JP2012169224A - Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery - Google Patents

Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery Download PDF

Info

Publication number
JP2012169224A
JP2012169224A JP2011031211A JP2011031211A JP2012169224A JP 2012169224 A JP2012169224 A JP 2012169224A JP 2011031211 A JP2011031211 A JP 2011031211A JP 2011031211 A JP2011031211 A JP 2011031211A JP 2012169224 A JP2012169224 A JP 2012169224A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
lithium ion
ion battery
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011031211A
Other languages
Japanese (ja)
Other versions
JP6016329B2 (en
Inventor
Kentaro Okamoto
健太郎 岡本
Yoshio Kajitani
芳男 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011031211A priority Critical patent/JP6016329B2/en
Publication of JP2012169224A publication Critical patent/JP2012169224A/en
Application granted granted Critical
Publication of JP6016329B2 publication Critical patent/JP6016329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a lithium ion battery having excellent battery characteristics.SOLUTION: The positive electrode active material for a lithium ion battery contains a lithium-containing transition metal oxide, and a chlorine component, a silicon component, and a sulfur component, where the content of each component is 100 ppm or less with respect to the content of the lithium-containing transition metal oxide. The total content of the chlorine component, the silicon component, and the sulfur component is 200 ppm or less with respect to the content of the lithium-containing transition metal oxide.

Description

本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池に関する。   The present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery.

リチウムイオン電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。 Lithium-containing transition metal oxides are generally used as positive electrode active materials for lithium ion batteries. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc., improved characteristics (higher capacity, cycle characteristics, storage characteristics, reduced internal resistance) In order to improve the rate characteristics and safety, it is underway to combine them. Lithium ion batteries for large-scale applications such as in-vehicle use and load leveling are required to have different characteristics from those of conventional mobile phones and personal computers.

電池特性の改善には、従来、種々の方法が用いられており、例えば特許文献1には、Si元素の含有量が200〜1000ppmであることを特徴とする、一般式Li[Ni0.5-0.5xMn0.5-0.5xLix]O2(但し0.02≦x≦0.11)で表される層状岩塩構造を有するリチウム−ニッケル−マンガン複合酸化物が開示されている。そして、これによれば、高温下での充放電サイクル特性の改善を実現することができると記載されている。 Conventionally, various methods have been used to improve battery characteristics. For example, Patent Document 1 discloses a general formula Li [Ni 0.5-0.5 , characterized in that the content of Si element is 200 to 1000 ppm. lithium having x Mn 0.5-0.5x Li x] O 2 ( where 0.02 ≦ x ≦ 0.11) layered rock-salt structure represented by - nickel - manganese composite oxide is disclosed. And according to this, it describes that the improvement of the charge / discharge cycle characteristic under high temperature is realizable.

また、特許文献2には、リチウム遷移金属複合酸化物に対して100〜1500ppmの第1族及び/又は第2族元素成分(但しリチウムを除く)と、リチウム遷移金属複合酸化物に対して150〜10000ppmの硫酸イオン成分とを有するリチウム遷移金属複合酸化物からなるリチウム二次電池用正極材料が開示されている。そして、これによれば、第1族や第2族の金属成分と硫酸イオン成分とを共存させることによって高温容量維持率の高いリチウム二次電池を提供することができると記載されている。   Further, Patent Document 2 discloses that 100 to 1500 ppm of Group 1 and / or Group 2 element component (excluding lithium) with respect to the lithium transition metal composite oxide and 150 with respect to the lithium transition metal composite oxide. A positive electrode material for a lithium secondary battery comprising a lithium transition metal composite oxide having a sulfate ion component of 10000 ppm is disclosed. And according to this, it is described that a lithium secondary battery having a high high-temperature capacity maintenance rate can be provided by coexisting a metal component of Group 1 or Group 2 and a sulfate ion component.

さらに、特許文献3には、Kの含有量が500ppm以下である電解二酸化マンガンを原料に用いることを特徴とするリチウムマンガン酸化物の製造方法が開示されている。そして、これによれば、高容量であるほかに、レート特性に優れたリチウムイオン二次電池用正極材料を提供することができると記載されている。   Further, Patent Document 3 discloses a method for producing lithium manganese oxide, characterized in that electrolytic manganese dioxide having a K content of 500 ppm or less is used as a raw material. And according to this, it is described that it is possible to provide a positive electrode material for a lithium ion secondary battery which is not only high in capacity but also excellent in rate characteristics.

さらに、特許文献4には、一般式LixCo1-yMey2(式中、x及びyは、0<x<1.1及び0≦y<1を示す。MeはCo、Fe以外の遷移金属元素を示す。)で表されるリチウム二次電池正極活物質用リチウム複合酸化物において、該リチウム複合酸化物中に含まれる不純物の珪素(Si)が500ppm以下であり、平均粒子径が0.5〜50μmであることを特徴とするリチウム二次電池正極活物質用リチウム複合酸化物が開示されている。そして、これによれば、リチウム二次電池正極組成液の粘度変化率が少なく安定した状態を保つことができる二次電池用のリチウム複合酸化物、及び放電容量の高いリチウム二次電池を提供することができると記載されている。 Furthermore, Patent Document 4 discloses a general formula Li x Co 1-y Me y O 2 (wherein x and y represent 0 <x <1.1 and 0 ≦ y <1. Me represents Co, Fe In the lithium composite oxide for a positive electrode active material of a lithium secondary battery represented by :), the impurity silicon (Si) contained in the lithium composite oxide is 500 ppm or less, and the average particle A lithium composite oxide for a lithium secondary battery positive electrode active material, characterized in that the diameter is 0.5 to 50 μm, is disclosed. And according to this, the lithium composite oxide for secondary batteries which can maintain the stable state with a small viscosity change rate of a lithium secondary battery positive electrode composition liquid, and a lithium secondary battery with high discharge capacity are provided. It is described that it can.

さらに、特許文献5には、アルミ芯材からなる正極集電体に、正極活物質にLiMxCo1-x2(Mは金属元素で、xは0以上1未満)を用いた正極合剤を塗着した正極と負極とをセパレータを介し、電解液ともに封入した非水電解液二次電池において、正極活物質中に塩素を5〜30ppm含有することを特徴とする非水電解液二次電池が開示されている。そして、これによれば、電池が内部短絡を起こした場合でも発生する発熱量を低く抑えることにより安全性に優れ、なお且つ、製造過程において正極合剤の正極集電体からの脱落を抑えた非水電解液二次電池を提供することができると記載されている。 Further, Patent Document 5 discloses a positive electrode composite in which a positive electrode current collector made of an aluminum core material and LiM x Co 1-x O 2 (M is a metal element and x is 0 or more and less than 1) as a positive electrode active material. A non-aqueous electrolyte secondary battery in which a positive electrode coated with an agent and a negative electrode are sealed together with an electrolyte solution through a separator, and the positive electrode active material contains 5 to 30 ppm of chlorine. A secondary battery is disclosed. And according to this, it is excellent in safety by suppressing the calorific value generated even when the battery causes an internal short circuit, and further, the dropping of the positive electrode mixture from the positive electrode current collector is suppressed in the manufacturing process. It is described that a non-aqueous electrolyte secondary battery can be provided.

特開2005−325000号公報JP 2005-325000 A 特開2002−15739号公報JP 2002-15739 A 特開2004−250270号公報JP 2004-250270 A 特許第3891458号公報Japanese Patent No. 3891458 特開2004−273200号公報JP 2004-273200 A

特許文献1〜5に記載のリチウム複合酸化物は、該酸化物に含まれる不純物の量を規定し、それによって種々の電池特性の向上を図ろうとするものであるが、それでもなお高品質のリチウムイオン電池用正極活物質としては改善の余地がある。   The lithium composite oxides described in Patent Documents 1 to 5 are intended to regulate the amount of impurities contained in the oxide, thereby improving various battery characteristics. There is room for improvement as a positive electrode active material for ion batteries.

そこで、本発明は、良好な電池特性を有するリチウムイオン電池用正極活物質を提供することを課題とする。   Then, this invention makes it a subject to provide the positive electrode active material for lithium ion batteries which has a favorable battery characteristic.

本発明者は、鋭意検討した結果、正極活物質における種々の不純物の濃度と、電池特性との間に密接な相関関係があることを見出した。すなわち、正極活物質における種々の不純物の濃度が所定値以下にあるとき、特に良好な電池特性が得られることを見出した。   As a result of intensive studies, the present inventor has found that there is a close correlation between the concentration of various impurities in the positive electrode active material and the battery characteristics. That is, it has been found that particularly good battery characteristics can be obtained when the concentration of various impurities in the positive electrode active material is below a predetermined value.

上記知見を基礎にして完成した本発明は一側面において、リチウム含有遷移金属酸化物と、リチウム含有遷移金属酸化物に対してそれぞれ100ppm以下の塩素成分、珪素成分及び硫黄成分とを含み、塩素成分、珪素成分及び硫黄成分の合計がリチウム含有遷移金属酸化物に対して200ppm以下であるリチウムイオン電池用正極活物質である。   The present invention completed on the basis of the above knowledge includes, in one aspect, a lithium-containing transition metal oxide and a chlorine component, a silicon component and a sulfur component of 100 ppm or less with respect to the lithium-containing transition metal oxide, The positive electrode active material for a lithium ion battery, wherein the total of the silicon component and the sulfur component is 200 ppm or less with respect to the lithium-containing transition metal oxide.

本発明に係るリチウムイオン電池用正極活物質は一実施形態において、塩素成分、珪素成分及び硫黄成分が、リチウム含有遷移金属酸化物に対してそれぞれ50ppm以下であり、塩素成分、珪素成分及び硫黄成分の合計がリチウム含有遷移金属酸化物に対して100ppm以下である。   In one embodiment, the positive electrode active material for a lithium ion battery according to the present invention has a chlorine component, a silicon component, and a sulfur component of 50 ppm or less with respect to the lithium-containing transition metal oxide, respectively, and a chlorine component, a silicon component, and a sulfur component. Is 100 ppm or less with respect to the lithium-containing transition metal oxide.

本発明に係るリチウムイオン電池用正極活物質は別の実施形態において、リチウム含有遷移金属酸化物の組成が、組成式:Lix(Niy1-y)Oz
(式中、Mは、Mn、Co及びAlからなる群から選択された1種又は2種以上であり、xは0.9〜1.2であり、yは0.3〜0.9であり、zは1.9以上である。)
で表され、且つ、層状構造を有する。
In another embodiment of the positive electrode active material for a lithium ion battery according to the present invention, the composition of the lithium-containing transition metal oxide has the composition formula: Li x (Ni y M 1-y ) O z
(In the formula, M is one or more selected from the group consisting of Mn, Co and Al, x is 0.9 to 1.2, and y is 0.3 to 0.9. Yes, z is 1.9 or more.)
And has a layered structure.

本発明は、別の側面において、本発明に係るリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極である。   In another aspect, the present invention is a positive electrode for a lithium ion battery using the positive electrode active material for a lithium ion battery according to the present invention.

本発明は、更に別の側面において、本発明に係るリチウムイオン電池用正極を用いたリチウムイオン電池である。   In still another aspect, the present invention is a lithium ion battery using the positive electrode for a lithium ion battery according to the present invention.

本発明によれば、良好な電池特性を有するリチウムイオン電池用正極活物質を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material for lithium ion batteries which has a favorable battery characteristic can be provided.

(リチウムイオン電池用正極活物質の構成)
本発明のリチウムイオン電池用正極活物質の材料としては、一般的なリチウムイオン電池用正極用の正極活物質として有用な化合物を広く用いることができるが、特に、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等のリチウム含有遷移金属酸化物を用いるのが好ましい。リチウム含有遷移金属酸化物は、特に限定されないが、例えば、組成式:Lix(Niy1-y)Oz
(式中、Mは、Mn、Co及びAlからなる群から選択された1種又は2種以上であり、xは0.9〜1.2であり、yは0.3〜0.9であり、zは1.9以上である。)
で表され、且つ、層状構造を有する。
リチウムイオン電池用正極活物質における全金属に対するリチウムの比率が0.9〜1.1であるが、これは、0.9未満では、安定した結晶構造を保持し難く、1.1超では容量が低くなるためである。また、正極活物質が層状構造であるため、スピネル構造等に比べて放電容量が高くなる。
(Configuration of positive electrode active material for lithium ion battery)
As a material of the positive electrode active material for lithium ion batteries of the present invention, compounds useful as a positive electrode active material for general positive electrodes for lithium ion batteries can be widely used. In particular, lithium cobaltate (LiCoO 2 ), It is preferable to use lithium-containing transition metal oxides such as lithium nickelate (LiNiO 2 ) and lithium manganate (LiMn 2 O 4 ). The lithium-containing transition metal oxide is not particularly limited. For example, the composition formula: Li x (Ni y M 1-y ) O z
(In the formula, M is one or more selected from the group consisting of Mn, Co and Al, x is 0.9 to 1.2, and y is 0.3 to 0.9. Yes, z is 1.9 or more.)
And has a layered structure.
The ratio of lithium to all metals in the positive electrode active material for a lithium ion battery is 0.9 to 1.1. This is less than 0.9, and it is difficult to maintain a stable crystal structure. This is because of a low. Moreover, since the positive electrode active material has a layered structure, the discharge capacity is higher than that of a spinel structure or the like.

本発明のリチウムイオン電池用正極活物質は、酸素が組成式において過剰に含まれており、リチウムイオン電池に用いた場合、容量、レート特性及び容量保持率等の電池特性が良好となる。   The positive electrode active material for a lithium ion battery of the present invention contains oxygen excessively in the composition formula, and when used in a lithium ion battery, battery characteristics such as capacity, rate characteristics, and capacity retention ratio are improved.

本発明のリチウムイオン電池用正極活物質は、リチウム含有遷移金属酸化物と、リチウム含有遷移金属酸化物に対してそれぞれ100ppm以下の塩素成分、珪素成分及び硫黄成分とを含む。塩素成分、珪素成分及び硫黄成分の合計がリチウム含有遷移金属酸化物に対して200ppm以下である。
リチウムイオン電池用正極活物質には、通常、その製造工程で塩素、珪素及び硫黄等の不純物が含まれる。このとき、塩素は主にLiCl又はNaClの形態で、珪素は主にSiO2の形態で、硫黄は主にLi2Sの形態でそれぞれ含まれている。このうち、LiCl、NaCl及びSiO2はそれぞれ吸湿性があり、電池内に水分を持ち込むことによって電池の劣化の原因となる。Li2Sは、Liイオンの電池作用の阻害要因となる。また、これらは結晶に固溶しないため正極活物質を構成する粒子間の粒界に存在するが、正極材表面に存在する場合に、特に電池特性に悪影響を与える。
このような問題に対し、本発明に係るリチウムイオン電池用正極活物質は、上述のような電池特性に悪影響を与える不純物における塩素成分、珪素成分及び硫黄成分が、リチウム含有遷移金属酸化物に対してそれぞれ100ppm以下であり、不純物の電池特性への影響が良好に抑制されている。
また、好ましくは、塩素成分、珪素成分及び硫黄成分がリチウム含有遷移金属酸化物に対してそれぞれ50ppm以下であり、塩素成分、珪素成分及び硫黄成分の合計がリチウム含有遷移金属酸化物に対して100ppm以下である。
The positive electrode active material for a lithium ion battery of the present invention contains a lithium-containing transition metal oxide and a chlorine component, a silicon component, and a sulfur component of 100 ppm or less with respect to the lithium-containing transition metal oxide, respectively. The total of the chlorine component, silicon component and sulfur component is 200 ppm or less with respect to the lithium-containing transition metal oxide.
The positive electrode active material for a lithium ion battery usually contains impurities such as chlorine, silicon and sulfur in the production process. At this time, chlorine is mainly contained in the form of LiCl or NaCl, silicon is mainly contained in the form of SiO 2 , and sulfur is mainly contained in the form of Li 2 S. Of these, LiCl, NaCl, and SiO 2 each have a hygroscopic property, and bringing moisture into the battery causes deterioration of the battery. Li 2 S becomes a factor that inhibits the battery action of Li ions. Moreover, since these do not dissolve in the crystal, they exist at the grain boundaries between the particles constituting the positive electrode active material, but when they are present on the surface of the positive electrode material, the battery characteristics are particularly adversely affected.
With respect to such problems, the positive electrode active material for lithium ion batteries according to the present invention has a chlorine component, a silicon component, and a sulfur component in impurities that adversely affect the battery characteristics as described above, compared to the lithium-containing transition metal oxide. Each of them is 100 ppm or less, and the influence of impurities on the battery characteristics is well suppressed.
Preferably, the chlorine component, silicon component, and sulfur component are each 50 ppm or less with respect to the lithium-containing transition metal oxide, and the total of the chlorine component, silicon component, and sulfur component is 100 ppm with respect to the lithium-containing transition metal oxide. It is as follows.

(リチウムイオン電池用正極及びそれを用いたリチウムイオン電池の構成)
本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。
(Configuration of positive electrode for lithium ion battery and lithium ion battery using the same)
The positive electrode for a lithium ion battery according to an embodiment of the present invention includes, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above-described configuration, a conductive additive, and a binder from an aluminum foil or the like. The current collector has a structure provided on one side or both sides. Moreover, the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure.

(リチウムイオン電池用正極活物質の製造方法)
次に、本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
まず、金属塩溶液を作製する。当該金属は、例えば、Niと、Mn、Co及びAlからなる群から選択された1種又は2種以上とで構成されている。また、金属塩は硫酸塩、塩化物塩、硝酸塩、酢酸塩等であり、特に硝酸塩が好ましい。これは、焼成原料中に混入しても焼成すれば硝酸塩基は残存し難く、さらに、硝酸塩が酸化剤として機能し、焼成原料中の金属の酸化を促進する働きがあるためである。金属塩に含まれる各金属を所望のモル比率となるように調整しておく。これにより、正極活物質中の各金属のモル比率が決定する。
(Method for producing positive electrode active material for lithium ion battery)
Next, the manufacturing method of the positive electrode active material for lithium ion batteries which concerns on embodiment of this invention is demonstrated in detail.
First, a metal salt solution is prepared. The metal is composed of, for example, Ni and one or more selected from the group consisting of Mn, Co, and Al. The metal salt is sulfate, chloride, nitrate, acetate, etc., and nitrate is particularly preferable. This is because even if it is mixed in the firing raw material, the nitrate base hardly remains if fired, and the nitrate functions as an oxidant and promotes the oxidation of the metal in the firing raw material. Each metal contained in the metal salt is adjusted so as to have a desired molar ratio. Thereby, the molar ratio of each metal in the positive electrode active material is determined.

次に、リチウム原料として、例えば、炭酸リチウムを純水に懸濁させる。リチウム原料としては、炭酸リチウムに限られず、例えば、硝酸リチウム、水酸化リチウム、酢酸リチウム、アルキルリチウム、脂肪酸リチウム又はハロゲンリチウムであってもよい。その後、上記金属の金属塩溶液を投入してリチウム塩溶液スラリーを作製する。このとき、スラリー中に微小粒のリチウム含有炭酸塩が析出する。スラリー中の微小粒の平均粒径は、所定時間の撹拌によるせん断によって8〜16μmに調製されている。このようにスラリー中の粒子の粒径を調製することにより粒子が細かくなり過ぎることを抑制している。このため、その後の焼成工程における粒子の焼き具合が良好となる。また、金属塩として硫酸塩や塩化物塩等熱処理時にそのリチウム化合物が反応しない場合は飽和炭酸リチウム溶液で洗浄した後、濾別する。硝酸塩や酢酸塩のように、そのリチウム化合物が熱処理中にリチウム原料として反応する場合は洗浄せず、そのまま濾別し、乾燥することにより焼成前駆体として用いることができる。
次に、濾別したリチウム含有炭酸塩を乾燥することにより、リチウム塩の複合体(リチウムイオン電池正極材用前駆体)の粉末を得る。
Next, for example, lithium carbonate is suspended in pure water as a lithium raw material. The lithium raw material is not limited to lithium carbonate, and may be, for example, lithium nitrate, lithium hydroxide, lithium acetate, alkyl lithium, fatty acid lithium, or halogen lithium. Thereafter, a metal salt solution of the above metal is added to prepare a lithium salt solution slurry. At this time, fine particles of lithium-containing carbonate precipitate in the slurry. The average particle size of the fine particles in the slurry is adjusted to 8 to 16 μm by shearing with stirring for a predetermined time. Thus, by adjusting the particle size of the particles in the slurry, the particles are prevented from becoming too fine. For this reason, the baking condition of the particle | grains in a subsequent baking process becomes favorable. If the lithium compound does not react during heat treatment such as sulfate or chloride as a metal salt, it is washed with a saturated lithium carbonate solution and then filtered off. When the lithium compound reacts as a lithium raw material during the heat treatment, such as nitrate or acetate, it can be used as a calcined precursor by washing and drying as it is without washing.
Next, the lithium-containing carbonate separated by filtration is dried to obtain a lithium salt composite (precursor for lithium ion battery positive electrode material) powder.

上述の洗浄工程において、金属塩溶液の原料として硫酸塩または塩化物塩を使用した場合は、以下の工夫を行う。すなわち、上述の洗浄に続いて、フィルタープレス等による濾過を行う。このとき、濾過に用いる濾布の通気度を0.4cc/cm2・秒以上とし、かつ洗浄回数を2回以上とする。これにより、塩素成分、硫黄成分、及び、珪素成分の残留量を洗浄前の1000mg/Lから300mg/L程度に低減することができる。塩素成分、珪素成分、及び、硫黄成分の残留量がここまで低減されれば、後の焼成工程を適切に行うことにより、塩素、珪素、硫黄のいずれもリチウム含有遷移金属酸化物に対して50ppm程度とすることが可能となる。 In the above-described cleaning step, when sulfate or chloride salt is used as a raw material for the metal salt solution, the following measures are taken. That is, filtration by a filter press or the like is performed following the above-described cleaning. At this time, the air permeability of the filter cloth used for filtration is 0.4 cc / cm 2 · sec or more, and the number of washings is 2 or more. Thereby, the residual amount of a chlorine component, a sulfur component, and a silicon component can be reduced from about 1000 mg / L before cleaning to about 300 mg / L. If the residual amounts of the chlorine component, silicon component, and sulfur component are reduced so far, the subsequent firing step is appropriately performed, so that all of chlorine, silicon, and sulfur are 50 ppm relative to the lithium-containing transition metal oxide. It becomes possible to be about.

次に、所定の大きさの容量を有するこう鉢(焼成容器)を準備し、この焼成容器に上述のように作製したリチウムイオン電池正極材用前駆体の粉末を充填する。次に、リチウムイオン電池正極材用前駆体の粉末が充填された焼成容器を焼成炉へ移設し、焼成を行う。焼成は、酸素を含む雰囲気下、好ましくは酸素雰囲気下で所定時間加熱保持することにより行う。また、101〜202KPaでの加圧下で焼成を行うと、さらに組成中の酸素量が増加するため、好ましい。焼成温度は850〜1200℃で行う。好ましくは、850〜950℃で行う。焼成温度がこのような範囲であれば、結晶性が上がり、高性能の正極活物質となる。
また、このとき、用いるこう鉢からの汚染を避ける工夫が必要となる。こう鉢は、通常アルミナ質、ムライト質、コーディエライト質などからなる耐火物であるが、主成分としてAl、Si、Mg等を含み、特にSiの汚染源となる可能性がある。種々の材質のこう鉢を検討した結果、特に熱伝導率が高いほどSiによる汚染が多いことが分かった。従って、こう鉢の材質としては熱伝導率が1.2W/(m・K)以下とするのが好ましい。
その後、焼成容器から粉末を取り出し、解砕を行うことにより正極活物質の粉体を得る。このとき、解砕はパルベライザーを用いると好ましい。パルベライザーを用いると、粒子が分級するため、均一な粒子径が得られるという利点がある。
Next, a mortar (firing container) having a predetermined capacity is prepared, and this calcining container is filled with the precursor powder for the lithium ion battery positive electrode material produced as described above. Next, the firing container filled with the precursor powder for the lithium ion battery positive electrode material is moved to a firing furnace and fired. Firing is performed by heating and holding for a predetermined time in an oxygen-containing atmosphere, preferably in an oxygen atmosphere. Further, it is preferable to perform baking under pressure of 101 to 202 KPa because the amount of oxygen in the composition further increases. The firing temperature is 850 to 1200 ° C. Preferably, it is performed at 850 to 950 ° C. When the firing temperature is in such a range, the crystallinity is improved and a high-performance positive electrode active material is obtained.
Moreover, the device which avoids the contamination from the mortar used is needed at this time. The mortar is a refractory usually made of alumina, mullite, cordierite, etc., but contains Al, Si, Mg, etc. as main components, and may become a contamination source of Si in particular. As a result of examining various types of mortars, it was found that the higher the thermal conductivity, the more contamination by Si. Accordingly, it is preferable that the material of the mortar has a thermal conductivity of 1.2 W / (m · K) or less.
Thereafter, the powder is taken out from the firing container and pulverized to obtain a powder of the positive electrode active material. At this time, it is preferable to use a pulverizer for crushing. When a pulverizer is used, the particles are classified, so that there is an advantage that a uniform particle size can be obtained.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Examples for better understanding of the present invention and its advantages are provided below, but the present invention is not limited to these examples.

(実施例1〜11)
まず、表1に記載の量の炭酸リチウムを純水に懸濁させた後、金属塩溶液を1.6L/hrで投入した。ここで、金属塩溶液は、各金属の硝酸塩、硫酸塩及び塩化物の水和物を、各金属が表1に記載の組成比になるように調整し、また全金属モル数が14モルになるように調整した。
この処理により溶液中に微小粒のリチウム含有炭酸塩が析出した。この析出物を、金属塩として硫酸塩や塩化物を用いた場合は飽和炭酸リチウム溶液で2回以上洗浄し、フィルタープレスを使用して濾別した。このとき、濾布の通気度を1.2〜1.5cc/cm2・秒とした。
続いて、析出物を乾燥してリチウム含有炭酸塩(リチウムイオン電池正極材用前駆体)を得た。
次に、焼成容器として表2に記載の構成成分及び熱伝導率を有するこう鉢(こう鉢A、又は、こう鉢B)を準備し、この焼成容器内にリチウム含有炭酸塩を充填した。次に、焼成容器を焼成炉に入れて、表1に記載の焼成温度まで6時間かけて昇温させ、続いて2時間加熱保持した後冷却して酸化物を得た。次に、得られた酸化物をパルベライザーにより解砕し、リチウムイオン二次電池正極材の粉末を得た。
(Examples 1 to 11)
First, after suspending the amount of lithium carbonate described in Table 1 in pure water, a metal salt solution was added at 1.6 L / hr. Here, the metal salt solution was prepared by adjusting the nitrate, sulfate and chloride hydrates of each metal so that each metal had the composition ratio shown in Table 1, and the total number of moles of metal was 14 moles. It adjusted so that it might become.
By this treatment, fine lithium-containing carbonate was precipitated in the solution. When a sulfate or chloride was used as a metal salt, the precipitate was washed twice or more with a saturated lithium carbonate solution, and filtered using a filter press. At this time, the air permeability of the filter cloth was set to 1.2 to 1.5 cc / cm 2 · sec.
Subsequently, the precipitate was dried to obtain a lithium-containing carbonate (a precursor for a lithium ion battery positive electrode material).
Next, a mortar having a constitutional component and thermal conductivity shown in Table 2 (alarm mortar A or mortar B) was prepared as a calcination container, and this calcination container was filled with a lithium-containing carbonate. Next, the firing container was put into a firing furnace, and the temperature was raised to the firing temperature shown in Table 1 over 6 hours, followed by heating and holding for 2 hours, followed by cooling to obtain an oxide. Next, the obtained oxide was crushed with a pulverizer to obtain a powder of a positive electrode material for a lithium ion secondary battery.

(比較例1〜10)
比較例1〜10として、原料の各金属を表1に示すような組成とし、前駆体の洗浄方法と焼成容器(こう鉢A〜C)の組み合わせが表1に示したように異なる以外は、実施例1〜11と同様の処理を行った。
(Comparative Examples 1-10)
As Comparative Examples 1-10, each metal of the raw material has a composition as shown in Table 1, except that the combination of the precursor cleaning method and the firing container (cooker A to C) is different as shown in Table 1, The same processing as in Examples 1 to 11 was performed.

Figure 2012169224
Figure 2012169224

Figure 2012169224
Figure 2012169224

(評価)
各正極材中の金属含有量は、誘導結合プラズマ発光分光分析装置(ICP−OES)で測定し、各金属の組成比(モル比)を算出した。また、Si、S及びClの各含有率は、ICP法及び熱分解電位差滴定法で測定した。酸素含有量は、Li及び金属成分の分析値に加え、不純物濃度、残留アルカリ量を、分析試料全量から差し引くことにより求め、これによりzを算出した。リチウム塩溶液スラリー中の析出物(リチウム含有炭酸塩)の平均粒径は、各正極材の粉末のSEM(Scanning Electron Microscope:走査型電子顕微鏡)写真により100個の粒子を観察し、それらの粒径を算出して平均値を求めることにより算出した。
また、各正極材と、導電材と、バインダーとを85:8:7の割合で秤量し、バインダーを有機溶媒(N−メチルピロリドン)に溶解したものに、正極材料と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M−LiPF6をEC−DMC(1:1)に溶解したものを用いて、電流密度0.2Cの際の放電容量を測定した。また電流密度0.2Cのときの電池容量に対する電流密度2Cのときの、放電容量の比を算出してレート特性を得た。さらに、容量保持率は、室温で1Cの放電電流で得られた初期放電容量と100サイクル後の放電容量を比較することによって測定した。測定結果を表3に示す。
(Evaluation)
The metal content in each positive electrode material was measured with an inductively coupled plasma optical emission spectrometer (ICP-OES), and the composition ratio (molar ratio) of each metal was calculated. Moreover, each content rate of Si, S, and Cl was measured by ICP method and the pyrolysis potentiometric titration method. The oxygen content was obtained by subtracting the impurity concentration and the residual alkali amount from the total amount of the analytical sample in addition to the analytical values of Li and metal components, and z was calculated thereby. The average particle size of the precipitate (lithium-containing carbonate) in the lithium salt solution slurry was determined by observing 100 particles from SEM (Scanning Electron Microscope) photographs of the powder of each positive electrode material. The diameter was calculated by calculating the average value.
Also, each positive electrode material, conductive material, and binder are weighed at a ratio of 85: 8: 7, and the positive electrode material and the conductive material are mixed with the binder dissolved in an organic solvent (N-methylpyrrolidone). Then, it was made into a slurry, applied onto an Al foil, dried and pressed to obtain a positive electrode. Subsequently, a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and 1M-LiPF 6 dissolved in EC-DMC (1: 1) was used as the electrolyte, and the current density was 0.2C. The discharge capacity was measured. Moreover, the ratio of the discharge capacity at the current density of 2C to the battery capacity at the current density of 0.2C was calculated to obtain rate characteristics. Furthermore, the capacity retention was measured by comparing the initial discharge capacity obtained with a 1 C discharge current at room temperature with the discharge capacity after 100 cycles. Table 3 shows the measurement results.

Figure 2012169224
Figure 2012169224

実施例1〜11では、いずれも良好な電池特性が得られた。
比較例1〜3、5〜7及び9では、いずれも製造工程において、硫酸塩又は塩化物塩などの焼成しても残存する硫化物や塩化物が析出しているにもかかわらず、その析出物の洗浄方法が適切でなかったため、電池特性が不良となった。
比較例2、4及び8〜10では、焼成に用いたこう鉢の熱伝導率が大きく、特にSiによる汚染が多くなり、電池特性が不良となった。
また、XRD測定により、実施例1〜11及び比較例1〜10の全てが層状構造であることが確認された。
In Examples 1 to 11, good battery characteristics were obtained in all cases.
In Comparative Examples 1 to 3, 5 to 7, and 9, in all of the production process, although sulfides or chlorides remaining after firing such as sulfates or chlorides were precipitated, the precipitation Since the washing method of the object was not appropriate, the battery characteristics were poor.
In Comparative Examples 2, 4 and 8 to 10, the thermal conductivity of the mortar used for firing was large, especially contamination by Si was increased, resulting in poor battery characteristics.
Moreover, it was confirmed by XRD measurement that all of Examples 1-11 and Comparative Examples 1-10 are layered structures.

Claims (5)

リチウム含有遷移金属酸化物と、該リチウム含有遷移金属酸化物に対してそれぞれ100ppm以下の塩素成分、珪素成分及び硫黄成分とを含み、該塩素成分、珪素成分及び硫黄成分の合計が該リチウム含有遷移金属酸化物に対して200ppm以下であるリチウムイオン電池用正極活物質。   A lithium-containing transition metal oxide and a chlorine component, a silicon component and a sulfur component of 100 ppm or less with respect to the lithium-containing transition metal oxide, respectively, and the total of the chlorine component, silicon component and sulfur component is the lithium-containing transition The positive electrode active material for lithium ion batteries which is 200 ppm or less with respect to a metal oxide. 前記塩素成分、珪素成分及び硫黄成分が、前記リチウム含有遷移金属酸化物に対してそれぞれ50ppm以下であり、該塩素成分、珪素成分及び硫黄成分の合計が該リチウム含有遷移金属酸化物に対して100ppm以下である請求項1に記載のリチウムイオン電池用正極活物質。   The chlorine component, silicon component, and sulfur component are each 50 ppm or less with respect to the lithium-containing transition metal oxide, and the total of the chlorine component, silicon component, and sulfur component is 100 ppm with respect to the lithium-containing transition metal oxide. The positive electrode active material for a lithium ion battery according to claim 1, wherein: 前記リチウム含有遷移金属酸化物の組成が、組成式:Lix(Niy1-y)Oz
(式中、Mは、Mn、Co及びAlからなる群から選択された1種又は2種以上であり、xは0.9〜1.2であり、yは0.3〜0.9であり、zは1.9以上である。)
で表され、且つ、層状構造を有する請求項1又は2に記載のリチウムイオン電池用正極活物質。
The composition of the lithium-containing transition metal oxide has the composition formula: Li x (Ni y M 1-y ) O z
(In the formula, M is one or more selected from the group consisting of Mn, Co and Al, x is 0.9 to 1.2, and y is 0.3 to 0.9. Yes, z is 1.9 or more.)
The positive electrode active material for a lithium ion battery according to claim 1 or 2, which has a layered structure.
請求項1〜3のいずれかに記載のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極。   The positive electrode for lithium ion batteries using the positive electrode active material for lithium ion batteries in any one of Claims 1-3. 請求項4に記載のリチウムイオン電池用正極を用いたリチウムイオン電池。   The lithium ion battery using the positive electrode for lithium ion batteries of Claim 4.
JP2011031211A 2011-02-16 2011-02-16 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery Active JP6016329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011031211A JP6016329B2 (en) 2011-02-16 2011-02-16 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011031211A JP6016329B2 (en) 2011-02-16 2011-02-16 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015078070A Division JP6069397B2 (en) 2015-04-06 2015-04-06 Method for producing positive electrode active material for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2012169224A true JP2012169224A (en) 2012-09-06
JP6016329B2 JP6016329B2 (en) 2016-10-26

Family

ID=46973184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011031211A Active JP6016329B2 (en) 2011-02-16 2011-02-16 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery

Country Status (1)

Country Link
JP (1) JP6016329B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045643A1 (en) * 2012-09-19 2014-03-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell
JP2014203589A (en) * 2013-04-02 2014-10-27 旭化成株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
JP2018067549A (en) * 2017-11-17 2018-04-26 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955203A (en) * 1995-08-15 1997-02-25 Fuji Photo Film Co Ltd Nonaqueous battery
JPH10112306A (en) * 1996-10-07 1998-04-28 Sony Corp Secondary battery
JPH11345615A (en) * 1998-06-02 1999-12-14 Fuji Photo Film Co Ltd Lithium ion nonaqueous electrolyte secondary battery
JP2000123829A (en) * 1998-10-20 2000-04-28 Sumitomo Chem Co Ltd Manufacture of lithium ion secondary battery active material
JP2004171909A (en) * 2002-11-20 2004-06-17 Ngk Insulators Ltd Lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955203A (en) * 1995-08-15 1997-02-25 Fuji Photo Film Co Ltd Nonaqueous battery
JPH10112306A (en) * 1996-10-07 1998-04-28 Sony Corp Secondary battery
JPH11345615A (en) * 1998-06-02 1999-12-14 Fuji Photo Film Co Ltd Lithium ion nonaqueous electrolyte secondary battery
JP2000123829A (en) * 1998-10-20 2000-04-28 Sumitomo Chem Co Ltd Manufacture of lithium ion secondary battery active material
JP2004171909A (en) * 2002-11-20 2004-06-17 Ngk Insulators Ltd Lithium secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
JP2014060126A (en) * 2012-09-19 2014-04-03 Jx Nippon Mining & Metals Corp Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2014045643A1 (en) * 2012-09-19 2014-03-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
JP2014203589A (en) * 2013-04-02 2014-10-27 旭化成株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2018067549A (en) * 2017-11-17 2018-04-26 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JP6016329B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6016329B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
JP5819200B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5963745B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI423504B (en) A positive electrode for a lithium ion battery, a positive electrode for a lithium ion battery, a lithium ion battery, and a method for producing a positive electrode active material for a lithium ion battery
JP5819199B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6159514B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5923036B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR101450421B1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP6578634B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
WO2011108595A1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP5985818B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR20140138780A (en) Positive electrode active material particle powder and method for producing same, and non-aqueous electrolyte secondary battery
JP6303279B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP2015056382A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6026403B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5876739B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6026404B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2014194868A (en) Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
JP6030546B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6069397B2 (en) Method for producing positive electrode active material for lithium ion battery
JP2020107536A (en) Positive electrode active material for lithium ion secondary battery, and method for manufacturing the same
JP2018125314A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5985819B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JPWO2012073548A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI469934B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150413

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160927

R150 Certificate of patent or registration of utility model

Ref document number: 6016329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250