JP2012242160A - Ultrasonic flaw detection method of welded steel pipe - Google Patents

Ultrasonic flaw detection method of welded steel pipe Download PDF

Info

Publication number
JP2012242160A
JP2012242160A JP2011110344A JP2011110344A JP2012242160A JP 2012242160 A JP2012242160 A JP 2012242160A JP 2011110344 A JP2011110344 A JP 2011110344A JP 2011110344 A JP2011110344 A JP 2011110344A JP 2012242160 A JP2012242160 A JP 2012242160A
Authority
JP
Japan
Prior art keywords
steel pipe
probe
welded steel
ultrasonic
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011110344A
Other languages
Japanese (ja)
Inventor
Makoto Nakanosono
良 中之薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011110344A priority Critical patent/JP2012242160A/en
Publication of JP2012242160A publication Critical patent/JP2012242160A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detection method of a welded steel pipe, which can accurately perform ultrasonic flaw detection of a welded part of the welded steep pile over the whole length of the welded steel pipe.SOLUTION: Ultrasonic flaw detection of a welded steel pipe is performed by using an ultrasonic flaw detection apparatus 3 including: a steel pipe support 4 for horizontally supporting a welded steel pipe 1; an ultrasonic probe 5 arranged above the steel pipe support; a probe lifting mechanism 6 for lifting the ultrasonic probe in a vertical direction; a probe transfer mechanism 7 for transferring the ultrasonic probe integrally with the probe lifting mechanism in an axial direction of the welded steel pipe; a probe position detection device 8 for detecting a probe position of the ultrasonic probe; an arithmetic unit 9 for calculating distances from the probe position detected by the probe position detection device up to both end parts of the welded steel pipe; and an initial flaw detection direction setting device 10 for setting a direction directing to the steel pipe end part of which the distance up to the ultrasonic probe is nearer out of both the end parts of the steel pipe as compared with the distance calculated by the arithmetic unit as an initial flaw detection direction.

Description

本発明は、電縫鋼管などの溶接鋼管を超音波探傷する方法に関するものである。   The present invention relates to a method for ultrasonic flaw detection of a welded steel pipe such as an electric resistance steel pipe.

電縫鋼管は、通常、鋼板を円筒状に曲げ成形した後、鋼板の両側端部を溶接接合して製造される。このため、電縫鋼管などの溶接鋼管を製品として出荷する際には、溶接鋼管の溶接部に溶接欠陥が存在していないことを確認するため、超音波探傷検査が行われている。
電縫鋼管などの溶接鋼管を超音波探傷する方法としては、溶接鋼管の表面に複数の超音波プローブを全数着管させた後、プローブ固定装置によって超音波プローブの自由度を無くし、この状態で溶接鋼管の軸方向に溶接鋼管を移動させて溶接鋼管を超音波探傷する方法が知られている(特許文献1参照)。
An electric resistance steel pipe is usually manufactured by bending a steel plate into a cylindrical shape and then welding and joining both end portions of the steel plate. For this reason, when a welded steel pipe such as an electric resistance steel pipe is shipped as a product, an ultrasonic flaw inspection is performed to confirm that no weld defect exists in the welded portion of the welded steel pipe.
As a method for ultrasonic flaw detection of welded steel pipes such as ERW steel pipes, all the ultrasonic probes are attached to the surface of the welded steel pipe, and then the degree of freedom of the ultrasonic probes is eliminated by the probe fixing device. There is known a method for ultrasonic flaw detection of a welded steel pipe by moving the welded steel pipe in the axial direction of the welded steel pipe (see Patent Document 1).

特開平6−58909号公報JP-A-6-58909

上述した方法によると、溶接鋼管の溶接部を溶接鋼管の全長にわたって超音波探傷することが可能であるが、溶接鋼管の移動によって溶接部の位置が溶接鋼管の周方向にずれてしまうことがあるため、溶接鋼管の溶接部を精度よく超音波探傷することができないという問題があった。
また、溶接欠陥の発生位置を特定するためには、円環状に形成された2つのメジャリングロールを超音波プローブの前後に配置し、メジャリングロールの内周面に溶接鋼管の表面を接触させる必要があるため、溶接鋼管の移動によって溶接鋼管の表面がメジャリングロールの内周面から離れた場合には、溶接欠陥の発生位置を精度よく特定することができないという問題もあった。
According to the above-described method, it is possible to ultrasonically detect the welded portion of the welded steel pipe over the entire length of the welded steel pipe. Therefore, there has been a problem that ultrasonic flaw detection cannot be performed accurately on the welded portion of the welded steel pipe.
Further, in order to specify the occurrence position of the welding defect, two measuring rolls formed in an annular shape are arranged before and after the ultrasonic probe, and the surface of the welded steel pipe is brought into contact with the inner peripheral surface of the measuring roll. Therefore, when the surface of the welded steel pipe is separated from the inner peripheral surface of the measuring roll due to the movement of the welded steel pipe, there is also a problem that the position where the welding defect occurs cannot be specified with high accuracy.

さらに、溶接部形状の悪い箇所が存在する場合は超音波プローブが溶接鋼管の表面から離れてしまうという問題もあった。
本発明は、上述した事情に鑑みてなされたものであり、溶接鋼管の溶接部を溶接鋼管の全長にわたって精度よく超音波探傷することのできる溶接鋼管の超音波探傷方法を提供することを目的とするものである。
Further, when there is a place with a poor weld shape, there is a problem that the ultrasonic probe is separated from the surface of the welded steel pipe.
The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an ultrasonic flaw detection method for a welded steel pipe capable of accurately performing flaw detection on the welded portion of the welded steel pipe over the entire length of the welded steel pipe. To do.

上記目的を達成するために、本発明は、円筒状に曲げ成形された鋼板の両側端部を溶接接合してなる溶接鋼管を超音波探傷する方法であって、前記溶接鋼管を超音波探傷する装置として、前記溶接鋼管を水平に支持する鋼管支持台と、該鋼管支持台の上方に配置された超音波プローブと、該超音波プローブを上下方向に昇降駆動するプローブ昇降機構と、該プローブ昇降機構と一体に前記超音波プローブを前記溶接鋼管の軸方向に移送するプローブ移送機構と、該プローブ移送機構により溶接鋼管の軸方向に移送される前記超音波プローブのプローブ位置を検出するプローブ位置検出装置と、該プローブ位置検出装置により検出されたプローブ位置から前記溶接鋼管の両端部までの距離を演算する演算装置と、該演算装置により算出された距離を比較して前記溶接鋼管の両端部のうち前記超音波プローブまでの距離が近いほうの鋼管端部に向かう方向を初期探傷方向として設定する初期探傷方向設定装置とを備えた超音波探傷装置を用い、前記超音波プローブを下降して前記溶接鋼管に接触させた後、前記プローブ移送機構を作動させて前記超音波プローブを前記初期探傷方向設定装置により設定された初期探傷方向へ移動させ、前記超音波プローブが溶接鋼管の端部より外側まで移動した後、前記超音波プローブを上昇させて前記プローブ移送機構によって前記超音波プローブを初期探傷方向とは反対方向に移送し、前記超音波プローブが初期位置に来たところで前記超音波プローブを下降して前記溶接鋼管に接触させ、次いで前記超音波プローブの移動量が前記溶接鋼管の全長に達するまで前記超音波プローブを前記プローブ移送機構により前記溶接鋼管の軸方向に移動させて前記溶接鋼管を超音波探傷することを特徴とする。   In order to achieve the above object, the present invention is a method for ultrasonic flaw detection of a welded steel pipe formed by welding both ends of a steel plate bent into a cylindrical shape, and ultrasonically flaws the welded steel pipe. As a device, a steel pipe support base that horizontally supports the welded steel pipe, an ultrasonic probe disposed above the steel pipe support base, a probe lift mechanism that drives the ultrasonic probe to move up and down, and the probe lift A probe transfer mechanism for transferring the ultrasonic probe in the axial direction of the welded steel pipe integrally with the mechanism, and a probe position detection for detecting the probe position of the ultrasonic probe transferred in the axial direction of the welded steel pipe by the probe transfer mechanism An apparatus, an arithmetic device for calculating a distance from the probe position detected by the probe position detection device to both ends of the welded steel pipe, and a distance calculated by the arithmetic device An ultrasonic flaw detection apparatus comprising: an initial flaw detection direction setting device that sets a direction toward the steel pipe end closer to the ultrasonic probe out of both ends of the welded steel pipe as an initial flaw detection direction. Use, after lowering the ultrasonic probe to contact the welded steel pipe, operating the probe transfer mechanism to move the ultrasonic probe in the initial flaw detection direction set by the initial flaw detection direction setting device, After the ultrasonic probe moves to the outside of the end of the welded steel pipe, the ultrasonic probe is lifted and the ultrasonic probe is transferred in the direction opposite to the initial flaw detection direction by the probe transfer mechanism. At the initial position, the ultrasonic probe is lowered and brought into contact with the welded steel pipe, and then the amount of movement of the ultrasonic probe is the total length of the welded steel pipe. Reach moving the ultrasonic probe in the axial direction of the welded steel pipe by the probe transport mechanism, characterized in that the ultrasonic testing of the weld steel pipe.

本発明によれば、溶接鋼管を移動させなくても溶接鋼管の溶接部を溶接鋼管の全長にわたって超音波探傷することが可能となり、溶接鋼管の移動によって溶接部の位置が溶接鋼管の周方向にずれてしまうことがないので、溶接鋼管の溶接部を溶接鋼管の全長にわたって精度よく超音波探傷することができる。
また、初期探傷方向設定装置により設定された初期探傷方向へ超音波プローブを移動させることによって超音波プローブを速やかにセッティングすることが可能となり、従って、比較的短時間で溶接鋼管の溶接部を溶接鋼管の全長にわたって超音波探傷することができる。
According to the present invention, it is possible to ultrasonically detect the welded portion of the welded steel pipe over the entire length of the welded steel pipe without moving the welded steel pipe. Since it does not shift | deviate, it can ultrasonically detect the welded part of a welded steel pipe with sufficient precision over the full length of a welded steel pipe.
In addition, it is possible to set the ultrasonic probe quickly by moving the ultrasonic probe in the initial flaw detection direction set by the initial flaw detection direction setting device. Therefore, the welded portion of the welded steel pipe can be welded in a relatively short time. Ultrasonic flaw detection can be performed over the entire length of the steel pipe.

本発明に係る溶接鋼管の超音波探傷方法に用いられる超音波探傷装置の一例を示す正面図である。It is a front view which shows an example of the ultrasonic flaw detector used for the ultrasonic flaw detection method of the welded steel pipe which concerns on this invention. 図1に示す超音波探傷装置の側面図である。It is a side view of the ultrasonic flaw detector shown in FIG. 図1に示す超音波探傷装置の平面図である。It is a top view of the ultrasonic flaw detector shown in FIG. 本発明の一実施形態に係る溶接鋼管の超音波探傷方法を説明するための図である。It is a figure for demonstrating the ultrasonic flaw detection method of the welded steel pipe which concerns on one Embodiment of this invention.

以下、図面を参照して本発明に係る溶接鋼管の超音波探傷方法について説明する。
まず、本発明に係る溶接鋼管の超音波探傷方法に用いられる超音波探傷装置の一例を図1、図2及び図3に示す。図1〜図3において符号1は溶接鋼管、2は溶接鋼管1の溶接部、3は超音波探傷装置を示し、この超音波探傷装置3は鋼管支持台4、超音波プローブ5、プローブ昇降機構6、プローブ移送機構7、プローブ位置検出装置8、演算装置9及び初期探傷方向設定装置10を備えている。
Hereinafter, an ultrasonic flaw detection method for a welded steel pipe according to the present invention will be described with reference to the drawings.
First, an example of the ultrasonic flaw detection apparatus used for the ultrasonic flaw detection method of the welded steel pipe concerning this invention is shown in FIG.1, FIG.2 and FIG.3. 1 to 3, reference numeral 1 denotes a welded steel pipe, 2 denotes a welded portion of the welded steel pipe 1, 3 denotes an ultrasonic flaw detector, and the ultrasonic flaw detector 3 includes a steel pipe support 4, an ultrasonic probe 5, and a probe lifting mechanism. 6, a probe transfer mechanism 7, a probe position detection device 8, a calculation device 9, and an initial flaw detection direction setting device 10 are provided.

鋼管支持台4は溶接鋼管1を水平に支持するものであり、この鋼管支持台4は溶接鋼管1を回転可能に支持する複数のターニングローラ11を有している。また、鋼管支持台4は図示しないコンベアにより図中矢印方向に移動可能となっている。
超音波プローブ5は溶接鋼管1の溶接部2を超音波探傷するものであり、この超音波プローブ5は鋼管支持台4の上方に配置されている。
The steel pipe support 4 supports the welded steel pipe 1 horizontally, and this steel pipe support 4 has a plurality of turning rollers 11 that rotatably support the welded steel pipe 1. In addition, the steel pipe support 4 can be moved in the direction of the arrow in the figure by a conveyor (not shown).
The ultrasonic probe 5 performs ultrasonic flaw detection on the welded portion 2 of the welded steel pipe 1, and the ultrasonic probe 5 is disposed above the steel pipe support 4.

プローブ昇降機構6は超音波プローブ5を上下方向に昇降駆動するものであり、このプローブ昇降機構6は例えば図示しないボールねじと、このボールねじを駆動する駆動モータ(図示せず)等から構成されている。
プローブ移送機構7はプローブ昇降機構6と一体に超音波プローブ5を溶接鋼管1の軸方向に移送するものであり、このプローブ移送機構7は例えば駆動モータ12と、この駆動モータ12により回転駆動されるボールねじ軸13と、このボールねじ軸13の回転に伴って水平方向に移動するボールねじナット14等から構成されている。
The probe elevating mechanism 6 drives the ultrasonic probe 5 up and down. The probe elevating mechanism 6 includes, for example, a ball screw (not shown) and a drive motor (not shown) for driving the ball screw. ing.
The probe transfer mechanism 7 is for integrally transferring the ultrasonic probe 5 in the axial direction of the welded steel pipe 1 together with the probe lifting mechanism 6. The probe transfer mechanism 7 is driven to rotate by, for example, a drive motor 12 and the drive motor 12. And a ball screw nut 14 that moves in the horizontal direction as the ball screw shaft 13 rotates.

プローブ位置検出装置8はプローブ移送機構7により溶接鋼管1の軸方向に移送される超音波プローブ5のプローブ位置を検出するものであり、このプローブ位置検出装置8は例えばプローブ移送機構7の駆動モータ12に付設されたパルスジェネレータ15からのパルス信号を計数して超音波プローブ5のプローブ位置を検出するように構成されている。
演算装置9は超音波プローブ5のプローブ位置から溶接鋼管1の両端部までの距離X1、X2を演算するものであり、この演算装置9はプローブ位置検出装置8により検出された初期のプローブ位置から距離X1、X2を演算するように演算するように構成されている。
The probe position detection device 8 detects the probe position of the ultrasonic probe 5 that is transferred in the axial direction of the welded steel pipe 1 by the probe transfer mechanism 7. The probe position detection device 8 is, for example, a drive motor for the probe transfer mechanism 7. 12 is configured to detect the probe position of the ultrasonic probe 5 by counting the pulse signals from the pulse generator 15 attached to 12.
The calculation device 9 calculates distances X1 and X2 from the probe position of the ultrasonic probe 5 to both ends of the welded steel pipe 1, and this calculation device 9 is based on the initial probe position detected by the probe position detection device 8. It is comprised so that it may calculate so that distance X1, X2 may be calculated.

初期探傷方向設定装置10は溶接鋼管1の両端部のうち超音波プローブ5までの距離が近いほうの鋼管端部に向かう方向を初期探傷方向として設定するものであり、この初期探傷方向設定装置10は演算装置9により算出された距離X1、X2を比較して超音波プローブ5までの距離が近いほうの鋼管端部に向かう方向を初期探傷方向として設定するように構成されている。また、初期探傷方向設定装置10により設定された初期探傷方向は、プローブ移送機構7等を制御する制御装置(図示せず)に探傷を開始する際にプローブを移送する方向の情報として供給されている。   The initial flaw detection direction setting device 10 sets the direction toward the end of the steel pipe closer to the ultrasonic probe 5 among the both ends of the welded steel pipe 1 as the initial flaw detection direction. Is configured to compare the distances X1 and X2 calculated by the arithmetic unit 9 and to set the direction toward the end of the steel pipe closer to the ultrasonic probe 5 as the initial flaw detection direction. The initial flaw detection direction set by the initial flaw detection direction setting device 10 is supplied to a control device (not shown) that controls the probe transfer mechanism 7 and the like as information on the direction in which the probe is transferred when flaw detection is started. Yes.

図4は本発明の一実施形態に係る溶接鋼管の超音波探傷方法を説明するための図であり、上述した超音波探傷装置3を用いて溶接鋼管1の溶接部2を超音波探傷する場合は、まず、溶接鋼管1の溶接部2が真上に位置するまでターニングローラ11を図示しないローラ駆動機構により回転させる。このとき、超音波プローブ5は、溶接鋼管1の全長範囲であって、いずれかの管端に近い位置で、鋼管上端面より上方に離隔して待機している。この位置を超音波プローブ5の初期位置とする。なお、この初期位置は、前回行った鋼管の探傷が終わった位置に近い位置とするのがよい。これはプローブの移送距離を短くし、探傷作業に要する時間を短縮するのに有利だからである。
この位置において、前述の如く、超音波プローブ5と両管端との距離X1とX2を計測し、そのうちいずれか距離の短い方の管端に向かう方向を初期探傷方向として初期探傷方向設定装置10にセットする。そして、プローブ昇降機構6を作動させて図4(a)に示すようにプローブ5と溶接鋼管1を接触させる。
FIG. 4 is a diagram for explaining an ultrasonic flaw detection method for a welded steel pipe according to an embodiment of the present invention. In the case where the welded portion 2 of the welded steel pipe 1 is subjected to ultrasonic flaw detection using the ultrasonic flaw detection apparatus 3 described above. First, the turning roller 11 is rotated by a roller drive mechanism (not shown) until the welded portion 2 of the welded steel pipe 1 is positioned directly above. At this time, the ultrasonic probe 5 is in the full length range of the welded steel pipe 1 and is waiting at a position close to any one of the pipe ends, spaced above the upper end surface of the steel pipe. This position is the initial position of the ultrasonic probe 5. The initial position is preferably a position close to the position where the previous steel pipe flaw detection is completed. This is because it is advantageous for shortening the probe transfer distance and shortening the time required for the flaw detection work.
At this position, as described above, the distances X1 and X2 between the ultrasonic probe 5 and both tube ends are measured, and the initial flaw detection direction setting device 10 is set with the direction toward the tube end having the shorter distance as the initial flaw detection direction. Set to. And the probe raising / lowering mechanism 6 is operated, and as shown to Fig.4 (a), the probe 5 and the welded steel pipe 1 are made to contact.

次に、プローブ移送機構7を作動させ、図4(b)に示すように、超音波プローブ5を初期探傷方向設定装置10により設定された初期探傷方向に向けて移動させつつ探傷を行う。
超音波プローブ5が管端の外側まで移動したならば、プローブ移送機構7の作動を一旦停止する。次に、この状態でプローブ昇降機構6を作動させ、図4(b)に示すように、超音波プローブ5を上昇させて溶接鋼管1の表面から離隔する。
Next, the probe transfer mechanism 7 is operated to perform flaw detection while moving the ultrasonic probe 5 toward the initial flaw detection direction set by the initial flaw detection direction setting device 10 as shown in FIG.
When the ultrasonic probe 5 moves to the outside of the tube end, the operation of the probe transfer mechanism 7 is temporarily stopped. Next, the probe elevating mechanism 6 is operated in this state, and the ultrasonic probe 5 is raised and separated from the surface of the welded steel pipe 1 as shown in FIG.

次いで、図4(c)に示すように、プローブ移送機構7を作動させて、初期探傷方向とは逆の方向に超音波プローブ5を移動させ、超音波プローブ5が初期位置に達したら超音波プローブ5を再度下降させる。
超音波プローブ5が溶接鋼管1の表面と接触する位置まで下降したならば、プローブ昇降機構6の作動を停止する。次に、プローブ移送機構7を再び作動させ、図4(c)に示すように、超音波プローブ5をプローブセット位置から溶接鋼管1の軸方向に移動させる。そして、超音波プローブ5の移動量が溶接鋼管1の全長に達するまでプローブ移送機構7を作動させて溶接鋼管1の超音波探傷を行う。
なお、次の溶接鋼管1を超音波探傷する場合は、超音波探傷装置3の下方位置に溶接鋼管1を移動させた後、図4(c)に点線で示す位置から超音波プローブ5を溶接鋼管1の軸方向に移動させて溶接鋼管1の超音波探傷を行う。
Next, as shown in FIG. 4C, the probe transfer mechanism 7 is operated to move the ultrasonic probe 5 in the direction opposite to the initial flaw detection direction. When the ultrasonic probe 5 reaches the initial position, the ultrasonic wave is moved. The probe 5 is lowered again.
When the ultrasonic probe 5 is lowered to a position where it comes into contact with the surface of the welded steel pipe 1, the operation of the probe lifting mechanism 6 is stopped. Next, the probe transfer mechanism 7 is operated again, and the ultrasonic probe 5 is moved in the axial direction of the welded steel pipe 1 from the probe set position as shown in FIG. Then, the probe transfer mechanism 7 is operated until the moving amount of the ultrasonic probe 5 reaches the entire length of the welded steel pipe 1 to perform ultrasonic flaw detection on the welded steel pipe 1.
When ultrasonic flaw detection is performed on the next welded steel pipe 1, the welded steel pipe 1 is moved to a position below the ultrasonic flaw detector 3 and then the ultrasonic probe 5 is welded from the position indicated by the dotted line in FIG. The welded steel pipe 1 is subjected to ultrasonic flaw detection by moving in the axial direction of the steel pipe 1.

上述のように、超音波探傷装置3のプローブ移送機構7を作動させて超音波プローブ5を初期探傷方向設定装置10により設定された初期探傷方向に向けて移動させ、超音波プローブ5が溶接鋼管1の端部より外側まで移動した後、超音波プローブ5を上昇させてプローブ移送機構7によって超音波プローブ5を初期探傷方向とは反対方向に移送し、超音波プローブ5が初期位置に来たところで超音波プローブ5を下降して溶接鋼管1に接触させ、次いで超音波プローブ5の移動量が溶接鋼管1の全長に達するまで超音波プローブ5をプローブ移送機構7により溶接鋼管1の軸方向に移動させることで、溶接鋼管1を移動させなくても溶接鋼管1の溶接部2を溶接鋼管1の全長にわたって超音波探傷することができる。従って、前述した従来例のように、溶接鋼管1の移動によって溶接部2の位置が溶接鋼管1の周方向にずれてしまうことがないので、溶接鋼管1の溶接部2を溶接鋼管1の全長にわたって精度よく超音波探傷することができる。   As described above, the probe transfer mechanism 7 of the ultrasonic flaw detector 3 is operated to move the ultrasonic probe 5 toward the initial flaw detection direction set by the initial flaw detection direction setting device 10 so that the ultrasonic probe 5 is welded steel pipe. After moving from the end of 1 to the outside, the ultrasonic probe 5 is raised, and the ultrasonic probe 5 is transferred in the direction opposite to the initial flaw detection direction by the probe transfer mechanism 7 so that the ultrasonic probe 5 has reached the initial position. By the way, the ultrasonic probe 5 is lowered and brought into contact with the welded steel pipe 1, and then the ultrasonic probe 5 is moved in the axial direction of the welded steel pipe 1 by the probe transfer mechanism 7 until the moving amount of the ultrasonic probe 5 reaches the entire length of the welded steel pipe 1. By moving, the welded part 2 of the welded steel pipe 1 can be ultrasonically detected over the entire length of the welded steel pipe 1 without moving the welded steel pipe 1. Therefore, unlike the above-described conventional example, the position of the welded portion 2 is not shifted in the circumferential direction of the welded steel pipe 1 due to the movement of the welded steel pipe 1. Ultrasonic flaw detection can be performed with high accuracy.

また、初期探傷方向設定装置10により設定された初期探傷方向へ超音波プローブ5を移動させることによって超音波プローブ5を速やかにセッティングすることが可能となり、従って、比較的短時間で溶接鋼管1の溶接部2を溶接鋼管1の全長にわたって超音波探傷することができる。
また、溶接欠陥の発生位置を特定するために、超音波プローブの前後にメジャリングロールを配置する必要もない。
上述した本発明の一実施形態では、溶接鋼管1を水平に支持する鋼管支持台4として、溶接鋼管1を回転可能に支持する複数のターニングローラ11を有するものを例示したが、これに限られるものではなく、ターニングローラを持たない鋼管支持台により溶接鋼管を水平に支持するようにしてもよい。
In addition, the ultrasonic probe 5 can be quickly set by moving the ultrasonic probe 5 in the initial flaw detection direction set by the initial flaw detection direction setting device 10, and accordingly, the welded steel pipe 1 can be set in a relatively short time. The welded part 2 can be subjected to ultrasonic flaw detection over the entire length of the welded steel pipe 1.
Further, it is not necessary to arrange measuring rolls before and after the ultrasonic probe in order to specify the position where the welding defect occurs.
In the above-described embodiment of the present invention, the steel pipe support 4 that horizontally supports the welded steel pipe 1 is exemplified as having the plurality of turning rollers 11 that rotatably support the welded steel pipe 1, but is not limited thereto. The welded steel pipe may be supported horizontally by a steel pipe support that does not have a turning roller.

1…溶接鋼管
2…溶接部
3…超音波探傷装置
4…鋼管支持台
5…超音波プローブ
6…プローブ昇降機構
7…プローブ移送機構
8…プローブ位置検出装置
9…演算装置
10…初期探傷方向設定装置
11…ターニングローラ
12…駆動モータ
13…ボールねじ軸
14…ボールねじナット
15…パルスジェネレータ
DESCRIPTION OF SYMBOLS 1 ... Welded steel pipe 2 ... Welded part 3 ... Ultrasonic flaw detector 4 ... Steel pipe support stand 5 ... Ultrasonic probe 6 ... Probe raising / lowering mechanism 7 ... Probe transfer mechanism 8 ... Probe position detection apparatus 9 ... Calculation apparatus 10 ... Initial flaw detection direction setting Device 11 ... Turning roller 12 ... Drive motor 13 ... Ball screw shaft 14 ... Ball screw nut 15 ... Pulse generator

Claims (1)

円筒状に曲げ成形された鋼板の両側端部を溶接接合してなる溶接鋼管を超音波探傷する方法であって、
前記溶接鋼管を超音波探傷する装置として、前記溶接鋼管を水平に支持する鋼管支持台と、該鋼管支持台の上方に配置された超音波プローブと、該超音波プローブを上下方向に昇降駆動するプローブ昇降機構と、該プローブ昇降機構と一体に前記超音波プローブを前記溶接鋼管の軸方向に移送するプローブ移送機構と、該プローブ移送機構により溶接鋼管の軸方向に移送される前記超音波プローブのプローブ位置を検出するプローブ位置検出装置と、該プローブ位置検出装置により検出されたプローブ位置から前記溶接鋼管の両端部までの距離を演算する演算装置と、該演算装置により算出された距離を比較して前記溶接鋼管の両端部のうち前記超音波プローブまでの距離が近いほうの鋼管端部に向かう方向を初期探傷方向として設定する初期探傷方向設定装置とを備えた超音波探傷装置を用い、
前記超音波プローブを下降して前記溶接鋼管に接触させた後、前記プローブ移送機構を作動させて前記超音波プローブを前記初期探傷方向設定装置により設定された初期探傷方向へ移動させ、前記超音波プローブが溶接鋼管の端部より外側まで移動した後、前記超音波プローブを上昇させて前記プローブ移送機構によって前記超音波プローブを初期探傷方向とは反対方向に移送し、前記超音波プローブが初期位置に来たところで前記超音波プローブを下降して前記溶接鋼管に接触させ、次いで前記超音波プローブの移動量が前記溶接鋼管の全長に達するまで前記超音波プローブを前記プローブ移送機構により前記溶接鋼管の軸方向に移動させて前記溶接鋼管を超音波探傷することを特徴とする溶接鋼管の超音波探傷方法。
A method for ultrasonic flaw detection of a welded steel pipe formed by welding and joining both end portions of a steel plate bent into a cylindrical shape,
As a device for ultrasonic inspection of the welded steel pipe, a steel pipe support base that horizontally supports the welded steel pipe, an ultrasonic probe disposed above the steel pipe support base, and the ultrasonic probe is driven up and down in the vertical direction. A probe lifting mechanism, a probe transfer mechanism for transferring the ultrasonic probe in the axial direction of the welded steel pipe integrally with the probe lifting mechanism, and an ultrasonic probe transferred in the axial direction of the welded steel pipe by the probe transfer mechanism. The probe position detection device for detecting the probe position, the calculation device for calculating the distance from the probe position detected by the probe position detection device to both ends of the welded steel pipe, and the distance calculated by the calculation device are compared. First, the direction toward the end of the steel pipe that is closer to the ultrasonic probe among the both ends of the welded steel pipe is set as the initial flaw detection direction. Using an ultrasonic flaw detector and a flaw orientation device,
After the ultrasonic probe is lowered and brought into contact with the welded steel pipe, the probe transfer mechanism is operated to move the ultrasonic probe in the initial flaw detection direction set by the initial flaw detection direction setting device, and the ultrasonic wave After the probe moves to the outside from the end of the welded steel pipe, the ultrasonic probe is raised and the ultrasonic probe is transferred in the direction opposite to the initial flaw detection direction by the probe transfer mechanism, and the ultrasonic probe is moved to the initial position. The ultrasonic probe is lowered and brought into contact with the welded steel pipe, and then the ultrasonic probe is moved by the probe transfer mechanism until the moving amount of the ultrasonic probe reaches the entire length of the welded steel pipe. An ultrasonic flaw detection method for a welded steel pipe, wherein the welded steel pipe is ultrasonically flawed by moving in an axial direction.
JP2011110344A 2011-05-17 2011-05-17 Ultrasonic flaw detection method of welded steel pipe Withdrawn JP2012242160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011110344A JP2012242160A (en) 2011-05-17 2011-05-17 Ultrasonic flaw detection method of welded steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011110344A JP2012242160A (en) 2011-05-17 2011-05-17 Ultrasonic flaw detection method of welded steel pipe

Publications (1)

Publication Number Publication Date
JP2012242160A true JP2012242160A (en) 2012-12-10

Family

ID=47464039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011110344A Withdrawn JP2012242160A (en) 2011-05-17 2011-05-17 Ultrasonic flaw detection method of welded steel pipe

Country Status (1)

Country Link
JP (1) JP2012242160A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103163221A (en) * 2013-02-22 2013-06-19 南宁奥博斯检测科技有限责任公司 Detection device for large objects
CN103399086A (en) * 2013-07-25 2013-11-20 安吉县鹏大钢管有限公司 High-efficiency steel pipe flaw detection device
CN103630606A (en) * 2013-12-06 2014-03-12 新兴铸管股份有限公司 Ultrasonic layer-detection method for bi-metal metallurgical composite boiler pipe
CN104118724A (en) * 2014-07-08 2014-10-29 张家港市圣鼎源制管有限公司 Discharging device of steel tube flaw detector
CN104215692A (en) * 2014-07-31 2014-12-17 张家港市圣鼎源制管有限公司 High-efficient steel pipe flaw detecting device
JP6399275B1 (en) * 2017-03-29 2018-10-03 新日鐵住金株式会社 Defect detection apparatus, defect detection method and program
CN111426755A (en) * 2020-05-28 2020-07-17 新兴铸管股份有限公司 Steel pipe flaw detection auxiliary device
CN112462026A (en) * 2020-11-20 2021-03-09 湖南力方轧辊有限公司 Flaw detector for detecting high-speed steel roller
CN116973446A (en) * 2023-09-25 2023-10-31 新乡南方苏光测绘仪器有限公司 Ultrasonic flaw detection device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103163221A (en) * 2013-02-22 2013-06-19 南宁奥博斯检测科技有限责任公司 Detection device for large objects
CN103399086A (en) * 2013-07-25 2013-11-20 安吉县鹏大钢管有限公司 High-efficiency steel pipe flaw detection device
CN103630606A (en) * 2013-12-06 2014-03-12 新兴铸管股份有限公司 Ultrasonic layer-detection method for bi-metal metallurgical composite boiler pipe
CN104118724A (en) * 2014-07-08 2014-10-29 张家港市圣鼎源制管有限公司 Discharging device of steel tube flaw detector
CN104215692A (en) * 2014-07-31 2014-12-17 张家港市圣鼎源制管有限公司 High-efficient steel pipe flaw detecting device
WO2018180697A1 (en) * 2017-03-29 2018-10-04 新日鐵住金株式会社 Defect detecting device, defect detecting method, and program
JP6399275B1 (en) * 2017-03-29 2018-10-03 新日鐵住金株式会社 Defect detection apparatus, defect detection method and program
CN110268259A (en) * 2017-03-29 2019-09-20 日本制铁株式会社 Defect detecting device, defect inspection method and program
CN111426755A (en) * 2020-05-28 2020-07-17 新兴铸管股份有限公司 Steel pipe flaw detection auxiliary device
CN111426755B (en) * 2020-05-28 2023-07-18 新兴铸管股份有限公司 Auxiliary device for flaw detection of steel pipe
CN112462026A (en) * 2020-11-20 2021-03-09 湖南力方轧辊有限公司 Flaw detector for detecting high-speed steel roller
CN116973446A (en) * 2023-09-25 2023-10-31 新乡南方苏光测绘仪器有限公司 Ultrasonic flaw detection device
CN116973446B (en) * 2023-09-25 2023-12-15 新乡南方苏光测绘仪器有限公司 Ultrasonic flaw detection device

Similar Documents

Publication Publication Date Title
JP2012242160A (en) Ultrasonic flaw detection method of welded steel pipe
JP2008122090A (en) Ultrasonic flaw detection method of rod material, and ultrasonic flaw detection system
KR101777409B1 (en) apparatus for correcting deformation of pipes or fitting members
CN106226396A (en) Gas cylinder ultrasonic thickness measuring defectoscope
CN215263283U (en) Ultrasonic flaw detection device for steel pipe weld joint
JP6589913B2 (en) Welded pipe shape measurement device
KR101226232B1 (en) The outer diameter measuring device for large diameter pipe
CN111380959A (en) High-precision ultrasonic flaw detection equipment and flaw detection method thereof
JP6110735B2 (en) UT inspection device
JP6527444B2 (en) Ultrasonic flaw detector
KR20170040501A (en) A detection device for welding flaw region inside of pipe having overlay welding
JP4872811B2 (en) Tire inspection apparatus and method
JP2010071778A (en) Apparatus for measuring outer diameter of large diameter tube
JP5523923B2 (en) Probe drive device and interpolated flaw detector provided with the device
JP4164552B2 (en) Electrode inspection system
CN109324118B (en) Ultrasonic flaw detection system for pipeline
CN204142208U (en) End of spirial welded pipe weld seam X ray sync detection device
JP3349923B2 (en) External inspection and straightening equipment for cylindrical workpieces
CN104251885A (en) Adjustment method of position deviation of welded pipe welding line and ultrasonic flaw detection dolly
JP2010025801A (en) Remote vortex flow flaw detector
KR100874946B1 (en) Continuous tack welding machine for rolled steel pipe
KR101632498B1 (en) Strip seam welding machine
CN206002484U (en) Gas cylinder ultrasonic thickness measuring defectoscope
KR101919233B1 (en) Apparatus and method for inspecting rotor
JP3387778B2 (en) Contact type sensor for external inspection of cylindrical workpieces

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805