JP2012247297A - 触覚センサ - Google Patents

触覚センサ Download PDF

Info

Publication number
JP2012247297A
JP2012247297A JP2011119038A JP2011119038A JP2012247297A JP 2012247297 A JP2012247297 A JP 2012247297A JP 2011119038 A JP2011119038 A JP 2011119038A JP 2011119038 A JP2011119038 A JP 2011119038A JP 2012247297 A JP2012247297 A JP 2012247297A
Authority
JP
Japan
Prior art keywords
dielectric layer
tactile sensor
load
layer
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011119038A
Other languages
English (en)
Inventor
Masao Inada
誠生 稲田
Shi Jie Guo
士傑 郭
Takahisa Shiraoka
貴久 白岡
Yutaka Sato
侑 佐藤
Original Assignee
Tokai Rubber Ind Ltd
東海ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rubber Ind Ltd, 東海ゴム工業株式会社 filed Critical Tokai Rubber Ind Ltd
Priority to JP2011119038A priority Critical patent/JP2012247297A/ja
Publication of JP2012247297A publication Critical patent/JP2012247297A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】構造が簡単で、入力された荷重を剪断力と圧縮力とに分解して、さらには剪断力を二方向に分解して検出可能な触覚センサを提供することを課題とする。
【解決手段】触覚センサ1は、接触対象物90から荷重F1が入力される入力面50aを有し、荷重F1を剪断力と圧縮力とに分解して検出する。触覚センサ1は、X方向の変形に異方性を有するX方向用誘電層2と、Y方向の変形に異方性を有するY方向用誘電層3と、Z方向の変形に異方性を有する、または変形に等方性を有するZ方向用誘電層4と、を備える。触覚センサ1は、荷重F1が入力される際の変形に伴う各誘電層2、3、4の静電容量の変化を基に、剪断力、圧縮力を検出する。
【選択図】図1

Description

本発明は、ロボットの人工皮膚などに用いられ、接触対象物から入力される荷重を、剪断力と圧縮力とに分解して検出可能な静電容量型の触覚センサに関する。

特許文献1には、接触対象物から入力される荷重を、剪断力と圧縮力とに分解して検出可能な静電容量型の触覚センサが開示されている。同文献の触覚センサは、剪断力検出部と、圧縮力検出部と、を備えている。剪断力検出部、圧縮力検出部は、各々、表側電極層と、裏側電極層と、誘電層と、を備えている。

コンデンサの静電容量は、式(1)から算出される。
C=ε・S/d ・・・式(1)
式(1)中、Cは静電容量、εは誘電率、Sは対向する電極の面積、dは電極間距離である。

同文献の触覚センサに剪断力が加わると、触覚センサを表側または裏側から見た場合の、剪断力検出部の表側電極層と裏側電極層との重複面積が変化する。すなわち、式(1)の面積Sが変化する。この面積Sの変化を利用して、触覚センサは剪断力を検出している。

また、同文献の触覚センサに圧縮力が加わると、圧縮力検出部の表側電極層と裏側電極層との間の距離が変化する。すなわち、式(1)の電極間距離dが変化する。この電極間距離dの変化を利用して、触覚センサは圧縮力を検出している。

特開2010−122018号公報

しかしながら、同文献の触覚センサによると、剪断力を、さらに、X方向分力とY方向分力とに分解して検出する場合、同文献の[図11]〜[図14]に示すように、電極層の配置が複雑だった。すなわち、X方向用表側電極層、Y方向用表側電極層、X方向用裏側電極層、Y方向用裏側電極層という四種類の電極層を精度良く配置する必要があった。このため、触覚センサの構造が複雑化していた。

本発明の触覚センサは、上記課題に鑑みて完成されたものである。本発明は、構造が簡単で、入力された荷重を剪断力と圧縮力とに分解して、さらには剪断力を二方向に分解して検出可能な触覚センサを提供することを目的とする。

(1)上記課題を解決するため、本発明の触覚センサは、接触対象物から荷重が入力される入力面を有し、該荷重を、該入力面の面展開方向に加わる剪断力と、該入力面の略法線方向に加わる圧縮力と、に分解して検出可能な静電容量型の触覚センサであって、互いに交差する方向をX方向、Y方向、Z方向として、該X方向の変形に異方性を有するX方向用誘電層と、該X方向用誘電層の表側または裏側に配置され、該Y方向の変形に異方性を有するY方向用誘電層と、該X方向用誘電層の表側または裏側に配置され、該Z方向の変形に異方性を有する、または該X方向、該Y方向、該Z方向の変形に等方性を有するZ方向用誘電層と、該X方向用誘電層の表裏両側、該Y方向用誘電層の表裏両側、該Z方向用誘電層の表裏両側に配置される複数の電極層と、を備え、前記荷重が入力される際の変形に伴う各誘電層の静電容量の変化を基に、前記剪断力、前記圧縮力を検出することを特徴とする。

ここで、「X方向の変形に異方性を有する」とは、X方向、Y方向、Z方向の中で、X方向の変形に、最も特徴があることをいう。例えば、X方向、Y方向、Z方向の中で、最もX方向に変形しやすいことをいう。または、X方向、Y方向、Z方向の中で、最もX方向に変形しにくいことをいう。「Y方向の変形に異方性を有する」、「Z方向の変形に異方性を有する」についても、同様である。

本発明の触覚センサは、X方向用誘電層と、Y方向用誘電層と、Z方向用誘電層と、を備えている。これら三種類の誘電層は、各々、変形方向に異方性を有している(ただし、Z方向用誘電層は、変形方向に等方性を有している場合もある。)。このため、入力された荷重を、三方向に分解して検出することができる。したがって、入力された荷重を、圧縮力と、二方向の剪断力と、に分解して検出することができる。

また、本発明の触覚センサによると、各誘電層(X方向用誘電層、Y方向用誘電層、Z方向用誘電層)の変形の異方性(Z方向用誘電層の変形は等方性の場合もある。)に基づいて、入力された荷重を、圧縮力と、二方向の剪断力と、に分解して検出している。このため、構造が簡単である。

(1−1)好ましくは、上記(1)の構成において、前記圧縮力が加わる方向は、前記Z方向であり、前記剪断力が加わる二方向は、各々該Z方向に略直交すると共に、互いに略直交する前記X方向および前記Y方向である構成とする方がよい。

本構成によると、X方向用誘電層およびY方向用誘電層により、互いに直交する二方向の剪断力を検出することができる。また、Z方向用誘電層により、圧縮力を検出することができる。

また、荷重の分解方向(圧縮力が加わる方向、剪断力が加わる方向)と、各誘電層が異方性を有する方向(Z方向、X方向、Y方向)と、が対応していない場合と比較して(この場合も勿論(1)の構成に含まれる。)、制御装置における荷重の分解処理が簡単である。

(2)好ましくは、上記(1)の構成において、前記X方向用誘電層は前記X方向に変形しやすく、前記Y方向用誘電層は前記Y方向に変形しやすく、前記Z方向用誘電層は前記Z方向に変形しやすい、または該X方向、該Y方向、該Z方向に均等に変形しやすい構成とする方がよい。

本構成によると、荷重のX方向分力により、X方向用誘電層およびZ方向用誘電層のうち、少なくともX方向用誘電層の層厚が薄くなる。つまり、少なくともX方向用誘電層の表裏両側の電極層の電極間距離d(式(1)参照)が小さくなる。

また、荷重のY方向分力により、Y方向用誘電層およびZ方向用誘電層のうち、少なくともY方向用誘電層の層厚が薄くなる。つまり、少なくともY方向用誘電層の表裏両側の電極層の電極間距離dが小さくなる。

また、荷重のZ方向分力により、Z方向用誘電層の層厚が薄くなる。つまり、Z方向用誘電層の表裏両側の電極層の電極間距離dが小さくなる。

本構成によると、X方向用誘電層がX方向に変形しにくく、Y方向用誘電層がY方向に変形しにくく、Z方向用誘電層がZ方向に変形しにくい(またはX方向、Y方向、Z方向に均等に変形しにくい)場合と比較して、制御装置における荷重の分解処理が簡単である。

(3)好ましくは、上記(2)の構成において、前記X方向用誘電層、前記Y方向用誘電層、前記Z方向用誘電層のうち、少なくとも一つの誘電層は、該誘電層の変形に異方性を付与するために、該誘電層を優先的に変形させたい方向に対して略直交する方向に延在するスリット、セル、フィラー、突起列のうち少なくとも一つを有する構成とする方がよい。本構成によると、簡単に、誘電層の変形に異方性を付与することができる。

本発明によると、構造が簡単で、入力された荷重を剪断力と圧縮力とに分解して、さらには剪断力を二方向に分解して検出可能な触覚センサを提供することを目的とする。

第一実施形態の触覚センサの斜視図である。 同触覚センサの分解斜視図である。 (a)は、無荷重状態のX方向用誘電層の前面図である。(b)は、荷重状態のX方向用誘電層の前面図である。 同触覚センサの左上方向から荷重が加わる場合の斜視図である。 同触覚センサの左後上方向から荷重が加わる場合の斜視図である。 第二実施形態の触覚センサの斜視図である。 第三実施形態の触覚センサのX方向用誘電層の斜視図である。 第四実施形態の触覚センサのX方向用誘電層の透過斜視図である。 第五実施形態の触覚センサのX方向用誘電層付近の透過斜視図である。 第六実施形態の触覚センサのZ方向用誘電層の透過斜視図である。 第七実施形態の触覚センサの斜視図である。

以下、本発明の触覚センサの実施の形態について説明する。

<第一実施形態>
以下に示す図面において、左右方向は、本発明の「X方向」および「面展開方向」に対応している。また、前後方向は、本発明の「Y方向」および「面展開方向」に対応している。また、上下方向は、本発明の「Z方向」および「法線方向」に対応している。

[触覚センサの構成]
まず、本実施形態の触覚センサの構成について説明する。図1に、本実施形態の触覚センサの斜視図を示す。図2に、同触覚センサの分解斜視図を示す。図1、図2に示すように、本実施形態の触覚センサ1は、X方向用誘電層2と、Y方向用誘電層3と、Z方向用誘電層4と、四つの電極層5a〜5dと、を備えている。これらの層は、上方から下方に向かって、電極層5a、X方向用誘電層2、電極層5b、Y方向用誘電層3、電極層5c、Z方向用誘電層4、電極層5dの順番に、積層されている。最上層である電極層5aの上面は、接触対象物90から荷重が入力される入力面50aである。

四つの電極層5a〜5dは、各々、アクリルゴムと、導電性カーボンブラックと、を含んで形成されている。四つの電極層5a〜5dは、各々、正方形の薄膜状を呈している。四つの電極層5a〜5dには、各々、配線(図略)を介して、制御装置(図略)が接続されている。電極層5a、5bにより、X方向用誘電層2の静電容量に関する電気量が、制御装置に伝送される。また、電極層5b、5cにより、Y方向用誘電層3の静電容量に関する電気量が、制御装置に伝送される。また、電極層5c、5dにより、Z方向用誘電層4の静電容量に関する電気量が、制御装置に伝送される。

X方向用誘電層2は、アクリルゴム製であって、正方形の薄膜状を呈している。図3(a)に、無荷重状態のX方向用誘電層の前面図を示す。図3(b)に、荷重状態のX方向用誘電層の前面図を示す。図1〜図3(a)、図3(b)に示すように、X方向用誘電層2には、複数のスリット20が形成されている。複数のスリット20は、左右方向に所定間隔ずつ離間して配置されている。スリット20は、X方向用誘電層2の上面に開口している。スリット20は、前後方向に延在している。

図3(b)に示すように、X方向用誘電層2の上面に、左方から右方に剪断力が加わると、X方向用誘電層2の上面は、X方向用誘電層2の下面に対して、右方に変位する。ここで、スリット20により、X方向用誘電層2の組織の左右方向の連続は、切断されている。このため、スリット20が配置されていない場合と比較して、X方向用誘電層2の上面の変位量は大きくなる。このように、X方向用誘電層2が変形するため、図3(a)に示す無荷重状態に対して、図3(b)に示す荷重状態の方が、X方向用誘電層2の上下方向の層厚Dが薄くなる。したがって、図1に示すように、X方向用誘電層2の表裏両側の電極層5a、5b間の電極間距離d(式(1)参照)が小さくなる。よって、静電容量C(式(1)参照)が大きくなる。当該静電容量Cの変化に関する電気量は、図1、図2に示す電極層5a、5bにより、制御装置に伝送される。

Y方向用誘電層3は、複数のスリット30が前後方向に配置され左右方向に延在している点以外は、X方向用誘電層2と同様の構成を有している。Z方向用誘電層4は、スリットが配置されていない点以外は、X方向用誘電層2、Y方向用誘電層3と同様の構成を有している。

表1に、各誘電層の変形量を一覧表で示す。ただし、表1に示すZ方向(上下方向)の変形量には、任意の誘電層に荷重が加わり当該誘電層が変形したことに伴う、Z方向の収縮量は含まれていない。例えば、X方向用誘電層2にX方向(左右方向)から荷重が加わると、X方向用誘電層2は左右方向に大きく変形する。この際、図3(a)、図3(b)に示すように、当該変形により、X方向用誘電層2はZ方向に収縮する。当該収縮量は、表1には含まれていない。

表1に示すように、Z方向用誘電層4は、いずれの方向から荷重が加わる場合であっても、当該方向に大きく変形する。つまり、Z方向用誘電層4は、いずれの方向から荷重が加わる場合であっても、大きく収縮する。

X方向用誘電層2は、荷重にX方向分力が含まれている場合(荷重がX方向、ZX方向、XY方向、ZXY方向から加わる場合)、X方向に大きく変形する。つまり、X方向用誘電層2は、荷重にX方向分力が含まれている場合に、大きく収縮する。

Y方向用誘電層3は、荷重にY方向分力が含まれている場合(荷重がY方向、XY方向、YZ方向、ZXY方向から加わる場合)、Y方向に大きく変形する。つまり、Y方向用誘電層3は、荷重にY方向分力が含まれている場合に、大きく収縮する。

[触覚センサの動き]
次に、本実施形態の触覚センサの動きについて説明する。まず、入力面50aに対して真上方向から荷重が加わる場合について説明する。図1に示すように、真上方向から接触対象物90が入力面50aを押圧する場合(つまり表1においてZ方向から荷重F1が加わる場合)、X方向用誘電層2およびY方向用誘電層3は、あまり変形しない。これに対して、Z方向用誘電層4は、上下方向に大きく収縮する。このため、Z方向用誘電層4(電極層5c〜電極層5d間)の静電容量が大きくなる。制御装置は、当該静電容量の変化に関する電気量から、荷重F1の入力方向、荷重値を演算する。なお、入力面50aに対して前、後、左、右方向から荷重が加わる場合についても同様である。

次に、入力面50aに対して左上方向から荷重が加わる場合について説明する。図4に、本実施形態の触覚センサの左上方向から荷重が加わる場合の斜視図を示す。図4に示すように、図1に示す状態から接触対象物90を右方に移動させると、入力面50aには、左上方向から荷重F2が加わることになる。つまり、表1において、ZX方向から荷重F2が加わることになる。この場合、Y方向用誘電層3は、あまり変形しない。これに対して、Z方向用誘電層4は、左右方向に大きく変形し、上下方向に大きく収縮する。並びに、X方向用誘電層2は、左右方向に大きく変形し、上下方向に大きく収縮する。このため、Z方向用誘電層4(電極層5c〜電極層5d間)の静電容量が大きくなる。並びに、X方向用誘電層2(電極層5a〜電極層5b間)の静電容量が大きくなる。制御装置は、当該静電容量の変化に関する電気量から、荷重F2の入力方向、荷重値を演算する。なお、入力面50aに対して右上、前上、後上、左前、左後、右前、右後方向から荷重が加わる場合についても同様である。

次に、入力面50aに対して、左後上方向から荷重が加わる場合について説明する。図5に、本実施形態の触覚センサの左後上方向から荷重が加わる場合の斜視図を示す。図5に示すように、図1に示す状態から接触対象物90を右前方に移動させると、入力面50aには、左後上方向から荷重F3が加わることになる。つまり、表1において、ZXY方向から荷重F3が加わることになる。この場合、Z方向用誘電層4は、左右方向、前後方向に大きく変形し、上下方向に大きく収縮する。並びに、X方向用誘電層2は、左右方向に大きく変形し、上下方向に大きく収縮する。並びに、Y方向用誘電層3は、前後方向に大きく変形し、上下方向に大きく収縮する。このため、Z方向用誘電層4(電極層5c〜電極層5d間)の静電容量が大きくなる。並びに、X方向用誘電層2(電極層5a〜電極層5b間)の静電容量が大きくなる。並びに、Y方向用誘電層3(電極層5b〜電極層5c間)の静電容量が大きくなる。制御装置は、当該静電容量の変化に関する電気量から、荷重F3の入力方向、荷重値を演算する。入力面50aに対して左前上、右後上、右前上方向から荷重が加わる場合についても同様である。

[作用効果]
次に、本実施形態の触覚センサの作用効果について説明する。本実施形態の触覚センサ1は、X方向用誘電層2と、Y方向用誘電層3と、Z方向用誘電層4と、を備えている。X方向用誘電層2、Y方向用誘電層3は、変形方向に異方性を有している。Z方向用誘電層4は、変形方向に等方性を有している。このため、入力された荷重を、圧縮力と、二方向の剪断力と、に分解して検出することができる。

また、本実施形態の触覚センサ1によると、X方向用誘電層2、Y方向用誘電層3の変形の異方性、Z方向用誘電層4の変形の等方性に基づいて、入力された荷重を、圧縮力と、二方向の剪断力と、に分解して検出している。このため、触覚センサ1の構造が簡単である。

また、本実施形態の触覚センサ1によると、荷重の分解方向(圧縮力が加わる方向、剪断力が加わる方向)と、各誘電層が異方性を有する方向(Z方向、X方向、Y方向)と、が対応していない場合と比較して、制御装置における荷重の分解処理が簡単である。

また、本実施形態の触覚センサ1によると、荷重のX方向分力により、X方向用誘電層2およびZ方向用誘電層4の層厚が薄くなる。また、荷重のY方向分力により、Y方向用誘電層3およびZ方向用誘電層4の層厚が薄くなる。また、荷重のZ方向分力により、Z方向用誘電層4の層厚が薄くなる。このため、X方向用誘電層2がX方向に変形しにくく、Y方向用誘電層3がY方向に変形しにくく、Z方向用誘電層4がZ方向に変形しにくい(またはX方向、Y方向、Z方向に均等に変形しにくい)場合と比較して、制御装置における荷重の分解処理が簡単である。

また、本実施形態の触覚センサ1によると、X方向用誘電層2は、複数のスリット20を備えている。スリット20は前後方向に延在している。このため、スリット20により、X方向用誘電層2の組織の左右方向の連続が断たれている。したがって、X方向用誘電層2の左右方向の変位量を大きくすることができる。同様に、Y方向用誘電層3は、複数のスリット30を備えている。スリット30は左右方向に延在している。このため、スリット30により、Y方向用誘電層3の組織の前後方向の連続が断たれている。したがって、Y方向用誘電層3の前後方向の変位量を大きくすることができる。

<第二実施形態>
本実施形態の触覚センサと、第一実施形態の触覚センサとの相違点は、各誘電層専用の電極層が配置されている点である。また、積層方向(表裏方向)に隣り合う電極層間に絶縁層が介装されている点である。ここでは、相違点についてのみ説明する。

図6に、本実施形態の触覚センサの斜視図を示す。なお、図1と対応する部位については、同じ符号で示す。図6に示すように、X方向用誘電層2の上下方向両側には、電極層5A、5Bが配置されている。電極層5Aの上面は入力面50Aである。また、Y方向用誘電層3の上下方向両側には、電極層5C、5Dが配置されている。また、Z方向用誘電層4の上下方向両側には、電極層5E、5Fが配置されている。

積層方向に隣り合う電極層5Bと電極層5Cとの間には、ポリウレタン製の絶縁層6aが介装されている。また、積層方向に隣り合う電極層5Dと電極層5Eとの間には、ポリウレタン製の絶縁層6bが介装されている。

本実施形態の触覚センサと、第一実施形態の触覚センサとは、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の触覚センサ1によると、絶縁層6aにより、電極層5Bと電極層5Cとの間の導通を遮断することができる。また、絶縁層6bにより、電極層5Dと電極層5Eとの間の導通を遮断することができる。

また、本実施形態の触覚センサ1によると、絶縁層6a、6bの層厚を、各誘電層の層厚に対して、充分厚く設定することができる。このため、電極層5Bと電極層5Cとの間や、電極層5Dと電極層5Eとの間に、擬似的にコンデンサが形成される場合であっても、当該コンデンサに蓄積される静電容量が大きくなるのを、抑制することができる。したがって、本実施形態の触覚センサ1によると、剪断力、圧縮力の検出精度が高い。

<第三実施形態>
本実施形態の触覚センサと、第一実施形態の触覚センサとの相違点は、X方向用誘電層、Y方向用誘電層に、スリットではなく貫通孔が配置されている点である。ここでは、相違点についてのみ説明する。

図7に、本実施形態の触覚センサのX方向用誘電層の斜視図を示す。なお、図2と対応する部位については、同じ符号で示す。図7に示すように、X方向用誘電層2には、複数の貫通孔21が穿設されている。貫通孔21は、X方向用誘電層2を、前後方向に貫通している。貫通孔21は、X方向用誘電層2が前後方向に変形する際に潰れにくい。このため、X方向用誘電層2は、前後方向に変形しにくい。一方、貫通孔21は、X方向用誘電層2が左右方向に変形する際に潰れやすい。このため、X方向用誘電層2は、左右方向に変形しやすい。

Y方向用誘電層は、複数の貫通孔が左右方向に延在している点以外は、X方向用誘電層2と同様の構成を有している。Z方向用誘電層は、貫通孔が配置されていない点以外は、X方向用誘電層2、Y方向用誘電層と同様の構成を有している。

本実施形態の触覚センサと、第一実施形態の触覚センサとは、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の触覚センサによると、貫通孔21が配置されている分だけ、X方向用誘電層2およびY方向用誘電層を、軽量化することができる。

<第四実施形態>
本実施形態の触覚センサと、第一実施形態の触覚センサとの相違点は、X方向用誘電層、Y方向用誘電層に、スリットではなくフィラーが配置されている点である。ここでは、相違点についてのみ説明する。

図8に、本実施形態の触覚センサのX方向用誘電層の透過斜視図を示す。なお、図2と対応する部位については、同じ符号で示す。図8に示すように、X方向用誘電層2には、複数のフィラー22が配置されている。フィラー22は、ガラスファイバー製であって、前後方向に長い棒状を呈している。フィラー22は、X方向用誘電層2が前後方向に変形する際に、あたかも「突っ張り棒」のように作用する。すなわち、フィラー22は、X方向用誘電層2の前後方向の変形を妨げる。このため、X方向用誘電層2は、前後方向に変形しにくい。一方、フィラー22は、X方向用誘電層2の左右方向の変形を妨げない。このため、X方向用誘電層2は、左右方向に変形しやすい。

Y方向用誘電層は、複数のフィラーが左右方向に延在している点以外は、X方向用誘電層2と同様の構成を有している。Z方向用誘電層は、フィラーが配置されていない点以外は、X方向用誘電層2、Y方向用誘電層と同様の構成を有している。

本実施形態の触覚センサと、第一実施形態の触覚センサとは、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の触覚センサによると、X方向用誘電層2、Y方向用誘電層に形状的、外観的な加工を施すことなく、X方向用誘電層2およびY方向用誘電層の変形に異方性を付与することができる。

<第五実施形態>
本実施形態の触覚センサと、第一実施形態の触覚センサとの相違点は、X方向用誘電層、Y方向用誘電層に、スリットではなく突起が配置されている点である。ここでは、相違点についてのみ説明する。

図9に、本実施形態の触覚センサのX方向用誘電層付近の透過斜視図を示す。なお、図2と対応する部位については、同じ符号で示す。図9に示すように、X方向用誘電層2は、複数の突起23と、空気層24と、を備えている。突起23は、短軸円柱状を呈している。突起23は、上下方向に延在している。空気層24は、複数の突起23の間に配置されている。複数の突起23は、前後方向に密に並べられている。言い換えると、X方向用誘電層2には、前後方向に延在する突起列が配置されている。このため、突起23は、X方向用誘電層2が前後方向に変形する際に曲がりにくい。したがって、X方向用誘電層2は、前後方向に変形しにくい。一方、複数の突起23は、左右方向に疎に並べられている。このため、突起23は、X方向用誘電層2が左右方向に変形する際に曲がりやすい。したがって、X方向用誘電層2は、左右方向に変形しやすい。

Y方向用誘電層は、複数の突起が前後方向に疎に左右方向に密に並べられている(突起列が左右方向に延在している)点以外は、X方向用誘電層2と同様の構成を有している。Z方向用誘電層は、前後左右方向均等に突起が配置されている点以外は、X方向用誘電層2、Y方向用誘電層と同様の構成を有している。

本実施形態の触覚センサと、第一実施形態の触覚センサとは、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の触覚センサによると、空気層24が配置されている分だけ、X方向用誘電層2、Y方向用誘電層、Z方向用誘電層を、軽量化することができる。

<第六実施形態>
本実施形態の触覚センサと、第一実施形態の触覚センサとの相違点は、Z方向用誘電層に、プレートが配置されている点である。ここでは、相違点についてのみ説明する。

図10に、本実施形態の触覚センサのZ方向用誘電層の透過斜視図を示す。なお、図2と対応する部位については、同じ符号で示す。図10に示すように、Z方向用誘電層4は、複数のプレート40を備えている。プレート40は、正方形薄板状を呈している。上方または下方から見て、プレート40は、Z方向用誘電層4の略全面に配置されている。プレート40は、Z方向用誘電層4よりも、左右方向、前後方向のばね定数が大きい。このため、Z方向用誘電層4は、左右方向、前後方向に変形しにくい。一方、Z方向用誘電層4は、上下方向に変形しやすい。なお、X方向用誘電層、Y方向用誘電層の構成は、第一実施形態のX方向用誘電層、Y方向用誘電層と同様である。

本実施形態の触覚センサと、第一実施形態の触覚センサとは、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の触覚センサによると、Z方向用誘電層4が、上下方向に変形しやすい。

表2に、各誘電層の変形量を一覧表で示す。ただし、表1同様に、表2に示すZ方向(上下方向)の変形量には、任意の誘電層に荷重が加わり当該誘電層が変形したことに伴う、Z方向の収縮量は含まれていない。

表2に示すように、Z方向用誘電層4は、荷重にZ方向分力が含まれている場合(荷重がZ方向、ZX方向、YZ方向、ZXY方向から加わる場合)、Z方向に大きく変形する。つまり、Z方向用誘電層4は、荷重にZ方向分力が含まれている場合に、大きく収縮する。

X方向用誘電層は、荷重にX方向分力が含まれている場合(荷重がX方向、ZX方向、XY方向、ZXY方向から加わる場合)、X方向に大きく変形する。つまり、X方向用誘電層は、荷重にX方向分力が含まれている場合に、大きく収縮する。

Y方向用誘電層は、荷重にY方向分力が含まれている場合(荷重がY方向、XY方向、YZ方向、ZXY方向から加わる場合)、Y方向に大きく変形する。つまり、Y方向用誘電層は、荷重にY方向分力が含まれている場合に、大きく収縮する。

本実施形態の触覚センサのように、Z方向用誘電層4の変形に異方性を付与しても、入力された荷重を、圧縮力と、二方向の剪断力と、に分解して検出することができる。

<第七実施形態>
本実施形態の触覚センサと、第一実施形態の触覚センサとの相違点は、X方向用誘電層、Y方向用誘電層が、各々二層ずつ配置されている点である。ここでは、相違点についてのみ説明する。

図11に、本実施形態の触覚センサの斜視図を示す。なお、図1と対応する部位については同じ符号で示す。図11に示すように、本実施形態の触覚センサ1は、X正方向用誘電層2Uと、X負方向用誘電層2Dと、Y正方向用誘電層3Uと、Y負方向用誘電層3Dと、Z方向用誘電層4と、六つの電極層5a〜5fと、を備えている。

X正方向用誘電層2U、X負方向用誘電層2Dは、本発明の「X方向用誘電層」の概念に含まれる。Y正方向用誘電層3U、Y負方向用誘電層3Dは、本発明の「Y方向用誘電層」の概念に含まれる。

これらの層は、上方から下方に向かって、電極層5a、X正方向用誘電層2U、電極層5b、X負方向用誘電層2D、電極層5c、Y正方向用誘電層3U、電極層5d、Y負方向用誘電層3D、電極層5e、Z方向用誘電層4、電極層5fの順番に、積層されている。最上層である電極層5aの上面は、接触対象物から荷重が入力される入力面50aである。

X正方向用誘電層2Uには、複数のスリット20Uが形成されている。複数のスリット20Uは、左右方向に所定間隔ずつ離間して配置されている。スリット20Uは、X正方向用誘電層2Uの上面に開口している。スリット20Uは、前後方向に延在している。スリット20Uの開口は、スリット20Uの底に対して、右側にずれて配置されている。すなわち、スリット20Uは、右上(開口)から左下(底)に進展している。このため、X正方向用誘電層2Uは、左右方向のうち、右方に変形しやすい。

X負方向用誘電層2Dには、複数のスリット20Dが形成されている。複数のスリット20Dは、左右方向に所定間隔ずつ離間して配置されている。スリット20Dは、X負方向用誘電層2Dの上面に開口している。スリット20Dは、前後方向に延在している。スリット20Dの開口は、スリット20Dの底に対して、左側にずれて配置されている。すなわち、スリット20Dは、左上(開口)から右下(底)に進展している。このため、X負方向用誘電層2Dは、左右方向のうち、左方に変形しやすい。

Y正方向用誘電層3Uは、複数のスリット30Uが前後方向に配置され左右方向に延在し前上(開口)から後下(底)に進展している点以外は、X正方向用誘電層2Uと同様の構成を有している。Y正方向用誘電層3Uは、前後方向のうち、前方に変形しやすい。

Y負方向用誘電層3Dは、複数のスリット30Dが前後方向に配置され左右方向に延在し後上(開口)から前下(底)に進展している点以外は、X負方向用誘電層2Dと同様の構成を有している。Y負方向用誘電層3Dは、前後方向のうち、後方に変形しやすい。

本実施形態の触覚センサと、第一実施形態の触覚センサとは、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の触覚センサ1によると、荷重が加わる方向を、より正確に判別することができる。すなわち、左方から荷重が加わる場合は、X負方向用誘電層2Dと比較して、X正方向用誘電層2Uが右方に大きく変形する。このため、X負方向用誘電層2Dと比較して、X正方向用誘電層2Uが上下方向に大きく収縮する。したがって、電極5a、5bにより検出される、X正方向用誘電層2Uの静電容量に関する電気量から、荷重が左方から入力されたことを判別することができる。

同様に、右方から荷重が加わる場合は、X正方向用誘電層2Uと比較して、X負方向用誘電層2Dが左方に大きく変形する。また、後方から荷重が加わる場合は、Y負方向用誘電層3Dと比較して、Y正方向用誘電層3Uが前方に大きく変形する。また、前方から荷重が加わる場合は、Y正方向用誘電層3Uと比較して、Y負方向用誘電層3Dが後方に大きく変形する。

このように、各誘電層は、単一の方向(例えばX方向)における正方向(例えば右方)または負方向(例えば左方)に特化した異方性を有している。このため、各誘電層の変形の程度(上下方向の収縮の程度)から、荷重が加わる方向を正確に判別することができる。

<その他>
以上、本発明の触覚センサの実施の形態について説明した。しかしながら、実施の形態は上記形態に特に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。

電極層5a〜5f、5A〜5Fから制御装置に入力される電気量は特に限定しない。電気抵抗、インピーダンス、位相、静電容量などであってもよい。X方向と左右方向、Y方向と前後方向、Z方向と上下方向とが、各々対応しなくてもよい。荷重を三方向に分解して検出できれば、検出された分力を基に圧縮力と二方向の剪断力とを合成することができる。

誘電層2、3、4、2U、2D、3U、3Dの積層順は特に限定しない。例えば、Z方向用誘電層4が最上層であってもよい。誘電層2、3、4、2U、2D、3U、3D、電極層5a〜5f、5A〜5F、絶縁層6a、6bの形成方法は特に限定しない。例えば、成形、印刷(スクリーン印刷など)、塗布により、これらの層を形成してもよい。

誘電層2、3、4、2U、2D、3U、3Dの材質は特に限定しない。ゴムおよび熱可塑性エラストマーから適宜選択することができる。例えば、静電容量を大きくするという観点では、比誘電率が高いものが望ましい。この観点からは、常温における比誘電率が3以上、さらには5以上のものが望ましい。例えば、エステル基、カルボキシル基、水酸基、ハロゲン基、アミド基、スルホン基、ウレタン基、ニトリル基等の極性官能基を有するエラストマー、あるいは、これらの極性官能基を有する極性低分子量化合物を添加したエラストマーを採用すると好適である。エラストマーは架橋されていても、されていなくてもよい。また、エラストマーのヤング率を調整することにより、用途に応じて荷重の検出感度や検出レンジを調整すればよい。特に、接触対象物から入力される荷重が小さい場合は、エラストマーとして、発泡体を用いると好適である。その理由は、発泡体はヤング率が小さいため、接触対象物から加わる荷重が小さい場合であっても、誘電層2、3、4、2U、2D、3U、3Dが充分に変形するからである。すなわち、確実に荷重を検出することができるからである。好適なエラストマー(エラストマーの発泡体を含む)としては、例えばシリコーンゴム、アクリロニトリル−ブタジエン共重合ゴム、アクリルゴム、エピクロロヒドリンゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレン、ウレタンゴムなどが挙げられる。

電極層5a〜5f、5A〜5Fの材質は特に限定しない。電極層5a〜5f、5A〜5Fは、アクリルゴム以外のエラストマーを含んでいてもよい。エラストマーとしては、シリコーンゴム、エチレン−プロピレン共重合ゴム、天然ゴム、スチレン−ブタジエン共重合ゴム、アクリロニトリル−ブタジエン共重合ゴム、アクリルゴム、エピクロロヒドリンゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレン、ウレタンゴムなどが挙げられる。電極層5a〜5f、5A〜5Fは、導電性カーボンブラック以外の導電性フィラーを含んでいてもよい。導電性フィラーとしては、カーボンナノチューブ、カーボンナノチューブの誘導体、グラファイト、導電性炭素繊維などが挙げられる。

絶縁層6a、6bの材質は特に限定しない。例えば、エラストマー製としてもよい。エラストマーとしては、シリコーンゴム、エチレン−プロピレン共重合ゴム、天然ゴム、スチレン−ブタジエン共重合ゴム、アクリルゴム、エピクロルヒドリンゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレン、ウレタンゴム、などが挙げられる。好ましくは、電極層5B、5C、5D、5Eとの接着性に優れるエラストマーがよい。ウレタンゴム、アクリルゴム、ヒドリンゴムが好適である。

第七実施形態においては、スリット20U、20D、30U、30Dを傾斜配置することにより誘電層2U、2D、3U、3Dに異方性を付与したが、図9に示す突起23を傾斜配置することにより誘電層2U、2D、3U、3Dに異方性を付与してもよい。

本発明の触覚センサは、ロボットに指示を入力するインターフェイスとして、人工皮膚に用いることができる。すなわち、接触対象物(例えば人間の手)から人工皮膚に入力される荷重の方向、荷重値を介して、指示をロボットに伝達することができる。また、本発明の触覚センサは、荷重センサや荷重分布センサ(面圧分布センサ)として用いることができる。荷重分布センサとして用いる場合は、例えば、図1に示す電極層5aとして、左右方向に並べられ前後方向に延在する複数の帯状電極層を配置し、図1に示す電極層5bとして、前後方向に並べられ左右方向に延在する複数の帯状電極層を配置し、上方または下方から見た場合のこれらの帯状電極層の重複部を、X方向用誘電層2用の検出部として用いればよい。電極層5b、5c(Y方向用誘電層3)、電極層5c、5d(Z方向用誘電層4)についても同様である。

1:触覚センサ、2:X方向用誘電層、2D:X負方向用誘電層(X方向用誘電層)、2U:X正方向用誘電層(X方向用誘電層)、3:Y方向用誘電層、3D:Y負方向用誘電層(Y方向用誘電層)、3U:Y正方向用誘電層(Y方向用誘電層)、4:Z方向用誘電層、5A〜5F:電極層、5a〜5f:電極層、6a:絶縁層、6b:絶縁層。
20:スリット、20D:スリット、20U:スリット、21:貫通孔、22:フィラー、23:突起、24:空気層、30:スリット、30D:スリット、30U:スリット、40:プレート、50A:入力面、50a:入力面、90:接触対象物。

Claims (3)

  1. 接触対象物から荷重が入力される入力面を有し、該荷重を、該入力面の面展開方向に加わる剪断力と、該入力面の略法線方向に加わる圧縮力と、に分解して検出可能な静電容量型の触覚センサであって、
    互いに交差する方向をX方向、Y方向、Z方向として、
    該X方向の変形に異方性を有するX方向用誘電層と、
    該X方向用誘電層の表側または裏側に配置され、該Y方向の変形に異方性を有するY方向用誘電層と、
    該X方向用誘電層の表側または裏側に配置され、該Z方向の変形に異方性を有する、または該X方向、該Y方向、該Z方向の変形に等方性を有するZ方向用誘電層と、
    該X方向用誘電層の表裏両側、該Y方向用誘電層の表裏両側、該Z方向用誘電層の表裏両側に配置される複数の電極と、
    を備え、前記荷重が入力される際の変形に伴う各誘電層の静電容量の変化を基に、前記剪断力、前記圧縮力を検出することを特徴とする触覚センサ。
  2. 前記X方向用誘電層は前記X方向に変形しやすく、
    前記Y方向用誘電層は前記Y方向に変形しやすく、
    前記Z方向用誘電層は前記Z方向に変形しやすい、または該X方向、該Y方向、該Z方向に均等に変形しやすい請求項1に記載の触覚センサ。
  3. 前記X方向用誘電層、前記Y方向用誘電層、前記Z方向用誘電層のうち、少なくとも一つの誘電層は、該誘電層の変形に異方性を付与するために、該誘電層を優先的に変形させたい方向に対して略直交する方向に延在するスリット、セル、フィラー、突起列のうち少なくとも一つを有する請求項2に記載の触覚センサ。
JP2011119038A 2011-05-27 2011-05-27 触覚センサ Withdrawn JP2012247297A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011119038A JP2012247297A (ja) 2011-05-27 2011-05-27 触覚センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011119038A JP2012247297A (ja) 2011-05-27 2011-05-27 触覚センサ

Publications (1)

Publication Number Publication Date
JP2012247297A true JP2012247297A (ja) 2012-12-13

Family

ID=47467872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011119038A Withdrawn JP2012247297A (ja) 2011-05-27 2011-05-27 触覚センサ

Country Status (1)

Country Link
JP (1) JP2012247297A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101471955B1 (ko) * 2013-12-06 2014-12-12 한국기계연구원 2차원 평면상에 작용하는 전단응력 측정용 촉각 센서
WO2017155147A1 (ko) * 2016-03-09 2017-09-14 (주)아이투에이시스템즈 다축 힘센서 및 이를 이용한 장치
CN107247523A (zh) * 2017-05-26 2017-10-13 清华大学 一种多阵列的指尖触觉交互装置
US20180073942A1 (en) * 2016-09-13 2018-03-15 The Board Of Trustees Of The Leland Stanford Junior University Capacitive Force/Torque Sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101471955B1 (ko) * 2013-12-06 2014-12-12 한국기계연구원 2차원 평면상에 작용하는 전단응력 측정용 촉각 센서
WO2017155147A1 (ko) * 2016-03-09 2017-09-14 (주)아이투에이시스템즈 다축 힘센서 및 이를 이용한 장치
US20180073942A1 (en) * 2016-09-13 2018-03-15 The Board Of Trustees Of The Leland Stanford Junior University Capacitive Force/Torque Sensor
US10267690B2 (en) * 2016-09-13 2019-04-23 The Board Of Trustees Of The Leland Stanford Junior University Capacitive force/torque sensor
CN107247523A (zh) * 2017-05-26 2017-10-13 清华大学 一种多阵列的指尖触觉交互装置

Similar Documents

Publication Publication Date Title
Pu et al. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
Chen et al. Ultrasensitive cracking-assisted strain sensors based on silver nanowires/graphene hybrid particles
Yeo et al. Flexible and stretchable strain sensing actuator for wearable soft robotic applications
Tao et al. Graphene-paper pressure sensor for detecting human motions
Kim et al. 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments
Hwang et al. Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities
Wang et al. Deformable conductors for human–machine interface
Roh et al. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers
Kwon et al. Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer
Nur et al. A highly sensitive capacitive-type strain sensor using wrinkled ultrathin gold films
US10466852B2 (en) Touch 3D-signal input equipment and multi-function touch panel
Son et al. Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics
US9645028B2 (en) Resistive pressure sensor including piezo-resistive electrode
Yang et al. Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature
Choi et al. Stretchable, transparent, and stretch-unresponsive capacitive touch sensor array with selectively patterned silver nanowires/reduced graphene oxide electrodes
EP2887187B1 (en) Monolithic haptic type touch screen, manufacturing method thereof, and display device including the same
JP6726781B2 (ja) 伸縮性電極、センサシート及び静電容量型センサ
KR101993503B1 (ko) 인쇄된 압전기 압력 감지 포일
Jung et al. Reverse‐micelle‐induced porous pressure‐sensitive rubber for wearable human–machine interfaces
JP5852117B2 (ja) 容量性接触センサのための力および真の容量性接触測定技法
US10724908B2 (en) Flexible transparent sensor with ionically-conductive material
CN103080714B (zh) 静电电容式传感器装置
Choi et al. Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring
Zhang et al. Dual-mode electronic skin with integrated tactile sensing and visualized injury warning
CN104641331B (zh) 触摸面板

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805