JP2012198965A - 不揮発性半導体記憶装置 - Google Patents

不揮発性半導体記憶装置 Download PDF

Info

Publication number
JP2012198965A
JP2012198965A JP2011063281A JP2011063281A JP2012198965A JP 2012198965 A JP2012198965 A JP 2012198965A JP 2011063281 A JP2011063281 A JP 2011063281A JP 2011063281 A JP2011063281 A JP 2011063281A JP 2012198965 A JP2012198965 A JP 2012198965A
Authority
JP
Japan
Prior art keywords
data
mode
command sequence
host controller
flash memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011063281A
Other languages
English (en)
Inventor
Hiroyuki Nagashima
宏行 永嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011063281A priority Critical patent/JP2012198965A/ja
Priority to US13/235,433 priority patent/US20120246389A1/en
Publication of JP2012198965A publication Critical patent/JP2012198965A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1015Read-write modes for single port memories, i.e. having either a random port or a serial port
    • G11C7/1045Read-write mode select circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/20Initialising; Data preset; Chip identification

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)

Abstract

【課題】データ転送速度の切り替えが可能な不揮発性半導体記憶装置を提供する。
【解決手段】不揮発性半導体記憶装置1は、不揮発性メモリ10と、第1の制御信号の立ち上がりエッジ及び立ち下がりエッジの一方に応答してデータ転送を行う第1のモードと、第2の制御信号の立ち上がりエッジ及び立ち下がりエッジの両方に応答してデータ転送を行う第2のモードとを有し、データ入力時に第1のモードを用いかつデータ出力時に第2のモードを用いるように第1及び第2のモードを切り替えるコントローラ17とを含む。
【選択図】 図4

Description

本発明の実施形態は、不揮発性半導体記憶装置に関する。
電気的に書き換えが可能で、かつ高集積化が可能な不揮発性半導体記憶装置としてNAND型フラッシュメモリが知られている。一般的には、NAND型フラッシュメモリは、ホストとの間で、クロックの立ち上がりエッジと立ち下がりエッジとの一方に応答して、データ転送動作を行っている。
米国特許出願公開第2008/0141059号明細書 特開2005−267821号公報 特開2004−38642号公報 特開2002−175692号公報
実施形態は、データ転送速度の切り替えが可能な不揮発性半導体記憶装置を提供する。
実施形態に係る不揮発性半導体記憶装置は、不揮発性メモリと、第1の制御信号の立ち上がりエッジ及び立ち下がりエッジの一方に応答してデータ転送を行う第1のモードと、第2の制御信号の立ち上がりエッジ及び立ち下がりエッジの両方に応答してデータ転送を行う第2のモードとを有し、データ入力時に前記第1のモードを用いかつデータ出力時に前記第2のモードを用いるように前記第1及び第2のモードを切り替えるコントローラとを具備する。
第1の実施形態に係るNAND型フラッシュメモリのブロック図。 メモリセルアレイの回路図。 データ転送モードの設定動作を説明する図。 データ転送モードをSDRモードに切り替える動作を説明するフロー図。 データ転送モードをDDRモードに切り替える動作を説明するフロー図。 SDRモードにおけるデータ入力処理を説明するタイミングチャート。 SDRモードにおけるデータ出力処理を説明するタイミングチャート。 DDRモードにおけるデータ入力処理を説明するタイミングチャート。 DDRモードにおけるデータ出力処理を説明するタイミングチャート。 データ入力及びデータ出力をそれぞれSDRモード及びDDRモードに切り替える動作を説明するフロー図。 データ入力及びデータ出力をそれぞれDDRモード及びSDRモードに切り替える動作を説明するフロー図。
以下に示す幾つかの実施形態は、本発明の技術思想を具体化するための装置および方法を例示したものであって、構成部品の形状、構造、配置などによって、本発明の技術思想が特定されるものではない。なお、以下の説明において、同一の機能及び構成を有する要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
[第1の実施形態]
[1.不揮発性半導体記憶装置の構成]
図1は、第1の実施形態に係る不揮発性半導体記憶装置としてのNAND型フラッシュメモリ1のブロック図である。NAND型フラッシュメモリ1は、入出力線(I/O線)及び制御信号線を介してホスト装置(ホストコントローラ)2と接続されている。
メモリセルアレイ10は、電気的に書き換え可能なフラッシュメモリセルがマトリクス状に配置されて構成されている。メモリセルアレイ10には、カラム方向に延在する複数のビット線BL、ロウ方向に延在する複数のワード線WL、及びロウ方向に延在するソース線SLが配設されている。
ビット線BLには、ビット線制御回路11が接続されている。ビット線制御回路11は、ビット線BLを選択し、かつビット線BLの電圧を制御することで、メモリセルのデータ消去、メモリセルへのデータ書き込み、及びメモリセルからのデータ読み出しを行う。ビット線制御回路11は、カラムデコーダ、センスアンプSA、ページバッファなどを含んでいる。
ワード線WLには、ワード線制御回路12が接続されている。ワード線制御回路12は、ワード線WLを選択し、また、消去、書き込み及び読み出しに必要な電圧をワード線WLに印加する。ワード線制御回路12は、ロウデコーダ、ワード線ドライバなどを含んでいる。
ソース線制御回路13は、ソース線SLの電圧を制御する。Pウェル制御回路14は、メモリセルアレイ10が形成されるp型ウェルの電圧を制御する。
データ入出力バッファ15は、ホストコントローラ2にI/O線を介して接続されており、書き込みデータの受け取り、読み出しデータの出力、アドレスやコマンドの受け取りを行う。データ入出力バッファ15は、受け取った書き込みデータをビット線制御回路11に送り、ビット線制御回路11から読み出された読み出しデータを受け取る。また、データ入出力バッファ15は、メモリセルを選択するために、ホストコントローラ2からのアドレスをビット線制御回路11やワード線制御回路12に制御部17を介して送る。さらに、データ入出力バッファ15は、ホストコントローラ2からのコマンドをコマンドインターフェイス16に送る。
コマンドインターフェイス16は、ホストコントローラ2から制御信号線を介して各種制御信号を受け、これら制御信号を制御部17に送る。また、コマンドインターフェイス16は、データ入出力バッファ15に入力されたデータが書き込みデータ、コマンド及びアドレスのいずれであるかを判断し、コマンドであればこれを受け取り、コマンド信号として制御部17に送る。
制御部17は、NAND型フラッシュメモリ1全体の管理を行う。制御部17は、ホストコントローラ2からのコマンドを解釈し、データの入出力、読み出し、書き込み(プログラム)、消去などの各種動作を実行する。また、制御部17は、ホストコントローラ2とのデータ転送を行うためのデータ転送モードとして、SDR(Single Data Rate)モード及びDDR(Double Data Rate)モードを有している。SDRモードとは、制御信号の立ち上がりエッジ及び立ち下がりエッジの一方に応答してデータ転送を行うモードである。DDRモードとは、制御信号の立ち上がりエッジ及び立ち下がりエッジの両方に応答してデータ転送を行うモードであり、すなわち高速転送モードである。よって、DDRモードは、同じ制御信号を用いた場合、SDRモードに比べて2倍のデータ転送速度を有することになる。制御部17は、SDRモード及びDDRモードを用いて、ホストコントローラ2との間でデータ転送処理を実行する。
ラッチ回路18は、制御部17の制御のもと、NAND型フラッシュメモリ1の動作に必要な各種設定データを格納する。制御部17は、ラッチ回路18に格納された各種設定データを確認しながら各種動作を実行する。さらに、ラッチ回路18は、SDRモード及びDDRモードのいずれを実施するかを決定するモードデータを格納する。制御部17は、ラッチ回路18に格納されたモードデータを確認することで、現在のデータ転送モードがSDRモード及びDDRモードのいずれであるかを認識することができる。ラッチ回路18としては、揮発性メモリが用いられる。
図2は、メモリセルアレイ10の回路図である。メモリセルアレイ10は、j個のブロックBLK0〜BLKj−1(jは、1以上の整数)を備えている。ブロックBLKは、データ消去の最小単位である。
各ブロックBLKは、ロウ方向に沿って順に配列されたm個のNANDストリングを備えている(mは、1以上の整数)。NANDストリングに含まれる選択トランジスタST1は、ドレインがビット線BLに接続され、ゲートが選択ゲート線SGDに共通接続されている。NANDストリングに含まれる選択トランジスタST2は、ソースがソース線SLに共通接続され、ゲートが選択ゲート線SGSに共通接続されている。
各メモリセルトランジスタ(メモリセルとも言う)MTは、p型ウェル上に形成された積層ゲート構造を備えたMOSFET(Metal Oxide Semiconductor Field Effect Transistor)により構成されている。積層ゲート構造は、p型ウェル上にゲート絶縁膜を介在して形成された電荷蓄積層(浮遊ゲート電極)、及び浮遊ゲート電極上にゲート間絶縁膜を介在して形成された制御ゲート電極を含んでいる。メモリセルトランジスタMTは、浮遊ゲート電極に蓄えられる電子の数に応じて閾値電圧が変化し、この閾値電圧の違いに応じてデータを記憶する。メモリセルトランジスタMTは、2値データ(1ビットデータ)を記憶するように構成されていてもよいし、多値データ(2ビット以上のデータ)を記憶するように構成されていてもよい。
メモリセルトランジスタMTは、浮遊ゲート電極を有するフローティングゲート構造に限らず、MONOS(Metal-Oxide-Nitride-Oxide-Silicon)型など、電荷蓄積層としての窒化膜界面に電子をトラップさせることにより閾値電圧が調整可能な構造であってもよい。MONOS構造のメモリセルトランジスタMTについても同様に、2値データを記憶するように構成されていてもよいし、多値データを記憶するように構成されていてもよい。
各NANDストリングにおいて、n個(nは、1以上の整数)のメモリセルトランジスタMTは、選択トランジスタST1のソースと選択トランジスタST2のドレインとの間に、それぞれの電流経路が直列接続されるように配置されている。すなわち、n個のメモリセルトランジスタMTは、隣接するもの同士で拡散領域(ソース/ドレイン領域)を共有するような形でカラム方向に直列接続される。
各NANDストリングにおいて、最もソース側に位置するメモリセルトランジスタMTから順に、制御ゲート電極がワード線WL0〜WLn−1にそれぞれ接続されている。従って、ワード線WLn−1に接続されたメモリセルトランジスタMTのドレインは選択トランジスタST1のソースに接続され、ワード線WL0に接続されたメモリセルトランジスタMTのソースは選択トランジスタST2のドレインに接続されている。
ワード線WL0〜WLn−1は、ブロックBLK内のNANDストリング間で、メモリセルトランジスタMTの制御ゲート電極を共通に接続している。つまり、ブロック内において同一行にあるメモリセルトランジスタMTの制御ゲート電極は、同一のワード線WLに接続される。この同一のワード線WLに接続されるm個のメモリセルトランジスタMTは1ページとして取り扱われ、このページごとにデータの書き込み及びデータの読み出しが行われる。
また、ビット線BL0〜BLm−1は、ブロックBLK間で、選択トランジスタST1のドレインを共通に接続している。つまり、ブロックBLK0〜BLKj−1内において同一列にあるNANDストリングは、同一のビット線BLに接続される。各ビット線BLは、ビット線制御回路11に含まれるセンスアンプSAに接続される。
なお、図2は、各ビット線BLに1個のセンスアンプSAが接続された構成例を示しているが、2本のビット線に対して1個のセンスアンプSAを配置するようにしてもよい。
[2.動作]
上記のように構成されたNAND型フラッシュメモリ1の動作について説明する。まず、NAND型フラッシュメモリ1の起動時におけるデータ転送モードの設定動作について説明する。図3は、データ転送モードの設定動作を説明する図である。
メモリセルアレイ10は、NAND型フラッシュメモリ1の起動時に使用されるブートプログラムを格納する記憶領域10Aを備えている。パワーオン時、制御部17は、メモリセルアレイ10の記憶領域10Aからブートプログラムを読み出し、このブートプログラムを用いて初期化動作を実行する。このブートプログラムには、データ転送モードを決定するデフォルトのモードデータが含まれており、制御部17は、このモードデータをラッチ回路18の記憶領域18Aに格納する。以後、制御部17は、ラッチ回路18に格納されたモードデータで指定されたデータ転送モードを実行する。
次に、データ転送モードの切り替え動作について説明する。図4(a)は、データ転送モードをSDRモードに切り替える動作を説明するフロー図である。図4の数字は16進数(hexadecimal number)表記であり、1つの楕円は8ビット(1バイト)分のデータを表している。図4に示すように、1つのコマンドは、例えば8ビットで定義される。
まず、NAND型フラッシュメモリ1は、ホストコントローラ2からセットコマンドシーケンスPSを受ける。セットコマンドシーケンスPSは、図4に示した1つのセットコマンドであってもよいし、複数のコマンドを含むセットコマンドシーケンスであってもよい。
続いて、制御部17は、ホストコントローラ2から、スイッチコマンドシーケンスを受ける。このスイッチコマンドシーケンスは、スイッチコマンドSW、アドレスAD、及びパラメータ“00h”を含む。パラメータの最下位ビットは、データ出力におけるデータ転送モードを指定し、最下位から2ビット目は、データ入力におけるデータ転送モードを指定する。データ“0”はSDRモードを表し、データ“1”はDDRモードを表している。図4(a)のスイッチコマンドシーケンスに含まれるパラメータ“00h”の下位2ビットは、“00”であるので、データ出力及びデータ入力のデータ転送モードがともにSDRモードに指定されている。
制御部17は、上記スイッチコマンドシーケンスを解釈した後、ラッチ回路18の記憶領域18Aに、データ出力及びデータ入力のデータ転送モードをともにSDRモードに設定するモードデータを上書きする。その後、NAND型フラッシュメモリ1は、ラッチ回路18に格納されたモードデータを確認することで、SDRモードを用いてホストコントローラ2との間でデータ出力及びデータ入力を実行する。
なお、データ転送モードを切り替えるためのコマンドとしてコマンドシーケンスを定義したが、これに限定されるものではなく、スイッチコマンドのみでデータ転送モードを切り替えるようにしてもよいし、パラメータのみでデータ転送モードを切り替えるようにしてもよい。
図4(b)は、SDRモード時におけるデータ入力動作及びデータ出力動作を説明するフロー図である。NAND型フラッシュメモリ1は、ホストコントローラ2から、プログラムコマンドシーケンス及びデータを受ける。プログラムコマンドシーケンスは、コマンド“80h”、アドレス、及びコマンド“10h”を含む。プログラム時のアドレスは、1バイトのアドレスADが例えば5サイクル分のデータで定義される。
このプログラムコマンドシーケンスに応答して、制御部17は、SDRモードを用いてデータ入力処理を実行する。続いて、制御部17は、ホストコントローラ2から受けたデータをページ単位でメモリセルアレイ10に書き込む。同様に、ホストコントローラ2が望む書き込みデータが全てNAND型フラッシュメモリ1に書き込まれるまで、プログラムコマンドシーケンスが繰り返し実行される。
続いて、NAND型フラッシュメモリ1は、ホストコントローラ2から、読み出しコマンドシーケンスを受ける。読み出しコマンドシーケンスは、コマンド“00h”、アドレス、及びコマンド“30h”を含む。読み出し時のアドレスは、1バイトのアドレスADが例えば5サイクル分のデータで定義される。
この読み出しコマンドシーケンスに応答して、制御部17は、メモリセルアレイ10からアドレスに対応するデータをページ単位で読み出す。続いて、制御部17は、SDRモードを用いてデータ出力処理を実行する。同様に、ホストコントローラ2が望む読み出しデータが全てNAND型フラッシュメモリ1から読み出されるまで、読み出しコマンドシーケンスが繰り返し実行される。
図5(a)は、データ転送モードをDDRモードに切り替える動作を説明するフロー図である。まず、NAND型フラッシュメモリ1は、ホストコントローラ2からセットコマンドシーケンスPSを受ける。
続いて、制御部17は、ホストコントローラ2から、スイッチコマンドシーケンスを受ける。このスイッチコマンドシーケンスは、スイッチコマンドSW、アドレスAD、及びパラメータ“03h”を含む。パラメータ“03h”の下位2ビットは、“11”であるので、データ出力及びデータ入力のデータ転送モードがともにDDRモードに指定されている。
制御部17は、上記スイッチコマンドシーケンスを解釈した後、ラッチ回路18の記憶領域18Aに、データ出力及びデータ入力のデータ転送モードをともにDDRモードに設定するモードデータを上書きする。その後、NAND型フラッシュメモリ1は、ラッチ回路18に格納されたモードデータを確認することで、DDRモードを用いてホストコントローラ2との間でデータ出力及びデータ入力を実行する。
図5(b)は、DDRモード時におけるデータ入力動作及びデータ出力動作を説明するフロー図である。NAND型フラッシュメモリ1は、ホストコントローラ2から、プログラムコマンドシーケンス及びデータを受ける。このプログラムコマンドシーケンスに応答して、制御部17は、DDRモードを用いてデータ入力処理を実行する。続いて、制御部17は、ホストコントローラ2から受けたデータをページ単位でメモリセルアレイ10に書き込む。同様に、ホストコントローラ2が望む書き込みデータが全てNAND型フラッシュメモリ1に書き込まれるまで、プログラムコマンドシーケンスが繰り返し実行される。
続いて、NAND型フラッシュメモリ1は、ホストコントローラ2から、読み出しコマンドシーケンスを受ける。この読み出しコマンドシーケンスに応答して、制御部17は、メモリセルアレイ10からアドレスに対応するデータをページ単位で読み出す。続いて、制御部17は、DDRモードを用いてデータ出力処理を実行する。同様に、ホストコントローラ2が望む読み出しデータが全てNAND型フラッシュメモリ1から読み出されるまで、読み出しコマンドシーケンスが繰り返し実行される。
図6は、SDRモードにおけるデータ入力処理を説明するタイミングチャートである。NAND型フラッシュメモリ1は、ホストコントローラ2から、コマンドラッチイネーブル信号CLE、チップイネーブル信号/CE、アドレスラッチイネーブル信号ALE、及びライトイネーブル信号/WEを制御信号として受ける。tCLS、tCS、tALS、及びtDSはセットアップ時間、tCLH、tCH、tALH、及びtDHはホールド時間、tWCは書き込みサイクル時間、tWPは書き込みパルス幅、tWHは/WEのハイホールド時間である。
図6に示すように、制御部17は、ライトイネーブル信号/WEの立ち上がりエッジに応答して、入力データDを取り込む。すなわち、制御部17は、ライトイネーブル信号/WEを制御信号として、SDRモードを用いてデータ入力処理を実行している。ライトイネーブル信号/WEのサイクル時間(書き込みサイクル時間tWC)は、例えば20nsである。よって、SDRモードにおけるデータ入力処理では、50Mbpsの転送速度を実現している。
図7は、SDRモードにおけるデータ出力処理を説明するタイミングチャートである。NAND型フラッシュメモリ1は、ホストコントローラ2からチップイネーブル信号/CE、及びリードイネーブル信号/REを制御信号として受け、また、ホストコントローラ2にレディ/ビジー信号RY//BYを制御信号として送る。tCRは/CEがローから/REがローまでの時間、tRCはリードサイクル時間、tRPはリードパルス幅、tREHは/REのハイホールド時間、tCHZは/CEがハイから出力ハイインピーダンスまでの時間、tRHOHは/REがハイからの出力ホールド時間、tREAは/REアクセス時間、tRHZは/REがハイから出力ハイインピーダンスまでの時間、tRRはレディ状態から/REの立ち下がりエッジまでの時間である。
図7に示すように、制御部17は、リードイネーブル信号/REの立ち上がりエッジに応答して、データを出力する。すなわち、制御部17は、リードイネーブル信号/REを制御信号として、SDRモードを用いてデータ出力処理を実行している。リードイネーブル信号/REのサイクル時間(リードサイクル時間tRC)は、例えば20nsである。よって、SDRモードにおけるデータ出力処理では、50Mbpsの転送速度を実現している。
図8は、DDRモードにおけるデータ入力処理を説明するタイミングチャートである。NAND型フラッシュメモリ1は、ホストコントローラ2から、コマンドラッチイネーブル信号CLE、チップイネーブル信号/CE、アドレスラッチイネーブル信号ALE、及びデータストローブ信号DQSを制御信号として受ける。tCALSはCLE/ALEセットアップ時間、tCDQSSはデータ入力開始のためのDQSセットアップ時間、tWPREはライトプリアンブル、tDSCはデータストローブサイクル時間、tDQSHはDQSハイパルス幅、tDQSLはDQSローパルス幅、tWPSTはライトポストアンブル、tWPSTHはライトポストアンブルホールド時間である。
図8に示すように、制御部17は、データストローブ信号DQSの立ち上がりエッジ及び立ち下がりエッジの両方に応答して、入力データDを取り込む。すなわち、制御部17は、データストローブ信号DQSを制御信号として、DDRモードを用いてデータ入力処理を実行している。データストローブ信号DQSのサイクル時間(データストローブサイクル時間tDSC)は、例えば20nsである。よって、DDRモードにおけるデータ入力処理では、100Mbpsの転送速度を実現している。
図9は、DDRモードにおけるデータ出力処理を説明するタイミングチャートである。NAND型フラッシュメモリ1は、ホストコントローラ2からチップイネーブル信号/CE、リードイネーブル信号/RE、及びデータストローブ信号DQSを制御信号として受ける。tRPREはリードプリアンブル、tRPSTはリードポストアンブル、tRPSTHはリードポストアンブルホールド時間、tDQSREは/REからDQSまでの遅延、tDQSQはデータ出力とDQSとのスキュー、tQHはDQSからの出力ホールド時間、tQHSはDQSホールドスキューファクタ、tDVWは出力データ有効ウィンドウ、Hi−zはハイインピーダンスである。
図9に示すように、制御部17は、データストローブ信号DQSの立ち上がりエッジ及び立ち下がりエッジの両方に応答して、データDを出力する。すなわち、制御部17は、データストローブ信号DQSを制御信号として、DDRモードを用いてデータ出力処理を実行している。データストローブ信号DQSのサイクル時間は、リードサイクル時間tRCと同じであり、例えば20nsである。よって、DDRモードにおけるデータ出力処理では、100Mbpsの転送速度を実現している。
[3.効果]
以上詳述したように第1の実施形態では、制御部(コントローラ)17は、制御信号の立ち上がりエッジ及び立ち下がりエッジの一方に応答してデータ転送を行うSDRモードと、制御信号の立ち上がりエッジ及び立ち下がりエッジの両方に応答してデータ転送を行うDDRモードとを有している。そして、制御部17は、ホストコントローラ2から送られるスイッチコマンドシーケンスに基づいて、SDRモードとDDRモードとを切り替えるようにしている。
従って第1の実施形態によれば、DDRモードを用いてデータ入力処理及びデータ出力処理を実行することで、データ入力及びデータ出力における転送速度を高速化できる。
一方、DDRモードは、SDRモードのおおよそ2倍の転送処理が必要となる。このため、DDRモードでは、データ入力及びデータ出力における消費電流のピーク(ピーク電流)、若しくはデータ転送期間の平均消費電流が増加してしまう。このように、NAND型フラッシュメモリにおいて大きなピーク電流が発生すると、このNAND型フラッシュメモリを含むシステムの電源電圧を低下させる原因となり、システムが誤動作を起こす可能性がある。
このような条件のシステムにおいては、NAND型フラッシュメモリがSDRモードを用いてデータ入力処理及びデータ出力処理を実行することで、ピーク電流を低減することができる。これにより、システムが誤動作を起こすのを抑制することができる。
このように、本実施形態のNAND型フラッシュメモリは、周辺モジュールの条件に応じて容易にSDRモードとDDRモードとを切り替えることができるため、データ転送速度の高速化と、NAND型フラッシュメモリを含むシステムの誤動作抑制という効果を得ることができる。
また、本実施形態では、データ転送時に基準となるクロック(制御信号)として、SDRモードとDDRモードとで同じサイクル時間(若しくは同じ周波数)の制御信号を用いている。これにより、ホストコントローラ2は、クロックを生成するための水晶振動子を複数持つ必要がなくなり、コスト低減を図ることができる。なお、SDRモード時の制御信号とDDRモード時の制御信号とで、サイクル時間が異なっていてもよい。
[第2の実施形態]
第2の実施形態は、データ入力処理においてSDRモードを用い、データ出力処理においてDDRモードを用いるというように、データ入力処理とデータ出力処理とで異なるデータ転送モードを実行するようにしている。
図10(a)は、データ入力及びデータ出力をそれぞれSDRモード及びDDRモードに切り替える動作を説明するフロー図である。まず、NAND型フラッシュメモリ1は、ホストコントローラ2からセットコマンドシーケンスPSを受ける。
続いて、制御部17は、ホストコントローラ2から、スイッチコマンドシーケンスを受ける。このスイッチコマンドシーケンスは、スイッチコマンドSW、アドレスAD、及びパラメータ“01h”を含む。パラメータの最下位ビットは、データ出力におけるデータ転送モードを指定し、最下位から2ビット目は、データ入力におけるデータ転送モードを指定する。データ“0”はSDRモードを表し、データ“1”はDDRモードを表している。図10(a)のスイッチコマンドシーケンスに含まれるパラメータ“01h”の下位2ビットは、“01”であるので、データ入力がSDRモード、データ出力がDDRモードに指定されている。
制御部17は、上記スイッチコマンドシーケンスを解釈した後、ラッチ回路18の記憶領域18Aに、データ入力をSDRモード、データ出力をDDRモードに設定するモードデータを上書きする。その後、NAND型フラッシュメモリ1は、ラッチ回路18に格納されたモードデータを確認することで、ホストコントローラ2との間で、SDRモードを用いてデータ入力処理を実行するとともに、DDRモードを用いてデータ出力処理を実行する。
図10(b)は、SDRモードによるデータ入力動作及びDDRモードによるデータ出力動作を説明するフロー図である。NAND型フラッシュメモリ1は、ホストコントローラ2から、プログラムコマンドシーケンス及びデータを受ける。このプログラムコマンドシーケンスに応答して、制御部17は、SDRモードを用いてデータ入力処理を実行する。このデータ入力処理は、図6と同じである。続いて、制御部17は、ホストコントローラ2から受けたデータをページ単位でメモリセルアレイ10に書き込む。同様に、ホストコントローラ2が望む書き込みデータが全てNAND型フラッシュメモリ1に書き込まれるまで、プログラムコマンドシーケンスが繰り返し実行される。
続いて、NAND型フラッシュメモリ1は、ホストコントローラ2から、読み出しコマンドシーケンスを受ける。この読み出しコマンドシーケンスに応答して、制御部17は、メモリセルアレイ10からアドレスに対応するデータをページ単位で読み出す。続いて、制御部17は、DDRモードを用いてデータ出力処理を実行する。このデータ出力処理は、図9と同じである。同様に、ホストコントローラ2が望む読み出しデータが全てNAND型フラッシュメモリ1から読み出されるまで、読み出しコマンドシーケンスが繰り返し実行される。
NAND型フラッシュメモリのプログラム処理では、メモリセルトランジスタの閾値設定が高精度で要求されるため、プログラム電圧の印加動作とベリファイ動作とからなるプログラムステージが複数回実行される。このため、NAND型フラッシュメモリでは、読み出し処理にかかる読み出し時間は、プログラム処理にかかるプログラム時間に比べて速い。よって、DDRモードでデータ出力を行うことで、ホストコントローラが読み出しコマンドシーケンスを発行してからデータを受けるまでの時間を高速化することができる。
一方、NAND型フラッシュメモリのプログラム処理には時間がかかるため、データ入力を高速化しても、ホストコントローラがプログラムコマンドシーケンスを発行してからメモリセルアレイにデータがプログラムされるまでの時間はそれほど短縮化できない。このため、本実施形態では、データ入力ではSDRモードを用いることで、NAND型フラッシュメモリのピーク電流を低減している。
また、データ入力及びデータ出力にそれぞれDDRモード及びSDRモードを用いるようにしてもよい。図11(a)は、データ入力及びデータ出力をそれぞれDDRモード及びSDRモードに切り替える動作を説明するフロー図である。まず、NAND型フラッシュメモリ1は、ホストコントローラ2からセットコマンドシーケンスPSを受ける。
続いて、制御部17は、ホストコントローラ2から、スイッチコマンドシーケンスを受ける。このスイッチコマンドシーケンスは、スイッチコマンドSW、アドレスAD、及びパラメータ“02h”を含む。パラメータ“02h”の下位2ビットは、“10”であるので、データ入力がDDRモード、データ出力がSDRモードに指定されている。
制御部17は、上記スイッチコマンドシーケンスを解釈した後、ラッチ回路18の記憶領域18Aに、データ入力をDDRモード、データ出力をSDRモードに設定するモードデータを上書きする。その後、NAND型フラッシュメモリ1は、ラッチ回路18に格納されたモードデータを確認することで、ホストコントローラ2との間で、DDRモードを用いてデータ入力処理を実行するとともに、SDRモードを用いてデータ出力処理を実行する。
図11(b)は、DDRモードによるデータ入力動作及びSDRモードによるデータ出力動作を説明するフロー図である。NAND型フラッシュメモリ1は、ホストコントローラ2から、プログラムコマンドシーケンス及びデータを受ける。このプログラムコマンドシーケンスに応答して、制御部17は、DDRモードを用いてデータ入力処理を実行する。このデータ入力処理は、図8と同じである。続いて、制御部17は、ホストコントローラ2から受けたデータをページ単位でメモリセルアレイ10に書き込む。同様に、ホストコントローラ2が望む書き込みデータが全てNAND型フラッシュメモリ1に書き込まれるまで、プログラムコマンドシーケンスが繰り返し実行される。
続いて、NAND型フラッシュメモリ1は、ホストコントローラ2から、読み出しコマンドシーケンスを受ける。この読み出しコマンドシーケンスに応答して、制御部17は、メモリセルアレイ10からアドレスに対応するデータをページ単位で読み出す。続いて、制御部17は、SDRモードを用いてデータ出力処理を実行する。このデータ出力処理は、図7と同じである。同様に、ホストコントローラ2が望む読み出しデータが全てNAND型フラッシュメモリ1から読み出されるまで、読み出しコマンドシーケンスが繰り返し実行される。
(効果)
以上詳述したように第2の実施形態では、制御部(コントローラ)17は、制御信号の立ち上がりエッジ及び立ち下がりエッジの一方に応答してデータ転送を行うSDRモードと、制御信号の立ち上がりエッジ及び立ち下がりエッジの両方に応答してデータ転送を行うDDRモードとを有している。そして、制御部17は、データ入力時にSDRモードを用いかつデータ出力時にDDRモードを用いるようにSDRモードとDDRモードとを切り替えている。
従って第2の実施形態によれば、時間がかかるプログラム処理にはSDRモードを対応付け、プログラム処理に比べて時間がかからない読み出し処理にはDDRモードを対応付けるというように、NAND型フラッシュメモリ1の動作特性に応じてSDRモードとDDRモードとを切り替えているため、データ転送速度を高速化しつつ、ピーク電流を低減することができる。その他の効果は、第1の実施形態と同じである。
なお、データ入力及びデータ出力にそれぞれDDRモード及びSDRモードを用いるようにしてもよい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…NAND型フラッシュメモリ、2…ホストコントローラ、10…メモリセルアレイ、11…ビット線制御回路、12…ワード線制御回路、13…ソース線制御回路、14…Pウェル制御回路、15…データ入出力バッファ、16…コマンドインターフェイス、17…制御部、18…ラッチ回路。

Claims (5)

  1. 不揮発性メモリと、
    第1の制御信号の立ち上がりエッジ及び立ち下がりエッジの一方に応答してデータ転送を行う第1のモードと、第2の制御信号の立ち上がりエッジ及び立ち下がりエッジの両方に応答してデータ転送を行う第2のモードとを有し、データ入力時に前記第1のモードを用いかつデータ出力時に前記第2のモードを用いるように前記第1及び第2のモードを切り替えるコントローラと、
    を具備することを特徴とする不揮発性半導体記憶装置。
  2. 前記コントローラは、コマンド及びパラメータを含むコマンドシーケンスを受け、かつ前記コマンドシーケンスに基づいて前記第1及び第2のモードを切り替えることを特徴とする請求項1に記載の不揮発性半導体記憶装置。
  3. 前記コントローラは、パラメータを受け、かつ前記パラメータに基づいて前記第1及び第2のモードを切り替えることを特徴とする請求項1に記載の不揮発性半導体記憶装置。
  4. 前記コントローラは、コマンドを受け、かつ前記コマンドに基づいて前記第1及び第2のモードを切り替えることを特徴とする請求項1に記載の不揮発性半導体記憶装置。
  5. 前記第2の制御信号は、前記第1の制御信号と同じ周波数であることを特徴とする請求項1乃至4のいずれかに記載の不揮発性半導体記憶装置。
JP2011063281A 2011-03-22 2011-03-22 不揮発性半導体記憶装置 Pending JP2012198965A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011063281A JP2012198965A (ja) 2011-03-22 2011-03-22 不揮発性半導体記憶装置
US13/235,433 US20120246389A1 (en) 2011-03-22 2011-09-18 Nonvolatile semiconductor memory device and memory system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063281A JP2012198965A (ja) 2011-03-22 2011-03-22 不揮発性半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2012198965A true JP2012198965A (ja) 2012-10-18

Family

ID=46878295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063281A Pending JP2012198965A (ja) 2011-03-22 2011-03-22 不揮発性半導体記憶装置

Country Status (2)

Country Link
US (1) US20120246389A1 (ja)
JP (1) JP2012198965A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196822A (zh) * 2018-02-27 2019-09-03 爱思开海力士有限公司 存储器装置、存储器控制器和存储器系统及其操作方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130080679A1 (en) * 2011-09-26 2013-03-28 Lsi Corporation System and method for optimizing thermal management for a storage controller cache
KR102295058B1 (ko) * 2015-08-19 2021-08-31 삼성전자주식회사 반도체 메모리 시스템 및 반도체 메모리 장치 및 반도체 메모리 장치의 동작방법
KR102182718B1 (ko) * 2018-05-24 2020-11-25 에센코어 리미티드 메모리 장치, 메모리 장치의 제어 방법 및 메모리 장치를 제어하는 방법
US10901622B2 (en) * 2018-12-28 2021-01-26 Micron Technology, Inc. Adjustable NAND write performance
US11626149B2 (en) * 2020-09-15 2023-04-11 Integrated Silicon Solution, (Cayman) Inc. SPI NOR memory with optimized read and program operation

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302465A (ja) * 1997-04-22 1998-11-13 Samsung Electron Co Ltd 半導体メモリ装置の動作制御装置
JP2000067577A (ja) * 1998-06-10 2000-03-03 Mitsubishi Electric Corp 同期型半導体記憶装置
JP2000182399A (ja) * 1998-09-24 2000-06-30 Fujitsu Ltd 半導体記憶装置及びその制御方法
JP2001067870A (ja) * 1999-08-31 2001-03-16 Hitachi Ltd 半導体装置
JP2001526819A (ja) * 1997-03-31 2001-12-18 アトメル・コーポレイション プログラム読出/データ書込を同時に行なう能力を有する、結合されたプログラムおよびデータ不揮発性メモリ
JP2002050178A (ja) * 2000-07-31 2002-02-15 Hitachi Ltd 半導体記憶装置
JP2002175692A (ja) * 2000-12-07 2002-06-21 Hitachi Ltd 半導体記憶装置及びデータ処理システム
JP2005285184A (ja) * 2004-03-29 2005-10-13 Toshiba Corp 不揮発性半導体記憶装置
JP2006040518A (ja) * 2004-07-27 2006-02-09 Samsung Electronics Co Ltd データ出力時にddr動作を行う不揮発性メモリ装置及びデータ出力方法
JP2008033648A (ja) * 2006-07-28 2008-02-14 Toshiba Corp 記憶装置およびその接続方法
US20080141059A1 (en) * 2006-12-12 2008-06-12 Samsung Electronics Co., Ltd. Flash Memory Devices with High Data Transmission Rates and Memory Systems Including Such Flash Memory Devices
JP2008146773A (ja) * 2006-12-12 2008-06-26 Toshiba Corp 不揮発性半導体記憶装置
JP2009146474A (ja) * 2007-12-12 2009-07-02 Toshiba Corp 不揮発性半導体記憶装置
JP2009534785A (ja) * 2006-04-24 2009-09-24 サンディスク コーポレイション 高効率フラッシュメモリデータ転送
US7606992B1 (en) * 2005-12-01 2009-10-20 Chris Karabatsos High performance data rate system for flash devices
JP2010009642A (ja) * 2008-06-24 2010-01-14 Toshiba Corp 半導体記憶装置およびそのテスト方法
JP2010506284A (ja) * 2006-10-04 2010-02-25 マーベル ワールド トレード リミテッド フラッシュメモリ制御インターフェース
JP2010237819A (ja) * 2009-03-30 2010-10-21 Toshiba Corp 半導体装置
JP2011054249A (ja) * 2009-09-02 2011-03-17 Toshiba Corp 半導体記憶装置
JP4771961B2 (ja) * 2004-12-24 2011-09-14 スパンション エルエルシー 同期型記憶装置、およびその制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896450B2 (ja) * 2005-06-30 2012-03-14 株式会社東芝 記憶装置
JP4507125B2 (ja) * 2007-09-10 2010-07-21 三菱電機株式会社 プログラマブルコントローラ
US20100268897A1 (en) * 2009-04-16 2010-10-21 Keishi Okamoto Memory device and memory device controller

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526819A (ja) * 1997-03-31 2001-12-18 アトメル・コーポレイション プログラム読出/データ書込を同時に行なう能力を有する、結合されたプログラムおよびデータ不揮発性メモリ
JPH10302465A (ja) * 1997-04-22 1998-11-13 Samsung Electron Co Ltd 半導体メモリ装置の動作制御装置
JP2000067577A (ja) * 1998-06-10 2000-03-03 Mitsubishi Electric Corp 同期型半導体記憶装置
JP2000182399A (ja) * 1998-09-24 2000-06-30 Fujitsu Ltd 半導体記憶装置及びその制御方法
JP2001067870A (ja) * 1999-08-31 2001-03-16 Hitachi Ltd 半導体装置
JP2002050178A (ja) * 2000-07-31 2002-02-15 Hitachi Ltd 半導体記憶装置
JP2002175692A (ja) * 2000-12-07 2002-06-21 Hitachi Ltd 半導体記憶装置及びデータ処理システム
JP2005285184A (ja) * 2004-03-29 2005-10-13 Toshiba Corp 不揮発性半導体記憶装置
JP2006040518A (ja) * 2004-07-27 2006-02-09 Samsung Electronics Co Ltd データ出力時にddr動作を行う不揮発性メモリ装置及びデータ出力方法
JP4771961B2 (ja) * 2004-12-24 2011-09-14 スパンション エルエルシー 同期型記憶装置、およびその制御方法
US7606992B1 (en) * 2005-12-01 2009-10-20 Chris Karabatsos High performance data rate system for flash devices
JP2009534785A (ja) * 2006-04-24 2009-09-24 サンディスク コーポレイション 高効率フラッシュメモリデータ転送
JP2008033648A (ja) * 2006-07-28 2008-02-14 Toshiba Corp 記憶装置およびその接続方法
JP2010506284A (ja) * 2006-10-04 2010-02-25 マーベル ワールド トレード リミテッド フラッシュメモリ制御インターフェース
US20080141059A1 (en) * 2006-12-12 2008-06-12 Samsung Electronics Co., Ltd. Flash Memory Devices with High Data Transmission Rates and Memory Systems Including Such Flash Memory Devices
JP2008146773A (ja) * 2006-12-12 2008-06-26 Toshiba Corp 不揮発性半導体記憶装置
JP2009146474A (ja) * 2007-12-12 2009-07-02 Toshiba Corp 不揮発性半導体記憶装置
JP2010009642A (ja) * 2008-06-24 2010-01-14 Toshiba Corp 半導体記憶装置およびそのテスト方法
JP2010237819A (ja) * 2009-03-30 2010-10-21 Toshiba Corp 半導体装置
JP2011054249A (ja) * 2009-09-02 2011-03-17 Toshiba Corp 半導体記憶装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196822A (zh) * 2018-02-27 2019-09-03 爱思开海力士有限公司 存储器装置、存储器控制器和存储器系统及其操作方法
CN110196822B (zh) * 2018-02-27 2023-06-13 爱思开海力士有限公司 存储器装置、存储器控制器和存储器系统及其操作方法

Also Published As

Publication number Publication date
US20120246389A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
US10991439B2 (en) Memory device and an operating method of a memory device
KR102190694B1 (ko) 불휘발성 메모리 시스템 및 그것의 동작 방법
KR101716713B1 (ko) 플래시 메모리 장치 및 그것의 프로그램 방법
US9741438B2 (en) Nonvolatile memory device and program method thereof
KR101891164B1 (ko) 프로그램 스케줄러를 포함하는 플래시 메모리 장치
US9466381B2 (en) Semiconductor device
KR101373897B1 (ko) 액세스 라인 종속 바이어스 방식
TW201946065A (zh) 記憶體裝置以及記憶體裝置的操作方法
US8488386B2 (en) Nonvolatile memory device for reducing interference between word lines and operation method thereof
WO2010039390A2 (en) Solid state storage device controller with expansion mode
US11335410B2 (en) Memory device and method of operating the same
US20140036598A1 (en) Semiconductor memory device and operating method thereof
US11790979B2 (en) Memory device performing read operation and operating method of the memory device
JP2012198965A (ja) 不揮発性半導体記憶装置
US8659945B2 (en) Nonvolatile memory device and method of operating same
US9123440B2 (en) Non-volatile semiconductor memory device and method of improving reliability using soft erasing operations
US11501836B2 (en) Memory device for controlling voltage of bit line and method of operating the same
CN109524043B (zh) 半导体存储装置
US20210049067A1 (en) Memory device and method of operating the same
US10998053B2 (en) Memory device and operating method thereof for applying a channel precharge voltage to bit lines after a sensing operation
US11086566B2 (en) Storage device and operating method thereof
US20110292737A1 (en) Nonvolatile memory apparatus
US11581050B2 (en) Memory device and method of operating the memory device
TWI776607B (zh) 半導體裝置及連續讀出方法
JP2013025845A (ja) 不揮発性半導体記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022