JP2012182400A - Heat dissipation device for integrated circuit, and electronic equipment - Google Patents

Heat dissipation device for integrated circuit, and electronic equipment Download PDF

Info

Publication number
JP2012182400A
JP2012182400A JP2011045869A JP2011045869A JP2012182400A JP 2012182400 A JP2012182400 A JP 2012182400A JP 2011045869 A JP2011045869 A JP 2011045869A JP 2011045869 A JP2011045869 A JP 2011045869A JP 2012182400 A JP2012182400 A JP 2012182400A
Authority
JP
Japan
Prior art keywords
heat dissipation
substrate
integrated circuit
terminal
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011045869A
Other languages
Japanese (ja)
Other versions
JP5691651B2 (en
Inventor
Akira Yashiro
章 八代
Kenji Sueyoshi
賢司 末吉
Yasuo Yamaguchi
泰生 山口
Akinobu Nakamura
彰伸 中村
Fuminori Tsuchiya
文紀 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2011045869A priority Critical patent/JP5691651B2/en
Publication of JP2012182400A publication Critical patent/JP2012182400A/en
Application granted granted Critical
Publication of JP5691651B2 publication Critical patent/JP5691651B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small size heat dissipation device for an integrated circuit that efficiently dissipates heat of an integrated circuit, and an image forming apparatus.SOLUTION: In a heat dissipation device 1 for an integrated circuit, a plurality of heat dissipation pins 5h in a center part of an IC3 are connected to an auxiliary package 4 for a bypass on the opposite side of the IC3 of a substrate 2 through penetration VIAs 2a of the substrate 2. The auxiliary package 4 for a bypass gathers the penetration VIAs 2a into one bundle and connects the bundle to a heat dissipation path Lc formed on the substrate 2 more outside than a signal line pin 5s of the IC3, and then connects to a solid pattern 10 formed on the substrate by the heat dissipation path Lc.

Description

本発明は、集積回路放熱装置及び電子装置に関し、詳細には、小型で効率的に集積回路の熱を放熱する集積回路放熱装置及び電子装置に関する。   The present invention relates to an integrated circuit heat dissipation device and an electronic device, and more particularly, to an integrated circuit heat dissipation device and an electronic device that are small and efficiently dissipate heat of the integrated circuit.

プリンタ装置、複写装置、複合装置、スキャナ装置等の画像処理装置や画像形成装置等の電子装置においては、画像処理等の各種処理を行うために、多数の半導体集積回路等のIC(Integrated Circuit:集積回路)を搭載しており、ICは、半導体技術の進歩に伴って、回路規模が増大するとともに、ICからの発熱が増加している。   In an electronic apparatus such as an image processing apparatus such as a printer apparatus, a copying apparatus, a composite apparatus, a scanner apparatus, or an image forming apparatus, an integrated circuit (IC) such as a large number of semiconductor integrated circuits is used to perform various processes such as image processing. ICs are mounted, and ICs have increased in circuit scale and heat generation from ICs as semiconductor technology has advanced.

一方、ICは、回路規模の増大に伴ってパッケージの多ピン化が進み、底面電極タイプのBGA(ボールグリッドアレー:Ball Grid Array)パッケージが広く採用されるようになってきている。   On the other hand, as the circuit scale increases, the number of pins of a package has been increased, and a bottom electrode type BGA (Ball Grid Array) package has been widely adopted.

ところが、BGAパッケージのICは、下面に信号の入出力及び電源の接続のために用いられる半田バンプが形成されており、この半田バンプは、ピッチが小さく、配線基板に直接搭載することができないため、配線基板に直接搭載されるのではなく、半田バンプによってインターポーザ基板上に搭載されている。   However, the IC of the BGA package has solder bumps used for signal input / output and power connection on the bottom surface, and the solder bumps have a small pitch and cannot be directly mounted on a wiring board. Instead of being mounted directly on the wiring substrate, it is mounted on the interposer substrate by solder bumps.

このようなBGAパッケージのICにおいて、ICの発熱に対する対策として、従来、例えば、BGAパッケージ中央部に設けた放熱用パターンから基板の反対面側に搭載したヒートシンクに、基板のTH(スルーホール)を経由させて繋いで、集積回路からの発熱をヒートシンクで放熱する技術が開示されている(特許文献1参照)。   In such a BGA package IC, as a countermeasure against the heat generation of the IC, conventionally, for example, a substrate TH (through hole) is formed on a heat sink mounted on the opposite side of the substrate from a heat radiation pattern provided at the center of the BGA package. A technique is disclosed in which the heat generated from the integrated circuit is dissipated by a heat sink by being connected (see Patent Document 1).

しかしながら、上記従来技術にあっては、BGAパッケージの中央部に放熱用パターンを設け、基板の反対面に搭載したヒートシンクに基板のスルーホールを経由させて繋いでICの熱を放熱させているため、BGAパッケージの中央部からBGAパッケージ搭載エリアの外側への放熱経路を基板上に設けることができないという問題があった。   However, in the above prior art, a heat radiation pattern is provided at the center of the BGA package, and the heat of the IC is radiated by connecting to a heat sink mounted on the opposite surface of the substrate via a through hole of the substrate. There has been a problem that a heat dissipation path from the center of the BGA package to the outside of the BGA package mounting area cannot be provided on the substrate.

すなわち、BGAパッケージは、中央部の配線引出しが基板側の配線微細加工精度上の制約を受けて、基板のBGAパッケージ外周部が信号線の引き出しのために全て使用されてしまうため、基板のスルーホールを経由させてBGAパッケージの中央部の放熱用パターンと基板の反対面に搭載したヒートシンクを繋いでも、BGAパッケージ中央部からBGAパッケージ搭載エリアの外側への放熱経路を基板上に設けることができず、十分な放熱効果を得るためには、放熱部であるヒートシンクの高さが必要となり、小型化及び放熱効率の向上を図る上で、改良の必要があった。なお、BGAパッケージの中央部ではなく、外周部に放熱用パターンを設けると、信号線の引出しができなくなり、対応することができない。   That is, in the BGA package, the wiring lead-out in the center part is limited by the wiring fine processing accuracy on the board side, and the outer peripheral part of the BGA package on the board is all used for signal line drawing. A heat dissipation path from the center of the BGA package to the outside of the BGA package mounting area can be provided on the substrate even if the heat dissipation pattern mounted on the opposite surface of the substrate is connected to the heat dissipation pattern at the center of the BGA package via a hole. However, in order to obtain a sufficient heat dissipation effect, the height of the heat sink, which is a heat dissipation portion, is required, and improvement is required in order to reduce the size and improve the heat dissipation efficiency. If a heat radiation pattern is provided not on the center of the BGA package but on the outer periphery, the signal line cannot be drawn out and cannot be handled.

そこで、本発明は、小型で放熱効率を向上させることのできる集積回路放熱装置及び電子装置を提供することを目的としている。   SUMMARY OF THE INVENTION An object of the present invention is to provide an integrated circuit heat dissipation device and an electronic device that are small in size and can improve heat dissipation efficiency.

本発明は、上記目的を達成するために、集積回路を搭載する集積回路パッケージの中央部に複数形成されている放熱端子を、基板に該放熱端子と対向する位置に形成されていて、該基板を貫通する貫通放熱経路で、該基板の該集積回路パッケージとは反対側に配設されているバイパス部材に繋ぎ、該バイパス部材で、該貫通放熱経路を、該集積回路パッケージの放熱端子よりも外側の信号端子よりも外側に位置する該基板の該バイパス部材側面に設けられている放出放熱端子に繋いで、該放出放熱端子を、該基板の前記放熱端子よりも外側の周状の基板信号端子よりも外側の基板上に形成された放熱経路部材で所定の放熱部材に繋ぐことを特徴としている。   In order to achieve the above object, the present invention provides a substrate having a plurality of heat radiation terminals formed at a central portion of an integrated circuit package on which an integrated circuit is mounted at a position facing the heat radiation terminal. A through heat dissipation path penetrating through the circuit board and connected to a bypass member disposed on the opposite side of the substrate from the integrated circuit package, and the bypass member connects the through heat dissipation path to a heat dissipation terminal of the integrated circuit package. Connected to the discharge heat radiating terminal provided on the side of the bypass member of the substrate located outside the outer signal terminal, the discharge heat radiating terminal is connected to the peripheral substrate signal outside the heat radiating terminal of the substrate. A heat dissipation path member formed on a substrate outside the terminals is connected to a predetermined heat dissipation member.

また、本発明は、前記集積回路パッケージの前記放熱端子、前記基板の前記基板放熱端子、該基板の前記反対面基板放熱端子、前記バイパス放熱端子及び前記放出放熱端子のうち少なくともいずれかを、結合部材で1つに結合させることを特徴としてもよい。   In addition, the present invention combines at least one of the heat dissipation terminal of the integrated circuit package, the substrate heat dissipation terminal of the substrate, the opposite surface substrate heat dissipation terminal of the substrate, the bypass heat dissipation terminal, and the emission heat dissipation terminal. It is good also as connecting to one with a member.

さらに、本発明は、前記放熱部材が、前記基板上に形成されているベタパターンであることを特徴としてもよい。   Furthermore, the present invention may be characterized in that the heat dissipation member is a solid pattern formed on the substrate.

本発明によれば、集積回路の熱を、小型で効率よく放熱することができる。   According to the present invention, the heat of the integrated circuit can be efficiently radiated in a small size.

本発明の一実施例を適用した集積回路放熱装置の正面断面図。1 is a front sectional view of an integrated circuit heat dissipation device to which an embodiment of the present invention is applied. バイパス用補助パッケージ側の基板上面図。The board | substrate top view by the side of the bypass auxiliary package. バイパス用補助パッケージを設けない場合の基板上面図。The board | substrate top view when not providing the auxiliary | assistant package for bypass. 信号経路を纏めた場合の基板上面図。The board | substrate top view at the time of putting together a signal path | route. ベタパターンを通風の良好な位置に形成した場合の基板上面図。The board | substrate top view at the time of forming a solid pattern in the position with favorable ventilation. ベタパターンを通風の良好な位置に形成するとともに貫通孔を形成した場合の上面図。The top view at the time of forming a through-hole while forming a solid pattern in a position with good ventilation. 熱変化を嫌う部品の周囲にベタパターンを形成した場合の基板上面図。The board | substrate top view at the time of forming a solid pattern around the components which dislike a heat change. 他部品との接続箇所に放熱経路を繋いだ場合の基板上面図。The board | substrate top view at the time of connecting the thermal radiation path | route to the connection location with other components.

以下、本発明の好適な実施例を添付図面に基づいて詳細に説明する。なお、以下に述べる実施例は、本発明の好適な実施例であるので、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明によって不当に限定されるものではなく、また、本実施の形態で説明される構成の全てが本発明の必須の構成要件ではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, since the Example described below is a suitable Example of this invention, various technically preferable restrictions are attached | subjected, However, The range of this invention is unduly limited by the following description. However, not all the configurations described in the present embodiment are essential constituent elements of the present invention.

図1〜図8は、本発明の集積回路放熱装置及び電子装置の一実施例を示す図であり、図1は、本発明の集積回路放熱装置及び電子装置の一実施例を適用した集積回路放熱装置及び電子装置1の正面断面図である。   1 to 8 are diagrams showing an embodiment of an integrated circuit heat dissipation device and an electronic device according to the present invention. FIG. 1 is an integrated circuit to which an embodiment of the integrated circuit heat dissipation device and the electronic device according to the present invention is applied. 1 is a front sectional view of a heat dissipation device and an electronic device 1.

図1において、集積回路放熱装置1は、基板2の片面(図1では、下面)にIC(集積回路を搭載する集積回路パッケージ)3が搭載されており、基板2のIC3の搭載されている面とは反対側の反対面(図1では、上面)にバイパス用補助パッケージ4が搭載されている。   In FIG. 1, an integrated circuit heat dissipation device 1 has an IC (an integrated circuit package on which an integrated circuit is mounted) 3 mounted on one surface (the lower surface in FIG. 1) of a substrate 2, and the IC 3 of the substrate 2 is mounted. The bypass auxiliary package 4 is mounted on the opposite surface (upper surface in FIG. 1) opposite to the surface.

IC3は、BGAパッケージのICであり、基板2側の面に底面電極としてのグリッド(ハンダボール)5が配列されている。IC3は、例えば、30列×30列(900ピン、ファイルグリッド配列)のグリッド(ピン)5が配列されており、外周各8列(704ピン)が、信号ピン(信号端子)5s、中央14列(196ピン)が、放熱ピン(放熱端子)5hとなっている。IC3は、端子間ピッチが、1.27mmとなっている。   The IC 3 is an IC of a BGA package, and a grid (solder ball) 5 as a bottom electrode is arranged on the surface on the substrate 2 side. In the IC 3, for example, grids (pins) 5 of 30 rows × 30 rows (900 pins, file grid arrangement) are arranged, and each outer peripheral 8 rows (704 pins) is a signal pin (signal terminal) 5 s and a center 14. The row (196 pin) is a heat radiation pin (heat radiation terminal) 5h. IC3 has a terminal-to-terminal pitch of 1.27 mm.

バイパス用補助パッケージ(バイパス部材)4は、本実施例では、IC3と略同等のサイズのBGAパッケージ構成となっており、底面電極としてのグリッド(ピン)6が配設されている。バイパス用補助パッケージ4は、例えば、その印刷回路配線層が表裏の2層となっており、バイパス用補助パッケージ4と基板2を半田で接続するための銅箔スペースサイズであるPADサイズが、φ0.6mm、上層と下層(表面と下面)を貫通する貫通VIA4aは、その厚さが、1.6mm、 表層VIAランドサイズが、φ0.5mm、ライン幅/スペース幅が、0.1mm/0.1mm、ソルダーレジスト位置精度が、±0.075mmである。   In the present embodiment, the bypass auxiliary package (bypass member) 4 has a BGA package configuration that is substantially the same size as the IC 3, and is provided with a grid (pin) 6 as a bottom electrode. For example, the bypass auxiliary package 4 has two printed circuit wiring layers on the front and back sides, and a PAD size that is a copper foil space size for connecting the bypass auxiliary package 4 and the substrate 2 with solder is φ0. The penetration VIA4a that penetrates the upper layer and the lower layer (surface and lower surface) is 1.6 mm, the surface VIA land size is φ0.5 mm, and the line width / space width is 0.1 mm / 0.00 mm. The accuracy of solder resist position is ± 0.075 mm.

基板2は、IC3のグリッド5及びバイパス用補助パッケージ4のグリッド6と接続される印刷回路配線層を複数、例えば、4層形成されており、PADサイズが、0.6mm、貫通VIA2aは、その厚さが、1.6mm、表層VIAランドサイズが、φ0.5mm、内層VIAランドサイズが、φ0.76mm、ライン幅/スペース幅が、0.1mm/0.1mm、ソルダーレジスト位置精度が、±0.075mmである。   The substrate 2 is formed with a plurality of, for example, four layers of printed circuit wiring layers connected to the grid 5 of the IC 3 and the grid 6 of the bypass auxiliary package 4, the PAD size is 0.6 mm, and the through VIA 2 a is The thickness is 1.6 mm, the surface layer VIA land size is φ0.5 mm, the inner layer VIA land size is φ0.76 mm, the line width / space width is 0.1 mm / 0.1 mm, and the solder resist position accuracy is ± 0.075 mm.

そして、基板2は、IC3側から1層〜3層までの印刷回路配線層を用いて、IC3の周辺6列(576ピン)に繋いで基板信号端子(基板信号端子)7sで引き出す構成となっており、IC3の中央部に対向する位置に残った128ピンの基板信号端子7sは、基板2の信号用貫通VIA2sを経由して、バイパス用補助パッケージ4側の7列目と8列目の反対面基板信号端子(反対面基板信号端子)8sに繋がれている。   Then, the substrate 2 is connected to the peripheral six rows (576 pins) of the IC 3 by using printed circuit wiring layers from the first layer to the third layer from the IC 3 side, and is drawn out by the substrate signal terminal (substrate signal terminal) 7s. The 128-pin board signal terminal 7s remaining at the position facing the central part of the IC 3 passes through the signal penetration VIA 2s of the board 2 and enters the seventh and eighth rows on the bypass auxiliary package 4 side. It is connected to the opposite substrate signal terminal (opposite substrate signal terminal) 8s.

バイパス用補助パッケージ4は、信号線が、基板2側の7列目と8列目のバイパス信号ピン6sから周辺のバイパス信号ピン6sへ、バイパス用補助パッケージ4の表層(図1の基板2側の印刷回路配線層)を使用して引き出されており、バイパス信号ピン6sは、基板2の対向する反対面基板信号端子8sに半田付け等で繋げられていて、図1に実線で示す信号線経路Lsとして引き出されている。   The bypass auxiliary package 4 has signal lines extending from the bypass signal pins 6s in the 7th and 8th rows on the substrate 2 side to the bypass signal pins 6s on the surface of the bypass auxiliary package 4 (on the substrate 2 side in FIG. 1). The bypass signal pin 6s is connected to the opposite substrate signal terminal 8s on the opposite side of the substrate 2 by soldering or the like, and a signal line indicated by a solid line in FIG. It is drawn out as a route Ls.

一方、IC3の中央14列(196ピン)の放熱ピン5hは、基板2の該放熱ピン5hに対応する位置の基板放熱端子7hに半田付け等で繋がれ、基板2の該基板放熱端子7hは、放熱用貫通VIA2hを経由して、バイパス用補助パッケージ4側の中央14列(196ピン)の反対面基板放熱端子8hに繋がれている。   On the other hand, the heat radiation pins 5h in the center 14 rows (196 pins) of the IC 3 are connected to the substrate heat radiation terminals 7h at positions corresponding to the heat radiation pins 5h of the substrate 2 by soldering or the like. Further, via the heat dissipation through VIA 2 h, it is connected to the opposite surface substrate heat dissipation terminal 8 h in the center 14 rows (196 pins) on the bypass auxiliary package 4 side.

バイパス用補助パッケージ4は、中央14列(196ピン)がバイパス放熱ピン(バイパス放熱端子)6hとなっており、基板2の反対面基板放熱端子8hに半田付け等で繋がれる。バイパス用補助パッケージ4は、中央14列のバイパス放熱ピン6hが、貫通VIA4aを経由してバイパス用補助パッケージ4の裏層(図1の基板とは反対側の印刷回路配線層)の裏層放熱ピン9hに繋がれており、裏層放熱ピン9hは、図1に波線で示すように、1つの結合部9kとして結合されて、バイパス用補助パッケージ4の放熱帰還用の貫通VIA4bを経由させて、IC3の最外周の反対面基板信号端子8sよりも外側の放出放熱ピン6pに繋がれている。放出放熱ピン6pは、基板2のバイパス用補助パッケージ4側の面に形成されている放熱経路Lcに半田付け等で繋がれている。   The bypass auxiliary package 4 has 14 rows (196 pins) in the center serving as bypass heat radiation pins (bypass heat radiation terminals) 6h, and is connected to the board heat radiation terminals 8h on the opposite side of the substrate 2 by soldering or the like. In the bypass auxiliary package 4, the bypass heat dissipation pins 6 h in the center 14 rows pass through the vias VIA 4 a and the back layer heat dissipation of the back layer of the bypass auxiliary package 4 (the printed circuit wiring layer opposite to the substrate in FIG. 1). The backside heat radiation pin 9h is connected to the pin 9h, and as shown by the wavy line in FIG. 1, the back layer heat radiation pin 9h is coupled as a single coupling portion 9k via the heat radiation feedback through-via VIA4b of the bypass auxiliary package 4. Are connected to the radiation pins 6p outside the substrate signal terminal 8s on the opposite side of the outermost periphery of the IC3. The released heat radiation pin 6p is connected to a heat radiation path Lc formed on the surface of the substrate 2 on the side of the bypass auxiliary package 4 by soldering or the like.

そして、基板2のバイパス用補助パッケージ4の搭載されている表層(図1の基板2の上面)には、図2に示すように、放熱用のベタパターン10が形成されており、ベタパターン10は、放熱に十分であって、基板2に搭載される他の回路部品や配線等によって規制される範囲内で最大の大きさに形成されている。   Further, as shown in FIG. 2, a solid pattern 10 for heat dissipation is formed on the surface layer (the upper surface of the substrate 2 in FIG. 1) on which the bypass auxiliary package 4 of the substrate 2 is mounted. Is sufficient to dissipate heat, and is formed to the maximum size within a range regulated by other circuit components and wirings mounted on the substrate 2.

このベタパターン10は、基板2のバイパス用補助パッケージ4側の面に形成されている上記放熱経路Lcに繋がっており、IC3の放熱ピン5hから放出される熱を放出する。   The solid pattern 10 is connected to the heat dissipation path Lc formed on the surface of the substrate 2 on the side of the bypass auxiliary package 4 and releases heat released from the heat dissipation pins 5h of the IC3.

次に、本実施例の作用について説明する。本実施例の集積回路放熱装置1は、小型かつ効率的にIC3の放熱を行う。   Next, the operation of this embodiment will be described. The integrated circuit heat dissipation device 1 of this embodiment performs heat dissipation of the IC 3 in a small and efficient manner.

集積回路放熱装置1は、IC3の中央部に設けられている196ピンの放熱ピン5hが、該放熱ピン5hに対応する位置の基板2の基板放熱端子7hに繋がっており、基板放熱端子7hは、貫通VIA2aに半田付け等で繋げられている。貫通VIA2aは、基板2のバイアス用補助パッケージ4側の反対面基板放熱端子8hに繋がっており、反対面基板放熱端子8hは、バイパス用補助パッケージ4の基板2側のバイパス放熱ピン6hに半田付け等によって繋げられている。バイパス用補助パッケージ4のバイパス放熱ピン6hは、バイパス用補助パッケージ4の貫通VIA4aを通してバイパス用補助パッケージ4の裏層放熱ピン9hに繋がれている。   In the integrated circuit heat dissipation device 1, a 196 pin heat dissipation pin 5 h provided at the center of the IC 3 is connected to the substrate heat dissipation terminal 7 h of the substrate 2 at a position corresponding to the heat dissipation pin 5 h. , And connected to the penetrating VIA 2a by soldering or the like. The through VIA 2a is connected to the opposite substrate heat radiation terminal 8h of the substrate 2 on the bias auxiliary package 4 side, and the opposite substrate heat radiation terminal 8h is soldered to the bypass heat radiation pin 6h on the substrate 2 side of the bypass auxiliary package 4. Etc. The bypass heat radiation pin 6 h of the bypass auxiliary package 4 is connected to the back layer heat radiation pin 9 h of the bypass auxiliary package 4 through the through VIA 4 a of the bypass auxiliary package 4.

バイパス用補助パッケージ4の裏層放熱ピン9hは、図1に波線で示したように、1つの結合部9kとして結合されており、結合部9kは、バイパス用補助パッケージ4の放熱帰還用の貫通VIA4bを経由させて、IC3の最外周の反対面基板信号端子8sよりも外側の放出放熱ピン6pに繋がれている。放出放熱ピン6pは、基板2のバイパス用補助パッケージ4側の面に形成されている放熱経路Lcに半田付け等で繋がれている。   The back layer heat radiation pin 9h of the bypass auxiliary package 4 is coupled as one coupling portion 9k as shown by the wavy line in FIG. 1, and the coupling portion 9k is a through hole for heat radiation feedback of the bypass auxiliary package 4. Via the VIA 4b, it is connected to the discharge heat radiation pin 6p outside the opposite substrate signal terminal 8s on the outermost periphery of the IC3. The released heat radiation pin 6p is connected to a heat radiation path Lc formed on the surface of the substrate 2 on the side of the bypass auxiliary package 4 by soldering or the like.

基板2の表層には、図2に示したように、バイパス用補助パッケージ4の周囲に、ベタパターン10が形成されており、放熱経路Lcがベタパターン10に繋がっている。   On the surface layer of the substrate 2, as shown in FIG. 2, the solid pattern 10 is formed around the bypass auxiliary package 4, and the heat dissipation path Lc is connected to the solid pattern 10.

したがって、IC3で発生した熱は、IC3の放熱ピン5hから基板2、バイパス用補助パッケージ4及び基板2の放熱経路Lcを経由してベタパターン10に放出され、ベタパターン10で放熱される。   Therefore, the heat generated in the IC 3 is released from the heat radiation pins 5 h of the IC 3 to the solid pattern 10 via the substrate 2, the bypass auxiliary package 4 and the heat radiation path Lc of the substrate 2, and is radiated by the solid pattern 10.

そして、本実施例の集積回路放熱装置1は、IC3の放熱ピン5hを、基板2の反対側面に搭載したバイパス用補助パッケージ4を通して、IC3の外側の放熱経路Lcに繋がれているが、バイパス用補助パッケージ4を用いないときには、例えば、図3に示すように、IC3の放熱ピン5hのパターンからはみ出してベタパターン10aを形成することができず、狭い面積のベタパターン10aのみしか形成することができない。   In the integrated circuit heat dissipation device 1 of the present embodiment, the heat dissipation pin 5h of the IC3 is connected to the heat dissipation path Lc outside the IC3 through the auxiliary auxiliary package 4 mounted on the opposite side surface of the substrate 2. When the auxiliary package 4 is not used, for example, as shown in FIG. 3, the solid pattern 10a cannot be formed so as to protrude from the pattern of the heat radiation pin 5h of the IC 3, and only the solid pattern 10a having a small area is formed. I can't.

ところが、本実施例の集積回路放熱装置1は、IC3の放熱ピン5hを、基板2の反対側面に搭載したバイパス用補助パッケージ4を通して、IC3の外側の放熱経路Lcに接続している。   However, in the integrated circuit heat dissipation device 1 of the present embodiment, the heat dissipation pin 5h of the IC 3 is connected to the heat dissipation path Lc outside the IC3 through the bypass auxiliary package 4 mounted on the opposite side surface of the substrate 2.

すなわち、本実施例の集積回路放熱装置1は、集積回路を搭載するIC(集積回路パッケージ)3の中央部に周状に複数形成されている放熱ピン(放熱端子)5hを、基板2に該放熱ピン5hと対向する位置に形成されていて、基板2を貫通する放熱用貫通VIA(貫通放熱経路)2aで、基板2のIC3とは反対側に配設されているバイパス用補助パッケージ(バイパス部材)4に繋ぎ、バイパス用補助パッケージ4で、放熱用貫通VIA2aを、IC3の放熱端子5hよりも外側の信号ピン(信号端子)5sよりも外側に位置する基板2のバイアス用補助パッケージ4側面に設けられている放出放熱ピン(放出放熱端子)6pに繋いで、放出放熱端子6pを、基板2の反対面基板信号端子8sよりも外側の基板2上に形成されている放熱経路(放熱経路部材)Lcでベタパターン(放熱部材)に繋いでいる。   That is, the integrated circuit heat dissipation device 1 according to the present embodiment includes, on the substrate 2, a plurality of heat dissipation pins (heat dissipation terminals) 5 h formed circumferentially at the center of an IC (integrated circuit package) 3 on which the integrated circuit is mounted. Auxiliary bypass package (bypass) that is formed on the opposite side of the substrate 2 from the IC 3 in the heat dissipation through VIA (through heat dissipation path) 2a that is formed at a position facing the heat dissipation pin 5h and penetrates the substrate 2. Member) 4, the bypass auxiliary package 4, and the through hole VIA 2 a for heat dissipation is located on the side surface of the bias auxiliary package 4 on the substrate 2 positioned outside the signal pin (signal terminal) 5 s outside the heat dissipation terminal 5 h of the IC 3. The discharge heat dissipation terminal 6p is connected to the discharge heat dissipation pin (discharge heat dissipation terminal) 6p provided on the substrate 2 and the heat dissipation formed on the substrate 2 outside the substrate signal terminal 8s on the opposite side of the substrate 2. And it connects the solid pattern (heat radiating member) in the road (heat dissipation path member) Lc.

したがって、放熱用のベタパターン10を広い面積を有した状態で形成することができ、放熱効率を向上させることができる。また、バイパス用補助パッケージ4は、基板2と略同じ厚さ(通常:1.6mm以下)であるので、従来のヒートシンクを設けた場合よりも、基板2上の高さ寸法を低くすることができ、集積回路放熱装置1の適用される画像形成装置や画像読み取り装置等の薄型化を図ることができる。   Therefore, the solid pattern 10 for heat dissipation can be formed in a state having a wide area, and the heat dissipation efficiency can be improved. Further, since the bypass auxiliary package 4 has substantially the same thickness as the substrate 2 (usually 1.6 mm or less), the height dimension on the substrate 2 can be made lower than when a conventional heat sink is provided. In addition, it is possible to reduce the thickness of an image forming apparatus, an image reading apparatus, or the like to which the integrated circuit heat dissipation device 1 is applied.

また、本実施例の集積回路放熱装置1は、IC3の196ピンの放熱ピン5hに繋がっているバイパス用補助パッケージ4の貫通VIA4aを、該貫通VIA4aに繋がっている裏層放熱ピン9hを1つの結合部9kとして結合させることで結合し、該結合部9kを、バイパス用補助パッケージ4の放熱帰還用の貫通VIA4bを経由させて半田付け等で基板2の放熱経路Lcに繋いでいる。   Further, the integrated circuit heat dissipation device 1 of this embodiment includes a through-via VIA4a of the bypass auxiliary package 4 connected to the 196-pin heat dissipation pin 5h of the IC 3, and a back layer heat dissipation pin 9h connected to the through-via VIA4a. The coupling portion 9k is coupled by being coupled to the heat radiation path Lc of the substrate 2 by soldering or the like via the heat radiation feedback through VIA 4b of the bypass auxiliary package 4.

したがって、結合以降の放熱経路Lcの引き回しを一本化することができ、バイパス用補助パッケージ4及び基板2における放熱経路Lcの引き回しを用意にすることができるとともに、放熱経路Lcを強化して、熱抵抗を低下させることができる。   Therefore, it is possible to unify the routing of the heat dissipation path Lc after the coupling, to prepare the routing of the heat dissipation path Lc in the bypass auxiliary package 4 and the substrate 2, and to strengthen the heat dissipation path Lc, Thermal resistance can be reduced.

なお、上記説明では、放熱経路をバイパス用補助パッケージ4の上層で1本に結合しているが、放熱経路の結合場所は、バイパス用補助パッケージ4の上層に限るものではなく、例えば、IC3の放熱ピン5h部分、基板2の下面の基板放熱端子7h部分、または、基板2上面の反対面基板放熱端子8h部分のいずれかまたはいずれか2箇所以上で結合させてもよい。   In the above description, the heat dissipation path is combined into one on the upper layer of the bypass auxiliary package 4. However, the coupling location of the heat dissipation path is not limited to the upper layer of the bypass auxiliary package 4. The heat radiation pins 5h, the substrate heat radiation terminal 7h portion on the lower surface of the substrate 2, or the opposite surface substrate heat radiation terminal 8h portion on the upper surface of the substrate 2 may be coupled at any two or more locations.

また、本実施例の集積回路放熱装置1は、IC3の信号経路Lsを、図4に示すように、纏めて基板2に繋いでもよい。図4の場合、信号経路Lsを、信号経路Ls1と信号経路Ls2に纏めて、周囲の2つのIC11、12が繋いでいる。そして、基板2の表層において、バイパス用補助パッケージ4の周囲の信号経路Ls1、Ls2以外の領域に、放熱用のベタパターン10b、10cを形成する。この場合、信号経路Lsを纏める数は、信号経路Lsの接続先の回路状況等によって適宜設定する。また、ベタパターン10と信号経路Lsの間隙は、基板2の作成する装置の能力により決まるが、一定の間隙が必要となるため、信号経路Lsと放熱経路Lcを交互に配線するよりも、放熱経路Lcをまとめた方が、この間隙分だけバタパターン10を広くすることができる。   Further, in the integrated circuit heat dissipation device 1 of this embodiment, the signal path Ls of the IC 3 may be collectively connected to the substrate 2 as shown in FIG. In the case of FIG. 4, the signal path Ls is grouped into the signal path Ls1 and the signal path Ls2, and the two surrounding ICs 11 and 12 are connected. Then, on the surface layer of the substrate 2, heat radiation solid patterns 10 b and 10 c are formed in regions other than the signal paths Ls 1 and Ls 2 around the bypass auxiliary package 4. In this case, the number of signal paths Ls to be collected is set as appropriate according to the circuit status of the connection destination of the signal paths Ls. In addition, the gap between the solid pattern 10 and the signal path Ls is determined by the capability of the apparatus that the substrate 2 creates. However, since a certain gap is required, the heat radiation is more than the wiring between the signal path Ls and the heat radiation path Lc alternately. If the paths Lc are combined, the flutter pattern 10 can be widened by this gap.

このように、信号経路Lsを纏めることで、放熱用のベタパターン10b、10cを大きく形成することができ、放熱効率をより一層向上させることができる。   In this way, by collecting the signal paths Ls, the solid patterns 10b and 10c for heat dissipation can be formed larger, and the heat dissipation efficiency can be further improved.

さらに、本実施例の集積回路放熱装置1は、図5に示すように、放熱用のベタパターン10dを、集積回路放熱装置1を搭載する装置、例えば、プリンタ装置、複写装置、複合装置等の画像形成装置やスキャナ装置等の画像読み取り装置等の電子装置において、通風の良好な位置に形成してもよい。   Further, as shown in FIG. 5, the integrated circuit heat dissipation device 1 of the present embodiment has a solid pattern 10d for heat dissipation, which is a device on which the integrated circuit heat dissipation device 1 is mounted, for example, a printer device, a copying device, a composite device, etc. In an electronic apparatus such as an image reading apparatus such as an image forming apparatus or a scanner apparatus, it may be formed at a position with good ventilation.

すなわち、集積回路放熱装置1の適用される画像形成装置や画像読み取り装置等の電子装置においては、装置内においても、集積回路放熱装置1の配設される装置内においても、通風(単位時間当たりの風量等)の良好な場所と通風の悪い場所があり、基板2上の通風の良好な位置にベタパターン10dを形成してもよい。また、この場合、バイパス用補助パッケージ4とベタパターン10dとを繋ぐ基板2上の放熱経路Lcを、他の配線等を考慮した上で、基板2上において通風のより良好な位置を通して形成してもよい。   That is, in an electronic apparatus such as an image forming apparatus or an image reading apparatus to which the integrated circuit heat dissipation device 1 is applied, ventilation (per unit time) is performed both in the apparatus and in the apparatus in which the integrated circuit heat dissipation device 1 is disposed. The solid pattern 10d may be formed at a location where the airflow is good and the location where the airflow is bad, and where the airflow is good on the substrate 2. In this case, the heat dissipation path Lc on the substrate 2 that connects the bypass auxiliary package 4 and the solid pattern 10d is formed on the substrate 2 through a better ventilation position in consideration of other wirings and the like. Also good.

このようにすると、ベタパターン10dにおける放熱効率を、通風による空冷効果によって、より一層向上させることができ、また、放熱経路Lcでの放熱効率を向上させることができる。   If it does in this way, the heat dissipation efficiency in the solid pattern 10d can be further improved by the air-cooling effect by ventilation, and the heat dissipation efficiency in the heat dissipation path Lc can be improved.

なお、通風の良好な場所は、基板2上に限るものではなく、基板2から外れた場所にベタパターン10を形成した部材を配設して、該ベタパターン10とバイパス用補助パッケージ4を放熱経路Lcで繋いでもよい。   The place where the ventilation is good is not limited to the board 2, and a member formed with the solid pattern 10 is arranged at a place off the board 2 to dissipate the solid pattern 10 and the bypass auxiliary package 4. You may connect by the path | route Lc.

また、本実施例の集積回路放熱装置1は、図6に示すように、ベタパターン10dに、基板2を貫通する貫通孔13を形成してもよい。なお、図6では、開口形状が四角形の貫通孔13を形成している場合について示されているが、貫通孔13の開口形状は、四角形上に限るものではなく、例えば、丸形状等であってもよい。   Further, as shown in FIG. 6, the integrated circuit heat dissipation device 1 of the present embodiment may form a through hole 13 that penetrates the substrate 2 in the solid pattern 10 d. FIG. 6 shows the case where the through hole 13 having a square opening shape is formed. However, the opening shape of the through hole 13 is not limited to a square shape, and may be, for example, a round shape. May be.

このようにすると、ベタパターン10dを通る風が貫通孔13を通過して、通風性を向上させることができ、より一層放熱効果を向上させることができる。   If it does in this way, the wind which passes through the solid pattern 10d will pass through the through-hole 13, air permeability can be improved, and the heat dissipation effect can be improved further.

また、この貫通孔13にメッキを設けて、風に対する抵抗を減らすとともに、気流に接する金属面積を大きくしてもよい。   Moreover, plating may be provided in the through-hole 13 to reduce the resistance to wind and increase the metal area in contact with the airflow.

このようにすると、通風性をより一層向上させるとともに、放熱性を向上させることができ、より一層放熱効果を向上させることができる。   If it does in this way, while improving air permeability further, heat dissipation can be improved, and the heat dissipation effect can be improved further.

さらに、本実施例の集積回路放熱装置1は、図7に示すように、基板2上の熱変化を嫌う部品、例えば、IC12の周囲にベタパターン10eを形成し、このベタパターン10eとバイパス用補助パッケージ4を放熱経路Lcで繋いでもよい。   Further, as shown in FIG. 7, the integrated circuit heat dissipating device 1 of the present embodiment forms a solid pattern 10e around a part that dislikes a heat change on the substrate 2, for example, an IC 12, and this solid pattern 10e and the bypass pattern are used. The auxiliary package 4 may be connected by the heat dissipation path Lc.

このようにすると、IC3から熱変化を嫌うIC12の周囲のベタパターン10eに放熱し続けて、IC3の放熱効果を向上させることができるとともに、熱変化を嫌うIC12を一定温度に保つことができ、回路の性能を向上させることができる。   In this way, it is possible to continue to dissipate heat from the IC3 to the solid pattern 10e around the IC12 that dislikes heat change, and to improve the heat dissipation effect of the IC3, and to keep the IC12 that dislikes heat change at a constant temperature, The circuit performance can be improved.

また、本実施例の集積回路放熱装置1は、図8に示すように、集積回路放熱装置1の適用される画像形成装置や画像読み取り装置等の電子装置においては、電子装置内においても、集積回路放熱装置1の基板2が配設される熱容量が大きく、熱伝導率の良好な部材、例えば、基板2にGND(設置電位)を提供する筐体板金14に、放熱経路Lcを接続してもよい。   Further, as shown in FIG. 8, the integrated circuit heat dissipation device 1 of the present embodiment is integrated in an electronic device such as an image forming apparatus or an image reading device to which the integrated circuit heat dissipation device 1 is applied. A heat dissipation path Lc is connected to a member having a large heat capacity on which the substrate 2 of the circuit heat dissipation device 1 is disposed and having a good thermal conductivity, for example, a casing metal plate 14 that provides GND (installation potential) to the substrate 2. Also good.

このようにすると、IC3から筐体板金14等の熱容量が大きく、熱伝導率の良好な他の部品に放熱し続けることができ、IC3の放熱効果を向上させることができる。   In this way, heat can be continuously radiated from the IC 3 to other parts having a large heat capacity such as the housing sheet metal 14 and the like, and the thermal conductivity is good, and the heat radiation effect of the IC 3 can be improved.

以上、本発明者によってなされた発明を好適な実施例に基づき具体的に説明したが、本発明は上記実施例で説明したものに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   The invention made by the present inventor has been specifically described based on the preferred embodiments. However, the present invention is not limited to that described in the above embodiments, and various modifications can be made without departing from the scope of the invention. It goes without saying that it is possible.

本発明は、小型で効率的に集積回路の熱を放熱する集積回路放熱装置及び電子装置に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for an integrated circuit heat dissipation device and an electronic device that are small and efficiently dissipate heat of the integrated circuit.

1 集積回路放熱装置
2 基板
2s 信号用貫通VIA
2h 放熱用貫通VIA
3 IC
4 バイパス用補助パッケージ
4a、4b 貫通VIA
5 グリッド
5s 信号ピン
5h 放熱ピン
6s バイパス信号ピン
6h バイパス放熱ピン
7s 基板信号端子
7h 基板放熱端子
8s 反対面基板信号端子
8h 反対面基板放熱端子
9h 裏層放熱ピン
9k 結合部
10、10a、10b、10c、10d、10e ベタパターン
11、12 IC
13 貫通孔
14 筐体板金
Ls 信号経路
Lc 放熱経路
DESCRIPTION OF SYMBOLS 1 Integrated circuit heat dissipation device 2 Board | substrate 2s Signal penetration VIA
2h Heat dissipation through VIA
3 IC
4 Auxiliary package for bypass 4a, 4b Through VIA
5 grid 5 s signal pin 5 h heat dissipation pin 6 s bypass signal pin 6 h bypass heat dissipation pin 7 s substrate signal terminal 7 h substrate heat dissipation terminal 8 s opposite surface substrate signal terminal 8 h opposite surface substrate heat dissipation terminal 9 h back layer heat dissipation pin 9 k coupling portion 10, 10 a, 10 b, 10c, 10d, 10e Solid pattern 11, 12 IC
13 Through hole 14 Housing sheet metal Ls Signal path Lc Heat dissipation path

特開平10−275883号公報Japanese Patent Laid-Open No. 10-275883

Claims (7)

集積回路を搭載するとともに、片面に該片面の中心部から外側方向に複数の周状に端子が形成されるとともに中心側の所定数の端子が放熱端子として、該放熱端子の外側の周状の端子が信号端子として形成されている集積回路パッケージと、
片面に前記集積回路パッケージの前記放熱端子及び前記信号端子に対向する位置に形成されている基板放熱端子及び基板信号端子、該片面とは反対面の少なくとも該基板放熱端子と対向する位置に形成されている反対面基板放熱端子及び該基板を貫通して該基板放熱端子と該反対面基板放熱端子を繋ぐ貫通放熱経路が形成されている基板と、
前記基板の前記反対面基板放熱端子に繋がれるバイパス放熱端子、該基板の前記基板信号端子よりも外側に位置する放出放熱端子及び該バイパス放熱端子と該放出放熱端子を繋ぐ連結経路が形成されているバイパス部材と、
前記基板の前記基板信号端子よりも外側の該基板上に形成されて前記バイパス部材の前記放出放熱端子を所定の放熱部材に繋ぐ放熱経路部材と、
を備えていることを特徴とする集積回路放熱装置。
In addition to mounting an integrated circuit, a plurality of terminals are formed on one side in a plurality of circumferential directions outward from the center of the one side, and a predetermined number of terminals on the center side serve as heat radiation terminals, and the circumferential shape outside the heat radiation terminals. An integrated circuit package in which terminals are formed as signal terminals;
A substrate heat dissipation terminal and a substrate signal terminal formed on one side of the integrated circuit package so as to face the heat dissipation terminal and the signal terminal, and formed on a position opposite to the substrate heat dissipation terminal on the opposite side of the one side. A substrate on which an opposite surface substrate heat dissipation terminal and a through heat dissipation path that penetrates the substrate and connects the substrate heat dissipation terminal and the opposite surface substrate heat dissipation terminal are formed,
A bypass heat radiating terminal connected to the opposite surface substrate heat radiating terminal of the substrate, an emission heat radiating terminal positioned outside the substrate signal terminal of the substrate, and a connection path connecting the bypass heat radiating terminal and the radiation radiating terminal are formed. A bypass member,
A heat dissipation path member formed on the substrate outside the substrate signal terminal of the substrate and connecting the discharge heat dissipation terminal of the bypass member to a predetermined heat dissipation member;
An integrated circuit heat dissipating device comprising:
前記集積回路放熱装置は、
前記集積回路パッケージの前記放熱端子、前記基板の前記基板放熱端子、該基板の前記反対面基板放熱端子、前記バイパス放熱端子及び前記放出放熱端子のうち少なくともいずれかを1つに結合させる結合部材を備えていることを特徴とする集積回路放熱装置。
The integrated circuit heat dissipation device comprises:
A coupling member that couples at least one of the heat radiation terminal of the integrated circuit package, the substrate heat radiation terminal of the substrate, the opposite surface substrate heat radiation terminal of the substrate, the bypass heat radiation terminal, and the emission heat radiation terminal; An integrated circuit heat dissipating device comprising:
前記放熱部材は、
前記基板上に形成されているベタパターンであることを特徴とする請求項1または請求項2記載の集積回路放熱装置。
The heat dissipation member is
The integrated circuit heat dissipation device according to claim 1, wherein the integrated circuit heat dissipation device is a solid pattern formed on the substrate.
前記ベタパターンは、
前記基板上の所定の回路部品の周囲に形成されていることを特徴とする請求項3記載の集積回路放熱装置。
The solid pattern is
4. The integrated circuit heat dissipation device according to claim 3, wherein the integrated circuit heat dissipation device is formed around a predetermined circuit component on the substrate.
前記放熱部材は、
通風性の良好な位置に配設されていることを特徴とする請求項1から請求項3のいずれかに記載の集積回路放熱装置。
The heat dissipation member is
The integrated circuit heat dissipation device according to any one of claims 1 to 3, wherein the integrated circuit heat dissipation device is disposed at a position having good ventilation.
前記放熱経路部材は、
前記基板が取り付けられる金属部材を前記放熱部材として該金属部材と前記放出放熱端子を繋ぐことを特徴とする請求項1記載の集積回路放熱装置。
The heat dissipation path member is
2. The integrated circuit heat dissipation device according to claim 1, wherein the metal member to which the substrate is attached is used as the heat dissipation member to connect the metal member and the emission heat dissipation terminal.
請求項1から請求項6のいずれかに記載の集積回路放熱装置を搭載することを特徴とする電子装置。   An electronic device comprising the integrated circuit heat dissipation device according to claim 1.
JP2011045869A 2011-03-03 2011-03-03 Integrated circuit heat dissipation device and electronic device Expired - Fee Related JP5691651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011045869A JP5691651B2 (en) 2011-03-03 2011-03-03 Integrated circuit heat dissipation device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011045869A JP5691651B2 (en) 2011-03-03 2011-03-03 Integrated circuit heat dissipation device and electronic device

Publications (2)

Publication Number Publication Date
JP2012182400A true JP2012182400A (en) 2012-09-20
JP5691651B2 JP5691651B2 (en) 2015-04-01

Family

ID=47013330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011045869A Expired - Fee Related JP5691651B2 (en) 2011-03-03 2011-03-03 Integrated circuit heat dissipation device and electronic device

Country Status (1)

Country Link
JP (1) JP5691651B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111506024A (en) * 2019-01-31 2020-08-07 驭势科技(北京)有限公司 Autonomous vehicle, control method, control device, and computer processing medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555418A (en) * 1991-08-23 1993-03-05 Toshiba Corp Semiconductor integrated circuit device
JP2006005163A (en) * 2004-06-17 2006-01-05 Denso Corp Semiconductor device, and mounting inspecting method thereof
JP2008198785A (en) * 2007-02-13 2008-08-28 Alps Electric Co Ltd High-frequency unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555418A (en) * 1991-08-23 1993-03-05 Toshiba Corp Semiconductor integrated circuit device
JP2006005163A (en) * 2004-06-17 2006-01-05 Denso Corp Semiconductor device, and mounting inspecting method thereof
JP2008198785A (en) * 2007-02-13 2008-08-28 Alps Electric Co Ltd High-frequency unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111506024A (en) * 2019-01-31 2020-08-07 驭势科技(北京)有限公司 Autonomous vehicle, control method, control device, and computer processing medium

Also Published As

Publication number Publication date
JP5691651B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
US6816378B1 (en) Stack up assembly
JP2010503189A (en) Electronic equipment
TWI612877B (en) Heat dissipating high power systems
US20070013045A1 (en) Printed circuit board for thermal dissipation and electronic device using the same
US7723843B2 (en) Multi-package module and electronic device using the same
CN107708286B (en) Printed circuit board assembly
KR20160120486A (en) Circuit board and method of manufacturing the same
JP2020047843A (en) Electronic control unit
JPH07153869A (en) Semiconductor device
JP2006221912A (en) Semiconductor device
US9257358B2 (en) Chip stacking packaging structure
JP2010267869A (en) Wiring board
JP2012169330A (en) Electronic device
JP5691651B2 (en) Integrated circuit heat dissipation device and electronic device
US6574108B1 (en) Selective PCB via location to enhance cooling
JPH06268109A (en) Semiconductor chip and electronic device incorporating same
US7361982B2 (en) Bumpless chip package
JP2006324646A (en) Module substrate
WO2007057952A1 (en) Electronic element, package having same, and electronic device
JP2012212831A (en) Composite wiring board
JP2010021286A (en) Bga package
WO2022004183A1 (en) Electronic control device
JP2002151634A (en) Board radiator
US20090159315A1 (en) Wiring substrate
JP2002110896A (en) Stack type multi-chip package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R151 Written notification of patent or utility model registration

Ref document number: 5691651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees