JP2012233234A - Vacuum processing apparatus - Google Patents

Vacuum processing apparatus Download PDF

Info

Publication number
JP2012233234A
JP2012233234A JP2011102872A JP2011102872A JP2012233234A JP 2012233234 A JP2012233234 A JP 2012233234A JP 2011102872 A JP2011102872 A JP 2011102872A JP 2011102872 A JP2011102872 A JP 2011102872A JP 2012233234 A JP2012233234 A JP 2012233234A
Authority
JP
Japan
Prior art keywords
substrate
mask
imaging
gas
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011102872A
Other languages
Japanese (ja)
Other versions
JP5773731B2 (en
Inventor
Keisuke Shimoda
圭介 下田
Kenji Eto
謙次 江藤
Hiroko Kato
裕子 加藤
Hirotoshi Nakao
裕利 中尾
Seiichi Sato
誠一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011102872A priority Critical patent/JP5773731B2/en
Publication of JP2012233234A publication Critical patent/JP2012233234A/en
Application granted granted Critical
Publication of JP5773731B2 publication Critical patent/JP5773731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum processing apparatus which can accurately position a substrate and mask by imaging their relative positions even when both substrate surfaces are covered in a vertical direction by processors having larger profiles than the substrate, and which can form a film having the favorable in-plane uniformity in thickness and quality thereof even when applying to a CVD device.SOLUTION: The vacuum processing apparatus comprises: a mask M disposed facing a substrate S in a treatment chamber 1a; a moving unit 63 for moving the mask relatively to the substrate; a gas introduction part 3 and a high-frequency power source 5 which are arranged on the upper side of the substrate and perform a prescribed treatment to one side of the substrate; and a heating plate 2 which has a body 21 disposed at the lower side of the substrate to cover the other face thereof and performs a prescribed treatment from the other side of the substrate. An imager 7 is provided at the lower side of the body 21. A vertical through-hole 24a is formed in the body 21, and a light path 24 for imaging is composed by embedding a light permeable member 24b in the through-hole. The relative position of the substrate with the mask is imaged by the imager through the light path for imaging, and the moving unit is controlled based on this imaging data.

Description

本発明は、真空処理装置に関する。   The present invention relates to a vacuum processing apparatus.

表示装置や半導体デバイスの製造工程においては、例えば、処理すべき基板に対し所定の薄膜を成膜する工程があり、このとき、基板面内の特定範囲のみに成膜範囲を制限して成膜することがある。このように成膜範囲を制限して精度よく基板に対して成膜する真空処理装置は例えば特許文献1で知られている。このものでは、処理室を画成する真空チャンバ内に設けたステージ上に保持された基板の成膜面たる片面の上方に、成膜範囲を制限するマスクを配置すると共に、この真空チャンバの天板外側にCCDカメラ等の撮像手段が設けられている。そして、成膜に先立って、天板に形成した透明窓を通して基板に対するマスクの相対位置を撮像し、この撮像データを基に、基板を保持するステージを移動させてマスクに対する基板を位置決め(アライメント)するようにしている。   In the manufacturing process of a display device or a semiconductor device, for example, there is a step of forming a predetermined thin film on a substrate to be processed. At this time, the film formation range is limited to a specific range within the substrate surface. There are things to do. A vacuum processing apparatus that forms a film on a substrate with high accuracy by limiting the film forming range as described above is known, for example, in Patent Document 1. In this apparatus, a mask for limiting the film formation range is disposed above one surface, which is a film formation surface of a substrate held on a stage provided in a vacuum chamber defining a processing chamber, and the top of the vacuum chamber is arranged. Imaging means such as a CCD camera is provided on the outside of the plate. Prior to film formation, the relative position of the mask with respect to the substrate is imaged through a transparent window formed on the top plate, and based on this imaging data, the stage holding the substrate is moved to position the substrate with respect to the mask (alignment). Like to do.

上記成膜を行う真空処理装置としては、蒸着装置やスパッタリング装置等のPVD装置の他、CVD装置も用いられる。ここで、CVD装置においては、膜厚の面内均一性を高めるために、基板に対向させて処理室上部にシャワープレートを設け、このシャワープレートを介して処理室内にプロセスガスを導入し、基板表面にプロセスガスが均一に供給されるようにすることが多い。この場合、シャワープレートの輪郭は基板の輪郭よりも大きく設定することが通常である。このため、真空チャンバの天板側からその内部をみると、基板がシャワープレートで覆われることとなる。他方、上記CVD装置では、基板を加熱するために、処理室内の基板は、シャワープレートに対向配置された、当該基板の輪郭より大きな輪郭の加熱プレートに載置されている。このため、真空チャンバの底板側からその内部をみると、基板が加熱プレートで覆われることとなる。このように真空処理装置によっては、上下方向に重ねられるように配置される基板とマスクとの相対位置を天板や底板に設けた撮像手段で撮像できない、つまり、上記従来例のものをそのまま適用できないという問題がある。   As the vacuum processing apparatus for forming the film, a CVD apparatus is also used in addition to a PVD apparatus such as a vapor deposition apparatus and a sputtering apparatus. Here, in the CVD apparatus, in order to increase the in-plane uniformity of the film thickness, a shower plate is provided on the upper part of the processing chamber so as to face the substrate, and a process gas is introduced into the processing chamber through the shower plate, In many cases, the process gas is supplied uniformly to the surface. In this case, the contour of the shower plate is usually set larger than the contour of the substrate. For this reason, when the inside is seen from the top plate side of the vacuum chamber, the substrate is covered with the shower plate. On the other hand, in the CVD apparatus, in order to heat the substrate, the substrate in the processing chamber is placed on a heating plate having a contour larger than the contour of the substrate, which is disposed opposite to the shower plate. For this reason, when the inside is seen from the bottom plate side of the vacuum chamber, the substrate is covered with the heating plate. As described above, depending on the vacuum processing apparatus, the relative position between the substrate and the mask arranged so as to be superposed in the vertical direction cannot be imaged by the imaging means provided on the top plate or the bottom plate. There is a problem that you can not.

そこで、例えば、処理室内でマスクとシャワープレートとの間に撮像手段を設けたり、または、この撮像手段に通じる光路を形成する部品を設けたりすることも考えられる。然し、これでは、CVD装置のようにプロセスガスを基板表面に均一に供給する必要があるものでは、前記部品等によりプロセスガスの流れ(分布)が変わってしまい、膜厚や膜質の面内均一性よく成膜することにとって障害となり、しかも、プロセスガスによっては腐食性のものが用いられることがあるため、耐久性に欠ける。   Therefore, for example, it is conceivable to provide an imaging unit between the mask and the shower plate in the processing chamber, or to provide a part that forms an optical path leading to the imaging unit. However, in this case, in the case where the process gas needs to be supplied uniformly to the substrate surface as in a CVD apparatus, the flow (distribution) of the process gas changes due to the above-mentioned components, etc., and the film thickness and film quality are uniform in the surface. In addition, it is an obstacle to film formation with good properties, and depending on the process gas, a corrosive material may be used, resulting in a lack of durability.

特開2006−45583号公報JP 2006-45583 A

本発明は、以上の点に鑑み、上下方向で基板の両面が基板よりも大きい輪郭を有する処理手段で覆われる場合でも基板に対するマスクの相対位置を撮像し、基板とマスクとを精度よく位置決めすることができ、しかも、CVD装置に適用したときでも、膜厚や膜質の面内均一性よく成膜できるという機能を損なうことがない真空処理装置を提供することをその課題とする。   In view of the above points, the present invention images the relative position of the mask with respect to the substrate and accurately positions the substrate and the mask even when both surfaces of the substrate are covered with processing means having a larger contour than the substrate in the vertical direction. Further, it is an object of the present invention to provide a vacuum processing apparatus that does not impair the function of being able to form a film with good in-plane uniformity of film thickness and film quality even when applied to a CVD apparatus.

上記課題を解決するために、本発明の真空処理装置は、処理室内に設置される基板に対向配置されるマスクと、基板に対してマスクを相対移動させる移動手段と、基板からマスクに向かう方向を上、マスクから基板に向かう方向を下として、基板の上側に配置されて前記基板の片面に対してマスク越しに所定の処理を施す第1の処理手段と、基板の他面を覆うように当該基板の下側に配置される本体を有して前記基板の他面側から所定の処理を施す第2の処理手段と、を備え、前記第2の処理手段の本体下側に撮像手段を設け、前記本体に上下方向の透孔を形成すると共に透孔内に透光性部材を埋め込んで撮像用光路を構成し、撮像用光路を通して前記撮像手段により基板に対するマスクの相対位置を撮像し、この撮像データを基に前記移動手段を制御するように構成したことを特徴とする。   In order to solve the above-described problems, a vacuum processing apparatus according to the present invention includes a mask disposed opposite to a substrate installed in a processing chamber, a moving unit that moves the mask relative to the substrate, and a direction from the substrate toward the mask. The first processing means disposed on the upper side of the substrate and performing a predetermined process over the mask with respect to one side of the substrate, with the direction from the mask toward the substrate facing down, and the other side of the substrate covered A second processing means having a main body disposed on the lower side of the substrate and performing a predetermined process from the other surface side of the substrate, and an imaging means on the lower side of the main body of the second processing means. Provided, forming a vertical through-hole in the main body and embedding a translucent member in the through-hole to form an imaging optical path, and imaging the relative position of the mask relative to the substrate by the imaging means through the imaging optical path, Based on this imaging data, the movement Characterized by being configured to control the stage.

本発明によれば、基板に対するマスクの相対位置の撮像に必要な光路を、第2の処理手段の本体に形成された透孔内に透光性部材を埋め込んだ構成を採用したため、処理室内で上下方向に重ねられるように配置される基板とマスクとの相対位置を、その上下方向に位置する天板や底板に設けた撮像手段で撮像することが可能となる。そして、本発明の真空処理装置がCVD装置であるような場合でも、シャワープレートとマスクまたは基板との間に撮像用の部品等がなく、しかも、上記透孔に透光性部材を埋め込んでいることで、シャワープレートから導入されたガスは、外乱の影響がなく、シャワープレートを介して基板面内に供給されるプロセスガスの流れは変化するものではない。このため、膜厚や膜質の面内均一性よく成膜できるという機能は損なわれない。   According to the present invention, since the optical path necessary for imaging the relative position of the mask with respect to the substrate is employed, the translucent member is embedded in the through hole formed in the main body of the second processing means. The relative position between the substrate and the mask arranged so as to be overlapped in the vertical direction can be imaged by the imaging means provided on the top plate or the bottom plate positioned in the vertical direction. Even when the vacuum processing apparatus of the present invention is a CVD apparatus, there are no imaging parts between the shower plate and the mask or the substrate, and a light transmissive member is embedded in the through hole. Thus, the gas introduced from the shower plate is not affected by disturbance, and the flow of the process gas supplied into the substrate surface via the shower plate does not change. For this reason, the function of forming a film with good in-plane uniformity of film thickness and film quality is not impaired.

また、本発明においては、第2の処理手段は、例えば、基板の他面に面接触して伝熱により当該基板を所定温度に加熱する加熱プレートとすることができる。ここで、加熱プレートの重量(例えば数百kg以上)は一般にマスク支持体よりも重いため、加熱プレートを移動させることで基板を移動させる場合には、動力の大きな駆動源が必要となる等、コスト高を招く。そこで、基板とマスクとをアライメントする場合に、比較的軽量なマスクを相対移動させることが好ましい。   In the present invention, the second processing means can be, for example, a heating plate that contacts the other surface of the substrate and heats the substrate to a predetermined temperature by heat transfer. Here, since the weight of the heating plate (for example, several hundred kg or more) is generally heavier than the mask support, when a substrate is moved by moving the heating plate, a drive source with a large power is required, etc. Incurs high costs. Therefore, when aligning the substrate and the mask, it is preferable to relatively move the relatively lightweight mask.

更に、本発明においては、透光性部材をサファイヤ製とすることが好ましい。これにより、例えばNFガスのような腐食性ガスをプロセスガスとして用いる場合でも、耐久性のよい真空処理装置を実現できる。 Furthermore, in the present invention, the translucent member is preferably made of sapphire. Thereby, even when a corrosive gas such as NF 3 gas is used as a process gas, a highly durable vacuum processing apparatus can be realized.

本発明の実施形態のプラズマCVD装置の構成を模式的に示す図。The figure which shows typically the structure of the plasma CVD apparatus of embodiment of this invention. 基板に対するマスクの位置合わせを説明する模式図。The schematic diagram explaining position alignment of the mask with respect to a board | substrate. 成膜範囲を制限するマスクを示す平面図。The top view which shows the mask which restrict | limits the film-forming range.

以下、図面を参照して、処理すべき基板をガラス基板Sとし、真空処理装置をプラズマCVD装置とし、プラズマCVD法によりガラス基板S表面に窒化シリコン膜や酸窒化シリコン膜等のバリア膜を成膜する場合を例として、本発明の実施形態の真空処理装置を説明する。以下においては、ガラス基板SからマスクMに向かう方向を上、マスクMからガラス基板Sに向かう方向を下として説明する。また、ガラス基板Sには、その周縁部の所定位置にアライメントマークSmが形成されているものとする。   Hereinafter, with reference to the drawings, a substrate to be processed is a glass substrate S, a vacuum processing apparatus is a plasma CVD apparatus, and a barrier film such as a silicon nitride film or a silicon oxynitride film is formed on the surface of the glass substrate S by plasma CVD. The vacuum processing apparatus of the embodiment of the present invention will be described by taking the case of forming a film as an example. In the following description, the direction from the glass substrate S toward the mask M will be described as being upward, and the direction from the mask M toward the glass substrate S as being downward. Further, it is assumed that an alignment mark Sm is formed on the glass substrate S at a predetermined position on the peripheral edge thereof.

図1及び図2に示すように、プラズマCVD装置は、処理室1aを画成する筒状の真空チャンバ1を備える。真空チャンバ1の底板には、排気管11を介して図示省略の真空ポンプが接続され、処理室1aを所定の圧力に減圧保持できる。真空チャンバ1内の下側には、処理室1a内で基板を位置決め保持する役割を兼用する加熱プレート2が設けられている。加熱プレート2は、ガラス基板Sよりも大きな輪郭を有し、ガラス基板Sの他面に面接触する、平面視矩形の本体21を備える。本体21の内部には温媒循環路が設けられ、この温媒循環路に図外の温媒供給手段から温媒を流すと、本体21が加熱され、加熱された本体21と面接触するガラス基板Sが伝熱により所定温度に加熱される。この場合、本実施形態では、加熱プレート2が第2の処理手段を構成する。なお、本体21内に抵抗加熱式のヒータを埋設し、このヒータに通電することで本体21を加熱してもよい。また、本体21の下面には駆動源23を備えた昇降軸23aが連結され、ガラス基板Sの加熱プレート2への受け取り、受け渡しとガラス基板Sに対するマスクMの位置合わせとを行う下動位置と、成膜処理が行われる上動位置との間で本体21を昇降するようになっている。   As shown in FIGS. 1 and 2, the plasma CVD apparatus includes a cylindrical vacuum chamber 1 that defines a processing chamber 1a. A vacuum pump (not shown) is connected to the bottom plate of the vacuum chamber 1 through an exhaust pipe 11 so that the processing chamber 1a can be held at a predetermined pressure. A heating plate 2 that also serves to position and hold the substrate in the processing chamber 1a is provided below the vacuum chamber 1. The heating plate 2 includes a main body 21 having a rectangular shape in plan view, which has a larger outline than the glass substrate S and is in surface contact with the other surface of the glass substrate S. A heating medium circulation path is provided inside the main body 21, and when the heating medium is supplied to the heating medium circulation path from a heating medium supply means (not shown), the main body 21 is heated, and glass that is in surface contact with the heated main body 21. The substrate S is heated to a predetermined temperature by heat transfer. In this case, in the present embodiment, the heating plate 2 constitutes the second processing means. Note that a resistance heating heater may be embedded in the main body 21 and the main body 21 may be heated by energizing the heater. In addition, an elevating shaft 23 a having a drive source 23 is connected to the lower surface of the main body 21, and a downward movement position for receiving and delivering the glass substrate S to the heating plate 2 and aligning the mask M with the glass substrate S, The main body 21 is moved up and down between the upper moving position where the film forming process is performed.

ここで、加熱プレート2の周縁部には、加熱プレート2でガラス基板Sを位置決め保持したとき、ガラス基板SのアライメントマークSmの下方に位置するように、アライメントマークSmの輪郭よりも大きい輪郭を有する透孔24aが形成されている。そして、この透孔24aには、透光性部材24bが埋め込まれており、この透光性部材24bが撮像用光路24を構成する。この場合、透光性部材24bとしては、サファイヤ、ソーダガラス等を用いることができるが、プロセスガスとして、フッ素系ガス等の腐食性ガスを用いる場合には、耐腐食性の高いサファイヤが用いられる。   Here, the peripheral part of the heating plate 2 has a contour larger than the contour of the alignment mark Sm so that the glass substrate S is positioned and held by the heating plate 2 so as to be positioned below the alignment mark Sm of the glass substrate S. A through hole 24a is formed. A light transmissive member 24 b is embedded in the through hole 24 a, and the light transmissive member 24 b constitutes the imaging optical path 24. In this case, sapphire, soda glass, or the like can be used as the translucent member 24b. However, when corrosive gas such as fluorine gas is used as the process gas, sapphire having high corrosion resistance is used. .

真空チャンバ1の側壁上部には、加熱プレート2に対向させてガス導入部3が絶縁部材12を介して設けられている。ガス導入部3は、天板31と、天板31の内側で加熱プレート2に向けて突設した環状の周壁部32と、周壁部32の下端に装着され、ガラス基板Sよりも大きな輪郭を有するシャワープレート33とから構成される。ガス導入部3の天板31には、天板31と周壁部32とシャワープレート33とにより画成される拡散空間34にプロセスガスたる原料ガス及び反応ガスを供給する、図示省略のマスフローコントローラを介設したガス供給管4が接続されている。なお、シャワープレートについては、公知のものが利用できるため、ここでは詳細な説明を省略する。そして、成膜中、マスフローコントローラを制御して各ガスを所定流量で拡散空間34に供給すると、拡散空間34にて各ガスが拡散し、シャワープレート33の各開口33aを介して反応室1a内へと導入される。   A gas introducing portion 3 is provided on the upper side wall of the vacuum chamber 1 through the insulating member 12 so as to face the heating plate 2. The gas introduction unit 3 is mounted on the top plate 31, the annular peripheral wall portion 32 projecting toward the heating plate 2 inside the top plate 31, and the lower end of the peripheral wall portion 32, and has a larger outline than the glass substrate S. The shower plate 33 is provided. The top plate 31 of the gas introduction unit 3 is provided with a mass flow controller (not shown) that supplies a source gas and a reaction gas as process gases to a diffusion space 34 defined by the top plate 31, the peripheral wall portion 32, and the shower plate 33. An interposed gas supply pipe 4 is connected. In addition, since a well-known thing can be utilized about a shower plate, detailed description is abbreviate | omitted here. During the film formation, when each gas is supplied to the diffusion space 34 at a predetermined flow rate by controlling the mass flow controller, each gas diffuses in the diffusion space 34 and passes through each opening 33a of the shower plate 33 to enter the reaction chamber 1a. Introduced into

例えば、窒化シリコン膜を形成する場合には、原料ガスとしてSiHやTEOS等のシラン系ガスが用いられ、反応ガスとして窒素ガスやアンモニアガス等の窒素含有ガスが用いられる。また、酸窒化シリコン膜を形成する場合には、原料ガスとして上記シラン系ガスが用いられ、反応ガスとして一酸化二窒素ガスが用いられる。 For example, when a silicon nitride film is formed, a silane-based gas such as SiH 4 or TEOS is used as a source gas, and a nitrogen-containing gas such as nitrogen gas or ammonia gas is used as a reaction gas. In the case of forming a silicon oxynitride film, the silane-based gas is used as a source gas, and dinitrogen monoxide gas is used as a reaction gas.

ガス導入部3の天板31には、高周波電源5からの出力51が接続されている。本実施形態では、ガス導入部3及び高周波電源5等の各部品が第1の処理手段を構成する。そして、上記原料ガス及び反応ガスを反応室1a内に導入した状態でガス導入部3に所定の高周波電力を投入すると、反応室1a内でプラズマが発生する。当該プラズマ中で原料ガス及び反応ガスが分解されて、加熱プレート2上のガラス基板Sに供給されて気相からの析出によりバリア膜が成膜される。このガラス基板Sの成膜範囲を制限するマスクMをその下面から支持するマスク支持体6が、ガス導入部3のシャワープレート33と加熱プレート2との間に設けられている。   An output 51 from the high frequency power source 5 is connected to the top plate 31 of the gas introduction unit 3. In this embodiment, each component, such as the gas introduction part 3 and the high frequency power source 5, constitutes a first processing means. Then, when a predetermined high frequency power is supplied to the gas introduction part 3 in a state where the source gas and the reaction gas are introduced into the reaction chamber 1a, plasma is generated in the reaction chamber 1a. The source gas and the reaction gas are decomposed in the plasma and supplied to the glass substrate S on the heating plate 2 to form a barrier film by deposition from the gas phase. A mask support 6 that supports the mask M that limits the film forming range of the glass substrate S from the lower surface thereof is provided between the shower plate 33 and the heating plate 2 of the gas introduction unit 3.

マスク支持体6は、平面視矩形で所定の厚さを有する板状部材で構成されている。マスク支持体6の下面には、複数本の駆動軸61の上端が連結され(本実施形態ではマスク支持体6の4隅に4本の駆動軸61が連結されている)、駆動軸61の下端がベローズ62を通って真空チャンバ1の外部まで延出し、公知のXYθステージ63に連結されている。このXYθステージ63により、駆動軸61で支持されたマスク支持体6が、真空下の処理室1a内でX方向及びY方向の少なくとも一方に移動でき、また、θ方向に回転できる。なお、駆動軸61にエアーシリンダ等の駆動源を別途設け、マスク支持体6をZ方向(図1中、上下方向)にも移動自在としてもよい。   The mask support 6 is a plate-like member having a rectangular shape in plan view and a predetermined thickness. The lower surface of the mask support 6 is connected to the upper ends of a plurality of drive shafts 61 (in this embodiment, four drive shafts 61 are connected to the four corners of the mask support 6). A lower end extends to the outside of the vacuum chamber 1 through the bellows 62 and is connected to a known XYθ stage 63. By this XYθ stage 63, the mask support 6 supported by the drive shaft 61 can move in at least one of the X direction and the Y direction in the processing chamber 1a under vacuum, and can rotate in the θ direction. Note that a drive source such as an air cylinder may be separately provided on the drive shaft 61, and the mask support 6 may be movable in the Z direction (the vertical direction in FIG. 1).

マスク支持体6の中央部には矩形開口64が形成され、この矩形開口64にマスクMの段差部Msを係止させれば、マスクMがマスク支持体6上に位置決め保持される。マスクMとしては、例えば、図3に示すように、平面視矩形のアルミナ製の枠体Mfと、この枠体Mfの中央の矩形開口に形成されたインバー又は42合金(Fe−Ni合金)からなる格子状のパターンMpとから構成されるものを用いることができる。パターンMpは、ガラス基板Sへの成膜範囲に応じて種々の形態とされる。マスクMの周縁部には、当該マスクMをマスク支持体6上に位置決め保持させたとき、上記加熱プレート2に設けられた撮像用光路24上に位置させて透孔Mmが少なくとも2個形成されている。この透孔Mmは、ガラス基板Sに形成されたアライメントマークSmと略同一の輪郭を有し、ガラス基板Sに対してマスクMをアライメントする場合のアライメントマークとして機能する。   A rectangular opening 64 is formed at the center of the mask support 6, and the mask M is positioned and held on the mask support 6 by engaging the stepped portion Ms of the mask M with the rectangular opening 64. As the mask M, for example, as shown in FIG. 3, an alumina frame Mf having a rectangular shape in plan view, and Invar or 42 alloy (Fe—Ni alloy) formed in the central rectangular opening of the frame Mf are used. It is possible to use a pattern composed of a lattice pattern Mp. The pattern Mp has various forms depending on the film forming range on the glass substrate S. At the periphery of the mask M, when the mask M is positioned and held on the mask support 6, at least two through holes Mm are formed on the imaging optical path 24 provided in the heating plate 2. ing. The through hole Mm has substantially the same outline as the alignment mark Sm formed on the glass substrate S, and functions as an alignment mark when the mask M is aligned with the glass substrate S.

真空チャンバ1の底板には、加熱プレート2の撮像用光路24の下方に位置させて透明窓13が設けられている。透明窓13としては、サファイヤを用いることが好ましい。透明窓13の下方には公知のCCDカメラ等の撮像手段7が設けられ、撮像手段7により、撮像用光路24を通してガラス基板S越しにマスクMのアライメントマークMm、すなわち、ガラス基板Sに対するマスクMの相対位置を撮像できるようになっている。この場合、撮像手段7からガラス基板Sまでの距離は例えば600mmに設定することができる。撮像手段7には画像処理手段8が付設され、画像処理手段8にて処理した画像データが制御部Cに入力されるようになっている。制御部Cは、マイクロコンピュータやシーケンサ等を備え、高周波電源5、撮像手段7、XYθステージ63、マスフローコントローラ、真空ポンプ、温媒供給手段等の作動が統括制御されるようになっている。以下、本実施形態のプラズマCVD装置の動作について、ガラス基板に対してマスクを位置合わせした後にガラス基板の成膜面の特定領域に窒化シリコン膜を形成する場合を例として説明する。   A transparent window 13 is provided on the bottom plate of the vacuum chamber 1 so as to be positioned below the imaging optical path 24 of the heating plate 2. As the transparent window 13, sapphire is preferably used. An imaging means 7 such as a known CCD camera is provided below the transparent window 13, and the imaging means 7 causes the alignment mark Mm of the mask M over the glass substrate S through the imaging optical path 24, that is, the mask M for the glass substrate S. The relative position of can be imaged. In this case, the distance from the imaging means 7 to the glass substrate S can be set to 600 mm, for example. An image processing means 8 is attached to the imaging means 7 so that image data processed by the image processing means 8 is input to the control unit C. The control unit C includes a microcomputer, a sequencer, and the like, and the operations of the high-frequency power source 5, the imaging unit 7, the XYθ stage 63, the mass flow controller, the vacuum pump, the heating medium supply unit, and the like are integrally controlled. Hereinafter, the operation of the plasma CVD apparatus of this embodiment will be described by taking as an example the case where a silicon nitride film is formed in a specific region of the film formation surface of the glass substrate after the mask is aligned with the glass substrate.

真空チャンバ1を真空引きして所定圧力まで減圧した状態で、図外の搬送ロボットによりガラス基板Sを搬送し、下動位置にある加熱プレート2の上面にガラス基板Sを、その成膜面を上側にしてセットする。この場合、ガラス基板Sに形成されたアライメントマークSmが、加熱プレート2の光路24上に位置する。ここで、マスクMはマスク支持体6により予め支持されていてもよく、ガラス基板Sの搬送前後にマスクMを搬送してマスク支持体6に支持させてもよい。   In a state where the vacuum chamber 1 is evacuated and depressurized to a predetermined pressure, the glass substrate S is transported by a transport robot (not shown), and the glass substrate S is deposited on the upper surface of the heating plate 2 in the downward movement position. Set it up. In this case, the alignment mark Sm formed on the glass substrate S is positioned on the optical path 24 of the heating plate 2. Here, the mask M may be supported in advance by the mask support 6, or the mask M may be transported before and after the glass substrate S is transported and supported by the mask support 6.

加熱プレート2上にガラス基板Sを保持した後、ガラス基板Sに対するマスクMの位置合わせ(アライメント)を行う。この場合、撮像手段7により、加熱プレート2に形成した撮像用光路24を通してガラス基板S越しにマスクMを撮像する。このとき、ガラス基板SのアライメントマークSmとマスクMのアライメントマークMmとが同時に撮像される。撮像手段7により撮像された画像は画像処理手段8に送られ、画像処理手段8により画像処理してガラス基板Sに対するマスクMのずれ量が検出される。検出されたずれ量は制御部Cに入力され、制御部Cは、入力されたずれ量に基づいてXYθステージ63の移動量を算出し、XYθステージ63をX方向及びY方向の少なくとも一方に移動させ、またはθ方向に回転させることでマスクMの姿勢を変更する。これにより、ガラス基板Sに対するマスクMの位置合わせが行われる。   After holding the glass substrate S on the heating plate 2, alignment (alignment) of the mask M with respect to the glass substrate S is performed. In this case, the imaging means 7 images the mask M through the glass substrate S through the imaging optical path 24 formed on the heating plate 2. At this time, the alignment mark Sm of the glass substrate S and the alignment mark Mm of the mask M are imaged simultaneously. The image picked up by the image pickup means 7 is sent to the image processing means 8, and the image processing means 8 performs image processing to detect the shift amount of the mask M with respect to the glass substrate S. The detected deviation amount is input to the control unit C. The control unit C calculates the movement amount of the XYθ stage 63 based on the input deviation amount, and moves the XYθ stage 63 in at least one of the X direction and the Y direction. Or the posture of the mask M is changed by rotating in the θ direction. Thereby, alignment of the mask M with respect to the glass substrate S is performed.

位置合わせが終了すると、加熱プレート2を下動位置から上動位置に上昇させる。加熱プレート2を上昇させると、マスク支持体6からガラス基板SにマスクMが受け渡され、ガラス基板Sの成膜面がマスクMのパターンMpで覆われる。加熱プレート2が上動位置に達した後、マスフローコントローラを制御してシランガスからなる原料ガスとアンモニアガス及び窒素ガスからなる反応ガスとをプロセスガスとして拡散空間34に供給するとともに(例えばシランガス流量:1sccm〜100slm、アンモニアガス流量:1sccm〜100slm、窒素ガス流量:1sccm〜100slm、真空チャンバ内圧力:0.01Pa〜10kPa)、高周波電源5からガス導入部3に高周波電力を投入すると(例えば100W〜10kW)、シャワープレート33とマスク支持体6との間でプラズマが形成され、ガラス基板SのマスクパターンMpで覆われていない成膜面に窒化シリコン膜が所定膜厚で成膜される。   When the alignment is completed, the heating plate 2 is raised from the lower movement position to the upper movement position. When the heating plate 2 is raised, the mask M is transferred from the mask support 6 to the glass substrate S, and the film formation surface of the glass substrate S is covered with the pattern Mp of the mask M. After the heating plate 2 reaches the upward movement position, the mass flow controller is controlled to supply the source gas made of silane gas and the reaction gas made of ammonia gas and nitrogen gas as the process gas to the diffusion space 34 (for example, silane gas flow rate: 1 sccm to 100 slm, ammonia gas flow rate: 1 sccm to 100 slm, nitrogen gas flow rate: 1 sccm to 100 slm, vacuum chamber internal pressure: 0.01 Pa to 10 kPa), when high frequency power is supplied from the high frequency power source 5 to the gas introduction unit 3 (for example, 100 W to 100 W) 10 kW), plasma is formed between the shower plate 33 and the mask support 6, and a silicon nitride film having a predetermined thickness is formed on the film formation surface of the glass substrate S that is not covered with the mask pattern Mp.

以上説明したように、本実施形態によれば、加熱プレート2の本体21に形成された透孔24a内に透光性部材24bを埋め込むことで撮像用光路24を構成したため、処理室1a内で上下方向に重ねられるように配置されるガラス基板SとマスクMの相対位置を、その下方に位置する真空チャンバ1底板に設けた撮像手段7により撮像することができ、ガラス基板Sに対するマスクMの位置決めを精度よく行うことができる。しかも、シャワープレート33とマスクMまたはガラス基板Sとの間に撮像用の部品等がなく、しかも、上記透孔24a内に透過性部材24bを埋め込んでいることで、シャワープレート33から導入されるガスは、外乱の影響がなく、シャワープレート33を介してガラス基板Sの面内に供給されるプロセスガスの流れは変化するものではない。このため、膜厚や膜質の面内均一性よく成膜できるという機能を損なうことなく、ガラス基板Sの特定領域にのみ精度よく成膜することができる。   As described above, according to the present embodiment, the imaging optical path 24 is configured by embedding the translucent member 24 b in the through hole 24 a formed in the main body 21 of the heating plate 2. The relative position of the glass substrate S and the mask M, which are arranged so as to be superposed in the vertical direction, can be imaged by the imaging means 7 provided on the bottom plate of the vacuum chamber 1 positioned below the glass substrate S. Positioning can be performed with high accuracy. In addition, there are no imaging components between the shower plate 33 and the mask M or the glass substrate S, and the transparent member 24b is embedded in the through hole 24a, so that it is introduced from the shower plate 33. The gas is not affected by disturbance, and the flow of the process gas supplied into the surface of the glass substrate S via the shower plate 33 does not change. For this reason, it is possible to form a film accurately only in a specific region of the glass substrate S without impairing the function of forming the film with good in-plane uniformity of film thickness and film quality.

ところで、ガラス基板Sへの窒化シリコン膜の成膜中には、真空チャンバ1の内壁や処理室1a内の部品にも窒化シリコン膜が付着する。付着した酸窒化シリコン膜の厚さが一定以上になると、窒化シリコン膜が剥離してパーティクルとなりガラス基板S上に付着するため、処理室1a内を定期的にクリーニングすることが一般的であり、その際、例えばNF等のフッ素含有ガスを用いることができる。然し、フッ素含有ガスのような腐食性ガスをプロセスガスとして用いると、透光性部材24bがエッチングされる虞がある。本実施形態では、透光性部材24bをサファイヤ製としたため、腐食性ガスをプロセスガスとして用いる場合でも、耐久性のよいプラズマCVD装置を実現できる。 By the way, during the formation of the silicon nitride film on the glass substrate S, the silicon nitride film adheres to the inner wall of the vacuum chamber 1 and the components in the processing chamber 1a. When the thickness of the deposited silicon oxynitride film exceeds a certain value, the silicon nitride film peels off and becomes particles and adheres to the glass substrate S, so that it is common to periodically clean the inside of the processing chamber 1a. At that time, for example, a fluorine-containing gas such as NF 3 can be used. However, when a corrosive gas such as a fluorine-containing gas is used as the process gas, the translucent member 24b may be etched. In this embodiment, since the translucent member 24b is made of sapphire, a highly durable plasma CVD apparatus can be realized even when a corrosive gas is used as a process gas.

以上、本発明の実施形態について説明したが、本発明は上記のものに限定されるものではない。上記実施形態では、プラズマCVD装置を例に説明したが、スパッタリング装置やエッチング装置等、基板の両面を処理手段で覆って該両面に所定の処理を施す装置に本発明は適用できる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to said thing. In the above embodiment, the plasma CVD apparatus has been described as an example. However, the present invention can be applied to an apparatus such as a sputtering apparatus or an etching apparatus that covers both surfaces of a substrate with processing means and performs predetermined processing on both surfaces.

また、上記実施形態では、撮像手段による撮像データに基づきマスク支持体6を移動させているが、加熱プレート2を移動させてもよい。但し、加熱プレート2は加熱手段を備えることから、加熱プレート2の重量はマスク支持体6よりも重い。このため、加熱プレート2を移動させることでガラス基板Sを移動させる場合には、動力の大きな駆動源が必要となり、コスト高を招く。それに対して、上記実施形態では、マスク支持体6を移動させることで比較的軽量なマスクMを移動させているため、動力の小さな駆動源を用いることができる。   Moreover, in the said embodiment, although the mask support body 6 is moved based on the imaging data by an imaging means, you may move the heating plate 2. FIG. However, since the heating plate 2 includes heating means, the weight of the heating plate 2 is heavier than the mask support 6. For this reason, when the glass substrate S is moved by moving the heating plate 2, a driving source having a large power is required, resulting in an increase in cost. On the other hand, in the above-described embodiment, since the relatively light mask M is moved by moving the mask support 6, a drive source with small power can be used.

1a…処理室、2…加熱プレート(第2の処理手段)、3…ガス導入部(第1の処理手段)、7…撮像手段、21…本体、24…撮像用光路、24a…透孔、24b…透光性部材、33…シャワープレート、63…XYθステージ(移動手段)、S…ガラス基板(基板)、M…マスク。
DESCRIPTION OF SYMBOLS 1a ... Processing chamber, 2 ... Heating plate (2nd processing means), 3 ... Gas introduction part (1st processing means), 7 ... Imaging means, 21 ... Main body, 24 ... Optical path for imaging, 24a ... Through-hole, 24b ... translucent member, 33 ... shower plate, 63 ... XYθ stage (moving means), S ... glass substrate (substrate), M ... mask.

Claims (3)

処理室内に設置される基板に対向配置されるマスクと、基板に対してマスクを相対移動させる移動手段と、基板からマスクに向かう方向を上、マスクから基板に向かう方向を下として、基板の上側に配置されて前記基板の片面に対してマスク越しに所定の処理を施す第1の処理手段と、基板の他面を覆うように当該基板の下側に配置される本体を有して前記基板の他面側から所定の処理を施す第2の処理手段と、を備え、
前記第2の処理手段の本体下側に撮像手段を設け、前記本体に上下方向の透孔を形成すると共に透孔内に透光性部材を埋め込んで撮像用光路を構成し、撮像用光路を通して前記撮像手段により基板に対するマスクの相対位置を撮像し、この撮像データを基に前記移動手段を制御するように構成したことを特徴とする真空処理装置。
The upper surface of the substrate with the mask disposed opposite to the substrate installed in the processing chamber, the moving means for moving the mask relative to the substrate, the direction from the substrate toward the mask up, and the direction from the mask toward the substrate down A first processing means for performing a predetermined process over a mask on one side of the substrate, and a main body disposed on the lower side of the substrate so as to cover the other surface of the substrate. Second processing means for performing a predetermined process from the other surface side,
An imaging means is provided on the lower side of the main body of the second processing means, a vertical through-hole is formed in the main body, and a translucent member is embedded in the through-hole to form an imaging optical path, and through the imaging optical path A vacuum processing apparatus configured to take an image of a relative position of a mask with respect to a substrate by the imaging unit and to control the moving unit based on the imaging data.
前記第2の処理手段は、基板の他面に面接触して伝熱により当該基板を所定温度に加熱する加熱プレートであることを請求項1記載の真空処理装置。   2. The vacuum processing apparatus according to claim 1, wherein the second processing means is a heating plate that is in surface contact with the other surface of the substrate and heats the substrate to a predetermined temperature by heat transfer. 前記透光性部材をサファイヤ製としたことを特徴とする請求項1または請求項2記載の真空処理装置。
The vacuum processing apparatus according to claim 1, wherein the translucent member is made of sapphire.
JP2011102872A 2011-05-02 2011-05-02 Vacuum processing equipment Active JP5773731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011102872A JP5773731B2 (en) 2011-05-02 2011-05-02 Vacuum processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011102872A JP5773731B2 (en) 2011-05-02 2011-05-02 Vacuum processing equipment

Publications (2)

Publication Number Publication Date
JP2012233234A true JP2012233234A (en) 2012-11-29
JP5773731B2 JP5773731B2 (en) 2015-09-02

Family

ID=47433819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011102872A Active JP5773731B2 (en) 2011-05-02 2011-05-02 Vacuum processing equipment

Country Status (1)

Country Link
JP (1) JP5773731B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115110026A (en) * 2021-03-18 2022-09-27 铠侠股份有限公司 Film forming apparatus, film forming method, and method for manufacturing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072423B (en) 2016-04-28 2020-07-14 株式会社爱发科 Mask for film formation and film formation apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212733A (en) * 2001-01-22 2002-07-31 Mitsubishi Heavy Ind Ltd Plasma treatment system
JP2003282533A (en) * 2002-03-27 2003-10-03 Tokyo Electron Ltd Treatment device and treatment method
JP2004183044A (en) * 2002-12-03 2004-07-02 Seiko Epson Corp Mask vapor deposition method and apparatus, mask and mask manufacturing method, display panel manufacturing apparatus, display panel and electronic equipment
JP2004526293A (en) * 2000-09-21 2004-08-26 アプライド マテリアルズ インコーポレイテッド Apparatus and method for reducing process residue deposition on surfaces in a chamber
JP2006045583A (en) * 2004-07-30 2006-02-16 Tokki Corp Plasma cvd system
JP2008171888A (en) * 2007-01-09 2008-07-24 Ulvac Japan Ltd Plasma cvd apparatus and thin-film formation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526293A (en) * 2000-09-21 2004-08-26 アプライド マテリアルズ インコーポレイテッド Apparatus and method for reducing process residue deposition on surfaces in a chamber
JP2002212733A (en) * 2001-01-22 2002-07-31 Mitsubishi Heavy Ind Ltd Plasma treatment system
JP2003282533A (en) * 2002-03-27 2003-10-03 Tokyo Electron Ltd Treatment device and treatment method
JP2004183044A (en) * 2002-12-03 2004-07-02 Seiko Epson Corp Mask vapor deposition method and apparatus, mask and mask manufacturing method, display panel manufacturing apparatus, display panel and electronic equipment
JP2006045583A (en) * 2004-07-30 2006-02-16 Tokki Corp Plasma cvd system
JP2008171888A (en) * 2007-01-09 2008-07-24 Ulvac Japan Ltd Plasma cvd apparatus and thin-film formation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115110026A (en) * 2021-03-18 2022-09-27 铠侠股份有限公司 Film forming apparatus, film forming method, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP5773731B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
KR100601576B1 (en) Method and apparatus for vacuum pumping a susceptor shaft
US8529701B2 (en) Substrate processing apparatus
TWI489546B (en) Apparatus for radial delivery of gas to a chamber
US8444363B2 (en) Substrate processing apparatus
CN105702617A (en) Carrier ring structure and chamber systems including the same
JP2010212434A (en) Atomic layer deposition apparatus, and method of forming thin film
JP2020053538A (en) Plasma processing apparatus
KR20090091667A (en) Substrate processing method, computer-readable storage medium, and substrate processing system
US20160035601A1 (en) Bake unit, substrate treating apparatus including the unit, and substrate treating method
CN108231627B (en) Heat treatment apparatus, heat treatment method, and computer storage medium
US20170372926A1 (en) Substrate treating unit, baking apparatus including the same, and substrate treating method using baking apparatus
US20100058982A1 (en) Vertical thermal processing apparatus and substrate supporter
JP2012092394A (en) Alignment method, alignment apparatus, and organic el element manufacturing apparatus
US20180122660A1 (en) Substrate support apparatus, substrate treating system including the same, and substrate treating method
KR101867194B1 (en) Etching device, etching method, and substrate-mounting mechanism
KR20080002638A (en) Method for forming micro lenses and semiconductor device including the micro lenses
JP2016514369A (en) Substrate carrier and substrate transfer method
CN111684580B (en) Quick response base assembly for selective pre-cleaning
JP2011066254A (en) Substrate treatment apparatus
JP5773731B2 (en) Vacuum processing equipment
US9696097B2 (en) Multi-substrate thermal management apparatus
JP2007311823A (en) Chucking device and carrier device
US10858735B2 (en) Alignment systems employing actuators providing relative displacement between lid assemblies of process chambers and substrates, and related methods
JP2007242776A (en) Tool for steam annealing, steam annealing method and substrate transfer apparatus
KR20190077424A (en) A mask holder with controlled adjustment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150630

R150 Certificate of patent or registration of utility model

Ref document number: 5773731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250