JP2012237261A - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP2012237261A
JP2012237261A JP2011107582A JP2011107582A JP2012237261A JP 2012237261 A JP2012237261 A JP 2012237261A JP 2011107582 A JP2011107582 A JP 2011107582A JP 2011107582 A JP2011107582 A JP 2011107582A JP 2012237261 A JP2012237261 A JP 2012237261A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
internal combustion
compression stroke
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011107582A
Other languages
Japanese (ja)
Inventor
Minoru Ibaragi
稔 茨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2011107582A priority Critical patent/JP2012237261A/en
Publication of JP2012237261A publication Critical patent/JP2012237261A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine control device capable of suppressing a consumed fuel quantity as a whole by precisely carrying out control injecting fuel from a fuel injecting valve by separating fuel into an intake stroke and a compressing stroke in an internal combustion having the fuel injection valve for directly injecting fuel into combustion chambers.SOLUTION: In an electronic control device used in an engine being an internal combustion engine having the fuel injection valve for directly injecting fuel into the combustion chamber and carrying out the control for injecting fuel from the fuel injecting valve while separating the fuel to the intake stroke and the compression stroke, the control of the fuel injection quantity is carried out such that the ratio of fuel injection in the compression stroke is reduced as a temperature of exhaust gas rises when starting the engine and a target air/fuel ratio corresponding to a fuel injection quantity constituted by totalizing a fuel injection quantity in the intake stroke and a fuel injection quantity in the compression stroke becomes cleaner than a theoretical air/fuel ratio.

Description

本発明は、燃料を直接燃焼室内に噴射する燃料噴射弁を備えた内燃機関に用いられる内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine used in an internal combustion engine having a fuel injection valve that injects fuel directly into a combustion chamber.

従来、内燃機関の始動時及び始動直後における燃料噴射量の制御において、暖機を行うべく空燃比を理論空燃比よりもリッチ側に制御する始動時増量補正を行うことが広く行われている。しかし、始動時増量補正を行っている間は空燃比が理論空燃比よりもリッチ側に制御されることから、始動時及び始動直後において多量の燃料が消費されるという問題が存在する。このような始動時増量補正に係る問題を解決する手段の一例として、以下のようなものが考えられている(例えば、特許文献1を参照)。   Conventionally, in the control of the fuel injection amount at the start of the internal combustion engine and immediately after the start, it is widely performed to perform an increase correction at start-up that controls the air-fuel ratio to be richer than the stoichiometric air-fuel ratio in order to warm up. However, since the air-fuel ratio is controlled to be richer than the stoichiometric air-fuel ratio during the start-up increase correction, there is a problem that a large amount of fuel is consumed at the start and immediately after the start. As an example of means for solving such a problem related to the increase correction at start-up, the following is considered (see, for example, Patent Document 1).

前記特許文献1記載の制御においては、燃料を直接燃焼室内に噴射する燃料噴射弁を備えた内燃機関において、吸気行程と圧縮行程とにそれぞれ分割して燃料噴射弁から燃料を噴射させるようにしているが、触媒の暖機を行う必要がある際には負荷が増大するにつれ吸気行程での燃料噴射量を増大させるようにしている。   In the control described in Patent Document 1, in an internal combustion engine having a fuel injection valve that directly injects fuel into the combustion chamber, fuel is injected from the fuel injection valve by dividing into an intake stroke and a compression stroke. However, when it is necessary to warm up the catalyst, the fuel injection amount in the intake stroke is increased as the load increases.

しかし、前記特許文献1記載の制御においては、クランキング開始t0から完爆t2までの期間Tにおいては吸気行程でのみ燃料噴射を行っているので、この期間における燃料噴射量を削減し燃費の向上を図ることができないという問題が存在する。また、初爆t1から完爆t2までの期間においては、図5に示すように、吸気管圧力PMが示す負荷の変化が不安定であるので、前記特許文献1記載の制御においては、この期間においては吸気行程での燃料噴射量を決定するパラメータとして負荷を用いることは不適切であるという問題が存在する。 However, in the control described in Patent Document 1, since fuel injection is performed only during the intake stroke in the period T from the cranking start t 0 to the complete explosion t 2 , the fuel injection amount in this period is reduced and the fuel consumption is reduced. There is a problem that it is not possible to improve. In the period from the initial explosion t 1 to the complete explosion t 2 , as shown in FIG. 5, the change in the load indicated by the intake pipe pressure PM is unstable. Therefore, in the control described in Patent Document 1, During this period, there is a problem that it is inappropriate to use the load as a parameter for determining the fuel injection amount in the intake stroke.

特開平10−212987号公報Japanese Patent Laid-Open No. 10-212987

本発明は以上の点に着目し、吸気行程と圧縮行程とにそれぞれ分割して燃料噴射弁から燃料を噴射させる制御を精度よく行い、全体としての燃料消費量を抑制することを目的とする。   The present invention pays attention to the above points, and it is an object of the present invention to accurately control the fuel injection from the fuel injection valve by dividing the intake stroke and the compression stroke, respectively, and to suppress the fuel consumption as a whole.

すなわち本発明に係る内燃機関の制御装置は、燃料を直接燃焼室内に噴射する燃料噴射弁を備える内燃機関に用いられ、吸気行程と圧縮行程とにそれぞれ分割して燃料噴射弁から燃料を噴射させる制御を行う内燃機関の制御装置であって、始動時において、排気ガスの温度が上昇するにつれ圧縮行程での燃料噴射の割合を減少させ、吸気行程における燃料噴射量と圧縮行程における燃料噴射量とを合わせた燃料噴射量に対応する目標空燃比が理論空燃比よりもリーンになるように燃料噴射量の制御を行うことを特徴とする。   That is, the control apparatus for an internal combustion engine according to the present invention is used in an internal combustion engine having a fuel injection valve that injects fuel directly into a combustion chamber, and injects fuel from the fuel injection valve by dividing into an intake stroke and a compression stroke. A control device for an internal combustion engine that performs control, wherein at the time of start-up, as the exhaust gas temperature rises, the ratio of fuel injection in the compression stroke is reduced, and the fuel injection amount in the intake stroke and the fuel injection amount in the compression stroke The fuel injection amount is controlled so that the target air-fuel ratio corresponding to the combined fuel injection amount is leaner than the stoichiometric air-fuel ratio.

このようなものであれば、排気ガス温度が低い領域では圧縮行程での燃料噴射の割合を大きくすることにより、空燃比がリーン側であっても確実に始動を行えるようにするとともに触媒を速やかに活性化しつつ、排気ガス温度が高い領域では圧縮行程での燃料噴射の割合を小さくすること、すなわち圧縮行程での燃料噴射の割合を大きくすることで、燃焼室全体に燃え広がるようにして燃焼を安定させることができる。これらにより、始動時及び始動直後の全体としての燃料消費量を抑制することができる。   In such a case, in a region where the exhaust gas temperature is low, the fuel injection rate in the compression stroke is increased so that the start can be reliably performed even when the air-fuel ratio is on the lean side, and the catalyst is quickly operated. In the region where the exhaust gas temperature is high, the ratio of fuel injection in the compression stroke is reduced, that is, the ratio of fuel injection in the compression stroke is increased, so that the entire combustion chamber spreads and burns. Can be stabilized. As a result, the fuel consumption as a whole at the start and immediately after the start can be suppressed.

本発明によれば、吸気行程と圧縮行程とにそれぞれ分割して燃料噴射弁から燃料を噴射させる制御を精度よく行うことにより、始動時及び始動直後の全体としての燃料消費量を抑制し燃費の向上を図ることができる。   According to the present invention, by accurately performing control to inject fuel from the fuel injection valve by dividing each into an intake stroke and a compression stroke, the overall fuel consumption at the time of start and immediately after the start is suppressed, and fuel consumption is improved. Improvements can be made.

本発明の一実施形態に係る内燃機関を示す概略図。1 is a schematic diagram showing an internal combustion engine according to an embodiment of the present invention. 同実施形態に係る排気ガスの温度と圧縮行程における燃料噴射量の割合との関係を示す図。The figure which shows the relationship between the temperature of the exhaust gas which concerns on the same embodiment, and the ratio of the fuel injection quantity in a compression stroke. 同実施形態に係る電子制御装置が行う制御の手順を示すフローチャート。7 is a flowchart showing a control procedure performed by the electronic control device according to the embodiment. 同実施形態に係る作用説明図。Action | operation explanatory drawing which concerns on the same embodiment. 始動時及び始動直後の吸気管圧力、回転数及び排気ガスの温度の経時変化を示す図。The figure which shows the time-dependent change of the intake pipe pressure at the time of starting, and immediately after starting, the rotation speed, and the temperature of exhaust gas.

本発明の一実施形態を図面を参照しつつ以下に述べる。   An embodiment of the present invention will be described below with reference to the drawings.

図1に1気筒の構成を概略的に示した内燃機関たるエンジン100は、例えば自動車に搭載され、複数の気筒を有する。このエンジン100は、吸気系1、シリンダ2及び排気系5を備えている。吸気系1には、図示しないアクセルペダルに応じて開閉するスロットル弁11が設けてあり、そのスロットル弁11の下流には、サージタンク13を一体に有する吸気マニホルド12が取り付けてある。   An engine 100 that is an internal combustion engine schematically showing the configuration of one cylinder in FIG. 1 is mounted on, for example, an automobile and has a plurality of cylinders. The engine 100 includes an intake system 1, a cylinder 2, and an exhaust system 5. The intake system 1 is provided with a throttle valve 11 that opens and closes in response to an accelerator pedal (not shown), and an intake manifold 12 that integrally has a surge tank 13 is attached downstream of the throttle valve 11.

シリンダ2上部に形成される燃焼室23の天井部には、図示しない点火プラグ、及び燃料噴射弁3が取り付けてある。これら点火プラグ及び燃料噴射弁3は、後述する電子制御装置4により制御される。吸入空気は、前記吸気マニホールド12から吸気弁21を介してシリンダ2内に吸入される。前記吸気弁21は、吸気カムシャフト26の回転動作に連動して開閉動作を行う。燃料噴射弁3は、燃焼室23内に向けて燃料を噴射する。すなわち、このエンジン100は、燃焼室23内に直接燃料を噴射する、いわゆる直噴型のエンジンである。   A spark plug (not shown) and a fuel injection valve 3 are attached to the ceiling of the combustion chamber 23 formed in the upper part of the cylinder 2. The ignition plug and the fuel injection valve 3 are controlled by an electronic control device 4 described later. The intake air is drawn into the cylinder 2 from the intake manifold 12 through the intake valve 21. The intake valve 21 opens and closes in conjunction with the rotation of the intake camshaft 26. The fuel injection valve 3 injects fuel into the combustion chamber 23. That is, the engine 100 is a so-called direct injection engine that directly injects fuel into the combustion chamber 23.

また、排気系5には、燃焼室23から排気弁24を介して排出された排気ガス中の酸素濃度を測定するためのO2センサ51、及び排気ガスの温度を測定するための排気ガス温度センサ52が、図示しないマフラに至るまでの管路に配設された三元触媒53の上流の位置に取り付けられている。また、前記三元触媒53は、所定温度以上で活性化し、炭化水素及び一酸化炭素の酸化と、窒素酸化物の還元とを同時に行う、車両用の内燃機関に搭載されるものとして周知のものである。 The exhaust system 5 includes an O 2 sensor 51 for measuring the oxygen concentration in the exhaust gas discharged from the combustion chamber 23 via the exhaust valve 24, and an exhaust gas temperature for measuring the temperature of the exhaust gas. A sensor 52 is attached at a position upstream of the three-way catalyst 53 disposed in a pipeline leading to a muffler (not shown). The three-way catalyst 53 is known to be mounted on an internal combustion engine for a vehicle that is activated at a predetermined temperature or more and simultaneously performs oxidation of hydrocarbons and carbon monoxide and reduction of nitrogen oxides. It is.

電子制御装置4は、中央演算処理装置41と、記憶装置42と、入力インターフェース43と、出力インターフェース44とを具備してなるマイクロコンピュータシステムを主体に構成されている。中央演算処理装置41は、記憶装置42に格納された後述のプログラムを実行して、エンジン100の運転制御を行うものである。そしてエンジン100の運転制御を行うために必要な情報が入力インターフェース43を介して中央演算処理装置41に入力されるとともに、中央演算処理装置41は出力インターフェース44を介して制御のための信号を燃料噴射弁3、点火プラグ8、可変動弁機構9等に出力する。具体的には、入力インターフェース43には、サージタンク13内の圧力である吸気圧PMを検出するための吸気圧センサ71から出力させる吸気圧信号a、エンジン回転数Neを検出するための回転数センサ72から出力される回転数信号b、エンジン100の冷却水温を検出するための水温センサ73から出力される水温信号c、上記したO2センサ51から出力される電圧信号d、上記した排気ガス温度センサ52から出力される排気温信号eなどが入力される。一方、出力インターフェース44からは、スパークプラグに対して点火信号m、燃料噴射弁3に対して燃料噴射信号n、可変動弁機構6のアクチュエータ61に対して開閉タイミング信号o等が出力されるようになっている。 The electronic control device 4 is mainly configured by a microcomputer system including a central processing unit 41, a storage device 42, an input interface 43, and an output interface 44. The central processing unit 41 controls the operation of the engine 100 by executing a program described later stored in the storage device 42. Information necessary for controlling the operation of the engine 100 is input to the central processing unit 41 via the input interface 43, and the central processing unit 41 sends a control signal to the fuel via the output interface 44. Output to the injection valve 3, the spark plug 8, the variable valve mechanism 9 and the like. Specifically, the input interface 43 has an intake pressure signal a output from the intake pressure sensor 71 for detecting the intake pressure PM, which is the pressure in the surge tank 13, and an engine speed Ne for detecting the engine speed Ne. The rotation speed signal b output from the sensor 72, the water temperature signal c output from the water temperature sensor 73 for detecting the cooling water temperature of the engine 100, the voltage signal d output from the O 2 sensor 51, and the exhaust gas described above. An exhaust gas temperature signal e output from the temperature sensor 52 is input. On the other hand, the output interface 44 outputs an ignition signal m to the spark plug, a fuel injection signal n to the fuel injection valve 3, an opening / closing timing signal o to the actuator 61 of the variable valve mechanism 6 and the like. It has become.

すなわち、電子制御装置4は、エンジン100の運転制御に必要な各種情報a、b、c、dを入力インタフェース43を介して取得し、それらに基づいて吸気量や要求燃料噴射量、点火時期等を演算する。そして、演算結果に対応した各種制御信号m、nを出力インタフェース44を介して印加する。   That is, the electronic control unit 4 acquires various information a, b, c, and d necessary for operation control of the engine 100 via the input interface 43, and based on them, the intake air amount, the required fuel injection amount, the ignition timing, etc. Is calculated. Various control signals m and n corresponding to the calculation result are applied via the output interface 44.

しかして本実施形態では、電子制御装置4の記憶装置42の所定領域には、クランキングの開始t0から空燃比フィードバック制御の開始t3までの期間Tにおいて、排気ガスの温度teが上昇するにつれ圧縮行程での燃料噴射の割合を減少させ、吸気行程における燃料噴射量と圧縮行程における燃料噴射量とを合わせた燃料噴射量に対応する目標空燃比が理論空燃比よりもリーンである所定の起動時空燃比になるように燃料噴射量の制御を行うよう制御する噴射量制御プログラムが格納してある。また、電子制御装置4の記憶装置42の所定領域には、代表的な排気ガス温度と圧縮行程における燃料噴射量の全燃料噴射量に対する割合とを対応付けて記憶した噴射量比率テーブルを形成している。そして、実際の圧縮行程における燃料噴射量の割合の決定は、排気温信号eが示す排気ガスの温度teをパラメータとし、補間計算により行うようにしている。圧縮行程における燃料噴射量の割合は、図2に示すように、排気ガスの温度teが上昇するにつれ減少している。 Therefore, in the present embodiment, the exhaust gas temperature te rises in a predetermined region of the storage device 42 of the electronic control unit 4 during the period T from the cranking start t 0 to the air-fuel ratio feedback control start t 3. Accordingly, the ratio of fuel injection in the compression stroke is decreased, and the target air-fuel ratio corresponding to the fuel injection amount that is the sum of the fuel injection amount in the intake stroke and the fuel injection amount in the compression stroke is leaner than the stoichiometric air-fuel ratio. An injection amount control program for controlling the fuel injection amount so that the air-fuel ratio at startup is controlled is stored. In addition, an injection amount ratio table that stores a typical exhaust gas temperature and a ratio of the fuel injection amount to the total fuel injection amount in the compression stroke in association with each other is formed in a predetermined area of the storage device 42 of the electronic control unit 4. ing. The ratio of the fuel injection amount in the actual compression stroke is determined by interpolation calculation using the exhaust gas temperature te indicated by the exhaust gas temperature signal e as a parameter. The ratio of the fuel injection amount in the compression stroke decreases as the exhaust gas temperature te increases, as shown in FIG.

電子制御装置4は、中央演算処理装置41がこの噴射量制御プログラムを実行することにより、請求項中の制御装置として機能する。以下、この噴射量制御プログラムによる制御の手順を、フローチャートである図3を参照しつつ説明する。   The electronic control unit 4 functions as a control unit in the claims when the central processing unit 41 executes the injection amount control program. Hereinafter, a control procedure by the injection amount control program will be described with reference to FIG. 3 which is a flowchart.

まず、排気ガスの温度teを検出する(ステップS1)。次いで、排気ガスの温度teをパラメータとして圧縮行程における燃料噴射量の割合を決定する(ステップS2)。それから、目標空燃比が理論空燃比よりもリーンである所定の起動時空燃比になるように、吸気行程及び圧縮行程における燃料噴射量を決定する(ステップS3)。そして、ステップS2で決定した燃料噴射量だけ吸気行程及び圧縮行程においてそれぞれ燃料を噴射する制御を行う(ステップS4)。   First, the exhaust gas temperature te is detected (step S1). Next, the ratio of the fuel injection amount in the compression stroke is determined using the exhaust gas temperature te as a parameter (step S2). Then, the fuel injection amount in the intake stroke and the compression stroke is determined so that the target air-fuel ratio becomes a predetermined startup air-fuel ratio that is leaner than the stoichiometric air-fuel ratio (step S3). Then, control is performed to inject fuel in the intake stroke and the compression stroke by the fuel injection amount determined in step S2 (step S4).

すなわち、図4及び図5に示すように、クランキング開始後、上述した噴射量制御プログラムによる制御を行うことにより、冷間始動時においては排気ガスの温度teも低いので触媒を速やかに活性化させるべく圧縮行程における燃料噴射量の割合を大きくする一方、触媒の暖機が完了し排気ガスの温度teが十分上昇してから空燃比フィードバック制御を開始するまでの期間Tにおいては、圧縮行程における燃料噴射量の割合を小さくすること、すなわち吸気行程における燃料噴射量の割合を大きくすることで、燃料と空気をより均一に混合させ、より安定して燃焼させることができる。   That is, as shown in FIGS. 4 and 5, after the cranking is started, the control is performed by the above-described injection amount control program, so that the temperature of the exhaust gas te is low at the cold start so that the catalyst is activated quickly. While the ratio of the fuel injection amount in the compression stroke is increased in order to allow the air-fuel ratio feedback control to start after the warm-up of the catalyst is completed and the temperature te of the exhaust gas sufficiently rises, By reducing the ratio of the fuel injection amount, that is, increasing the ratio of the fuel injection amount in the intake stroke, the fuel and air can be mixed more uniformly and burned more stably.

以上に述べたように、本実施形態の制御によれば、図4及び図5に示すように排気ガスの温度teが始動直後から漸次上昇することを利用し、排気ガスの温度teをパラメータとして圧縮行程での燃料噴射の割合を制御することで、排気ガスの温度teが低い領域では圧縮行程での燃料噴射の割合を大きくすることにより触媒を速やかに活性化しつつ、排気ガスの温度teが高い領域では圧縮行程での燃料噴射の割合を小さくすること、すなわち圧縮行程での燃料噴射の割合を大きくすることで燃焼を安定させ、始動時及び始動直後の全体としての燃料消費量を抑制することができる。   As described above, according to the control of the present embodiment, as shown in FIGS. 4 and 5, the exhaust gas temperature te is used as a parameter by utilizing the fact that the exhaust gas temperature te gradually increases immediately after starting. By controlling the ratio of fuel injection in the compression stroke, in a region where the exhaust gas temperature te is low, the catalyst is quickly activated by increasing the ratio of fuel injection in the compression stroke, while the exhaust gas temperature te In the high range, the fuel injection rate in the compression stroke is reduced, that is, the fuel injection rate in the compression stroke is increased to stabilize the combustion, and the overall fuel consumption at the start and immediately after the start is suppressed. be able to.

なお、本発明は以上に述べた実施形態に限らない。   The present invention is not limited to the embodiment described above.

例えば、上述した実施形態では、クランキングの開始t0から空燃比フィードバック制御の開始t3までの期間において本発明の燃料噴射量制御を行っているが、クランキングの開始t0から始動完了まで、すなわち内燃機関が完爆状態t2となるまでの期間において本発明の燃料噴射量制御を行うようにしてもよい。また、初爆が検出された時点t1すなわち燃焼室内での燃焼が最初に検出された時点から始動完了まで、すなわち内燃機関が完爆状態t2となるまでの期間において本発明の燃料噴射量制御を行うようにしてもよい。 For example, in the above-described embodiment, the fuel injection amount control of the present invention is performed in the period from the cranking start t 0 to the air-fuel ratio feedback control start t 3, but from the cranking start t 0 to the start completion. , i.e. may be performed fuel injection amount control of the present invention in a period until the internal combustion engine is completely exploded state t 2. Further, the fuel injection amount of the present invention is from the time t 1 when the first explosion is detected, that is, from the time when combustion in the combustion chamber is first detected until the start is completed, that is, until the internal combustion engine reaches the complete explosion state t 2. Control may be performed.

その他、本発明の趣旨を損ねない範囲で種々に変更してよい。   In addition, various changes may be made without departing from the spirit of the present invention.

100…エンジン(内燃機関)
3…燃料噴射弁
4…電子制御装置(制御装置)
52…排気ガス温度センサ
100 ... Engine (internal combustion engine)
3 ... Fuel injection valve 4 ... Electronic control device (control device)
52. Exhaust gas temperature sensor

Claims (1)

燃料を直接燃焼室内に噴射する燃料噴射弁を備える内燃機関に用いられ、吸気行程と圧縮行程とにそれぞれ分割して燃料噴射弁から燃料を噴射させる制御を行う内燃機関の制御装置であって、
始動時において、排気ガスの温度が上昇するにつれ圧縮行程での燃料噴射の割合を減少させ、
吸気行程における燃料噴射量と圧縮行程における燃料噴射量とを合わせた燃料噴射量に対応する目標空燃比が理論空燃比よりもリーンになるように燃料噴射量の制御を行うことを特徴とする内燃機関の制御装置。
A control device for an internal combustion engine that is used in an internal combustion engine that includes a fuel injection valve that injects fuel directly into a combustion chamber, and that performs control to inject fuel from the fuel injection valve by dividing into an intake stroke and a compression stroke,
At start-up, as the exhaust gas temperature rises, reduce the rate of fuel injection in the compression stroke,
An internal combustion engine that controls a fuel injection amount so that a target air-fuel ratio corresponding to a fuel injection amount that is a sum of a fuel injection amount in an intake stroke and a fuel injection amount in a compression stroke is leaner than a theoretical air-fuel ratio. Engine control device.
JP2011107582A 2011-05-12 2011-05-12 Internal combustion engine control device Pending JP2012237261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107582A JP2012237261A (en) 2011-05-12 2011-05-12 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107582A JP2012237261A (en) 2011-05-12 2011-05-12 Internal combustion engine control device

Publications (1)

Publication Number Publication Date
JP2012237261A true JP2012237261A (en) 2012-12-06

Family

ID=47460367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107582A Pending JP2012237261A (en) 2011-05-12 2011-05-12 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP2012237261A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212987A (en) * 1997-01-30 1998-08-11 Mazda Motor Corp In-cylinder injection type engine
JP2001248481A (en) * 2000-03-03 2001-09-14 Mazda Motor Corp Control device for direct cylinder injection type engine
JP2002295277A (en) * 2001-03-30 2002-10-09 Mazda Motor Corp Spark ignition type direct injection engine equipped with turbo supercharger
JP2004060504A (en) * 2002-07-26 2004-02-26 Nissan Motor Co Ltd Control device of direct injection type spark ignition engine
JP2006194147A (en) * 2005-01-13 2006-07-27 Toyota Motor Corp Control device and control method for internal combustion engine
JP2008088872A (en) * 2006-09-29 2008-04-17 Mazda Motor Corp Spark ignition type direct injection engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212987A (en) * 1997-01-30 1998-08-11 Mazda Motor Corp In-cylinder injection type engine
JP2001248481A (en) * 2000-03-03 2001-09-14 Mazda Motor Corp Control device for direct cylinder injection type engine
JP2002295277A (en) * 2001-03-30 2002-10-09 Mazda Motor Corp Spark ignition type direct injection engine equipped with turbo supercharger
JP2004060504A (en) * 2002-07-26 2004-02-26 Nissan Motor Co Ltd Control device of direct injection type spark ignition engine
JP2006194147A (en) * 2005-01-13 2006-07-27 Toyota Motor Corp Control device and control method for internal combustion engine
JP2008088872A (en) * 2006-09-29 2008-04-17 Mazda Motor Corp Spark ignition type direct injection engine

Similar Documents

Publication Publication Date Title
JP4148233B2 (en) Engine fuel injection control device
JP5124522B2 (en) Control device for compression self-ignition internal combustion engine
JP2009185628A (en) Fuel injection control system for internal combustion engine
JP2007332867A (en) Control device of internal combustion engine
JP5868073B2 (en) Control device for internal combustion engine
JP2006291939A (en) Controller of engine
JP5867441B2 (en) Control device for internal combustion engine
JP2006291940A (en) Controller of engine
JP2010216326A (en) Method for controlling switching of combustion method of internal combustion engine
JP2006322339A (en) Internal combustion engine
JP5477498B2 (en) Control device for internal combustion engine
JP2012237261A (en) Internal combustion engine control device
JP2012197771A (en) Internal combustion engine
JP2019100227A (en) Control device of internal combustion engine
JP2006125267A (en) Hydrogen-added internal combustion engine
JP5435157B2 (en) Fuel injection control device for internal combustion engine
JP7459813B2 (en) Control device for internal combustion engine
JP2012077713A (en) Multi-cylinder internal combustion engine control device
JP2009197653A (en) Method of controlling gasoline engine
JP2010163930A (en) Control device of direct-injection spark ignition internal combustion engine
JP4464616B2 (en) Secondary air supply control device for internal combustion engine
JP5883323B2 (en) Engine control device
JP2004293351A (en) Control method of cutting engine fuel
JP5375085B2 (en) Control device for internal combustion engine
JP5625758B2 (en) Control device for multi-cylinder internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151117