JP2012189474A - レーダ装置、データ処理方法、及びデータ処理プログラム - Google Patents

レーダ装置、データ処理方法、及びデータ処理プログラム Download PDF

Info

Publication number
JP2012189474A
JP2012189474A JP2011053911A JP2011053911A JP2012189474A JP 2012189474 A JP2012189474 A JP 2012189474A JP 2011053911 A JP2011053911 A JP 2011053911A JP 2011053911 A JP2011053911 A JP 2011053911A JP 2012189474 A JP2012189474 A JP 2012189474A
Authority
JP
Japan
Prior art keywords
unit
target
radar
combination
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011053911A
Other languages
English (en)
Other versions
JP5696534B2 (ja
Inventor
Seiji Nomoto
誠二 野本
Original Assignee
Nec Corp
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corp, 日本電気株式会社 filed Critical Nec Corp
Priority to JP2011053911A priority Critical patent/JP5696534B2/ja
Publication of JP2012189474A publication Critical patent/JP2012189474A/ja
Application granted granted Critical
Publication of JP5696534B2 publication Critical patent/JP5696534B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】短い観測時間でマルチパス環境下において高度を推定する、レーダ装置、レーダ制御方法、及びレーダ制御プログラムを提供する。
【解決手段】空間に送信信号を送信し、前記空間内の目標物から反射された受信信号を受信する送受信部と、前記受信信号に基づき前記目標物の高度情報を計測する位置計測部と、を備えるセンサ部を複数個備え、分散算出部は、前記複数個の全部又は一部のセンサ部を含む組み合わせ毎に、前記計測された高度情報の分散を算出し、データ選択部は、前記算出した分散が最小となるセンサ部の組み合わせを選択し、選択した組み合わせに含まれるセンサ部が計測した高度情報に基づき前記目標物の高度情報を決定することを特徴とする。
【選択図】図1

Description

本発明は、レーダ装置、データ処理方法、及びデータ処理プログラムに関する。
レーダ装置は、空間に電波を送信し、目標物からの反射波を受信することで、その目標物の存在を検知し、受信された反射波に基づいて目標物の位置等を観測する装置である。レーダ装置から送信される電波は直接目標物に到達する他、地面、建造物及び海面等の障害物で反射又は回折して目標物に到達する。目標物で反射する電波は、直接レーダ装置で受信される他、障害物で反射又は回折してレーダ装置で受信される。
レーダ装置から直接目標物に到達する電波や、目標物からレーダ装置に到達する電波を直接波と呼ぶ。他方、レーダ装置から障害物を経て目標物に到達するまでの電波や、目標物から障害物を経てレーダ装置で受信される電波を間接波と呼ぶ。この間接波は、目標物の位置、例えば高度を推定する際に誤差を生じさせる。
この間接波がレーダ装置から送信され受信されるまでの複数の経路をマルチパスといい、マルチパスは、レーダ装置と目標物との位置関係や、送信する電波の周波数、電波が伝搬する空間における気象等によって変化する。そのため、マルチパスの影響を除去して、目標物の高度を推定する技術が提案されている。
例えば、特許文献1記載の発明は、受信信号の和成分を生成する和信号生成手段と、受信信号の差成分を生成する差信号生成手段と、この和と差の各信号を局部発振信号とミキシングしてコヒーレント発振信号で位相検波して各直交位相成分を得て、得られた複素数の和信号と差信号から複素除算をする複素除算手段と、この複素除算の結果は複素平面上でほぼ円を描くとし、複数の受信信号に対応する複数の上記複素除算の結果がこの円上にあるとして円の中心値を求める円中心演算手段と、円中心演算手段出力の円の中心値から角度を求める角度変換手段を備える。
特許第3353991号公報
しかしながら、特許文献1記載の発明は、上述の複素除算の結果を描く円を高い精度で求めるために観測中に目標物が移動することを前提としている。また、受信信号を観測する回数は3回以上であって、その時間間隔が長くするために観測時間を長くする必要があった。
本発明は上記の点に鑑みてなされたものであり、短い観測時間でマルチパス環境下において高度を推定する、レーダ装置、データ処理方法、及びデータ処理プログラムを提供する。
(1)本発明は上記の課題を解決するためになされたものであり、本発明の一態様は、空間に送信信号を送信し、前記空間内の目標物から反射された受信信号を受信する送受信部と、前記受信信号に基づき前記目標物の高度情報を計測する位置計測部と、を備えるセンサ部を複数個備え、前記複数個の全部又は一部のセンサ部を含む組み合わせ毎に、前記計測された高度情報の分散を算出する分散算出部と、前記算出した分散が最小となるセンサ部の組み合わせを選択し、選択した組み合わせに含まれるセンサ部が計測した高度情報に基づき前記目標物の高度情報を決定するデータ選択部とを備えることを特徴とするレーダ装置である。
(2)本発明のその他の態様は、前記送受信部は、複数の周波数成分を含む送信信号を送信し、前記位置計測部は、前記目標物の高度情報を周波数成分毎に計測し、前記分散算出部は、前記センサ部及び前記周波数成分の組み合わせ毎に前記分散を算出し、前記データ選択部は、前記算出した分散が最小となるセンサ部及び周波数成分の組み合わせを選択し、選択したセンサ部が計測した高度情報のうち選択した周波数成分の高度情報に基づき前記目標物の高度情報を決定することを特徴とする(1)のレーダ装置である。
(3)本発明のその他の態様は、空間に送信信号を送信し、目標物から反射された受信信号を受信する送受信部と、前記受信信号に基づき目標物の高度情報を計測する位置計測部と、を備えるセンサ部を複数個備えるレーダ装置におけるデータ処理方法であって、前記レーダ装置が、前記複数個の全部又は一部のセンサ部を含む組み合わせ毎に、前記計測された高度情報の分散を算出する第1の過程と、前記レーダ装置が、前記算出した高度情報の分散が最小となるセンサ部の組み合わせを選択し、選択した組み合わせに含まれるセンサ部が計測した高度情報に基づき前記目標物の高度情報を決定する第2の過程とを有することを特徴とするデータ処理方法である。
(4)本発明のその他の態様は、空間に送信信号を送信し、目標物から反射された受信信号を受信する送受信部と、前記受信信号に基づき目標物の高度情報を計測する位置計測部と、を備えるセンサ部を複数個備えるレーダ装置が備えるコンピュータに、前記複数個の全部又は一部のセンサ部を含む組み合わせ毎に、前記計測された高度情報の分散を算出する手順、前記算出した分散が最小となるセンサ部の組み合わせを選択し、選択した組み合わせに含まれるセンサ部が計測した高度情報に基づき前記目標物の高度情報を決定する手順を実行させるためのデータ処理プログラムである。
本発明によれば、短い観測時間でも高度の推定精度を向上させることができる。
本発明の第1の実施形態に係るレーダ装置の構成を示す概略図である。 本実施形態に係る高度の分散値を算出するレーザセンサの組み合わせの一例を示す図である。 本実施形態に係るレーダセンサが送受信する信号フレームの一例を示す図である。 本実施形態に係る直接波と間接波の一例を示す概念図である。 本実施形態に係る反射波の経路の一例を示す概念図である。 本実施形態に係るデータ処理部におけるデータ処理を示すフローチャートである。 本実施形態に係るレーダ装置の構成を示す概略図である。 本実施形態に係る高度の分散値を算出するセンサ周波数対の組み合わせの一例を示す図である。 本実施形態に係るレーダセンサが送受信する信号フレームの一例を示す図である。 本実施形態に係るデータ処理部におけるデータ処理を示すフローチャートである。
(第1の実施形態)
以下、図面を参照しながら本発明の実施形態について説明する。
図1は、本実施形態に係るレーダ装置1の構成を示す概略図である。
レーダ装置1は、N個(Nは3以上の整数)のレーダセンサ(センサ部)201−1〜201−Nとデータ処理部301とを含んで構成される。ここで、レーダセンサ201−1〜201−Nは各々、異なる位置に配置されている。
レーダセンサ201−1〜201−Nの各々は、空中線101、送受信部102、信号処理部103、目標信号検出部104、位置計測部105、空中線駆動部106、送信制御部107及び通信部108を含んで構成される。
データ処理部301は、相関処理部109、平均算出部110、分散算出部111、データ選択部112、追尾処理部113、制御信号発生部114及び通信部128を含んで構成される。
空中線(アンテナ)101は、送受信部102から入力された送信パルス信号に基づく電波を空間のある方向に送信する。空中線101は、目標物からの反射波である電波を受信し、受信した電波に基づく高周波信号を送受信部102に出力する。
送受信部102は、送信制御部107から送信パルス制御信号を入力されたとき、送信周波数fの送信パルス信号を生成し、生成したパルス信号を空中線101と位置計測部105に出力する。送受信部102は、空中線101から入力された高周波信号を検波してアナログ信号を生成する。送受信部102は、生成したアナログ信号に対してA/D(Analog−to−Digital、アナログ・ディジタル)変換を行い、ディジタル受信信号を生成する。送受信部102は、生成したディジタル受信信号を信号処理部103に出力する。
信号処理部103は、送受信部102から入力されたディジタル受信信号から不要な成分を抑圧する処理を行って処理済受信信号を生成する。不要な成分とは、例えば、レーダセンサ間の干渉成分、地面や海面からの反射・回折成分である。信号処理部103は、これらを抑圧する処理として、既存の干渉成分や反射成分を抑圧する方式を利用することができる。生成された処理済受信信号には、送受信部102から入力されたディジタル受信信号よりも目標物からの反射波の成分の割合が高い。信号処理部103は、処理済受信信号を目標信号検出部104に出力する。
目標信号検出部104は、信号処理部103から入力された処理済受信信号のレベルと予め設定された閾値とを比較し、その閾値と同一又はそれよりも大きいレベルの処理済受信信号を目標信号と判定する。目標信号検出部104は、判定された目標信号を位置計測部105に出力する。
位置計測部105は、送受信部102からパルス信号と目標信号検出部104から目標信号を入力され、入力されたパルス信号が入力された時刻と、目標信号が入力された時刻を検知する。位置計測部105は、通信部108から他のレーダセンサが備える位置計測部105が検知した目標信号の入力時刻及びパルス信号の入力時刻を入力される。
位置計測部105は、検知又は入力されたパルス信号の入力時刻と目標信号の入力時刻との差分に基づきレーダ装置1から目標物までの距離及び方位を推定することによって計測する。位置計測部105は、推定した距離と、推定した方位のうち仰角を用いて高度を推定することによって計測する。
目標物までの方位を推定するために、位置計測部105は、例えばモノパルス測角方式を用いる。モノパルス測角方式では、後述する空中線駆動部106は空中線101の向きを駆動させることにより放射方向を変化させて4個以上の空中線101からパルス信号を放射させる。そして、位置計測部105は、目標信号の入力時刻の差を検知し、検知された差が最小となる角度を目標物までの方位と推定する。
位置計測部105は、通信部108にパルス信号の入力時刻並びに目標信号の入力時刻(以下、時刻情報)及び推定した距離、高度並びに方位(以下、位置情報)を出力する。
空中線駆動部106は、通信部108から空中線制御信号を入力され、入力された空中線制御信号に基づき空中線101の向きを駆動し、電波の放射方向を制御する。
送信制御部107は、通信部108から送信制御信号を入力され、入力された送信制御信号が自己を備えるレーザセンサから送信パルスを生成することを示す場合、送信パルス制御信号を生成する。送信制御部107は、生成した送信パルス制御信号を送受信部102に出力する。
通信部108は、位置計測部105から入力された時刻情報及び位置情報を通信部128に出力する。通信部108は、通信部128から入力された他のレーダセンサが備える位置計測部105が検知した時刻情報を入力され、入力された時刻情報を位置計測部105に出力する。
通信部108は、通信部128から空中線制御信号を入力され、入力された空中線制御信号を空中線駆動部106に出力する。
通信部108は、通信部128から送信制御信号を入力され、入力された送信制御信号を送信制御部107に出力する。
通信部128は、レーダセンサ201−1〜201−Nの各々が備える通信部108から時刻情報及び位置情報を入力される。
通信部128は、レーダセンサ201−1〜201−Nの各々から入力された位置情報を相関処理部109に出力する。
通信部128は、入力されたレーダセンサとは異なるレーダセンサ201−1〜201−Nの各々が備える通信部108に時刻情報を出力する。
通信部128は、制御信号発生部114から空中線制御信号と送信制御信号を入力され、レーダセンサ201−1〜201−Nの各々が備える通信部108に入力された空中線制御信号と送信制御信号を出力する。
相関処理部109は、通信部128から入力された位置情報の時系列について、2以上のレーダセンサを含む組み合わせ各々の間で相関値を算出する。相関処理部109は、算出した相関値が予め設定された閾値よりも大きいレーダセンサ間の組み合わせが共通の目標物に対応すると判定し、目標物毎の高度の時系列を含む目標データを抽出する。相関処理部109は、抽出した目標データを平均算出部110及び分散算出部111に出力する。
平均算出部110は、相関処理部109から入力された目標データに含まれる高度の時系列に基づいて、レーダセンサ毎の距離、高度及び方位の平均値を算出する。平均算出部110は、算出したレーダセンサ毎の距離、高度及び方位の平均値をデータ選択部112に出力する。
分散算出部111は、相関処理部109から目標データを入力される。分散算出部111は、目標データに含まれる目標物に対応する2個以上のレーダセンサを含む組み合わせ各々の間で高度の分散値を算出する。分散算出部111は、算出したレーダセンサを含む組み合わせ各々の間における高度の分散値をデータ選択部112に出力する。
次に、本実施形態において分散算出部111が高度の分散値を算出するレーザセンサの組み合わせについて説明する。図2は、本実施形態に係る高度の分散値を算出するレーザセンサの組み合わせの一例を示す図である。図2において、列はレーダセンサの番号、201−1、201−2、201−3及び201−4を示す。行は、レーダセンサの組み合わせ1〜5を示す。○印は、組み合わせに含まれるレーダセンサを示し、−印は組み合わせに含まれないレーダセンサを示す。
即ち、図2は、ある目標物に対応するレーダセンサが201−1〜201−4(4個)である場合の、レーダセンサが3個以上となる全ての組み合わせ(計5個)の例を示す。 なお、本実施形態では、各組み合わせに含まれるレーダセンサが2個以上あればよい。
図2の最上段から順に、組み合わせ1はレーダセンサ201−1、201−2、201−3及び201−4からなり、組み合わせ2はレーダセンサ201−1、201−2及び201−3からなり、組み合わせ3はレーダセンサ201−1、201−2及び201−4からなり、組み合わせ4はレーダセンサ201−1、201−3及び201−4からなり、組み合わせ5はレーダセンサ201−2、201−3、及び201−4からなる。
図1に戻りデータ選択部112は、平均算出部110からレーダセンサ毎の距離、高度及び方位の平均値と分散算出部111からレーダセンサの各組み合わせ間における高度の分散値を入力される。データ選択部112は、入力された高度の分散値が最小となるレーダセンサの組み合わせを選択する。データ選択部112は、入力されたレーダセンサ毎の距離、高度及び方位の平均値に基づき、選択された組み合わせ間で距離、高度及び方位の平均値を各々目標距離、目標高度及び目標方位(以下、目標位置情報)として算出する。
データ選択部112は、算出した目標位置情報を追尾処理部113及びレーダ装置1の外部に出力する。
追尾処理部113は、データ選択部112から入力された目標位置情報に基づき目標物毎の予測位置を算出する。予測位置を算出するために、追尾処理部113は、現在又は過去の目標位置情報に基づき既存の予測方式を用いる。追尾処理部113は、予測した目標物の予測位置を制御信号発生部114に出力する。
制御信号発生部114は、追尾処理部113から入力された目標物の予測位置に基づき空中線制御信号及び送信制御信号を生成する。空中線制御信号は、目標物の予測位置の方向に電波を放射するように空中線101の向きを駆動させることを示す信号である。送信制御信号は、送信制御信号を生成すべき送信制御部107を備えるレーザセンサ201−1〜201−Nのいずれかを示す信号である。そのレーザセンサは、目標物の予測位置によって異なる。
制御信号発生部114は、生成した空中線制御信号及び送信制御信号を通信部128に出力する。
ここで、レーダセンサ201−1〜201−Nが送受信する信号について説明する。
図3は、本実施形態に係るレーダセンサ201−1〜201−Nが送受信する信号フレームの一例を示す図である。図3において、横軸は時刻を示す。図3において、上段から順にレーダセンサ201−1、レーダセンサ201−2、レーダセンサ201−Nが送受信する信号フレームを示す。図3において、実線は、送受信部102がパルス信号を送信する時間を示すフレーム又は送受信部102が高周波信号を受信する時間を示すフレーム(各々、送信フレーム又は受信フレームと呼ぶ)を示す。破線は、送信が行われないフレームを示す。各フレームに示されるfは送信周波数(又は受信周波数)を示す。
図3によれば、各レーダセンサともに、時刻T12からT21まで、時刻T22からT31まで、時刻TN2からTN+11までは、ともに受信フレームが割り当てられる。
また、送信フレームが割り当てられるレーダセンサは、時刻T11からT12まではレーダセンサ201−1、時刻T21からT22まではレーダセンサ201−2、時刻TN1からTN2まではレーザセンサ201−Nである。即ち、送信制御部107が入力される送信制御信号は、時刻T11からT12まではレーダセンサ201−1から、時刻T21からT22まではレーダセンサ201−2から、時刻TN1からTN2まではレーザセンサ201−Nから送信パルスを生成することを示す。
図4は、直接波と間接波の一例を示す概念図である。
図4において、右上の○印は目標物、左上の○印は空中線101を示す。下部の曲線は地面を示す。目標物から空中線101に向かう実線は、直接波を示す。目標物から地面に向かい、地面から空中線101に向かう一点破線は、反射波を示す。
目標物から地面に向かい、地面から空中線101に向かう破線は、回折波を示す。間接波は、反射波及び回折波の総称であり、一般に多様な経路(マルチパス)を伝搬する。そのため、直接波と間接波との干渉及び間接波同士の干渉、即ちマルチパスは、目標物の位置の推定精度を低下させる原因となる。例えば、図4に示す例では、空中線101は、目標物からθだけ下方の方向から反射波を受信する。この反射波のため、レーダ装置1が受信信号に基づいて目標物の位置を正しく推定できなくなる。
図5は、本実施形態に係る反射波の経路の一例を示す概念図である。
図5において、右上の○印は目標物、左上の3個の○印はレーザセンサ201−1、201−2〜201−Nを示す。下部の曲線は地面を示す。目標物から各レーザセンサ201−1、201−2〜201−Nに向かう実線は、直接波を示す。目標物から地面に向かい、地面から各レーザセンサ201−1、201−2〜201−Nに向かう一点破線は、反射波を示す。図5は、それぞれ異なる位置のレーダセンサ毎に反射波の経路が異なることを示す。従って、図5は、レーザセンサ201−1〜201−N毎に、目標物の位置の推定精度に与えるマルチパスの影響が異なることを示唆する。
次に、本実施形態に係るデータ処理部301におけるデータ処理について説明する。
図6は、本実施形態に係るデータ処理部301におけるデータ処理を示すフローチャートである。
(ステップS101)通信部128は、レーダセンサ201−1〜201−Nの各々が備える通信部108から位置情報、即ち位置計測部105が計測した距離、高度並びに方位を示す情報を入力される。通信部128は、入力された位置情報を相関処理部109に出力する。その後、ステップS102に進む。
(ステップS102)相関処理部109は、通信部128から入力された位置情報の時系列について、2以上のレーダセンサを含む組み合わせ各々の間で相関値を算出する。その後、その後、ステップS103に進む。
(ステップS103)相関処理部109は、算出した相関値が予め設定された閾値よりも大きいレーダセンサ間の組み合わせが共通の目標物に対応する組み合わせと判定し、目標物毎の高度の時系列を含む目標データを抽出する。相関処理部109は、抽出した目標データを平均算出部110及び分散算出部111に出力する。その後、ステップS104に進む。
(ステップS104)平均算出部110は、相関処理部109から入力された目標データに含まれる高度の時系列に基づいて、レーダセンサ毎の距離、高度及び方位の平均値を算出する。平均算出部110は、算出したレーダセンサ毎の距離、高度及び方位の平均値をデータ選択部112に出力する。その後、ステップS105に進む。
(ステップS105)分散算出部111は、相関処理部109から入力された目標データに含まれる目標物に対応する2以上のレーダセンサを含む組み合わせ各々の間で高度の分散値を算出する。分散算出部111は、算出したレーダセンサを含む組み合わせ各々の間における高度の分散値をデータ選択部112に出力する。その後、ステップS106に進む。
(ステップS106)データ選択部112は、平均算出部110からレーダセンサ毎の距離、高度及び方位の平均値と分散算出部111からレーダセンサの各組み合わせ間における高度の分散値を入力される。データ選択部112は、入力された高度の分散値が最小となるレーダセンサの組み合わせを選択する。その後、ステップS107に進む。
(ステップS107)データ選択部112は、入力されたレーダセンサ毎の距離、高度及び方位の平均値に基づき、選択された組み合わせ間で距離、高度及び方位の平均値を目標位置情報として算出する。データ選択部112は、算出した目標位置情報を追尾処理部113及びレーダ装置1の外部に出力する。その後、ステップS108に進む。
(ステップS108)追尾処理部113は、データ選択部112から入力された目標位置情報に基づき目標物毎の予測位置を算出する。追尾処理部113は、予測した目標物の予測位置を制御信号発生部114に出力する。その後、ステップS109に進む。
(ステップS109)制御信号発生部114は、追尾処理部113から入力された目標物の予測位置に基づき空中線制御信号及び送信制御信号を生成する。制御信号発生部114は、生成した空中線制御信号及び送信制御信号を通信部128に出力する。その後、ステップS110に進む。
(ステップS110)通信部128は、制御信号発生部114から空中線制御信号と送信制御信号を入力され、レーダセンサ201−1〜201−Nの各々が備える通信部108に入力された空中線制御信号と送信制御信号を出力する。その後、処理を終了する。
上述のように、本実施形態に係るレーダ装置1は、位置が異なるレーダセンサ毎にマルチパスの影響、即ち位置毎に異なる受信特性(空間ダイバーシティ)を利用している。マルチパスの影響が著しいほど、分散算出部111が算出した高度の分散値が大きいため、データ選択部112が、分散値が最小となるレーダセンサの組み合わせを選択することにより、マルチパスの影響が最少となるレーダセンサの組み合わせが選択される。データ選択部112は、この選択された組み合わせに含まれるレーダセンサの高度に基づき目標高度を定めることで、目標物の高度の推定精度を向上させることができる。
このように、本実施形態によれば、空間に送信信号を送信し、空間内の目標物から反射された受信信号を受信する送受信部102と受信信号に基づき目標物の位置情報(高度)を算出する位置計測部105とを備えるレーダセンサ(センサ部)201−1〜201−Nを複数個備え、複数個のうち全部又は一部のセンサ部を含む組み合わせ毎に、計測されたい位置情報(高度)の分散を算出する分散算出部111と、算出した分散が最小となるセンサ部の組み合わせを選択し、選択した組み合わせに含まれるセンサ部の位置情報(高度)に基づき目標位置情報(高度)を決定するデータ選択部102を備える。そのため、本実施形態により、短い観測時間でも、目標物の位置情報(高度)の推定精度を向上させることができる。
(第2の実施形態)
次に、図面を参照しながら本発明の第2の実施形態について説明する。
図7は、本実施形態に係るレーダ装置2の構成を示す概略図である。
レーダ装置2は、データ処理部301を備える点でレーダ装置1と共通し、レーダセンサ201−1〜201−Nの代わりに、レーダセンサ401−1〜401−Nを備える。
レーダセンサ401−1〜401−Nの各々は、空中線101、送受信部102、信号処理部103、目標信号検出部104、位置計測部105、空中線駆動部106、送信制御部107、通信部108を備える点で、レーダセンサ201−1〜201−Nと共通する。しかし、レーダセンサ401−1〜401−Nの各々は、更に分配部115、受信部116、信号処理部123、目標信号検出部124及び位置計測部125を備える。
以下、レーダ装置1と異なる部分について主に説明し、レーダ装置1と共通する部分の構成及び処理について説明を省略する。
空中線101は、受信した電波に基づく高周波信号を送受信部102及び分配部115に出力する。
送受信部102は、送信周波数f1及びf2の2つの成分のいずれか又は両方を有する送信パルス信号を生成し、生成したパルス信号を空中線101に出力する。送受信部102は、生成したパルス信号のうち送信周波数f1の成分を位置計測部105に出力し、送信周波数f2の成分を位置計測部125に出力する。
分配部115は、空中線101から入力された高周波信号から受信周波数f1の高周波信号及び受信周波数f2の高周波信号を抽出する。分配部115は、抽出した受信周波数f1の高周波信号を送受信部102に出力し、抽出した受信周波数f2の高周波信号を受信部116に出力する。
受信部116は、分配部115から入力された受信周波数f2の高周波信号を検波してアナログ信号を生成し、生成したアナログ信号に対してA/D変換を行い、ディジタル受信信号を生成する。受信部116は、生成したディジタル受信信号を信号処理部123に出力する。
信号処理部123、目標信号検出部124及び位置計測部125の構成及び処理は、信号処理部103、目標信号検出部104及び位置計測部105とそれぞれ同様である。従って、位置計測部125は、受信周波数f2の高周波信号の入力時刻並びにその信号に基づく目標信号の入力時刻(以下、f2時刻情報)及び、それらの信号に基づき推定した距離、高度並びに方位(以下、f2位置情報)を通信部108に出力する。
なお、位置計測部105が出力する時刻情報及び位置情報をそれぞれ、f1時刻情報、f1位置情報と呼ぶ。
通信部108は、位置計測部105から入力されたf1時刻情報及びf1位置情報を通信部128に出力し、位置計測部125から入力されたf2時刻情報及びf2位置情報を通信部128に出力する。
通信部108は、通信部128から入力された他のレーダセンサが備える位置計測部105が検知したf1時刻情報を入力され、入力されたf1時刻情報を位置計測部105に出力する。
通信部108は、通信部128から入力された他のレーダセンサが備える位置計測部125が検知したf2時刻情報を入力され、入力されたf2時刻情報を位置計測部125に出力する。
通信部128は、レーダセンサ401−1〜401−Nの各々が備える通信部108からf1時刻情報並びにf1位置情報及び、f2時刻情報並びにf2位置情報を入力される。
通信部128は、レーダセンサ401−1〜401−Nの各々から入力されたf1位置情報及びf2位置情報を相関処理部109に出力する。
通信部128は、入力されたレーダセンサとは異なるレーダセンサ401−1〜401−Nの各々が備える通信部108にf1時刻情報及びf2時刻情報を出力する。
相関処理部109は、通信部128から入力されたf1位置情報の時系列及びf2位置情報の時系列について、2以上のレーダセンサ並びに受信周波数の対(以下、センサ周波数対と呼ぶ)を含む組み合わせ各々の間で相関値を算出する。相関処理部109は、算出した相関値が予め設定された閾値よりも大きいセンサ周波数対の組み合わせが共通の目標物に対応すると判定し、目標物毎の高度の時系列を含む目標データを抽出する。相関処理部109は、抽出した目標データを平均算出部110及び分散算出部111に出力する。
平均算出部110は、相関処理部109から入力された目標データに含まれる高度の時系列に基づいて、センサ周波数対毎の距離、高度及び方位の平均値を算出し、算出したセンサ周波数対毎の距離、高度及び方位の平均値をデータ選択部112に出力する。
分散算出部111は、目標データに含まれる目標物に対応する3以上のセンサ周波数対を含む組み合わせ各々の間で高度の分散値を算出する。分散算出部111は、算出したセンサ周波数対を含む組み合わせ各々の間における高度の分散値をデータ選択部112に出力する。
次に、本実施形態において分散算出部111が高度の分散値を算出するセンサ周波数対の組み合わせについて説明する。図8は、本実施形態に係る高度の分散値を算出するセンサ周波数対の組み合わせの一例を示す図である。図8において、列は送信周波数f1、f2及びレーダセンサの番号401−1、401−2、401−3及び401−4を示す。行は、センサ周波数対の組み合わせ1〜9を示す。○印は、組み合わせに含まれるセンサ周波数対を示し、−印は組み合わせに含まれないセンサ周波数対を示す。
即ち、図8に示す例は、ある目標物に対応するセンサ周波数が401−1〜401−4(4個)、受信周波数がf1、f2(2個)である場合、センサ周波数対の総数は8個となるが、そのうち7個以上となる全ての組み合わせの例である。なお、本実施形態では、各組み合わせに含まれるレーダセンサが2個以上あればよい。
図8の最上段から順に、組み合わせ1は、送信周波数f1、f2についてレーダセンサ401−1〜401−4を含む。組み合わせ2は、送信周波数f1についてレーダセンタ401−1〜401−4を含み、送信周波数f2についてレーダセンタ401−1〜401−3を含む。組み合わせ3は、送信周波数f1についてレーダセンタ401−1〜401−4を含み、送信周波数f2についてレーダセンタ401−1、401−2及び401−4を含む。組み合わせ4は、送信周波数f1についてレーダセンタ401−1〜401−4を含み、送信周波数f2についてレーダセンタ401−1、401−3及び401−4を含む。組み合わせ5は、送信周波数f1についてレーダセンタ401−1〜401−4を含み、送信周波数f2についてレーダセンタ401−2〜401−4を含む。
組み合わせ6は、送信周波数f1についてレーダセンタ401−2〜401−4を含み、送信周波数f2についてレーダセンタ401−1〜401−4を含む。組み合わせ7は、送信周波数f1についてレーダセンタ401−1、401−2及び401−4を含み、送信周波数f2についてレーダセンタ401−1〜401−4を含む。組み合わせ8は、送信周波数f1についてレーダセンタ401−1、401−3及び401−4を含み、送信周波数f2についてレーダセンタ401−1〜401−4を含む。組み合わせ9は、送信周波数f1についてレーダセンタ401−2〜401−4を含み、送信周波数f2についてレーダセンタ401−1〜401−4を含む。
図7に戻り、データ選択部112は、平均算出部110からセンサ周波数対毎の距離、高度及び方位の平均値と分散算出部111からセンサ周波数対を含む組み合わせ各々の間における高度の分散値を入力される。データ選択部112は、入力された高度の分散値が最小となるセンサ周波数対の組み合わせを選択する。データ選択部112は、入力されたセンサ周波数毎の距離、高度及び方位の平均値に基づき、選択された組み合わせ間で距離、高度及び方位の平均値を各々目標距離、目標高度及び目標方位(目標位置情報)として算出する。
データ選択部112は、算出した目標位置情報を追尾処理部113及びレーダ装置1の外部に出力する。
また、制御信号発生部114が生成し、送信制御部107に入力される送信制御信号は、送信制御信号を生成すべき送信制御部107を備えるレーザセンサ401−1〜401−Nのいずれか及び送信周波数(この例ではf1、f2の何れか)を示す信号である。
図9は、本実施形態に係るレーダセンサ401−1〜401−Nが送受信する信号フレームの一例を示す図である。図9において、横軸は時刻を示す。図9において、上段から順にレーダセンサ401−1、レーダセンサ401−2、レーダセンサ401−Nが送受信する信号フレームを示す。図9において、実線は、送信フレーム又は受信フレームを示す。破線は、送信が行われないフレームを示す。f1、f2ともに、送信周波数又は受信周波数を示す。
図9によれば、各レーダセンサ及び各受信周波数ともに、時刻T12からT21まで、時刻T22からT31まで、時刻TN2からTN+11まで受信フレームが割り当てられる。
また、送信周波数f1の送信フレームが割り当てられるレーダセンサは、時刻T11からT12まではレーダセンサ401−1、時刻T21からT22まではレーダセンサ401−2である。送信周波数f2の送信フレームが割り当てられるレーダセンサは、時刻T11からT12まではレーダセンサ401−2、時刻T21からT22まではレーダセンサ401−1、時刻TN1からTN2まではレーダセンサ401−Nである。即ち、送信制御部107が入力される送信制御信号は、時刻T11からT12まではレーダセンサ401−1から送信周波数f1、レーダセンサ401−2から送信周波数f2で送信パルスを生成することを示す。また、送信制御信号は、時刻T21からT22まではレーダセンサ401−1から送信周波数f2で、レーダセンサ401−2から送信周波数f1で送信パルスを生成することを示す。また、送信制御信号は、時刻TN1からTN2まではレーザセンサ401−Nから送信周波数f2で送信パルスを生成することを示す。
次に、本実施形態に係るデータ処理部301におけるデータ処理について説明する。
図10は、本実施形態に係るデータ処理部301におけるデータ処理を示すフローチャートである。図10に示すデータ処理は、図10に示すデータ処理におけるステップS101〜S107の代わりに、ステップS201〜S207を備える点が異なる。以下、ステップS201〜S207について説明する。
(ステップS201)通信部128は、レーダセンサ201−1〜201−Nの各々が備える通信部108からf1位置情報及びf2位置情報、即ち位置計測部105が周波数f1及びf2各々について計測した距離、高度並びに方位を示す情報を入力される。通信部128は、入力されたf1位置情報及びf2位置情報を相関処理部109に出力する。その後、ステップS202に進む。
(ステップS202)相関処理部109は、通信部128から入力されたf1位置情報の時系列及びf2位置情報の時系列について、2以上のセンサ周波数対を含む組み合わせ各々の間で相関値を算出する。その後、ステップS203に進む。
(ステップS203)相関処理部109は、算出した相関値が予め設定された閾値よりも大きいセンサ周波数対を含む組み合わせが共通の目標物に対応する組み合わせと判定し、目標物毎の高度の時系列を含む目標データを抽出する。相関処理部109は、抽出した目標データを平均算出部110及び分散算出部111に出力する。その後、ステップS204に進む。
(ステップS204)平均算出部110は、相関処理部109から入力された目標データに含まれる高度の時系列に基づいて、センサ周波数対毎の距離、高度及び方位の平均値を算出する。平均算出部110は、算出したセンサ周波数対毎の距離、高度及び方位の平均値をデータ選択部112に出力する。その後、ステップS205に進む。
(ステップS205)分散算出部111は、相関処理部109から入力された目標データに含まれる目標物に対応する2以上のセンサ周波数対を含む組み合わせ各々の間で高度の分散値を算出する。分散算出部111は、算出したセンサ周波数対を含む組み合わせ各々の間における高度の分散値をデータ選択部112に出力する。その後、ステップS206に進む。
(ステップS206)データ選択部112は、平均算出部110からセンサ周波数対毎の距離、高度及び方位の平均値と分散算出部111からセンサ周波数対の各組み合わせ間における高度の分散値を入力される。データ選択部112は、入力された高度の分散値が最小となるセンサ周波数対の組み合わせを選択する。その後、ステップS207に進む。
(ステップS207)データ選択部112は、入力されたセンサ周波数対毎の距離、高度及び方位の平均値に基づき、選択された組み合わせ間で距離、高度及び方位の平均値を目標位置情報として算出する。その後、ステップS108に進む。
このように、本実施形態に係るレーダ装置2は、空間ダイバーシティの機能を利用していたレーダ装置1に周波数ダイバーシティの機能を併用している。周波数ダイバーシティとは、周波数成分毎に異なる受信特性の差異を利用して推定精度を改善することをいう。このようにレーダ装置2は、複数の周波数の成分を含む送信信号及び受信信号を使用することで、分散を算出する組み合わせの数を増加させ、より分散の小さい組み合わせが選択される。従って、本実施形態によれば、目標物の高度の推定精度をより向上させることができる。
本実施形態では、送受信周波数f1及びf2と2個の周波数成分を用いているが、これには限られず、3個以上の周波数成分を用いてもよい。
本実施形態では、複数の周波数成分を含む信号を送受信する空中線を備えるが、これには限られず、周波数成分毎に信号を送受信する空中線101を備えても、信号を送信する空中線101の他に信号を受信する空中線101を備えてもよい。
このように、本実施形態に係るレーダ装置2は、送受信部102は、複数の周波数成分を含む送信信号を送信し、位置計測部105は、目標物の位置情報(高度)を周波数成分毎に算出し、分散算出部111は、センサ部及び周波数成分の組み合わせ毎に分散を算出し、データ選択部112は、算出した分散が最小となるセンサ部及び周波数成分の組み合わせを選択し、選択した組み合わせに含まれるセンサ部及び周波数成分の位置情報(高度)に基づき目標位置情報(高度)と決定することを特徴とする。そのため、本実施形態によれば、分散を算出する組み合わせの数を増加させ、より分散の小さい組み合わせが選択され、目標物の位置情報(高度)の推定精度をより向上させることができる。
上述の説明では、空中線駆動部106は空中線制御信号に基づき空中線101の向きを機械的に駆動し電波の放射方向を制御する例に言及したが、上述の実施形態では、これには限られない。レーダ装置1又は2は、空中線駆動部106及び追尾処理部113を備えずに、空中線101はレーダセンサ毎に異なる指向特性を有し、各レーダセンサが備える位置計測部105から予め設定された時間毎に推定された距離、高度並びに方位を走査するようにしてもよい。空中線101の指向特性において、受信信号を検知することができる方位が、少なくとも2以上のレーダセンサについて重複するようにしてもよい。
上述の説明では、レーダセンサ201−1−201−N又は401−1−401−Nとデータ処理部301が各々異なる位置に配置され、それらの間のデータの送受信を通信部108及び通信部128を介して行う例に言及したが、上述の実施形態では、これには限られない。レーダ装置1、2は、データ処理部301と少なくとも1個のレーダセンサを1個の筐体に格納し、通信部108及び通信部128を省略して格納されたレーダセンサとデータ処理部301の間で直接データの送受信を行うようにしてもよい。
なお、上述した実施形態におけるレーダ装置1、2の一部、例えば、信号処理部103、123、目標信号検出部104、124、位置計測部105、125、送信制御部107、相関処理部109、平均算出部109、分散算出部111、データ選択部112、追尾処理部113、制御信号発生部114、をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。なお、ここでいう「コンピュータシステム」とは、レーダ装置1、2に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
また、上述した実施形態におけるレーダ装置1、2の一部、または全部を、LSI(Large Scale Integration)等の集積回路として実現しても良い。レーダ装置1、2の各機能ブロックは個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化しても良い。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いても良い。
以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
1、2…レーダ装置、101…空中線、102…送受信部、103、123…信号処理部、
104、124…目標信号検出部、105、125…位置計測部、106…空中線駆動部、
107…送信制御部、108…通信部、
109…相関処理部、110…平均算出部、111…分散算出部、112…データ選択部、
113…追尾処理部、114…制御信号発生部、
115…分配部、116…受信部、128…通信部、
201−1〜201−N、401−1〜401−N…レーダセンサ、
301…データ処理部

Claims (4)

  1. 空間に送信信号を送信し、前記空間内の目標物から反射された受信信号を受信する送受信部と、前記受信信号に基づき前記目標物の高度情報を計測する位置計測部と、を備えるセンサ部を複数個備え、
    前記複数個の全部又は一部のセンサ部を含む組み合わせ毎に、前記計測された高度情報の分散を算出する分散算出部と、
    前記算出した分散が最小となるセンサ部の組み合わせを選択し、選択した組み合わせに含まれるセンサ部が計測した高度情報に基づき前記目標物の高度情報を決定するデータ選択部とを備えること
    を特徴とするレーダ装置。
  2. 前記送受信部は、複数の周波数成分を含む送信信号を送信し、
    前記位置計測部は、前記目標物の高度情報を周波数成分毎に計測し、
    前記分散算出部は、前記センサ部及び前記周波数成分の組み合わせ毎に前記分散を算出し、
    前記データ選択部は、前記算出した分散が最小となるセンサ部及び周波数成分の組み合わせを選択し、選択したセンサ部が計測した高度情報のうち選択した周波数成分の高度情報に基づき前記目標物の高度情報を決定すること
    を特徴とする請求項1記載のレーダ装置。
  3. 空間に送信信号を送信し、目標物から反射された受信信号を受信する送受信部と、前記受信信号に基づき目標物の高度情報を計測する位置計測部と、を備えるセンサ部を複数個備えるレーダ装置におけるデータ処理方法であって、
    前記レーダ装置が、前記複数個の全部又は一部のセンサ部を含む組み合わせ毎に、前記計測された高度情報の分散を算出する第1の過程と、
    前記レーダ装置が、前記算出した高度情報の分散が最小となるセンサ部の組み合わせを選択し、選択した組み合わせに含まれるセンサ部が計測した高度情報に基づき前記目標物の高度情報を決定する第2の過程とを有すること
    を特徴とするデータ処理方法。
  4. 空間に送信信号を送信し、目標物から反射された受信信号を受信する送受信部と、前記受信信号に基づき目標物の高度情報を計測する位置計測部と、を備えるセンサ部を複数個備えるレーダ装置が備えるコンピュータに、
    前記複数個の全部又は一部のセンサ部を含む組み合わせ毎に、前記計測された高度情報の分散を算出する手順、
    前記算出した分散が最小となるセンサ部の組み合わせを選択し、選択した組み合わせに含まれるセンサ部が計測した高度情報に基づき前記目標物の高度情報を決定する手順
    を実行させるためのデータ処理プログラム。
JP2011053911A 2011-03-11 2011-03-11 レーダ装置、データ処理方法、及びデータ処理プログラム Active JP5696534B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011053911A JP5696534B2 (ja) 2011-03-11 2011-03-11 レーダ装置、データ処理方法、及びデータ処理プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011053911A JP5696534B2 (ja) 2011-03-11 2011-03-11 レーダ装置、データ処理方法、及びデータ処理プログラム

Publications (2)

Publication Number Publication Date
JP2012189474A true JP2012189474A (ja) 2012-10-04
JP5696534B2 JP5696534B2 (ja) 2015-04-08

Family

ID=47082808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011053911A Active JP5696534B2 (ja) 2011-03-11 2011-03-11 レーダ装置、データ処理方法、及びデータ処理プログラム

Country Status (1)

Country Link
JP (1) JP5696534B2 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933630A (ja) * 1995-07-14 1997-02-07 Mitsubishi Electric Corp 無線通信系解明方法
JPH09257923A (ja) * 1996-03-26 1997-10-03 Mitsubishi Electric Corp センサ群管理装置
JPH11248814A (ja) * 1998-03-06 1999-09-17 Mitsubishi Electric Corp 電波装置
JPH11271415A (ja) * 1998-03-24 1999-10-08 Nec Corp 方向探知装置及びそのための測定結果処理装置
JP2000304854A (ja) * 1999-04-26 2000-11-02 Mitsubishi Electric Corp 目標追尾方法及び目標追尾装置
JP2001051051A (ja) * 1999-08-05 2001-02-23 Mitsubishi Electric Corp レーダ制御装置
JP2002267745A (ja) * 2001-03-06 2002-09-18 Nec Corp センサー統制による同期式追尾方法及び装置
JP3353991B2 (ja) * 1994-02-23 2002-12-09 三菱電機株式会社 角度検出装置及び角度検出方法及びレーダ装置
JP2004117246A (ja) * 2002-09-27 2004-04-15 Mitsubishi Electric Corp アンテナ装置
JP2007309926A (ja) * 2006-04-20 2007-11-29 Mitsubishi Electric Corp システム航跡測定装置および航跡割当・航跡誤差補正処理方法
JP2007322224A (ja) * 2006-05-31 2007-12-13 Aisin Seiki Co Ltd 障害物検出装置および位置特定方法
JP2009002909A (ja) * 2007-06-25 2009-01-08 Mitsubishi Electric Corp 信号処理装置、測角装置、信号処理方法及び測角方法
JP2010122125A (ja) * 2008-11-20 2010-06-03 Brother Ind Ltd 移動局測位方法、測位基地局選択方法、移動局測位システム
JP2010525336A (ja) * 2007-04-27 2010-07-22 アクシピター ラダー テクノロジーズ, インコーポレイテッド 3次元高度探知鳥類レーダー用装置および方法
JP2011033344A (ja) * 2009-07-29 2011-02-17 Mitsubishi Electric Corp レーダ装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353991B2 (ja) * 1994-02-23 2002-12-09 三菱電機株式会社 角度検出装置及び角度検出方法及びレーダ装置
JPH0933630A (ja) * 1995-07-14 1997-02-07 Mitsubishi Electric Corp 無線通信系解明方法
JPH09257923A (ja) * 1996-03-26 1997-10-03 Mitsubishi Electric Corp センサ群管理装置
JPH11248814A (ja) * 1998-03-06 1999-09-17 Mitsubishi Electric Corp 電波装置
JPH11271415A (ja) * 1998-03-24 1999-10-08 Nec Corp 方向探知装置及びそのための測定結果処理装置
JP2000304854A (ja) * 1999-04-26 2000-11-02 Mitsubishi Electric Corp 目標追尾方法及び目標追尾装置
JP2001051051A (ja) * 1999-08-05 2001-02-23 Mitsubishi Electric Corp レーダ制御装置
JP2002267745A (ja) * 2001-03-06 2002-09-18 Nec Corp センサー統制による同期式追尾方法及び装置
JP2004117246A (ja) * 2002-09-27 2004-04-15 Mitsubishi Electric Corp アンテナ装置
JP2007309926A (ja) * 2006-04-20 2007-11-29 Mitsubishi Electric Corp システム航跡測定装置および航跡割当・航跡誤差補正処理方法
JP2007322224A (ja) * 2006-05-31 2007-12-13 Aisin Seiki Co Ltd 障害物検出装置および位置特定方法
JP2010525336A (ja) * 2007-04-27 2010-07-22 アクシピター ラダー テクノロジーズ, インコーポレイテッド 3次元高度探知鳥類レーダー用装置および方法
JP2009002909A (ja) * 2007-06-25 2009-01-08 Mitsubishi Electric Corp 信号処理装置、測角装置、信号処理方法及び測角方法
JP2010122125A (ja) * 2008-11-20 2010-06-03 Brother Ind Ltd 移動局測位方法、測位基地局選択方法、移動局測位システム
JP2011033344A (ja) * 2009-07-29 2011-02-17 Mitsubishi Electric Corp レーダ装置

Also Published As

Publication number Publication date
JP5696534B2 (ja) 2015-04-08

Similar Documents

Publication Publication Date Title
US9971028B2 (en) Method and apparatus for detecting target using radar
Huleihel et al. Optimal adaptive waveform design for cognitive MIMO radar
US20200142025A1 (en) Observed time difference of arrival angle of arrival discriminator
US20180270693A1 (en) Inter-frequency bias compensation for time difference measurements in position determinations
US10488495B2 (en) Single laser LIDAR system
US9618616B2 (en) Radar apparatus
EP2527871B1 (en) Beam forming device and method
CN106922219B (zh) 针对使用rf的位置寻找的部分同步多边测量/三边测量方法和系统
JP6312937B2 (ja) 測位基準信号のための干渉緩和
Godrich et al. Target localisation techniques and tools for multiple-input multiple-output radar
JP5320792B2 (ja) 到来方向推定装置、到来方向推定方法および到来方向推定プログラム
US20190289426A1 (en) Determining the geographic location of a portable electronic device
US8340588B2 (en) Handheld synthetic antenna array
JP4737165B2 (ja) レーダの物標検知方法、およびこの物標検知方法を用いたレーダ装置
US8686894B2 (en) Radar imaging apparatus, imaging method, and program thereof
US8155668B2 (en) Radio communication apparatus, position measurement method for radio communication apparatus, and radio communication system
JP6148622B2 (ja) レーダ装置
US7932860B2 (en) Determining a position of a tag
JP5291267B1 (ja) 周波数拡散型レーダ装置及びその制御方法
EP2053420B1 (en) Method of removing an effect of side lobes in forming an ultrasound synthetic image by motion estimation and compensation
CN103323822B (zh) 一种估计通道误差的方法及装置
KR20090125283A (ko) 위치결정을 위한 시스템 및 방법
JP2005521857A (ja) 精度が著しく希釈された状態において、正確な位置推定値を与える方法及び装置
JP2008527364A (ja) 位置決定方法及び装置
JP2009031293A (ja) 位置測定装置、位置測定方法およびコンピューター読み取り可能な記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150126

R150 Certificate of patent or registration of utility model

Ref document number: 5696534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150