JP2012231910A - Optical scan type observation device - Google Patents

Optical scan type observation device Download PDF

Info

Publication number
JP2012231910A
JP2012231910A JP2011101963A JP2011101963A JP2012231910A JP 2012231910 A JP2012231910 A JP 2012231910A JP 2011101963 A JP2011101963 A JP 2011101963A JP 2011101963 A JP2011101963 A JP 2011101963A JP 2012231910 A JP2012231910 A JP 2012231910A
Authority
JP
Japan
Prior art keywords
light
scanning
unit
illumination
light amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011101963A
Other languages
Japanese (ja)
Other versions
JP5745922B2 (en
Inventor
Tokuyoshi Shimamoto
篤義 嶋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2011101963A priority Critical patent/JP5745922B2/en
Publication of JP2012231910A publication Critical patent/JP2012231910A/en
Application granted granted Critical
Publication of JP5745922B2 publication Critical patent/JP5745922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical scan type observation device for acquiring image information with brightness nonuniformity suppressed therein.SOLUTION: The optical scan type observation device includes: a distal end 10a of an insertion part 10 for emitting laser beams from a light source 22 to a celomic inner wall S; an illumination fiber 11 for scanning the laser beams to be emitted from the distal end 10a of the insertion part 10 on the celomic inner wall S; a detection fiber 17 for receiving reflection light from the celomic inner wall S where the laser beams are scanned by the illumination fiber 11; a storage part 26 for storing intake efficiency information which indicates the distribution of intake efficiency of the reflection light to be taken in for each scan position by the detection fiber 17; and a light amount adjustment part 28 for adjusting the light amount of the laser beams thereby to allow the light amount of the laser beams so as to be proportional to the inverse number of a function of the intake efficiency with respect to the scan position, on the basis of the intake efficiency information stored in the storage part 26.

Description

本発明は、光走査型観察装置に関するものである。   The present invention relates to an optical scanning observation apparatus.

従来、内視鏡挿入部の先端に照明光を伝達する照明ファイバに駆動信号を与えて照明ファイバの先端を連続的に変位させることにより、内視鏡挿入部の先端から射出する照明光を走査する光走査型内視鏡装置が知られている(例えば、特許文献1参照。)。特許文献1に記載の光走査型内視鏡装置は、照明ファイバの周囲に複数の検出ファイバを配置し、照明光が照射された観察対象からの戻り光をこれらの検出ファイバにより取り込んで検出することで、観察対象の画像を構築することとしている。   Conventionally, illumination light emitted from the distal end of the endoscope insertion portion is scanned by applying a drive signal to the illumination fiber that transmits the illumination light to the distal end of the endoscope insertion portion and continuously displacing the distal end of the illumination fiber. An optical scanning endoscope apparatus is known (see, for example, Patent Document 1). In the optical scanning endoscope apparatus described in Patent Document 1, a plurality of detection fibers are arranged around an illumination fiber, and return light from an observation target irradiated with illumination light is captured and detected by these detection fibers. Thus, an image to be observed is constructed.

特表2008−531112号公報Special table 2008-511112 gazette

しかしながら、観察対象上の位置に応じて照明ファイバにより照明光が照射される方向が異なるため、各照射位置からの散乱光も散乱方向に応じて強度が異なる。また、観察対象上の各照射位置に対する検出ファイバの見込み角が異なっても、所定の領域内の照射位置どうしであれば散乱光の取り込み効率は等しいが、その領域内の照射位置と領域外の照射位置とでは検出ファイバによる散乱光の取り込み効率が異なる。そのため、観察対象上の各照射位置が本来同じ明るさの情報を有していたとしても、照射位置に応じて検出ファイバにより取り込まれて検出される検出光量が異なり、構築される観察対象の画像に明るさむらが生じてしまうという問題がある。   However, since the direction in which the illumination light is irradiated by the illumination fiber varies depending on the position on the observation target, the intensity of the scattered light from each irradiation position also varies depending on the scattering direction. In addition, even if the prospective angle of the detection fiber with respect to each irradiation position on the observation target is different, the efficiency of capturing scattered light is the same if the irradiation positions are within the predetermined area. The efficiency of capturing scattered light by the detection fiber differs from the irradiation position. Therefore, even if each irradiation position on the observation target originally has the same brightness information, the detected light amount captured and detected by the detection fiber differs depending on the irradiation position, and the image of the observation target to be constructed There is a problem that uneven brightness occurs.

本発明は、このような事情に鑑みてなされたものであって、明るさむらを抑制した画像情報を取得することができる光走査型観察装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an optical scanning observation apparatus that can acquire image information in which uneven brightness is suppressed.

上記課題を解決するために、本発明は以下の手段を採用する。
本発明は、光源から発せられた照明光を観察対象部位に向けて射出する射出部と、該射出部により射出される前記照明光を前記観察対象部位上で走査させる走査部と、該走査部により前記照明光が走査された前記観察対象部位の走査位置からの戻り光を受光する受光部と、該受光部により前記走査位置ごとに取り込み可能な前記戻り光の取り込み効率の分布を示す取り込み効率情報を記憶する記憶部と、該記憶部に記憶されている前記取り込み効率情報に基づいて、前記照明光の光量が前記走査位置に対する前記取り込み効率の関数の逆数に比例するように該照明光の光量を調整する光量調整部とを備える光走査型観察装置を提供する。
In order to solve the above problems, the present invention employs the following means.
The present invention includes an emission unit that emits illumination light emitted from a light source toward an observation target site, a scanning unit that scans the illumination light emitted by the emission unit on the observation target site, and the scanning unit. A light receiving unit that receives the return light from the scanning position of the observation target site scanned by the illumination light, and a capture efficiency that indicates a distribution of the capture efficiency of the return light that can be captured at each scanning position by the light receiving unit. Based on the storage efficiency information stored in the storage section and the storage efficiency information stored in the storage section, the amount of the illumination light is proportional to the reciprocal of the capture efficiency function with respect to the scanning position. An optical scanning observation apparatus including a light amount adjusting unit that adjusts a light amount is provided.

本発明によれば、観察対象部位における照明光の照射位置ごとに、射出部から射出される照明光の照射方向が異なるため、戻り光も戻る方向に応じて強度が異なる。また、射出部より射出される照明光の照射位置と受光部により戻り光を受光可能な領域との位置関係に応じて、受光部により受光される戻り光の取り込み効率も異なる。   According to the present invention, since the irradiation direction of the illumination light emitted from the emission unit is different for each illumination light irradiation position in the observation target region, the intensity of the return light varies depending on the return direction. Further, according to the positional relationship between the irradiation position of the illumination light emitted from the emission unit and the region where the return light can be received by the light receiving unit, the capture efficiency of the return light received by the light receiving unit is also different.

この場合において、記憶部に記憶する取り込み効率情報により、照明光の走査位置に対する受光部により取り込み可能な戻り光の取り込み効率が分かるので、光量調整部によりその取り込み効率情報に基づいて、照明光の光量が走査位置に対する受光部による取り込み効率の関数の逆数に比例するように照明光の光量を調整することで、受光部により受光される走査位置ごとの戻り光の受光量を、各走査位置の本来の戻り光の強度の比率とほぼ同等な比率に維持することができる。したがって、受光部によって受光された戻り光を検出することで、射出部と受光部との位置関係の影響による明るさむらを抑制した画像情報を取得することができる。   In this case, since the capture efficiency information stored in the storage unit indicates the capture efficiency of the return light that can be captured by the light receiving unit with respect to the scanning position of the illumination light, the light amount adjustment unit determines the illumination light based on the capture efficiency information. By adjusting the amount of illumination light so that the amount of light is proportional to the inverse of the function of the capture efficiency of the light receiving unit with respect to the scanning position, the amount of return light received at each scanning position received by the light receiving unit It can be maintained at a ratio substantially equal to the ratio of the original return light intensity. Therefore, by detecting the return light received by the light receiving unit, it is possible to acquire image information in which brightness unevenness due to the influence of the positional relationship between the emitting unit and the light receiving unit is suppressed.

上記発明においては、前記光量調整部が、前記光源の出力を制御することとしてもよい。
このように構成することで、光量調整部により、取り込み効率情報に基づいて走査位置ごとに光源から光量を増大または低減して照明光が発生され、走査位置に対する受光部による取り込み効率の関数の逆数に比例する光量の照明光が観察対象部位に照射される。これにより、走査位置ごとに戻り光の光量を増大または低減させて、受光部における走査位置ごとの戻り光の取り込み効率の違いによる影響を低減することができる。したがって、受光部により受光される走査位置ごとの戻り光の受光量を各走査位置の本来の戻り光の強度の比率とほぼ同等な比率に維持することができる。
In the above invention, the light amount adjustment unit may control the output of the light source.
With this configuration, the light amount adjusting unit generates illumination light by increasing or decreasing the light amount from the light source for each scanning position based on the capturing efficiency information, and the inverse of the function of the capturing efficiency by the light receiving unit with respect to the scanning position. Illumination light with a light quantity proportional to is irradiated onto the observation target part. As a result, the amount of the return light can be increased or decreased for each scanning position, and the influence of the difference in the return light capture efficiency for each scanning position in the light receiving unit can be reduced. Therefore, the amount of the return light received at each scanning position received by the light receiving unit can be maintained at a ratio approximately equal to the original ratio of the return light intensity at each scanning position.

また、上記発明においては、前記光量調整部が、前記走査部による前記照明光の前記観察対象部位上の走査密度を制御することとしてもよい。
このように構成することで、光量調整部により、取り込み効率情報に基づいて走査位置ごとに走査部による走査密度が向上または低減され、走査位置に対する取り込み効率の関数の逆数に比例する光量の照明光が観察対象部位に照射される。これにより、走査位置ごとに戻り光の光量を増大または低減させ、受光部における走査位置ごとの戻り光の取り込み効率の違いによる影響を低減し、受光部により受光される走査位置ごとの戻り光の受光量を各走査位置の本来の戻り光の強度の比率とほぼ同等な比率に維持することができる。
Moreover, in the said invention, the said light quantity adjustment part is good also as controlling the scanning density on the said observation object site | part of the said illumination light by the said scanning part.
With this configuration, the light intensity adjusting unit improves or reduces the scanning density by the scanning unit for each scanning position based on the capturing efficiency information, and the amount of illumination light is proportional to the reciprocal of the function of capturing efficiency with respect to the scanning position. Is irradiated to the site to be observed. This increases or decreases the amount of return light for each scanning position, reduces the influence of the difference in return light capture efficiency for each scanning position in the light receiving unit, and reduces the return light for each scanning position received by the light receiving unit. The amount of received light can be maintained at a ratio approximately equal to the ratio of the original intensity of the return light at each scanning position.

また、上記発明においては、前記観察対象部位と前記走査部との間の前記照明光の光軸上に配置された透過率可変の透過部材を備え、前記光量調整部が、前記透過部材の透過率を制御することとしてもよい。   Further, in the above invention, a transmission member having a variable transmittance disposed on an optical axis of the illumination light between the observation target site and the scanning unit is provided, and the light amount adjustment unit transmits the transmission of the transmission member. The rate may be controlled.

このように構成することで、光量調整部により、取り込み効率情報に基づいて走査位置ごとに透過部材の透過率が向上または低減され、走査位置に対する取り込み効率の関数の逆数に比例する照明光が観察対象部位に照射される。これにより、走査位置ごとに戻り光の光量を増大または低減させ、受光部における走査位置ごとの戻り光の取り込み効率の違いによる影響を低減し、受光部により受光される走査位置ごとの戻り光の受光量を各走査位置の本来の戻り光の強度の比率とほぼ同等な比率に維持することができる。   With this configuration, the light amount adjusting unit improves or reduces the transmittance of the transmission member for each scanning position based on the capturing efficiency information, and the illumination light proportional to the inverse of the capturing efficiency function with respect to the scanning position is observed. The target site is irradiated. This increases or decreases the amount of return light for each scanning position, reduces the influence of the difference in return light capture efficiency for each scanning position in the light receiving unit, and reduces the return light for each scanning position received by the light receiving unit. The amount of received light can be maintained at a ratio approximately equal to the ratio of the original intensity of the return light at each scanning position.

また、上記発明においては、前記光量調整部が、前記観察対象部位と前記走査部との間の前記照明光の光軸上に配置され、前記走査位置に対する前記取り込み効率の関数の逆数に比例する透過率分布を有する透過率調整部材であることとしてもよい。   In the above invention, the light amount adjustment unit is disposed on the optical axis of the illumination light between the observation target part and the scanning unit, and is proportional to the inverse of the function of the capturing efficiency with respect to the scanning position. It may be a transmittance adjusting member having a transmittance distribution.

このように構成することで、透過率調整部材により、取り込み効率情報に基づいて各走査位置に対応する範囲ごとに高い透過率または低い透過率で照明光が透過され、走査位置に対する取り込み効率の関数の逆数に比例する光量の照明光が観察対象部位に照射される。   With this configuration, the transmittance adjustment member transmits illumination light with a high transmittance or a low transmittance for each range corresponding to each scanning position based on the capturing efficiency information, and a function of the capturing efficiency with respect to the scanning position. Illumination light having a light quantity proportional to the reciprocal of is irradiated onto the observation target region.

また、上記発明においては、前記受光部により受光された前記戻り光を検出して前記観察対象部位の画像を構築する画像構築部を備えることとしてもよい。
このように構成することで、画像構築部により、射出部と受光部との位置関係の影響による明るさむらのない画像を取得することができる。
Moreover, in the said invention, it is good also as providing the image construction part which detects the said return light received by the said light-receiving part, and constructs | assembles the image of the said observation object site | part.
With this configuration, the image construction unit can acquire an image without uneven brightness due to the influence of the positional relationship between the emitting unit and the light receiving unit.

本発明によれば、明るさむらを抑制した画像情報を取得することができるという効果を奏する。   According to the present invention, it is possible to acquire image information in which uneven brightness is suppressed.

本発明の第1実施形態に係る光走査型内視鏡装置の縦断面図である。1 is a longitudinal sectional view of an optical scanning endoscope apparatus according to a first embodiment of the present invention. 図1の照明ファイバの概略構成である。It is a schematic structure of the illumination fiber of FIG. 図1の光走査型内視鏡装置によるレーザ光の照射範囲と検出ファイバによる反射光の受光範囲との関係を示す図である。It is a figure which shows the relationship between the irradiation range of the laser beam by the optical scanning endoscope apparatus of FIG. 1, and the light reception range of the reflected light by a detection fiber. 一定の光量でレーザ光を照射した場合の画像情報の明るさむらを示す図である。It is a figure which shows the brightness nonuniformity of the image information at the time of irradiating a laser beam with a fixed light quantity. 圧電素子の駆動信号と光源の光量との関係を示す図である。It is a figure which shows the relationship between the drive signal of a piezoelectric element, and the light quantity of a light source. 複数の検出ファイバを1つに束ねてバンドルファイバを構成した場合の挿入部の縦断面図である。It is a longitudinal cross-sectional view of an insertion part at the time of bundling a some detection fiber to one and comprising a bundle fiber. 圧電素子に与える駆動信号値と時間との関係を示す図である。It is a figure which shows the relationship between the drive signal value given to a piezoelectric element, and time. レーザ光の走査密度を示す図である。It is a figure which shows the scanning density of a laser beam. 近点観察のときの体腔内壁と走査光学系との位置関係を示す図である。It is a figure which shows the positional relationship of the body cavity inner wall at the time of near point observation, and a scanning optical system. 近点観察において一定の光量でレーザ光を照射した場合の画像情報の明るさむらを示す図である。It is a figure which shows the brightness nonuniformity of the image information at the time of irradiating a laser beam with a fixed light quantity in near point observation. 測拒方法として、マイケルソン干渉法を採用する場合の挿入部の構成を示す挿入部の縦断面図である。It is a longitudinal cross-sectional view of the insertion part which shows the structure of the insertion part in the case of employ | adopting Michelson interferometry as a measurement-refusal method. 本発明の第2の実施形態に係る光走査型内視鏡装置の挿入部の縦断面図である。It is a longitudinal cross-sectional view of the insertion part of the optical scanning endoscope apparatus which concerns on the 2nd Embodiment of this invention. 図12の光学素子を厚さ方向に見た平面図である。It is the top view which looked at the optical element of FIG. 12 in the thickness direction. 図12の光学素子に代えて、コーティング部材を設けた場合の挿入部の縦断面図である。It is a longitudinal cross-sectional view of the insertion part at the time of replacing with the optical element of FIG. 12, and providing the coating member. 走査部として、電気光学結晶を用いて電気制御により照明ファイバを共振させてレーザ光を走査させる構成を示す図である。It is a figure which shows the structure which resonates an illumination fiber by electrical control using an electro-optic crystal as a scanning part, and scans a laser beam. 走査部として、永久磁石とコイルを用いて電磁駆動によりレーザ光を走査させる構成を示す図である。It is a figure which shows the structure which scans a laser beam by an electromagnetic drive using a permanent magnet and a coil as a scanning part. 図16の照明ファイバにおいて磁界が発生する様子を示す図である。It is a figure which shows a mode that a magnetic field generate | occur | produces in the illumination fiber of FIG. 図16の照明ファイバが湾曲する様子を示す図である。It is a figure which shows a mode that the illumination fiber of FIG. 16 curves.

〔第1実施形態〕
本発明の第1実施形態に係る光走査型観察装置について、図面を参照して以下に説明する。
本実施形態においては、光走査型観察装置として光走査型内視鏡装置を例示して説明する。本実施形態に係る光走査型内視鏡装置100は、図1に示されるように、体腔内に挿入される細長い形状の挿入部10と、挿入部10の先端部10aから射出させるレーザ光(照明光)を発する光源22とを備えている。
[First Embodiment]
An optical scanning observation apparatus according to a first embodiment of the present invention will be described below with reference to the drawings.
In the present embodiment, an optical scanning endoscope apparatus will be described as an example of the optical scanning observation apparatus. As shown in FIG. 1, the optical scanning endoscope apparatus 100 according to the present embodiment has an elongated insertion portion 10 to be inserted into a body cavity and a laser beam emitted from a distal end portion 10 a of the insertion portion 10 ( And a light source 22 that emits (illuminating light).

挿入部10は、光源22から発せられたレーザ光を基端部10bから導入し、先端部10aから射出することができるようになっている。この挿入部10には、基端部10bから導入されたレーザ光を先端部10aへ導光する照明ファイバ11と、照明ファイバ11により導光されてきたレーザ光を観察対象部位(例えば、体腔内壁)Sに向けて射出する走査光学系(射出部)13と、走査光学系3によってレーザ光が照射されることにより体腔内壁Sの走査位置において散乱した反射光(戻り光)を受光する複数の検出ファイバ(受光部)17とが備えられている。   The insertion portion 10 can introduce laser light emitted from the light source 22 from the proximal end portion 10b and emit it from the distal end portion 10a. The insertion portion 10 includes an illumination fiber 11 that guides laser light introduced from the base end portion 10b to the distal end portion 10a, and a laser light guided by the illumination fiber 11 to an observation target site (for example, an inner wall of a body cavity) ) A scanning optical system (emitter) 13 that emits toward S, and a plurality of light beams that receive reflected light (return light) scattered at the scanning position of the body cavity inner wall S by being irradiated with laser light from the scanning optical system 3 A detection fiber (light receiving unit) 17 is provided.

照明ファイバ11は、弾性変形可能な円筒状の部材であり、挿入部10の長手方向に沿って配置されている。この照明ファイバ11は、図2に示すように、円筒状の圧電素子15に挿通されて保持されている。図2において、照明ファイバ11の長手方向をZ軸方向とする。   The illumination fiber 11 is a cylindrical member that can be elastically deformed, and is disposed along the longitudinal direction of the insertion portion 10. As shown in FIG. 2, the illumination fiber 11 is inserted into and held by a cylindrical piezoelectric element 15. In FIG. 2, let the longitudinal direction of the illumination fiber 11 be a Z-axis direction.

圧電素子15は、周方向に4分割した位置にそれぞれ相対して配された2対の電極を有している。電極が相対する方向をそれぞれX軸方向、Y軸方向とする。圧電素子15は、駆動信号が与えられることにより照明ファイバ11をX軸方向とY軸方向にそれぞれ共振させることができるようになっている。また、圧電素子15に与える駆動信号の振幅を徐々に大きくなるように線形に変化させることにより、照明ファイバ11の先端を中心から半径方向外方に向かって螺旋状に変位させることができるようになっている。これにより、照明ファイバ11は、走査光学系13により射出されたレーザ光を体腔内壁S上で螺旋状に走査させることができるようになっている。   The piezoelectric element 15 has two pairs of electrodes that are respectively disposed opposite to each other at four positions in the circumferential direction. The directions in which the electrodes face each other are defined as an X-axis direction and a Y-axis direction, respectively. The piezoelectric element 15 can resonate the illumination fiber 11 in the X-axis direction and the Y-axis direction when a drive signal is given. Further, by linearly changing the amplitude of the drive signal applied to the piezoelectric element 15 so as to gradually increase, the tip of the illumination fiber 11 can be displaced spirally from the center outward in the radial direction. It has become. Thereby, the illumination fiber 11 can scan the laser beam emitted by the scanning optical system 13 in a spiral manner on the inner wall S of the body cavity.

走査光学系13は、挿入部10の先端部10a付近に設けられ、照明ファイバ11の先端に対して挿入部10の長手方向に所定の間隔をあけて配置されている。
検出ファイバ17は、挿入部10を同心的に囲むように、挿入部10の外周に沿って周方向に所定の間隔をあけて配列されている。この検出ファイバ17は、照明ファイバ11と同様に、挿入部10の長手方向に沿って設けられており、一端が挿入部10の先端部10aの周囲に配置されている。検出ファイバ17は、例えばNA=0.5とする。
The scanning optical system 13 is provided in the vicinity of the distal end portion 10 a of the insertion portion 10, and is arranged at a predetermined interval in the longitudinal direction of the insertion portion 10 with respect to the distal end of the illumination fiber 11.
The detection fibers 17 are arranged at predetermined intervals in the circumferential direction along the outer periphery of the insertion portion 10 so as to surround the insertion portion 10 concentrically. Similar to the illumination fiber 11, the detection fiber 17 is provided along the longitudinal direction of the insertion portion 10, and one end is disposed around the distal end portion 10 a of the insertion portion 10. The detection fiber 17 is set to NA = 0.5, for example.

また、光走査型内視鏡装置100には、検出ファイバ17により受光された反射光を検出し2次元画像を構築するCCDのような画像構築部24と、検出ファイバ17により走査位置ごとに取り込み可能な反射光の取り込み効率の分布を示す取り込み効率情報を記憶する記憶部26と、記憶部26に記憶されている取り込み効率情報に基づいて、レーザ光の光量を調整する光量調整部28と、照明ファイバ11を共振させる駆動信号を出力する駆動部(図示略)とが備えられている。   Further, the optical scanning endoscope apparatus 100 takes in each scanning position by an image construction unit 24 such as a CCD for constructing a two-dimensional image by detecting reflected light received by the detection fiber 17 and the detection fiber 17. A storage unit 26 for storing capture efficiency information indicating a distribution of capture efficiency of reflected light, a light amount adjustment unit 28 for adjusting the light amount of laser light based on the capture efficiency information stored in the storage unit 26, And a drive unit (not shown) that outputs a drive signal for causing the illumination fiber 11 to resonate.

画像構築部24は、検出ファイバ17の他端に接続されている。
記憶部26に記憶される取り込み効率情報は、例えば、全面に渡って均一な明るさの標本上でレーザ光を走査させることにより、標本上の走査位置ごとに検出ファイバ17により受光される反射光の取り込み効率を測定して作成したものでもよいし、シミュレーションによって予測される走査位置と検出ファイバ17により受光される反射光の取り込み効率との関係に基づいて作成したものでもよい。
The image construction unit 24 is connected to the other end of the detection fiber 17.
The capture efficiency information stored in the storage unit 26 is, for example, reflected light received by the detection fiber 17 at each scanning position on the specimen by scanning the laser light on the specimen with uniform brightness over the entire surface. It may be created by measuring the capture efficiency of light, or may be created based on the relationship between the scanning position predicted by simulation and the capture efficiency of reflected light received by the detection fiber 17.

光量調整部28は、記憶部26から取り込み効率情報を読み出し、レーザ光の光量が走査位置に対する検出ファイバ17による取り込み効率の関数の逆数に比例するように、レーザ光の走査位置ごとに光源22の出力を制御するようになっている。例えば、光量調整部28は、検出ファイバ17による取り込み効率が最も高い走査位置に照射する照明光の光量を基準として、他の走査位置に照射する照明光の光量を増大させるように光源22を制御するようになっている。光量調整部28と駆動部は互いに電気的に接続されている。   The light amount adjustment unit 28 reads the capture efficiency information from the storage unit 26, and the light source 22 of each light source 22 is scanned for each laser light scanning position so that the light amount of the laser light is proportional to the inverse of the function of the capture efficiency of the detection fiber 17 with respect to the scanning position. The output is controlled. For example, the light amount adjusting unit 28 controls the light source 22 so as to increase the light amount of the illumination light irradiated to other scanning positions with reference to the light amount of the illumination light irradiated to the scanning position having the highest capturing efficiency by the detection fiber 17. It is supposed to be. The light amount adjusting unit 28 and the driving unit are electrically connected to each other.

次に、このように構成された光走査型内視鏡装置100の作用について以下に説明する。
本実施形態に係る光走査型内視鏡装置100により、体腔内壁Sの画像情報を取得するには、生体の体腔内に挿入部10を挿入し、先端部10aを体腔内壁Sに対向させて光源22によりレーザ光を発生させる。
Next, the operation of the optical scanning endoscope apparatus 100 configured as described above will be described below.
In order to acquire image information of the body cavity inner wall S by the optical scanning endoscope apparatus 100 according to the present embodiment, the insertion part 10 is inserted into the body cavity of the living body, and the distal end part 10a is opposed to the body cavity inner wall S. Laser light is generated by the light source 22.

光源22から発せられたレーザ光は、挿入部10に導入されて照明ファイバ11により導光され、走査光学系13により体腔内壁Sに向けて射出される。このとき、駆動部の作動により、圧電素子15に対して駆動信号が与えられ、照明ファイバ11が共振させられる。そして、照明ファイバ11の先端が中心から半径方向外方に向かって螺旋状に変位させられることにより、走査光学系13を介してレーザ光が体腔内壁S上で螺旋状に走査される。   Laser light emitted from the light source 22 is introduced into the insertion portion 10, guided by the illumination fiber 11, and emitted toward the body cavity inner wall S by the scanning optical system 13. At this time, a drive signal is given to the piezoelectric element 15 by the operation of the drive unit, and the illumination fiber 11 is resonated. Then, the tip of the illumination fiber 11 is displaced in a spiral shape from the center outward in the radial direction, whereby the laser light is scanned on the body cavity inner wall S in a spiral manner via the scanning optical system 13.

レーザ光が照射されることにより体腔内壁Sの各走査位置において散乱した反射光は、複数の検出ファイバ17により受光され、画像構築部24に導光される。これにより、画像構築部24により反射光が検出され、体腔内壁Sの2次元画像が構築される。   The reflected light scattered at each scanning position on the body cavity inner wall S by being irradiated with the laser light is received by the plurality of detection fibers 17 and guided to the image construction unit 24. Thereby, reflected light is detected by the image construction unit 24, and a two-dimensional image of the body cavity inner wall S is constructed.

ここで、図3に示すように、体腔内壁Sにおけるレーザ光の照射位置(例えば、検出点A,B,C,D)ごとに、走査光学系13から射出されるレーザ光の照射方向が異なるため、反射光も戻る方向に応じて強度が異なる。また、走査光学系13により射出されるレーザ光の照射位置(検出点A〜D)と検出ファイバ17により反射光を受光可能な領域との位置関係に応じて、検出ファイバ17により受光される反射光の取り込み効率も異なる。   Here, as shown in FIG. 3, the irradiation direction of the laser light emitted from the scanning optical system 13 is different for each irradiation position (for example, detection points A, B, C, D) of the inner wall S of the body cavity. Therefore, the intensity varies depending on the direction in which the reflected light also returns. Further, the reflection received by the detection fiber 17 in accordance with the positional relationship between the irradiation position (detection points A to D) of the laser light emitted by the scanning optical system 13 and the region where the reflected light can be received by the detection fiber 17. The light capture efficiency is also different.

本実施形態においては、光量調整部28の作動により、記憶部26に記憶されている取り込み効率情報に基づいて、レーザ光の光量が走査位置に対する取り込み効率の関数の逆数に比例するように光源22の出力が制御される。   In the present embodiment, by the operation of the light amount adjusting unit 28, the light source 22 is configured so that the light amount of the laser light is proportional to the reciprocal of the function of the capturing efficiency with respect to the scanning position based on the capturing efficiency information stored in the storage unit 26. Output is controlled.

例えば、一定の光量でレーザ光を照射すると、図4に示すように、画像構築部24による反射光の検出効率が画角中心に対して画角周辺ほど暗くなるような検出ムラがある場合は、図5に示すように、駆動部により照明ファイバ11の圧電素子15に与えられる駆動信号と同期させて、光量調整部28により光源22が出力を徐々に大きくするように制御される。図4において、符合Pは画像構築部24により構築される2次元画像を示している。   For example, when there is a detection unevenness such that when the laser beam is irradiated with a constant light amount, the detection efficiency of the reflected light by the image construction unit 24 becomes darker toward the periphery of the angle of view with respect to the center of the angle of view as shown in FIG. As shown in FIG. 5, the light source 22 is controlled so as to gradually increase the output of the light source 22 in synchronization with the drive signal given to the piezoelectric element 15 of the illumination fiber 11 by the drive unit. In FIG. 4, a symbol P indicates a two-dimensional image constructed by the image construction unit 24.

このようにすることで、走査範囲の中心から半径方向外方に向かうにつれて照射される照明光の光量が徐々に増大され、各走査位置において反射される反射光の光量も走査範囲の中心から半径方向外方に向かうにつれて徐々に増大する。これにより、検出ファイバ17による走査位置ごとの反射光の取り込み効率の違いによる影響を低減し、検出ファイバ17により受光される走査位置ごとの反射光の受光量を、各走査位置の本来の反射光の強度の比率とほぼ同等な比率に維持することができる。   By doing so, the amount of illumination light emitted gradually increases from the center of the scanning range toward the outside in the radial direction, and the amount of reflected light reflected at each scanning position is also increased from the center of the scanning range to the radius. It gradually increases toward the outside of the direction. As a result, the influence of the difference in the reflected light capturing efficiency at each scanning position by the detection fiber 17 is reduced, and the amount of reflected light received at each scanning position received by the detection fiber 17 is changed to the original reflected light at each scanning position. It is possible to maintain a ratio substantially equal to the ratio of the strength.

したがって、本実施形態に係る光走査型内視鏡装置100によれば、画像構築部24により検出される反射光の検出むらを低減し、走査光学系13と検出ファイバ17との位置関係の影響による明るさむらを抑制した画像情報を取得することができる。   Therefore, according to the optical scanning endoscope apparatus 100 according to this embodiment, the detection unevenness of the reflected light detected by the image construction unit 24 is reduced, and the influence of the positional relationship between the scanning optical system 13 and the detection fiber 17 is reduced. It is possible to acquire image information in which uneven brightness is suppressed.

本実施形態においては、検出ファイバ17による取り込み効率が低い走査位置に照射する照明光の光量を増大させることとしたが、光量調整部28によりレーザ光の光量が走査位置に対する検出ファイバ17による取り込み効率の関数の逆数に比例するように調整されればよく、例えば、検出ファイバ17による取り込み効率に応じて走査位置ごとに照明光の光量を増大させたり低減させたりすることとしてもよい。   In the present embodiment, the light amount of the illumination light applied to the scanning position where the capturing efficiency by the detection fiber 17 is low is increased. However, the light amount adjusting unit 28 causes the light amount of the laser light to be captured by the detecting fiber 17 with respect to the scanning position. For example, the amount of illumination light may be increased or decreased for each scanning position in accordance with the capture efficiency of the detection fiber 17.

また、本実施形態においては、挿入部10の外周に沿って複数の検出ファイバ17を配置することとしたが、これに代えて、例えば、図6に示すように、複数の検出ファイバ17を1つに束ねてバンドルファイバを構成し、バンドルファイバを挿入部10の内部の照明ファイバ11に対して径方向にずらした位置に配置することとしてもよい。   In the present embodiment, the plurality of detection fibers 17 are arranged along the outer periphery of the insertion portion 10. Instead of this, for example, as shown in FIG. The bundle fiber may be bundled together to form a bundle fiber, and the bundle fiber may be disposed at a position shifted in the radial direction with respect to the illumination fiber 11 inside the insertion portion 10.

このようにした場合も、検出ファイバ17により走査位置ごとに取り込み可能な反射光の取り込み効率の分布を示す取り込み効率情報を予め測定して記憶部26に記憶させ、同様な方法で光量調整部28により光源22の出力を調整することで、走査光学系13と検出ファイバ17との位置関係の影響による明るさむらを抑制した画像情報を取得することができる。   Also in this case, the capture efficiency information indicating the distribution of the capture efficiency of the reflected light that can be captured for each scanning position by the detection fiber 17 is measured in advance and stored in the storage unit 26, and the light amount adjustment unit 28 is processed in the same manner. Thus, by adjusting the output of the light source 22, it is possible to acquire image information in which brightness unevenness due to the influence of the positional relationship between the scanning optical system 13 and the detection fiber 17 is suppressed.

本実施形態は以下のように変形することができる。
本実施形態においては、光量調整部28が光源22の出力を制御することとしたが、第1変形例としては、光量調整部28が、照明ファイバ11によるレーザ光の体腔内壁S上の走査密度を制御することとしてもよい。この場合、光量調整部28により、取り込み効率情報に基づいて、走査位置に対する取り込み効率の関数の逆数に比例する光量のレーザ光が体腔内壁Sに照射されるように、走査位置ごとに照明ファイバ11によるレーザ光の走査密度を調整することとすればよい。
This embodiment can be modified as follows.
In the present embodiment, the light amount adjusting unit 28 controls the output of the light source 22. However, as a first modification, the light amount adjusting unit 28 scans the scanning density of the laser light on the body cavity inner wall S by the illumination fiber 11. It is good also as controlling. In this case, based on the capture efficiency information, the light intensity adjusting unit 28 irradiates the body cavity inner wall S with a light amount proportional to the reciprocal of the capture efficiency function with respect to the scan position. It is only necessary to adjust the scanning density of the laser beam.

例えば、一定の光量でレーザ光を照射すると、図4に示すように、画像構築部24による反射光の検出効率が画角中心に対して画角周辺ほど暗くなるような検出ムラがある場合は、光量調整部28の作動により、図7に示すように、照明ファイバ11の圧電素子15に与える駆動信号の振幅の変化率を徐々に小さくし、図8に示すように、照明ファイバ11による走査密度を走査範囲の中心から半径方向外方に向かうにつれて徐々に高くすることとすればよい。図7は圧電素子15に与える駆動信号値と時間との関係を示し、図8はレーザ光の走査密度を示している。   For example, when there is a detection unevenness such that when the laser beam is irradiated with a constant light amount, the detection efficiency of the reflected light by the image construction unit 24 becomes darker toward the periphery of the angle of view with respect to the center of the angle of view as shown in FIG. By the operation of the light amount adjusting unit 28, the rate of change of the amplitude of the drive signal applied to the piezoelectric element 15 of the illumination fiber 11 is gradually reduced as shown in FIG. 7, and scanning by the illumination fiber 11 is performed as shown in FIG. The density may be gradually increased from the center of the scanning range toward the outside in the radial direction. FIG. 7 shows the relationship between the drive signal value given to the piezoelectric element 15 and time, and FIG. 8 shows the scanning density of the laser beam.

このようにすることで、走査範囲の中心から半径方向外方に向かうにつれて反射光の光量を増大させ、検出ファイバ17による走査位置ごとの戻り光の取り込み効率の違いによる影響を低減することができる。これにより、検出ファイバ17により受光される走査位置ごとの戻り光の受光量を、各走査位置の本来の戻り光の強度の比率とほぼ同等な比率に維持し、反射光の検出むらを低減することができる。   By doing so, the amount of reflected light increases from the center of the scanning range toward the outside in the radial direction, and the influence due to the difference in the return light capturing efficiency at each scanning position by the detection fiber 17 can be reduced. . As a result, the amount of return light received at each scanning position received by the detection fiber 17 is maintained at a ratio approximately equal to the ratio of the original return light intensity at each scanning position, and the detection unevenness of the reflected light is reduced. be able to.

また、第2変形例としては、体腔内壁Sと走査光学系13との距離を測距し、光量調整部28により、その距離に応じて、取り込み効率情報に基づいてレーザ光の光量が走査位置に対する取り込み効率の関数の逆数に比例するようにレーザ光の光量を調整することとしてもよい。この場合、予め、検出ファイバ17の取り込み効率情報を被写体(観察対象部位)と走査光学系13との距離ごとに関連づけて記憶部26に記憶させておくこととすればよい。   As a second modification, the distance between the body cavity inner wall S and the scanning optical system 13 is measured, and the light amount adjustment unit 28 determines the light amount of the laser light based on the capture efficiency information according to the distance. The amount of laser light may be adjusted so as to be proportional to the inverse of the function of the capture efficiency with respect to. In this case, the capture efficiency information of the detection fiber 17 may be stored in advance in the storage unit 26 in association with the distance between the subject (observation target site) and the scanning optical system 13.

例えば、図1に示すような遠点観察に対して、図9に示すように、体腔内壁Sと走査光学系13の距離を近づけた場合(近点観察の場合)は、検出ファイバ17による走査範囲の中心付近からの反射光の取り込み効率が低下し、図10に示す2次元画像Pのように、走査範囲の中心付近からの反射光の検出効率が低減することがある。このような場合は、光量調整部28により、体腔内壁Sと走査光学系13との距離に応じて、遠点観察のときよりも走査範囲の中心付近に照射するレーザ光の光量を増加させように光源22の出力を制御することとすればよい。   For example, when the distance between the body cavity inner wall S and the scanning optical system 13 is made closer to the far point observation as shown in FIG. 1 (in the case of near point observation), as shown in FIG. The efficiency of capturing reflected light from the vicinity of the center of the range may decrease, and the detection efficiency of reflected light from the vicinity of the center of the scanning range may decrease as in the two-dimensional image P illustrated in FIG. In such a case, according to the distance between the body cavity inner wall S and the scanning optical system 13, the light amount adjusting unit 28 increases the light amount of the laser light irradiated near the center of the scanning range as compared with the far-point observation. In addition, the output of the light source 22 may be controlled.

測距手段としては、例えば、走査光学系13によりレーザ光を被写体に向けて照射して、レーザードップラー干渉法を利用して被写体と走査光学系13との距離を測定する方法や、振動している照明ファイバ11が挿入部10の径方向の中心に位置したときの被写体からの反射光を取得して干渉信号を測定するマイケルソン干渉法等が挙げられる。マイケルソン干渉法を採用する場合は、例えば、図11に示すように、照明ファイバ11の先端と走査光学系13との間の光軸上にレーザ光を透過し反射光を反射する特性を有するハーフミラー31を配置するとともに、ハーフミラー31により反射された反射光を反射する参照ミラー33および参照ミラー33により反射された反射光を受光する受光器35を挿入部10の内面に設けることとすればよい。   As the distance measuring means, for example, a method in which the scanning optical system 13 irradiates the subject with laser light and measures the distance between the subject and the scanning optical system 13 using laser Doppler interferometry, For example, a Michelson interferometry method is used in which reflected light from a subject when the illumination fiber 11 is positioned at the center of the insertion portion 10 in the radial direction and an interference signal is measured. When the Michelson interferometry is adopted, for example, as shown in FIG. 11, the laser beam is transmitted on the optical axis between the tip of the illumination fiber 11 and the scanning optical system 13, and the reflected light is reflected. A half mirror 31 is disposed, and a reference mirror 33 that reflects the reflected light reflected by the half mirror 31 and a light receiver 35 that receives the reflected light reflected by the reference mirror 33 are provided on the inner surface of the insertion portion 10. That's fine.

〔第2実施形態〕
次に、本発明の第2実施形態に係る光走査型観察装置について、図面を参照して説明する。
本実施形態に係る光走査型内視鏡装置(光走査型観察装置)200は、図12に示すように、光量調整部28に代えて、照明ファイバ11の先端と走査光学系13との間の光軸上に配置する円盤状の光学素子(透過率調整部材)126を採用する点で第1実施形態と異なる。
以下、第1実施形態に係る光走査型内視鏡装置100と構成を共通する箇所には、同一符号を付して説明を省略する。
[Second Embodiment]
Next, an optical scanning observation apparatus according to a second embodiment of the present invention will be described with reference to the drawings.
An optical scanning endoscope apparatus (optical scanning observation apparatus) 200 according to the present embodiment is arranged between the tip of the illumination fiber 11 and the scanning optical system 13 instead of the light amount adjustment unit 28 as shown in FIG. This embodiment is different from the first embodiment in that a disc-shaped optical element (transmittance adjusting member) 126 disposed on the optical axis is adopted.
In the following, portions having the same configuration as those of the optical scanning endoscope apparatus 100 according to the first embodiment are denoted by the same reference numerals and description thereof is omitted.

光学素子128は、レーザ光の走査位置に対する検出ファイバ17による取り込み効率の関数の逆数に比例する透過率分布を有している。例えば、一定の光量でレーザ光を照射すると、図4に示すように、画像構築部24による反射光の検出効率が画角中心に対して画角周辺ほど暗くなるような検出ムラが生じる被写体に対しては、図13に示すように、中心ほど透過率が低く半径方向外方に向かうにつれて透過率が高くなる透過率分布を有する光学素子128を用いることとすればよい。   The optical element 128 has a transmittance distribution that is proportional to the reciprocal of the function of the capture efficiency by the detection fiber 17 with respect to the scanning position of the laser light. For example, when laser light is irradiated with a certain amount of light, as shown in FIG. 4, a subject in which detection unevenness occurs such that the detection efficiency of reflected light by the image construction unit 24 becomes darker toward the periphery of the field angle than the center of the field angle. On the other hand, as shown in FIG. 13, an optical element 128 having a transmittance distribution in which the transmittance is lower toward the center and the transmittance is increased toward the outer side in the radial direction may be used.

本実施形態に係る光走査型内視鏡装置200によれば、光学素子128により、各走査位置に対応する範囲ごとに高い透過率または低い透過率で透過させられ、走査位置に対する取り込み効率の関数の逆数に比例する光量の照明光が被写体に照射される。これにより、走査位置ごとに反射光の光量が増大または低減し、検出ファイバ17により受光される走査位置ごとの反射光の受光量を、各走査位置の本来の反射光の強度の比率とほぼ同等な比率に維持し、反射光の検出むらを低減することができる。したがって、光源22の出力を変更することなく、明るさむらのない画像情報を取得することができる。   According to the optical scanning endoscope apparatus 200 according to the present embodiment, the optical element 128 transmits light with a high transmittance or a low transmittance for each range corresponding to each scanning position, and a function of the capture efficiency with respect to the scanning position. Illumination light having a light quantity proportional to the reciprocal of is irradiated onto the subject. As a result, the amount of reflected light increases or decreases at each scanning position, and the amount of reflected light received at each scanning position received by the detection fiber 17 is substantially equal to the ratio of the original reflected light intensity at each scanning position. Therefore, it is possible to reduce unevenness in detection of reflected light. Therefore, it is possible to acquire image information without uneven brightness without changing the output of the light source 22.

本実施形態においては、光量調整部として、光学素子128を例示して説明したが、光量調整部として、図14に示すように、走査光学系13の表面にコーティングされたコーティング部材129を採用することとしてもよい。この場合、コーティング部材129が、光学素子128と同様に、レーザ光の走査位置に対する検出ファイバ17による取り込み効率の関数の逆数に比例する透過率分布を有することとすればよい。   In the present embodiment, the optical element 128 has been described as an example of the light amount adjustment unit. However, as shown in FIG. 14, a coating member 129 coated on the surface of the scanning optical system 13 is employed as the light amount adjustment unit. It is good as well. In this case, similarly to the optical element 128, the coating member 129 may have a transmittance distribution proportional to the inverse of the function of the capturing efficiency by the detection fiber 17 with respect to the scanning position of the laser light.

また、本実施形態は以下のように変形することができる。
本実施形態においては、光量調整部として光学素子128、コーティング部材127を例示して説明したが、例えば、光量調整部28と、照明ファイバ11の先端と走査光学系13との間の光軸上に配置する透過率可変の透過部材(図示略)とを採用し、光量調整部28によって電気制御により透過部材の透過率を変更することとしてもよい。透過部材としては、例えば、エレクトロクロミック素子や液晶を採用することができる。例えば、図12の光学素子128の位置に透過部材を配置し、透過部材と光量調整部28とを電気的に接続することとすればよい。
Further, the present embodiment can be modified as follows.
In the present embodiment, the optical element 128 and the coating member 127 are described as examples of the light amount adjustment unit. However, for example, on the optical axis between the light amount adjustment unit 28 and the tip of the illumination fiber 11 and the scanning optical system 13. It is also possible to employ a transmission member (not shown) having a variable transmittance disposed in the window, and to change the transmittance of the transmission member by electrical control by the light amount adjustment unit 28. As the transmissive member, for example, an electrochromic element or a liquid crystal can be employed. For example, a transmission member may be disposed at the position of the optical element 128 in FIG. 12 and the transmission member and the light amount adjustment unit 28 may be electrically connected.

以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。例えば、上記各実施形態においては、光走査型観察装置として光走査型内視鏡装置100を例示して説明したが、光源から発せられたレーザ光を被写体に照射する対物レンズ(射出部)と、対物レンズにより照射されるレーザ光を被写体上で走査させるガルバノミラーのような走査部と、被写体からの反射光を受光する光学系(受光部)と、記憶部と、光量調整部とを備える通常の光走査型顕微鏡装置であってもよい。   As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the specific structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included. For example, in each of the above-described embodiments, the optical scanning endoscope apparatus 100 has been described as an example of the optical scanning observation apparatus. However, an objective lens (an emitting unit) that irradiates a subject with laser light emitted from a light source; A scanning unit such as a galvanometer mirror that scans the laser light emitted from the objective lens on the subject, an optical system (light receiving unit) that receives reflected light from the subject, a storage unit, and a light amount adjustment unit. A normal optical scanning microscope apparatus may be used.

また、上記各実施形態においては、走査部として、照明ファイバ11を圧電素子15により共振させてレーザ光を走査させる構成を例示して説明したが、これに代えて、走査部として、例えば、走査光学系13から射出させるレーザ光を電気光学結晶を通過させて、電気制御によりレーザ光を走査させる構成を採用することとしてもよい。   Further, in each of the above-described embodiments, the configuration in which the illumination fiber 11 is resonated by the piezoelectric element 15 and the laser beam is scanned as the scanning unit has been described as an example. However, instead of this, as the scanning unit, for example, scanning A configuration in which the laser light emitted from the optical system 13 is allowed to pass through the electro-optic crystal and the laser light is scanned by electrical control may be employed.

具体的には、図15に示すように、互いに直交する方向に偏向動作する2つの電気光学結晶115にレーザ光を入射させ、電気光学結晶115に電圧を印加し内部に屈折率分布を生じさせて、電気光学結晶115を通過するレーザ光を偏向させることにより、レーザ光を走査させることとしてもよい。図15においては、一方向(例えば、Y軸方向)の電気光学結晶115だけを示すが、これに直交する方向(例えば、X軸方向)の電気光学結晶についても同様である。   Specifically, as shown in FIG. 15, laser light is incident on two electro-optic crystals 115 that are deflected in directions orthogonal to each other, and a voltage is applied to the electro-optic crystals 115 to generate a refractive index distribution inside. Thus, the laser light may be scanned by deflecting the laser light passing through the electro-optic crystal 115. FIG. 15 shows only the electro-optic crystal 115 in one direction (for example, the Y-axis direction), but the same applies to the electro-optic crystal in a direction orthogonal to the one (for example, the X-axis direction).

また、走査部として、例えば、照明ファイバ11を永久磁石とコイルにより電磁駆動で共振させてレーザ光を走査させる構成を採用することとしてもよい。具体的には、図16に示すように、永久磁石116に照明ファイバ11を挿通させて照明ファイバ11を片持ち梁状に保持し、挿入部10の内面に永久磁石116の半径方向に間隔をあけてX軸駆動用Tiltedコイル117とY軸駆動用Tiltedコイル118とを配置し、これらのコイル17,118に電流を流すことによって電磁駆動により照明ファイバ11を共振させてレーザ光を走査させることとしてもよい。この場合、X軸駆動用Tiltedコイル117とY軸駆動用Tiltedコイル118とを挿入部10の長手方向に対して互いに異なる方向に傾斜させて配置することとすればよい。   Moreover, as a scanning part, it is good also as employ | adopting the structure which resonates the illumination fiber 11 by an electromagnetic drive with a permanent magnet and a coil, and scans a laser beam, for example. Specifically, as shown in FIG. 16, the illumination fiber 11 is inserted into the permanent magnet 116 to hold the illumination fiber 11 in a cantilever shape, and the inner surface of the insertion portion 10 is spaced in the radial direction of the permanent magnet 116. An X-axis driving tilted coil 117 and a Y-axis driving tilted coil 118 are arranged, and the illumination fiber 11 is caused to resonate by electromagnetic driving by causing a current to flow through these coils 17 and 118 to scan the laser light. It is good. In this case, the X-axis driving tilted coil 117 and the Y-axis driving tilted coil 118 may be disposed so as to be inclined in different directions with respect to the longitudinal direction of the insertion portion 10.

このように構成した場合、例えば、Y軸駆動用Tiltedコイル118に電流を流すと、図17に示すように、照明ファイバ11の長手方向に対して交差するY軸方向に磁界が発生し、図18に示すように、永久磁石116の磁気モーメントが磁界に沿うように照明ファイバ11が湾曲させられる。これにより、レーザ光をY軸方向に走査することができる。同様にして、X軸駆動用Tiltedコイル117に電流を流すと、照明ファイバ11をX軸方向に湾曲させ、レーザ光をX軸方向に走査することができる。したがって、X軸駆動用Tiltedコイル117とY軸駆動用Tiltedコイル118に駆動信号の位相を90°ずらして交互に加えることにより、照明ファイバ11の先端を螺旋状に変位させてレーザ光を2次元的に走査することができる。
また、走査部として、ガルバノミラーを採用することとしてもよい。
In such a configuration, for example, when a current is passed through the Y-axis driving tilted coil 118, a magnetic field is generated in the Y-axis direction intersecting the longitudinal direction of the illumination fiber 11, as shown in FIG. As shown in FIG. 18, the illumination fiber 11 is bent so that the magnetic moment of the permanent magnet 116 follows the magnetic field. Thereby, the laser beam can be scanned in the Y-axis direction. Similarly, when an electric current is passed through the tilted coil 117 for driving the X axis, the illumination fiber 11 can be bent in the X axis direction, and the laser beam can be scanned in the X axis direction. Therefore, the tip of the illumination fiber 11 is spirally displaced by two-dimensionally applying laser light to the X-axis driving tilted coil 117 and the Y-axis driving tilted coil 118 by alternately shifting the phase of the driving signal by 90 °. Can be scanned automatically.
Moreover, a galvanometer mirror may be employed as the scanning unit.

11 照明ファイバ(走査部)
13 走査光学系(射出部)
17 検出ファイバ(受光部)
24 画像構築部
26 記憶部
28 光量調整部
100,200 光走査型内視鏡装置(光走査型観察装置)
11 Illumination fiber (scanning part)
13 Scanning optical system (emitter)
17 Detection fiber (light receiving part)
24 Image construction unit 26 Storage unit 28 Light amount adjustment unit 100, 200 Optical scanning endoscope apparatus (optical scanning observation apparatus)

Claims (6)

光源から発せられた照明光を観察対象部位に向けて射出する射出部と、
該射出部により射出される前記照明光を前記観察対象部位上で走査させる走査部と、
該走査部により前記照明光が走査された前記観察対象部位の走査位置からの戻り光を受光する受光部と、
該受光部により前記走査位置ごとに取り込み可能な前記戻り光の取り込み効率の分布を示す取り込み効率情報を記憶する記憶部と、
該記憶部に記憶されている前記取り込み効率情報に基づいて、前記照明光の光量が前記走査位置に対する前記取り込み効率の関数の逆数に比例するように該照明光の光量を調整する光量調整部とを備える光走査型観察装置。
An emission unit that emits illumination light emitted from a light source toward an observation target site;
A scanning unit that scans the observation target region with the illumination light emitted by the emitting unit;
A light receiving unit that receives return light from a scanning position of the observation target region scanned with the illumination light by the scanning unit;
A storage unit for storing capture efficiency information indicating a distribution of the capture efficiency of the return light that can be captured at each scanning position by the light receiving unit;
A light amount adjusting unit that adjusts the light amount of the illumination light based on the capture efficiency information stored in the storage unit so that the light amount of the illumination light is proportional to the inverse of the function of the capture efficiency with respect to the scanning position; An optical scanning observation apparatus.
前記光量調整部が、前記光源の出力を制御する請求項1に記載の光走査型観察装置。   The optical scanning observation apparatus according to claim 1, wherein the light amount adjustment unit controls an output of the light source. 前記光量調整部が、前記走査部による前記照明光の前記観察対象部位上の走査密度を制御する請求項1に記載の光走査型観察装置。   The optical scanning observation apparatus according to claim 1, wherein the light amount adjustment unit controls a scanning density of the illumination light on the observation target portion by the scanning unit. 前記観察対象部位と前記走査部との間の前記照明光の光軸上に配置された透過率可変の透過部材を備え、
前記光量調整部が、前記透過部材の透過率を制御する請求項1に記載の光走査型観察装置。
A transmission member with variable transmittance disposed on the optical axis of the illumination light between the observation target site and the scanning unit;
The optical scanning observation apparatus according to claim 1, wherein the light amount adjusting unit controls the transmittance of the transmissive member.
前記光量調整部が、前記観察対象部位と前記走査部との間の前記照明光の光軸上に配置され、前記走査位置に対する前記取り込み効率の関数の逆数に比例する透過率分布を有する透過率調整部材である請求項1に記載の光走査型観察装置。   The light amount adjusting unit is disposed on the optical axis of the illumination light between the observation target site and the scanning unit, and has a transmittance distribution proportional to the inverse of the function of the capturing efficiency with respect to the scanning position. The optical scanning observation apparatus according to claim 1, wherein the optical scanning observation apparatus is an adjustment member. 前記受光部により受光された前記戻り光を検出して前記観察対象部位の画像を構築する画像構築部を備える請求項1から請求項5のいずれかに記載の光走査型観察装置。   The optical scanning observation apparatus according to claim 1, further comprising an image constructing unit configured to construct an image of the observation target part by detecting the return light received by the light receiving unit.
JP2011101963A 2011-04-28 2011-04-28 Optical scanning observation device Active JP5745922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011101963A JP5745922B2 (en) 2011-04-28 2011-04-28 Optical scanning observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011101963A JP5745922B2 (en) 2011-04-28 2011-04-28 Optical scanning observation device

Publications (2)

Publication Number Publication Date
JP2012231910A true JP2012231910A (en) 2012-11-29
JP5745922B2 JP5745922B2 (en) 2015-07-08

Family

ID=47432901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011101963A Active JP5745922B2 (en) 2011-04-28 2011-04-28 Optical scanning observation device

Country Status (1)

Country Link
JP (1) JP5745922B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188719A1 (en) * 2013-05-21 2014-11-27 オリンパス株式会社 Optical scanning unit, optical scanning observation device, and optical fiber scanning device
WO2015037231A1 (en) * 2013-09-11 2015-03-19 オリンパス株式会社 Optical scanning device
WO2016171274A1 (en) * 2015-04-23 2016-10-27 オリンパス株式会社 Endoscope device
JP2018115967A (en) * 2017-01-19 2018-07-26 株式会社日立製作所 Optical scanner, video device, and distance measuring device
WO2018207356A1 (en) * 2017-05-12 2018-11-15 オリンパス株式会社 Optical scanning device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118915A (en) * 1984-07-05 1986-01-27 Olympus Optical Co Ltd Lighting optical system for endoscope
JPH06313851A (en) * 1993-04-28 1994-11-08 Olympus Optical Co Ltd Light source device for endoscope
JP2010063485A (en) * 2008-09-08 2010-03-25 Fujifilm Corp Illumination optical system for endoscope and endoscope
US20100123775A1 (en) * 2008-11-14 2010-05-20 Hoya Corporation Endoscope system with scanning function
JP2010131112A (en) * 2008-12-03 2010-06-17 Hoya Corp Endoscope system
US20100157037A1 (en) * 2008-12-22 2010-06-24 Hoya Corporation Endoscope system with scanning function

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118915A (en) * 1984-07-05 1986-01-27 Olympus Optical Co Ltd Lighting optical system for endoscope
US4678900A (en) * 1984-07-05 1987-07-07 Olympus Optical Co., Ltd. Illuminating optical system for endoscopes
JPH06313851A (en) * 1993-04-28 1994-11-08 Olympus Optical Co Ltd Light source device for endoscope
JP2010063485A (en) * 2008-09-08 2010-03-25 Fujifilm Corp Illumination optical system for endoscope and endoscope
US20100123775A1 (en) * 2008-11-14 2010-05-20 Hoya Corporation Endoscope system with scanning function
JP2010115391A (en) * 2008-11-14 2010-05-27 Hoya Corp Endoscope apparatus
JP2010131112A (en) * 2008-12-03 2010-06-17 Hoya Corp Endoscope system
US20100157037A1 (en) * 2008-12-22 2010-06-24 Hoya Corporation Endoscope system with scanning function

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188719A1 (en) * 2013-05-21 2014-11-27 オリンパス株式会社 Optical scanning unit, optical scanning observation device, and optical fiber scanning device
JPWO2014188719A1 (en) * 2013-05-21 2017-02-23 オリンパス株式会社 Optical scanning unit, optical scanning observation device, and optical fiber scanning device
WO2015037231A1 (en) * 2013-09-11 2015-03-19 オリンパス株式会社 Optical scanning device
JPWO2015037231A1 (en) * 2013-09-11 2017-03-02 オリンパス株式会社 Optical scanning device
US10126547B2 (en) 2013-09-11 2018-11-13 Olympus Corporation Optical scanning apparatus
WO2016171274A1 (en) * 2015-04-23 2016-10-27 オリンパス株式会社 Endoscope device
JP2018115967A (en) * 2017-01-19 2018-07-26 株式会社日立製作所 Optical scanner, video device, and distance measuring device
CN108333746A (en) * 2017-01-19 2018-07-27 株式会社日立制作所 Light scanning apparatus, device for image and distance-measuring device
US11240402B2 (en) 2017-01-19 2022-02-01 Hitachi, Ltd. Optical scanning device, imaging device, and distance measurement device
WO2018207356A1 (en) * 2017-05-12 2018-11-15 オリンパス株式会社 Optical scanning device

Also Published As

Publication number Publication date
JP5745922B2 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
US9651774B2 (en) Optical scanning observation apparatus having variable sampling time, and method and computer readable storage device
US10226162B2 (en) Calibration apparatus
JP2012231911A (en) Optical scanner and scan type observation device
JP5745922B2 (en) Optical scanning observation device
US10151918B2 (en) Scanner, scanning illuminator, and scanning observation apparatus
JP2010117442A (en) Fiber-optic scanning endoscope, fiber-optic scanning endoscope processor, and fiber-optic scanning endoscope device
US20160150948A1 (en) Optical scanning unit, optical scanning observation apparatus, and optical fiber scanning apparatus
US20180003954A1 (en) Method for setting driving conditions and apparatus for setting driving conditions of optical scanning apparatus
JP2010520778A (en) Side-view scope and imaging method thereof
US20170090181A1 (en) Optical scanning endoscope apparatus
KR102587389B1 (en) Image calibration algorithm based on lissajous scanning
US10534168B2 (en) Light-scanning apparatus and light-scanning-apparatus control method
JP6522748B2 (en) Scanning endoscope and control method thereof
US11375883B2 (en) Light-scanning endoscope, correcting apparatus for light scanning endoscope and light-scanning-endoscope operating method
JP5734758B2 (en) Laser microscope
US11054565B2 (en) Optical fiber scanning apparatus for adjusting a driving frequency of the optical fiber
US10429353B2 (en) Photoacoustic microscope and photoacoustic signal detection method
WO2016170612A1 (en) Optical fiber scanner and scanning observation apparatus
WO2016208004A1 (en) Scanning-type endoscope system
JP6416277B2 (en) Optical scanning endoscope device
JP2012147831A (en) Scanning position correction device
US10356287B2 (en) Optical scanning apparatus and method of controlling optical scanning apparatus
US20190183348A1 (en) Optical scanning device, catheter device, and distance measuring device
JP2024503620A (en) Devices and methods for creating uniform lighting
JP2015219296A (en) Optical system and endoscope apparatus comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150507

R151 Written notification of patent or utility model registration

Ref document number: 5745922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250