを充填して焼成するという製造過程を経るのが一般的である。ここで、ビア導体と絶縁基板となるセラミックスとの収縮挙動の違いによる、ビア導体の周辺に発生するクラック等を抑制するために、貫通導体を形成する導体ペーストにセ
ラミック粉末を添加することが行なわれている。しかし、同じ比率でセラミック粉末を添加した導体ペーストを同時に異なる径の貫通孔に充填することから、径の小さい貫通導体は、電気抵抗が大きくなってしまう一方で、径の大きい貫通導体では、熱伝導のよい導体成分の絶対量が多いことから、焼成時に収縮挙動が変わって、また、径の大きい貫通導体は熱膨張の絶対値が大きくなるので、焼成後に冷却された際に貫通導体の周囲にクラックが発生しやすくなる場合があった。
For example, if the insulating substrate is a wiring substrate made of ceramic, a method for forming a via conductor on the wiring substrate is to fill a through hole formed in a ceramic green sheet serving as an insulating layer with a conductive paste serving as a through conductor. In general, it goes through a manufacturing process of firing. Here, in order to suppress cracks and the like generated around the via conductor due to the difference in shrinkage behavior between the via conductor and the ceramic serving as the insulating substrate, ceramic powder is added to the conductor paste forming the through conductor. It is. However, since the conductive paste to which ceramic powder is added at the same ratio is simultaneously filled into through-holes with different diameters, the through-conductors with small diameters increase the electrical resistance, while the through-conductors with large diameters Since there is a large absolute amount of conductor components with good conductivity, the shrinkage behavior changes during firing, and the through conductor with a large diameter increases the absolute value of thermal expansion, so when it is cooled after firing, In some cases, cracks are likely to occur.

また、配線基板の作製工程においては、異なる径の貫通孔に同一条件で導体を充填しようとすると、貫通導体用の貫通孔への導体の充填不足や、充填過多による充填不良が発生しやすいものであった。絶縁層に貫通導体用の貫通孔を加工する際には、同一条件で異なる径の貫通孔を形成するのが困難な場合があり、また、それぞれの直径に対応する金型や加工条件を準備すると、加工に要する手間やコストが増大するものであった。このようなことから、配線基板の製造歩留まりの低下や製品のコスト増を引き起こすという問題があった。   Also, in the wiring board manufacturing process, when filling through holes with different diameters under the same conditions, underfill of the conductors in the through holes for through conductors, and poor filling due to overfilling are likely to occur. Met. When processing through holes for through conductors in an insulating layer, it may be difficult to form through holes with different diameters under the same conditions, and molds and processing conditions corresponding to each diameter are prepared. As a result, labor and cost required for processing increase. For this reason, there has been a problem that the manufacturing yield of the wiring board is reduced and the cost of the product is increased.

また、別の対策として、大きい開口部を有する接地配線層の上下に位置する絶縁層を貫通する信号貫通導体を複数の貫通導体で形成して擬似的に信号貫通導体の径を大きくして特性インピーダンスを整合させることが考えられるが、信号貫通導体を形成する複数の貫通導体を加工するための工具や手間が製造コストの上昇を引き起こす問題があった。更に、配線基板製造時の導通検査において、複数の信号貫通導体の内の1つの信号貫通導体が
接続不良によって断線している場合は、特性インピーダンスが変化し、伝送特性が劣化するにも関わらず、残りの信号貫通導体が導通しているため、不良品として判別ができないという問題があった。
As another measure, the signal through conductor that penetrates the insulating layer located above and below the ground wiring layer having a large opening is formed of a plurality of through conductors, and the diameter of the signal through conductor is increased by simulating the characteristic. Although it is conceivable to match the impedance, there is a problem that a tool and labor for processing a plurality of through conductors forming the signal through conductor cause an increase in manufacturing cost. Furthermore, in the continuity test during wiring board manufacture, if one of the signal through conductors is disconnected due to poor connection, the characteristic impedance changes and the transmission characteristics deteriorate. Since the remaining signal through conductors are conductive, there is a problem that they cannot be determined as defective products.

本発明の一つの態様によれば、配線基板は、複数の絶縁層が積層された絶縁基板と、絶縁基板の内部または一方主面に形成された信号配線層と、絶縁基板の他方主面に形成された電極と、複数の絶縁層の間に形成され開口部を有する複数の接地配線層と、開口部を通って複数の絶縁層を貫通し一端が信号配線層に電気的に接続され他端が電極に接続されており連結された複数の貫通導体と複数の貫通導体間に設けられた複数の接続導体とを含む信号貫通導体と、信号貫通導体を取り囲むようにして複数の絶縁層を貫通するとともに開口部の外側で接地配線層に接続された複数の接地貫通導体とを備えている。複数の接地導体層の開口部のうち少なくとも他方主面に最も近い接地配線層の第1の開口部は、平面視において電極よりも大きい。複数の接続導体のうち第1の開口部に対応して設けられた第1の接続導体は、複数の接地導体層の開口部のうち第1の開口部よりも小さい第2の開口部に対応して設けられた第2の接続導体よりも大きい。   According to one aspect of the present invention, a wiring board includes an insulating substrate in which a plurality of insulating layers are stacked, a signal wiring layer formed inside or on one main surface of the insulating substrate, and the other main surface of the insulating substrate. Formed electrodes, a plurality of ground wiring layers formed between a plurality of insulating layers and having openings, through the plurality of insulating layers through the openings and having one end electrically connected to the signal wiring layer, etc. A signal through conductor including a plurality of through conductors connected to an electrode and connected to each other and a plurality of connecting conductors provided between the plurality of through conductors, and a plurality of insulating layers so as to surround the signal through conductor And a plurality of ground through conductors that pass through and are connected to the ground wiring layer outside the opening. Of the openings of the plurality of ground conductor layers, at least the first opening of the ground wiring layer closest to the other main surface is larger than the electrode in plan view. The first connection conductor provided corresponding to the first opening among the plurality of connection conductors corresponds to the second opening smaller than the first opening among the openings of the plurality of ground conductor layers. Larger than the second connection conductor provided.

本発明の一つの態様による配線基板において、複数の接地導体層の開口部のうち少なくとも他方主面に最も近い接地配線層の第1の開口部は、平面視において電極よりも大きく、複数の接続導体のうち第1の開口部に対応して設けられた第1の接続導体は、複数の接地導体層の開口部のうち第1の開口部よりも小さい第2の開口部に対応して設けられた第2の接続導体よりも大きいことによって、他方主面に最も近い接地配線層と電極との重なりをなくすことができ、他方主面に最も近い接地配線層と電極との間に発生する不要な容量を低減させることができるとともに、信号貫通導体に第1の接続導体の寄生容量が付加されるため、擬似的に信号貫通導体の径が大きい場合と同じになるので、特性インピーダンスが大きくなることを抑制することができ、電極に近い部位においても特性インピーダンスが整合される。したがって、高周波信号を伝送しても信号の劣化の少ない配線基板となる。   In the wiring board according to one aspect of the present invention, the first opening of the ground wiring layer closest to at least the other main surface among the openings of the plurality of ground conductor layers is larger than the electrode in plan view, and has a plurality of connections. The first connection conductor provided corresponding to the first opening among the conductors is provided corresponding to the second opening smaller than the first opening among the openings of the plurality of ground conductor layers. By being larger than the second connecting conductor formed, it is possible to eliminate the overlap between the ground wiring layer closest to the other main surface and the electrode, and to occur between the ground wiring layer closest to the other main surface and the electrode. Unnecessary capacitance can be reduced, and the parasitic capacitance of the first connection conductor is added to the signal through conductor, which is the same as when the diameter of the signal through conductor is artificially large. To suppress It can, characteristic impedance at a portion close to the electrode is aligned. Therefore, even if a high-frequency signal is transmitted, the wiring board is less deteriorated.

本発明の配線基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the wiring board of this invention. 図1のA部を拡大して示す断面図である。It is sectional drawing which expands and shows the A section of FIG. (a)は図2のA−A線における断面図であり、(b)は図2のB−B線における断面図である。(A) is sectional drawing in the AA line of FIG. 2, (b) is sectional drawing in the BB line of FIG. 本発明の配線基板の実施の形態の他の例の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the other example of embodiment of the wiring board of this invention. 本発明の配線基板の伝送特性を示すグラフである。It is a graph which shows the transmission characteristic of the wiring board of this invention. 従来の配線基板を示す断面図である。It is sectional drawing which shows the conventional wiring board.

以下、本発明の例示的な実施形態における配線基板について添付の図面を参照して詳細に説明する。   Hereinafter, a wiring board in an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の配線基板1を模式的に示すものであり、絶縁基板2の絶縁層2a〜2hの層数や厚み、信号配線層3,接地配線層4,開口部4a,大開口部4b,電極5,信号貫通導体6,接地貫通導体7および表層配線層8の大きさや配置については、配線基板1に要求される特性に応じて設定されるものである。また、配線基板1には電源導体層や電源貫通導体も形成されるが、図1においては省略している。   FIG. 1 schematically shows a wiring board 1 of the present invention. The number and thickness of insulating layers 2a to 2h of an insulating substrate 2, signal wiring layers 3, ground wiring layers 4, openings 4a, large openings. The size and arrangement of the portion 4b, the electrode 5, the signal through conductor 6, the ground through conductor 7, and the surface wiring layer 8 are set according to the characteristics required for the wiring board 1. In addition, a power supply conductor layer and a power supply through conductor are also formed on the wiring board 1, but are omitted in FIG.

図1に示す例では、絶縁基板2は8層の絶縁層2a〜2hで構成されており、絶縁基板2の内部に信号配線層3,接地配線層4,信号貫通導体6および接地貫通導体7が形成されている。絶縁基板2の主面のうち、一方主面(図1における上面)には表層配線層8が形成され、他方主面(図1における下面)には電極5が形成されている。図1に示す例では、表層配線層8は半導体素子の端子が接続される接続パッドである例で示している。電極5は、はんだ等の接合材やピンを介して外部回路基板等に電気的に接続するためのものである。この表層配線層8と電極5とが、絶縁基板2の内部に形成された信号配線層3,接地配線層4,信号貫通導体6および接地貫通導体7によって接続されている。   In the example shown in FIG. 1, the insulating substrate 2 is composed of eight insulating layers 2 a to 2 h, and the signal wiring layer 3, the ground wiring layer 4, the signal through conductor 6, and the ground through conductor 7 inside the insulating substrate 2. Is formed. Of the main surface of the insulating substrate 2, a surface wiring layer 8 is formed on one main surface (upper surface in FIG. 1), and an electrode 5 is formed on the other main surface (lower surface in FIG. 1). In the example illustrated in FIG. 1, the surface wiring layer 8 is illustrated as an example of a connection pad to which a terminal of a semiconductor element is connected. The electrode 5 is for electrical connection to an external circuit board or the like via a bonding material such as solder or a pin. The surface wiring layer 8 and the electrode 5 are connected by a signal wiring layer 3, a ground wiring layer 4, a signal through conductor 6, and a ground through conductor 7 formed inside the insulating substrate 2.

図1に示す例では、信号配線層3は絶縁基板2の内部の絶縁層2c,2d間に形成され
ており、この信号配線層3を絶縁層2c,2dを介して挟むようにして、絶縁層2b,2c間および絶縁層2d,2e間に広面積の接地配線層4が形成され、所謂ストリップ線路構造を形成している。このようにストリップ線路構造とすることで、信号配線層3は、信号配線層3の配線幅および信号配線層3と接地配線層4との間に介在する絶縁層2c,2dの厚みを設定することによって、その特性インピーダンスを任意の値、一般的には50Ω、に設定することができる。特性インピーダンスを整合させた信号配線層3によって、良好な伝送特性を有する配線基板1とすることが可能となる。
In the example shown in FIG. 1, the signal wiring layer 3 is formed between the insulating layers 2c and 2d inside the insulating substrate 2, and the insulating layer 2b is sandwiched between the signal wiring layers 3 via the insulating layers 2c and 2d. , 2c and between the insulating layers 2d, 2e, a wide-area ground wiring layer 4 is formed to form a so-called stripline structure. By adopting the strip line structure as described above, the signal wiring layer 3 sets the wiring width of the signal wiring layer 3 and the thicknesses of the insulating layers 2c and 2d interposed between the signal wiring layer 3 and the ground wiring layer 4. Thus, the characteristic impedance can be set to an arbitrary value, generally 50Ω. With the signal wiring layer 3 matched with the characteristic impedance, it is possible to obtain the wiring substrate 1 having good transmission characteristics.

信号配線層3は、高周波信号を伝送するのに適した構造であればよく、上記のようなストリップ線路に限られるものではない。例えば、2つの平行な線路導体からなる差動線路構造としてもよい。この場合は、2つの線路導体のそれぞれから電極5までの間を本発明の配線基板のような擬似同軸構造とすればよい。また、マイクロストリップ線路やコプレナー線路構造としてもよい。   The signal wiring layer 3 only needs to have a structure suitable for transmitting a high-frequency signal, and is not limited to the strip line as described above. For example, a differential line structure composed of two parallel line conductors may be used. In this case, a quasi-coaxial structure like the wiring board of the present invention may be formed between each of the two line conductors and the electrode 5. A microstrip line or a coplanar line structure may be used.

また、配線基板1の厚み方向への信号の伝送は信号貫通導体6によって行なわれる。信号貫通導体6は、絶縁層2に形成される貫通導体6aと絶縁層2間に形成される上下の貫通導体6aを接続する第1の接続導体6bと第2の接続導体6cより形成されている。この信号貫通導体6は、一端が信号配線層3に電気的に接続され、絶縁層2d〜2hを貫通して他端が電極5に接続されている。絶縁層2d,2e間、絶縁層2e,2fおよび絶縁層2g,2h間に形成された接地配線層4も貫通するが、接地配線層4に開口部4aが形
成されることで接地配線層4とは絶縁されている。各開口部4aは、信号貫通導体6aの径より大きく、開口部4aの内周は信号貫通導体6aの外周面から離間して設けられている。
Further, signal transmission in the thickness direction of the wiring board 1 is performed by the signal through conductor 6. The signal through conductor 6 is formed by a first connecting conductor 6b and a second connecting conductor 6c that connect the through conductor 6a formed in the insulating layer 2 and the upper and lower through conductors 6a formed between the insulating layers 2. Yes. One end of the signal through conductor 6 is electrically connected to the signal wiring layer 3, and the other end is connected to the electrode 5 through the insulating layers 2 d to 2 h. The ground wiring layer 4 formed between the insulating layers 2d and 2e, the insulating layers 2e and 2f, and the insulating layers 2g and 2h also penetrates, but the ground wiring layer 4 is formed by forming an opening 4a in the ground wiring layer 4. Is insulated. Each opening 4a is larger than the diameter of the signal through conductor 6a, and the inner periphery of the opening 4a is provided away from the outer peripheral surface of the signal through conductor 6a.

この開口部4aの外側で接地配線層4に接続するとともに、信号貫通導体6aを取り囲むようにして絶縁層2c〜2hを貫通する複数の接地貫通導体7が設けられている。このような、信号貫通導体6とその周囲の複数の接地貫通導体7とによって擬似同軸線路が構成されている。このような擬似同軸構造となっていることで、信号貫通導体6は、その直径および接地貫通導体7と間の距離を設定することによって、信号貫通導体6の特性インピーダンスを任意の値に設定することができる。   A plurality of ground penetrating conductors 7 that connect to the ground wiring layer 4 outside the opening 4a and penetrate the insulating layers 2c to 2h are provided so as to surround the signal penetrating conductor 6a. Such a signal through conductor 6 and a plurality of ground through conductors 7 around it constitute a pseudo coaxial line. By having such a pseudo-coaxial structure, the signal through conductor 6 sets the characteristic impedance of the signal through conductor 6 to an arbitrary value by setting the diameter and the distance from the ground through conductor 7. be able to.

本発明の配線基板においては、図1および図2に示す例のように、少なくとも電極5が形成された、絶縁基板2の他方主面に最も近い接地配線層4の開口部4aは、平面視の大きさが電極5よりも大きい大開口部4bである。平面視で電極5が大開口部4b内に位置するようにすることで、少なくとも最下層の接地配線層4と電極5との重なりがなくなるので、これらの間に発生する不用な容量を抑えることができる。図1および図2に示す例では、最下層の接地配線層4の開口部のみを大開口部4bとしているが、絶縁層2e〜2fの厚みや比誘電率によっては、電極5からさらに離れた接地配線層4の開口部4aも大開口部4bとして、接地配線層4と電極5との間に発生する不用な容量をさらに抑えるようにしてもよい。通常は、少なくとも最下層の接地配線層4の開口部4aを大開口部4bとすれば、不要な容量成分を特性インピーダンスに影響を与えない程度にすることができるので、図1に示す例のように擬似同軸線路構造は、その途中までは通常の開口部4aと貫通導体6aと第1の接続導体6bを有し、電極5に近い側では大開口部4bと貫通導体6aと第2の接続導体6cを有するものとなる。このようにすることで、配線基板1の内部における電極5から離れた部分では、大開口部4bを設けるスペースが必要でないので、その分だけ周囲の配線の配置の自由度が高くなる。   In the wiring board of the present invention, as in the example shown in FIGS. 1 and 2, the opening 4a of the ground wiring layer 4 closest to the other main surface of the insulating substrate 2 where at least the electrode 5 is formed is seen in a plan view. The large opening 4 b is larger than the electrode 5. By arranging the electrode 5 in the large opening 4b in a plan view, at least the lowermost ground wiring layer 4 and the electrode 5 are not overlapped, so that unnecessary capacitance generated between them is suppressed. Can do. In the example shown in FIGS. 1 and 2, only the opening portion of the ground wiring layer 4 at the lowest layer is a large opening portion 4b, but it is further away from the electrode 5 depending on the thickness and relative dielectric constant of the insulating layers 2e to 2f. The opening 4a of the ground wiring layer 4 may also be a large opening 4b to further suppress unnecessary capacitance generated between the ground wiring layer 4 and the electrode 5. Normally, if at least the opening 4a of the lowermost ground wiring layer 4 is a large opening 4b, unnecessary capacitance components can be reduced to the extent that they do not affect the characteristic impedance. Thus, the pseudo-coaxial line structure has a normal opening 4a, a through conductor 6a, and a first connecting conductor 6b until halfway, and a large opening 4b, a through conductor 6a, and a second connection on the side close to the electrode 5. The connection conductor 6c is provided. By doing in this way, in the part away from the electrode 5 in the inside of the wiring board 1, since the space which provides the large opening part 4b is unnecessary, the freedom degree of arrangement | positioning of surrounding wiring becomes high by that much.

そして、本発明の配線基板においては、大開口部4bを有する接地配線層4の上下に位置する絶縁層2f〜2hを貫通する貫通導体6a、言い換えれば大開口部4bの外側で接地配線層4に接続される接地貫通導体7に囲まれる貫通導体6aは、第1の接続導体の直
径よりも直径の大きい第2の接続導体6cを介して接続されていることを特徴とするものである。接地配線層4に大開口部4bを設けると、大開口部4bの外側で接地配線層4に接続される接地貫通導体7とそれらに囲まれた貫通導体6aとの間の距離が大きくなるので、貫通導体6aの特性インピーダンスが大きくなってしまうが、貫通導体6aを第1の
接続導体6bの直径よりも直径の大きい第2の接続導体6cを介して接続することで、貫通導体6aに第2の接続導体6cの寄生容量が付加されるため、擬似的に貫通導体6aの直径を太くしたことになるので、信号貫通導体6の特性インピーダンスが大きくなることを抑制することができる。結果として電極5に近い部位においても特性インピーダンスが整合された、高周波信号を伝送することのできる配線基板1となる。このとき、開口部4bを有する接地配線層4の上下に位置する絶縁層2f〜2hを貫通する信号貫通導体6aの特性インピーダンスは、第2の接続導体の直径および貫通導体6aと接地貫通導体7と間の距離によって任意の値に設定することができる。
In the wiring board of the present invention, the through wiring conductor 6a that penetrates the insulating layers 2f to 2h positioned above and below the ground wiring layer 4 having the large opening 4b, in other words, outside the large opening 4b, the ground wiring layer 4 is provided. The through conductor 6a surrounded by the ground through conductor 7 connected to is connected through a second connection conductor 6c having a diameter larger than that of the first connection conductor. If the large opening 4b is provided in the ground wiring layer 4, the distance between the ground through conductor 7 connected to the ground wiring layer 4 outside the large opening 4b and the through conductor 6a surrounded by them increases. The characteristic impedance of the through conductor 6a is increased, but the through conductor 6a is connected to the through conductor 6a by connecting the through conductor 6a via the second connection conductor 6c having a diameter larger than that of the first connection conductor 6b. Since the parasitic capacitance of the second connection conductor 6c is added, the diameter of the through conductor 6a is artificially increased, so that an increase in the characteristic impedance of the signal through conductor 6 can be suppressed. As a result, the wiring substrate 1 is capable of transmitting a high-frequency signal with matched characteristic impedance even at a portion close to the electrode 5. At this time, the characteristic impedance of the signal through conductor 6a penetrating through the insulating layers 2f to 2h positioned above and below the ground wiring layer 4 having the opening 4b is the diameter of the second connecting conductor and the through conductor 6a and the ground through conductor 7. It can be set to any value depending on the distance between.

図3(a)に示す例では、電極5が形成された配線基板1の他方主面から離れた位置においては、接地導体層4の開口部4aを通る貫通導体6aは第1の接続導体6bが接続されており、図3(b)に示す例のように、電極5が形成された、絶縁基板2の他方主面に最も近い接地配線層4に形成された大開口部4bを通る貫通導体6aは第1の接続導体よりも直径の大きい第2の接続導体6cが接続されている。   In the example shown in FIG. 3A, the through conductor 6a passing through the opening 4a of the ground conductor layer 4 is the first connecting conductor 6b at a position away from the other main surface of the wiring board 1 on which the electrode 5 is formed. Are connected and pass through the large opening 4b formed in the ground wiring layer 4 closest to the other main surface of the insulating substrate 2 on which the electrode 5 is formed, as in the example shown in FIG. The conductor 6a is connected to a second connection conductor 6c having a diameter larger than that of the first connection conductor.

図3に示す例のように、開口部4aは円形状であり、開口部4aの外側に開口部4aに
沿って、複数の接地貫通導体7が平面視して貫通導体6aを中心とする同心円上に配列されているのが好ましい。大開口部4bを有する接地配線層4の上下に位置する絶縁層2f〜2hにおいては、大開口部4bの外側に貫通導体6aを中心とする同心円状に配列される。このようにしたときには、信号貫通導体6aを中心として同心円状に接地貫通導体7が配列されることから、伝送される信号の漏洩を全ての方向に対して抑制することができるので、伝送する信号の損失がさらに低減された配線基板となる。同心円状に配列とは、同心円上に等間隔で配置することである。
As shown in FIG. 3, the opening 4a is circular, and a plurality of grounding through conductors 7 are concentrically centered on the through conductor 6a in plan view along the opening 4a outside the opening 4a. It is preferred that they are arranged above. Insulating layers 2f to 2h located above and below the ground wiring layer 4 having the large opening 4b are arranged concentrically around the through conductor 6a outside the large opening 4b. In this case, since the grounding through conductors 7 are arranged concentrically around the signal through conductor 6a, leakage of the transmitted signal can be suppressed in all directions. The wiring board is further reduced in loss. Concentric arrangement means to arrange them at equal intervals on the concentric circles.

接地貫通導体7は、貫通導体6aを取り囲むように配置するために、貫通導体6aの周囲に少なくとも3つ配置するのが好ましく、より好ましくは、図3(a)に示す例のように、貫通導体6aの周囲に4つ以上の接地貫通導体7を配置するのが好ましい。また、同心円状に配列された接地貫通導体7は、近接する2つの接地貫通導体7・7間の距離が信号貫通導体6によって伝送される信号の波長の1/4以下となるようにすると、信号が接地貫通導体7・7間を通って漏洩するのを抑制することができるので好ましい。   In order to arrange the grounding through conductors 7 so as to surround the through conductors 6a, it is preferable to arrange at least three around the through conductors 6a. More preferably, as shown in FIG. It is preferable to arrange four or more grounding through conductors 7 around the conductor 6a. Further, the grounding through conductors 7 arranged in a concentric circle shape are such that the distance between the two adjacent grounding through conductors 7 and 7 is equal to or less than ¼ of the wavelength of the signal transmitted by the signal through conductor 6. It is preferable because a signal can be prevented from leaking between the ground through conductors 7 and 7.

大開口部4bを通る貫通導6aに接続される第2の接続導体6cは、図4(a)および(b)に示す例のように、四角形や六角形のような多角形状でも構わない。設計の観点においては、第2の接続導体6cは、円形状であることが好ましい。   The second connecting conductor 6c connected to the penetrating conductor 6a passing through the large opening 4b may have a polygonal shape such as a quadrangle or a hexagon as in the examples shown in FIGS. 4 (a) and 4 (b). In terms of design, the second connection conductor 6c is preferably circular.

第2の接続導体6cは、第1の接続導体6bよりも大きい最大外形寸法を有している。設計の観点においては、第2の接続導体6cは、第1の接続導体6bよりも大きい面積を有している方が良い。   The second connection conductor 6c has a maximum outer dimension larger than that of the first connection conductor 6b. From the viewpoint of design, it is better that the second connection conductor 6c has a larger area than the first connection conductor 6b.

複数の第2の接続導体6c間の距離は、インピーダンス整合の観点から、伝送される信号の波長の1/4以下である。   The distance between the plurality of second connection conductors 6c is ¼ or less of the wavelength of the transmitted signal from the viewpoint of impedance matching.

信号貫通導体6(貫通導体6a)や接地貫通導体7等の貫通導体は、配線基板1を作製する際の上下の絶縁層の位置ずれよる断線を防止するために、第1の接続導体および第2の接続導体の径は、上下の絶縁層間の貫通導体の径よりも大きいのが好ましい。   The through conductors such as the signal through conductor 6 (through conductor 6a) and the ground through conductor 7 are provided with the first connecting conductor and the first connecting conductor in order to prevent disconnection due to the displacement of the upper and lower insulating layers when the wiring board 1 is manufactured. The diameter of the connecting conductor 2 is preferably larger than the diameter of the through conductor between the upper and lower insulating layers.

このような擬似同軸構造の信号貫通導体6の特性インピーダンスの値は、伝送する信号の周波数が10GHz以上である場合には、要求される伝送特性に応じて一般的な50Ωよりも高い60〜70Ω程度に設定するのが好ましい。これは、電極5の特性インピーダンスは、接地配線層4と電極5との間に発生する容量によって50Ωよりも低い値となるため、擬似同軸構造の信号貫通導体6の特性インピーダンスを50Ωよりも高い値にすることによって、擬似同軸構造の信号貫通導体6から電極5にかけての平均の特性インピーダンスを50Ωに近づけることで伝送特性を改善することができるからである。同様に、差動配線の場合においては、一般的な100Ωよりも高い120〜140Ω程度に設定することで10GHz以上の
周波数で伝送特性を改善することができる。
The value of the characteristic impedance of the signal through conductor 6 having such a pseudo coaxial structure is 60 to 70Ω, which is higher than the general 50Ω depending on the required transmission characteristics when the frequency of the signal to be transmitted is 10 GHz or more. It is preferable to set the degree. This is because the characteristic impedance of the electrode 5 is lower than 50Ω due to the capacitance generated between the ground wiring layer 4 and the electrode 5, and therefore the characteristic impedance of the signal through conductor 6 having a pseudo coaxial structure is higher than 50Ω. This is because the transmission characteristic can be improved by making the average characteristic impedance from the signal through conductor 6 having the pseudo coaxial structure to the electrode 5 close to 50Ω by setting the value to the value. Similarly, in the case of differential wiring, the transmission characteristics can be improved at a frequency of 10 GHz or more by setting it to about 120 to 140Ω, which is higher than general 100Ω.

具体的には、差動配線を用いた絶縁基板2の比誘電率が5.8であり、信号配貫通導体6
および接地貫通導体7の直径が75μmである場合には、1つの信号貫通導体6を取り囲むように信号貫通導体6の中心から半径250μmの同心円上に等間隔に4つの直径75μmの
接地貫通導体7を配列(信号貫通導体6と接地貫通導体7との間の距離は175μm)する
ことで差動インピーダンスを50Ωとすることができる。このとき、第1の接続導体の直径
は175um、接地導体4の開口部4aの直径は500μmとすればよい。
Specifically, the dielectric constant of the insulating substrate 2 using differential wiring is 5.8, and the signal distribution through conductor 6
When the diameter of the ground through conductor 7 is 75 μm, four ground through conductors 7 having a diameter of 75 μm are arranged at equal intervals on a concentric circle having a radius of 250 μm from the center of the signal through conductor 6 so as to surround one signal through conductor 6. Is arranged (the distance between the signal through conductor 6 and the ground through conductor 7 is 175 μm), so that the differential impedance can be 50Ω. At this time, the diameter of the first connection conductor may be 175 μm, and the diameter of the opening 4 a of the ground conductor 4 may be 500 μm.

絶縁基板2の他方主面に形成された電極5の直径が800μmであり、他方主面から100μmの位置にある接地配線層4に直径が1800μmの大開口部4bを設けて不要な容量を低減させた場合に、図6に示す例のような、大開口部64bを有する接地配線層64の上下に位置
する絶縁層62f〜62hを貫通する貫通導体66aを直径75μm、第1の接続導体66bの直径
を125umとして、この信号貫通導体6の中心から半径900μmの同心円上に等間隔に4つの接地貫通導体7を配列(信号貫通導体6と4つの各接地貫通導体7それぞれとの間の距離は825μm)とした、従来の配線基板における擬似同軸構造の信号貫通導体66の差動イン
ピーダンスの値は、90Ω程度と大きいものとなってしまう。
The electrode 5 formed on the other main surface of the insulating substrate 2 has a diameter of 800 μm, and the ground wiring layer 4 located 100 μm from the other main surface is provided with a large opening 4b having a diameter of 1800 μm to reduce unnecessary capacitance. In this case, the through conductor 66a penetrating the insulating layers 62f to 62h located above and below the ground wiring layer 64 having the large opening 64b as shown in FIG. 6 has a diameter of 75 μm and the first connecting conductor 66b. The diameter of the signal through conductor is 125 um, and four ground through conductors 7 are arranged at equal intervals on a concentric circle having a radius of 900 μm from the center of the signal through conductor (distance between the signal through conductor 6 and each of the four ground through conductors 7. 825 μm), the differential impedance value of the signal through conductor 66 of the pseudo coaxial structure in the conventional wiring board is as large as about 90Ω.

これに対して、図1に示す例のように、上記と同様の大開口部4bを有する接地配線層4および接地貫通導体7で、大開口部4bを有する接地配線層4の上下に位置する絶縁層2を貫通する信号貫通導体6の直径を75μm、第2の接続導体の直径を300μmとして配置した、本発明の配線基板における擬似同軸構造の信号貫通導体6の特性インピーダンスの値は63Ω程度となり、大開口部4bを設けても特性インピーダンスの上昇を抑制することができる。   On the other hand, as in the example shown in FIG. 1, the ground wiring layer 4 and the ground through conductor 7 having the large opening 4b similar to the above are positioned above and below the ground wiring layer 4 having the large opening 4b. The characteristic impedance value of the signal through conductor 6 of the pseudo coaxial structure in the wiring board of the present invention in which the diameter of the signal through conductor 6 penetrating the insulating layer 2 is 75 μm and the diameter of the second connecting conductor is 300 μm is about 63Ω. Thus, even if the large opening 4b is provided, an increase in characteristic impedance can be suppressed.

また、上記本発明の配線基板および従来の配線基板の、擬似同軸構造の信号貫通導体の電気特性をシミュレーションによって算出した。図5はそのシミュレーション結果における伝送特性のうち、反射特性(S11)を示すグラフであり、縦軸は反射量を、横軸は周波数を示している。また、図5において、実線は本発明の配線基板の特性を示し、破線は従来の配線基板の特性を示している。   In addition, the electrical characteristics of the pseudo-coaxial signal through conductors of the wiring board of the present invention and the conventional wiring board were calculated by simulation. FIG. 5 is a graph showing the reflection characteristic (S11) among the transmission characteristics in the simulation result, where the vertical axis represents the reflection amount and the horizontal axis represents the frequency. In FIG. 5, the solid line indicates the characteristic of the wiring board of the present invention, and the broken line indicates the characteristic of the conventional wiring board.

本発明の配線基板のシミュレーションモデルでは、信号配線層3は、差動配線であり配線幅が55μm、配線間の距離が175umで厚みが10μmであって、その上下に厚さ100μmの絶縁層を介して接地配線層4を配置することで、差動インピーダンスが100Ωであるスト
リップ線路とした。この信号配線層3から0.2mmまでは上記した、1つの直径75μmの
信号貫通導体6と、直径500μmの開口部4aを有する接地配線層4と、直径125μmの第1の接続導体6bとからなる第1の擬似同軸構造として、そこから電極5までの0.6mmは
、上記した、直径75μmの信号貫通導体6aと第2の接続通導体6cと、直径が1800μm
の大開口部4bを有する接地配線層4とからなる第2の擬似同軸構造とした。
In the simulation model of the wiring board of the present invention, the signal wiring layer 3 is a differential wiring, the wiring width is 55 μm, the distance between the wirings is 175 μm, the thickness is 10 μm, and an insulating layer having a thickness of 100 μm is formed above and below it. A strip line having a differential impedance of 100Ω is obtained by arranging the ground wiring layer 4 through the ground line. From the signal wiring layer 3 to 0.2 mm, the signal through conductor 6 having a diameter of 75 μm, the ground wiring layer 4 having an opening 4a having a diameter of 500 μm, and the first connection conductor 6b having a diameter of 125 μm are formed. As the first pseudo-coaxial structure, 0.6 mm from there to the electrode 5 is the above-described signal through conductor 6a having a diameter of 75 μm and the second connecting conductor 6c, and the diameter is 1800 μm.
The second pseudo-coaxial structure is formed of the ground wiring layer 4 having the large opening 4b.

これに対して従来の配線基板のシミュレーションモデルは、信号配線層3から電極5までは図6に示す例のような構造で、上記本発明のモデルに対して、信号貫通導体66を信号配線層63から電極65まで直径75μmの貫通導体66aと直径125μmの第1の接続導体66bとした以外は同じにした。   On the other hand, in the conventional simulation model of the wiring board, the structure from the signal wiring layer 3 to the electrode 5 is as shown in FIG. A through conductor 66a having a diameter of 75 μm and a first connecting conductor 66b having a diameter of 125 μm were used in the same manner from 63 to the electrode 65.

図8から、従来の配線基板は、信号貫通導体の特性インピーダンス値が、信号配線層3の50Ωに対して90Ωと非常に高いものであるため、15GHz以上で反射損失が劣化し、22
GHz以上で−15dB以上となっているのに対して、本発明の配線基板は、30GHz程度ま
で反射損失が−15dB以下となっていることがわかる。通常、反射損失が−15dB以下で
あると、信号を伝送するのに問題がないとされる。
From FIG. 8, since the characteristic impedance value of the signal through conductor of the conventional wiring board is as high as 90Ω with respect to 50Ω of the signal wiring layer 3, the reflection loss deteriorates at 15 GHz or more.
It can be seen that the wiring loss of the present invention is -15 dB or less up to about 30 GHz, whereas it is -15 dB or more at the GHz or higher. Usually, when the reflection loss is −15 dB or less, there is no problem in transmitting a signal.

このようなことから、本発明の配線基板は、電極5に近い部位においても特性インピーダンスが整合された、高周波信号を伝送することのできる配線基板であるといえる。   For this reason, it can be said that the wiring board of the present invention is a wiring board capable of transmitting a high-frequency signal in which the characteristic impedance is matched even in a portion close to the electrode 5.

絶縁基板2の絶縁層2a〜2hは、酸化アルミニウム質焼結体,窒化アルミニウム質焼結体,炭化珪素質焼結体,窒化珪素質焼結体,ムライト質焼結体またはガラスセラミックス等のセラミック材料、あるいは、ポリイミド,エポキシ樹脂,フッ素樹脂,ポリノルボルネンまたはベンゾシクロブテン等の有機樹脂材料、あるいはセラミック材料の粉末を有機樹脂材料中に分散して成る複合絶縁材料等の電気絶縁材料から成るものである。   The insulating layers 2a to 2h of the insulating substrate 2 are made of ceramics such as an aluminum oxide sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, a silicon nitride sintered body, a mullite sintered body, or a glass ceramic. Materials, or composed of electrical insulating materials such as polyimide, epoxy resin, fluororesin, organic resin material such as polynorbornene or benzocyclobutene, or composite insulating material in which ceramic material powder is dispersed in organic resin material It is.

絶縁層2a〜2hは、例えばセラミックグリーンシート積層法や、アディティブ法等の基板形成手段によって形成される。   The insulating layers 2a to 2h are formed by a substrate forming means such as a ceramic green sheet laminating method or an additive method.

絶縁基板2が、例えば酸化アルミニウム質焼結体から成る場合であれば、まず、酸化アルミニウム,酸化珪素,酸化カルシウムまたは酸化マグネシウム等の原料粉末に適当な有機バインダーや溶剤等を添加混合して泥漿状となし、これをドクターブレード法等のシート形成方法によってシート状となすことによって絶縁層2a〜2hとなるセラミックグリーンシートを得る。このセラミックグリーンシートを適当な大きさに切断して、上下に積層して積層体を作製し、この積層体を還元雰囲気中で約1600℃の温度で焼成することによって複数の絶縁層2a〜2hが積層された絶縁基板2が製作される。   If the insulating substrate 2 is made of, for example, an aluminum oxide sintered body, first, an appropriate organic binder or solvent is added to and mixed with the raw material powder such as aluminum oxide, silicon oxide, calcium oxide or magnesium oxide, and the slurry is mixed. The ceramic green sheet used as the insulating layers 2a-2h is obtained by making this into a sheet shape by a sheet forming method such as a doctor blade method. This ceramic green sheet is cut into an appropriate size, and laminated to prepare a laminated body. The laminated body is fired at a temperature of about 1600 ° C. in a reducing atmosphere to thereby form a plurality of insulating layers 2a to 2h. Is manufactured.

絶縁基板2がエポキシ樹脂から成る場合であれば、例えば、まず、ガラス繊維を織り込んだ布にエポキシ樹脂を含浸させて成るガラスエポキシ樹脂から成る基板を最下層の絶縁層2hとし、その上面に液状の熱硬化性や感光性のエポキシ樹脂前駆体をスピンコート法もしくはカーテンコート法等により被着させ、これを加熱あるいは紫外線等の光を照射することで硬化処理することによって絶縁層2gを形成する。さらにこの上に必要な層数に応じて繰り返し絶縁層を形成することで複数の絶縁層2a〜2fを形成することができる。   In the case where the insulating substrate 2 is made of an epoxy resin, for example, first, a substrate made of glass epoxy resin obtained by impregnating a glass fiber woven cloth with an epoxy resin is used as the lowermost insulating layer 2h, and a liquid is formed on the upper surface thereof. The insulating layer 2g is formed by depositing a thermosetting or photosensitive epoxy resin precursor by spin coating or curtain coating, and curing it by heating or irradiating light such as ultraviolet rays. . Furthermore, a plurality of insulating layers 2a to 2f can be formed by repeatedly forming an insulating layer according to the required number of layers thereon.

信号配線層3,接地配線層4,電極5,信号貫通導体6(接続導体6b,6c),接地
貫通導体7,および表層配線層8等の配線導体は、絶縁基板2がセラミック材料から成る場合であれば、例えばタングステン(W),モリブデン(Mo),モリブデン−マンガン(Mo−Mn),銅(Cu),銀(Ag)または銀−パラジウム(Ag−Pd)等の金属粉末によるメタライズで形成することができ、絶縁基板2が有機樹脂材料から成る場合であれば、例えば銅(Cu),銀(Ag),ニッケル(Ni),クロム(Cr),チタン(Ti),金(Au)またはニオブ(Nb)やそれらの合金等の金属材料から成る薄膜等で形成することができる。
When the insulating substrate 2 is made of a ceramic material, the signal wiring layers 3, the ground wiring layers 4, the electrodes 5, the signal through conductors 6 (connection conductors 6b and 6c), the ground through conductors 7, and the surface wiring layers 8, etc. For example, it is formed by metallization with a metal powder such as tungsten (W), molybdenum (Mo), molybdenum-manganese (Mo-Mn), copper (Cu), silver (Ag) or silver-palladium (Ag-Pd). If the insulating substrate 2 is made of an organic resin material, for example, copper (Cu), silver (Ag), nickel (Ni), chromium (Cr), titanium (Ti), gold (Au) or It can be formed of a thin film made of a metal material such as niobium (Nb) or an alloy thereof.

絶縁基板2がセラミック材料から成る場合であれば、上記した絶縁基板2を作製する工程において、セラミックグリーンシートに金型による打ち抜き加工やレーザー加工によって信号貫通導体6(接続導体6b,6c)および接地貫通導体7用の貫通孔を形成して、
この貫通孔を上記金属の粉末に適当な有機バインダーや溶剤等を添加混合して得た金属ペーストで充填しておき、セラミックグリーンシートの表面には信号配線層3,接地配線層4,電極5および表層配線層8の所定のパターンで金属ペーストを印刷塗布しておいて、セラミックグリーンシートとともに焼成することによって形成することができる。
If the insulating substrate 2 is made of a ceramic material, the signal through conductor 6 (connection conductors 6b and 6c) and the ground are formed by punching or laser processing the ceramic green sheet with a die in the step of manufacturing the insulating substrate 2 described above. Forming a through hole for the through conductor 7,
The through holes are filled with a metal paste obtained by adding and mixing an appropriate organic binder or solvent to the metal powder, and the signal wiring layer 3, the ground wiring layer 4, and the electrode 5 are formed on the surface of the ceramic green sheet. The metal paste can be printed and applied in a predetermined pattern on the surface wiring layer 8 and fired together with the ceramic green sheet.

絶縁基板2が有機樹脂材料から成る場合であれば、上記のように形成する絶縁層と、銅層を無電解めっき法や蒸着法等の薄膜形成技術およびフォトリソグラフィ技術を採用することによって形成して成る配線導体とを交互に作製すればよい。例えば、感光性樹脂を用いて貫通孔を有する絶縁層を形成し、絶縁層上に所定パターン形状のマスクを形成して、スパッタリング法,真空蒸着法またはメッキ法によって貫通孔内および絶縁層の表面に所定形状の金属薄膜を形成すればよい。または、マスクを形成せずに絶縁層の上面の全面に金属薄膜を形成した後に、所定形状のマスクを形成して不要な部分をエッチングによって除去する方法で形成してもよい。あるいは、例えば銅から成る金属箔を所定形状に加工して絶縁層上に転写することで信号配線層3,接地配線層4,電極5および表層配線層8を形成してもよい。また、信号貫通導体6(接続導体6b,6c)および接地貫通導体7は
、上記金属の粉末とバインダーとから成るペーストを貫通孔に充填することで形成してもよい。
If the insulating substrate 2 is made of an organic resin material, the insulating layer formed as described above and the copper layer are formed by employing a thin film forming technique such as an electroless plating method or a vapor deposition method and a photolithography technique. What is necessary is just to produce alternately the wiring conductor comprised. For example, an insulating layer having a through hole is formed using a photosensitive resin, a mask having a predetermined pattern shape is formed on the insulating layer, and the inside of the through hole and the surface of the insulating layer are formed by sputtering, vacuum evaporation, or plating. A metal thin film of a predetermined shape may be formed on Alternatively, after forming a metal thin film on the entire upper surface of the insulating layer without forming a mask, a mask having a predetermined shape may be formed and unnecessary portions may be removed by etching. Alternatively, for example, the signal wiring layer 3, the ground wiring layer 4, the electrode 5 and the surface wiring layer 8 may be formed by processing a metal foil made of copper into a predetermined shape and transferring it onto the insulating layer. Further, the signal through conductor 6 (connection conductors 6b and 6c) and the ground through conductor 7 may be formed by filling a through hole with a paste made of the above metal powder and a binder.

1:配線基板
2:絶縁基板
2a〜2h:絶縁層
3:信号配線層
4:接地配線層
4a:開口部
4b:大開口部
5:電極
6:信号貫通導体
6a:貫通導体
6b:第1の接続導体
6c:第2の接続導体
7:接地貫通導体
8:表層配線層
1: Wiring substrate 2: Insulating substrates 2a-2h: Insulating layer 3: Signal wiring layer 4: Ground wiring layer 4a: Opening 4b: Large opening 5: Electrode 6: Signal through conductor 6a: Through conductor 6b: First Connection conductor 6c: Second connection conductor 7: Grounding through conductor 8: Surface wiring layer

Claims (2)

複数の絶縁層が積層された絶縁基板と、
該絶縁基板の内部または一方主面に形成された信号配線層と、
前記絶縁基板の他方主面に形成された電極と、
前記複数の絶縁層の間に形成され、開口部を有する複数の接地配線層と、
前記開口部を通って複数の前記絶縁層を貫通し、一端が前記信号配線層に電気的に接続され他端が前記電極に接続されており、連結された複数の貫通導体と該複数の貫通導体間に設けられた複数の接続導体とを含む信号貫通導体と、
該信号貫通導体を取り囲むようにして前記複数の絶縁層を貫通するとともに、前記開口部の外側で前記接地配線層に接続された複数の接地貫通導体とを備えており、
前記複数の接地導体層の前記開口部のうち少なくとも前記他方主面に最も近い前記接地配線層の第1の開口部は、平面視において前記電極よりも大きく、
前記複数の接続導体のうち前記第1の開口部に対応して設けられた第1の接続導体は、前記複数の接地導体層の前記開口部のうち前記第1の開口部よりも小さい第2の開口部に対応して設けられた第2の接続導体よりも大きいことを特徴とする配線基板。
An insulating substrate in which a plurality of insulating layers are laminated;
A signal wiring layer formed inside or one main surface of the insulating substrate;
An electrode formed on the other main surface of the insulating substrate;
A plurality of ground wiring layers formed between the plurality of insulating layers and having openings;
The plurality of insulating layers pass through the opening, one end is electrically connected to the signal wiring layer and the other end is connected to the electrode, and the plurality of connected through conductors and the plurality of throughs A signal through conductor including a plurality of connecting conductors provided between the conductors;
A plurality of grounding through conductors that pass through the plurality of insulating layers so as to surround the signal through conductors and are connected to the grounding wiring layer outside the openings,
The first opening of the ground wiring layer closest to at least the other main surface of the openings of the plurality of ground conductor layers is larger than the electrode in plan view,
Of the plurality of connection conductors, a first connection conductor provided corresponding to the first opening is a second smaller than the first opening among the openings of the plurality of ground conductor layers. A wiring board characterized in that it is larger than the second connection conductor provided corresponding to the opening.
前記開口部は円形状であり、前記複数の接地貫通導体は、平面視して前記信号貫通導体を中心とする同心円上に配列されていることを特徴とする請求項1記載の配線基板。   2. The wiring board according to claim 1, wherein the opening has a circular shape, and the plurality of grounding through conductors are arranged on a concentric circle centered on the signal through conductor in a plan view.
JP2011121674A 2011-05-31 2011-05-31 Wiring board Active JP5897820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011121674A JP5897820B2 (en) 2011-05-31 2011-05-31 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011121674A JP5897820B2 (en) 2011-05-31 2011-05-31 Wiring board

Publications (2)

Publication Number Publication Date
JP2012248797A true JP2012248797A (en) 2012-12-13
JP5897820B2 JP5897820B2 (en) 2016-03-30

Family

ID=47468950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011121674A Active JP5897820B2 (en) 2011-05-31 2011-05-31 Wiring board

Country Status (1)

Country Link
JP (1) JP5897820B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171191A (en) * 2015-03-12 2016-09-23 京セラ株式会社 Wiring board
JP2017028168A (en) * 2015-07-24 2017-02-02 京セラ株式会社 Printed wiring board and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160598A (en) * 1999-11-30 2001-06-12 Kyocera Corp Substrate for mounting semiconductor device and package for housing optical semiconductor device
JP2011091359A (en) * 2009-09-28 2011-05-06 Kyocera Corp Wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160598A (en) * 1999-11-30 2001-06-12 Kyocera Corp Substrate for mounting semiconductor device and package for housing optical semiconductor device
JP2011091359A (en) * 2009-09-28 2011-05-06 Kyocera Corp Wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171191A (en) * 2015-03-12 2016-09-23 京セラ株式会社 Wiring board
JP2017028168A (en) * 2015-07-24 2017-02-02 京セラ株式会社 Printed wiring board and method of manufacturing the same

Also Published As

Publication number Publication date
JP5897820B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP4814911B2 (en) Vertical transition structure of high-frequency transition lines
WO2011040329A1 (en) Package for containing element and mounted structure
JP5430494B2 (en) Wiring board
JP2009111658A (en) Multilayer wiring board
JP5155582B2 (en) Wiring board and electronic device
JP2005243864A (en) Wiring board
JP5340188B2 (en) Wiring board
JP5897820B2 (en) Wiring board
JP5318360B2 (en) Wiring board and electronic device
JP5728101B1 (en) MMIC integrated circuit module
JP2008311682A (en) Wiring board
JP2009004809A (en) Wiring substrate
JP6301738B2 (en) Electronic device mounting package and electronic device
JP5988360B2 (en) Wiring board
JP4462782B2 (en) High frequency wiring board
JP4373752B2 (en) Wiring board
JP4340131B2 (en) Wiring board
JP4601369B2 (en) Wiring board
JP4557768B2 (en) Semiconductor device
JP4349827B2 (en) Wiring board
JP5545904B1 (en) Waveguide microstrip line converter
JP2001077498A (en) Ceramic substrate and manufacture thereof
JP7076347B2 (en) Waveguide
JP4177849B2 (en) Wiring board for mounting electronic parts and electronic device
JP2004259960A (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160303

R150 Certificate of patent or registration of utility model

Ref document number: 5897820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150