JP2012169062A - Method for producing oxide superconducting film - Google Patents
Method for producing oxide superconducting film Download PDFInfo
- Publication number
- JP2012169062A JP2012169062A JP2011027078A JP2011027078A JP2012169062A JP 2012169062 A JP2012169062 A JP 2012169062A JP 2011027078 A JP2011027078 A JP 2011027078A JP 2011027078 A JP2011027078 A JP 2011027078A JP 2012169062 A JP2012169062 A JP 2012169062A
- Authority
- JP
- Japan
- Prior art keywords
- film
- oxide superconducting
- thin film
- thickness
- vapor deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 239000010408 film Substances 0.000 claims abstract description 109
- 238000000034 method Methods 0.000 claims abstract description 36
- 239000010409 thin film Substances 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 238000005498 polishing Methods 0.000 claims abstract description 18
- 238000009499 grossing Methods 0.000 claims abstract description 16
- 238000005240 physical vapour deposition Methods 0.000 claims abstract description 14
- 238000007740 vapor deposition Methods 0.000 claims abstract description 4
- 238000000427 thin-film deposition Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 description 22
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 230000007423 decrease Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 241000954177 Bangana ariza Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007735 ion beam assisted deposition Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
【課題】PVD法を用いて、膜厚の増加に比例してIcが増加し、所望する高いIcの酸化物超電導膜を得ることができる酸化物超電導膜の製造方法を提供する。
【解決手段】基板上に物理蒸着法を用いて酸化物超電導薄膜を形成することを繰り返して所定の厚みの成膜を行う薄膜成膜工程と、成膜された酸化物超電導薄膜の表面を平滑化する平滑化工程とを繰り返して厚膜の酸化物超電導膜を形成する酸化物超電導膜の製造方法。前記物理蒸着法はパルスレーザ蒸着法である。前記平滑化工程は研磨による平滑化工程である。
【選択図】図1An object of the present invention is to provide an oxide superconducting film manufacturing method capable of obtaining an oxide superconducting film having a desired high Ic by using a PVD method in which Ic increases in proportion to an increase in film thickness.
SOLUTION: A thin film forming process for forming a film having a predetermined thickness by repeatedly forming an oxide superconducting thin film on a substrate using physical vapor deposition, and smoothing the surface of the formed oxide superconducting thin film A method of manufacturing an oxide superconducting film in which a thick oxide superconducting film is formed by repeating a smoothing step to be formed. The physical vapor deposition method is a pulsed laser vapor deposition method. The smoothing step is a smoothing step by polishing.
[Selection] Figure 1
Description
本発明は、酸化物超電導薄膜の製造方法に関し、詳しくは、超電導線材の製造に用いられる超電導特性、特に臨界電流値Icが優れた酸化物超電導膜の製造方法に関する。 The present invention relates to a method for manufacturing an oxide superconducting thin film, and more particularly to a method for manufacturing an oxide superconducting film having excellent superconducting characteristics, particularly a critical current value Ic, used for manufacturing a superconducting wire.
近年、酸化物超電導膜を用いた超電導線材の一層の普及のため、臨界電流値Ic等の超電導特性をより高めた酸化物超電導膜の製造の研究が盛んに行われている。 In recent years, in order to further spread superconducting wires using oxide superconducting films, researches on the production of oxide superconducting films with higher superconducting properties such as critical current value Ic have been actively conducted.
このような酸化物超電導膜の製造方法として、真空中等の気相中で成膜を行う気相法があるが、特に、パルスレーザ蒸着法(Pulse Laser Deposition、略称:PLD法)、スパッタリング法、イオンプレーテイング法等の物理的蒸着法(PV
D法)は、簡便な成膜方法であり成膜速度が速い等の利点があるため、好ましく用いられている。
As a manufacturing method of such an oxide superconducting film, there is a gas phase method in which a film is formed in a gas phase such as a vacuum. In particular, a pulse laser deposition method (abbreviation: PLD method), a sputtering method, Physical vapor deposition such as ion plating (PV
Method D) is a simple film forming method and is preferably used because it has advantages such as a high film forming speed.
具体的には、例えば、PLD法では、真空下で、パルスレーザ光を酸化物超電導材のターゲットに照射してクラスターやイオンなどのプルームを発生させ、YSZ(イットリア安定化ジルコニア)等の中間層を形成した金属基板などの基板上に、蒸着、堆積させることにより、REBa2Cu3O7−x(RE:希土類元素)で示される希土類・バリウム・銅系超電導酸化物(REBCO)等の酸化物超電導薄膜を成膜している(特許文献1)。 Specifically, for example, in the PLD method, a pulse laser beam is irradiated to the target of the oxide superconducting material under vacuum to generate a plume such as clusters and ions, and an intermediate layer such as YSZ (yttria stabilized zirconia) Oxidation of rare earth / barium / copper superconducting oxide (REBCO) or the like represented by REBa 2 Cu 3 O 7-x (RE: rare earth element) by vapor deposition and deposition on a substrate such as a metal substrate on which is formed A superconducting thin film is formed (Patent Document 1).
そして、より高いIcを有する酸化物超電導膜を得るために、酸化物超電導膜の厚膜化が検討されており、一度の成膜により厚膜を形成する方法に比べ、薄膜の成膜を繰り返し積層することにより厚膜化する方法の場合、Icが高くなることが知られている。 In order to obtain an oxide superconducting film having a higher Ic, it has been studied to increase the thickness of the oxide superconducting film, and the thin film formation is repeated as compared with the method of forming the thick film by a single film formation. In the case of a method of increasing the thickness by stacking, it is known that Ic increases.
しかしながら、従来のPVD法を用いて、薄膜の積層を行った場合、膜厚の増加に比例してIcが増加せず、ある膜厚でIcが飽和し、それ以上の膜厚ではIcが伸びないという問題があった。 However, when thin films are stacked using the conventional PVD method, Ic does not increase in proportion to the increase in film thickness, Ic saturates at a certain film thickness, and Ic increases at a film thickness greater than that. There was no problem.
そこで、本発明は、PVD法を用いて、膜厚の増加に比例してIcが増加し、所望する高いIcの酸化物超電導膜を得ることができる酸化物超電導膜の製造方法を提供することを課題とする。 Accordingly, the present invention provides a method of manufacturing an oxide superconducting film that uses the PVD method to increase Ic in proportion to the increase in film thickness and obtain an oxide superconducting film having a desired high Ic. Is an issue.
本発明者は、従来のPVD法による酸化物超電導膜の作製において、膜厚の増加に対してIcが飽和する原因につき、種々の実験、検討を行った。 The present inventor conducted various experiments and examinations on the cause of Ic saturation with increasing film thickness in the production of an oxide superconducting film by the conventional PVD method.
その結果、PVD法による酸化物超電導膜の成膜の場合、膜厚が増加するにつれて、成膜された酸化物超電導膜の表面状態が荒くなり、即ち、表面粗度が大きくなって、膜表面における結晶性が低下していることが分かった。 As a result, in the case of forming an oxide superconducting film by the PVD method, as the film thickness increases, the surface state of the formed oxide superconducting film becomes rough, that is, the surface roughness increases, and the film surface It has been found that the crystallinity at is lowered.
そして、表面粗度の増加は、表面積の増加や放射率の増加を招き、この結果、膜表面の温度が低下して、結晶のc軸配向性が低下していることが分かった。 And it was found that the increase in surface roughness led to an increase in surface area and an increase in emissivity, resulting in a decrease in the film surface temperature and a decrease in crystal c-axis orientation.
そこで、本発明者は、成膜過程の途中で膜表面を平滑化した場合、結晶性が低下した表面部が除去されると共に、また結晶のc軸配向性の低下が抑制できると考え、実験を行った結果、Icの飽和が抑制され、厚膜化時に高いIcの酸化物超電導膜が得られることが確認でき、本発明を完成するに至った。 Therefore, the present inventor considered that when the film surface was smoothed during the film formation process, the surface portion where the crystallinity was reduced was removed, and the decrease in the c-axis orientation of the crystal could be suppressed. As a result, it was confirmed that saturation of Ic was suppressed and a high Ic oxide superconducting film was obtained when the film thickness was increased, and the present invention was completed.
これを、図2に基づき詳しく説明する。図2は、本発明における膜厚とIcとの間の関係を示す図である。なお、図2において、横軸は膜厚(μm)であり、縦軸はIc(A)である。 This will be described in detail with reference to FIG. FIG. 2 is a diagram showing the relationship between the film thickness and Ic in the present invention. In FIG. 2, the horizontal axis is the film thickness (μm), and the vertical axis is Ic (A).
従来の方法のまま、平滑化工程を設けることなく酸化物超電導薄膜の成膜を行った場合、イの点に達するまでは膜厚の増加と比例してIcが増加するものの、その後は、ロ、ハの点に示されるように、膜厚の増加に対してIcの伸びが低下していた。 When an oxide superconducting thin film is formed without providing a smoothing process as in the conventional method, Ic increases in proportion to the increase in film thickness until reaching point a. As indicated by points C, the elongation of Ic decreased with increasing film thickness.
そこで、Icがロに達した時点で成膜を停止し、成膜表面を削り取って膜厚がイの点の膜厚となるように調整し、成膜表面を平滑化する。即ち、成膜表面の状態を、表面の結晶性の低下や結晶のc軸配向性の低下が開始する直前の状態まで戻す。 Therefore, the film formation is stopped when Ic reaches B, the film formation surface is scraped off and adjusted so that the film thickness becomes the film thickness of point (a), and the film formation surface is smoothed. That is, the state of the film formation surface is returned to the state immediately before the start of the decrease in crystallinity of the surface or the decrease in crystal c-axis orientation.
その後、成膜を再開すると、イの膜厚の酸化物超電導薄膜の上で、膜厚の増加と比例してIcが増加する成膜が開始される。しかし、前記と同様に、膜厚がニの点に達した後は、膜厚の増加に対して、ホ、ヘの点に示されるように、Icの伸びが低下する。そこで、前記と同様に、成膜を停止し、ニの点の膜厚まで平滑化処理を行った後、成膜を再開する。その結果、ニの膜厚の酸化物超電導薄膜の上で、膜厚の増加と比例してIcが増加する成膜が開始され、トの点まで膜厚の増加と比例してIcが増加する成膜が行われる。 Thereafter, when film formation is resumed, film formation in which Ic increases in proportion to the increase in the film thickness is started on the oxide superconducting thin film having the film thickness a. However, as described above, after the film thickness reaches the point D, the increase in Ic decreases as the film thickness increases, as indicated by points E and F. Therefore, in the same manner as described above, the film formation is stopped, and after the smoothing process is performed up to the film thickness at point D, the film formation is resumed. As a result, film formation in which Ic increases in proportion to the increase in film thickness is started on the oxide superconducting thin film having the second film thickness, and Ic increases in proportion to the increase in film thickness up to the point of G. Film formation is performed.
このように、成膜工程と平滑化工程とを繰り返すことにより、膜厚の増加に比例してIcが増加した厚膜の酸化物超電導薄膜を作製することができる。 Thus, by repeating the film forming step and the smoothing step, it is possible to produce a thick oxide superconducting thin film in which Ic increases in proportion to the increase in film thickness.
本発明は、上記の知見に基づくものであり、請求項1に記載の発明は、
基板上に物理蒸着法を用いて酸化物超電導薄膜を形成することを繰り返して所定の厚みの成膜を行う薄膜成膜工程と、
成膜された酸化物超電導薄膜の表面を平滑化する平滑化工程と
を繰り返して厚膜の酸化物超電導膜を形成することを特徴とする酸化物超電導膜の製造方法である。
The present invention is based on the above findings, and the invention according to claim 1
A thin film deposition step of forming a predetermined thickness by repeatedly forming an oxide superconducting thin film using physical vapor deposition on a substrate;
It is a method for producing an oxide superconducting film, characterized in that a thick oxide superconducting film is formed by repeating a smoothing step of smoothing the surface of the formed oxide superconducting thin film.
基板としては、金属基板が好ましく、具体的には、IBAD基板、Ni−W合金基板、SUS等をベース金属としたクラッドタイプの配向金属基板等を挙げることができる。 The substrate is preferably a metal substrate, and specific examples include an IBAD substrate, a Ni—W alloy substrate, a clad type oriented metal substrate using SUS or the like as a base metal, and the like.
そして、金属基板上には中間層が形成されていることが好ましい。中間層としては、金属基板側から順に、種層(シード層)、拡散防止層(バリア層)、格子整合層(キャップ層)の多層構造で形成されている中間層が好ましい。 An intermediate layer is preferably formed on the metal substrate. The intermediate layer is preferably an intermediate layer formed in a multilayer structure of a seed layer (seed layer), a diffusion prevention layer (barrier layer), and a lattice matching layer (cap layer) in this order from the metal substrate side.
請求項2に記載の発明は、
前記物理蒸着法が、パルスレーザ蒸着法であることを特徴とする請求項1に記載の酸化物超電導膜の製造方法である。
The invention described in claim 2
2. The method of manufacturing an oxide superconducting film according to claim 1, wherein the physical vapor deposition method is a pulse laser vapor deposition method.
本発明において、物理蒸着法としては、前記したPLD法、スパッタリング法、イオンプレーテイング法等のいずれの方法を用いてもよいが、これらの内でも、PLD法は、特にターゲットと同じ組成比の薄膜を容易に作製できるため好ましい。 In the present invention, as the physical vapor deposition method, any of the above-described PLD method, sputtering method, ion plating method and the like may be used. Among these methods, the PLD method has the same composition ratio as that of the target. It is preferable because a thin film can be easily produced.
請求項3に記載の発明は、
前記平滑化工程が、研磨による平滑化工程であることを特徴とする請求項1または請求項2に記載の酸化物超電導膜の製造方法である。
The invention according to claim 3
The method for producing an oxide superconducting film according to claim 1 or 2, wherein the smoothing step is a smoothing step by polishing.
平滑手段として、研磨は、極めて簡便な手段であるため、好ましい。具体的な研磨方法としては、機械的な研磨作用と研磨剤の化学的作用とを用いるメカノケミカル研磨が好ましく、研磨剤としては、例えば、酸化物超電導膜と化学的に反応する恐れがないSiO2粉末などの懸濁液を挙げることができる。 As the smoothing means, polishing is preferable because it is a very simple means. As a specific polishing method, mechanochemical polishing using a mechanical polishing action and a chemical action of the polishing agent is preferable. As the polishing agent, for example, there is no risk of chemically reacting with the oxide superconducting film. There may be mentioned suspensions such as 2 powders.
本発明によれば、PVD法を用いて、膜厚の増加に比例してIcが増加し、所望する高いIcの酸化物超電導膜を得ることができる酸化物超電導膜の製造方法を提供することができる。 According to the present invention, by using the PVD method, Ic increases in proportion to the increase in film thickness, and an oxide superconducting film manufacturing method capable of obtaining a desired high Ic oxide superconducting film is provided. Can do.
以下、本発明を実施の形態に基づいて説明する。 Hereinafter, the present invention will be described based on embodiments.
本実施の形態においては、PLD法を用いて酸化物超電導膜を作製している。 In this embodiment, an oxide superconducting film is formed using a PLD method.
1.成膜装置(PLD装置)
図1は、本発明に係る酸化物超電導膜の製造方法に使用する成膜装置(PLD装置)の概略構成を示す図であり、(a)は平面図、(b)は側面図である。図1において、1は成膜装置、2はチャンバ、3は台に保持されたターゲット、4はエキシマレーザ、7はヒーターである。そして、チャンバ2には、図示しない減圧手段が接続されており、チャンバ2内を所定の圧力に保持することができる。
1. Film forming equipment (PLD equipment)
1A and 1B are diagrams showing a schematic configuration of a film forming apparatus (PLD apparatus) used in a method for manufacturing an oxide superconducting film according to the present invention, wherein FIG. 1A is a plan view and FIG. 1B is a side view. In FIG. 1, 1 is a film forming apparatus, 2 is a chamber, 3 is a target held on a table, 4 is an excimer laser, and 7 is a heater. The chamber 2 is connected to decompression means (not shown), and the inside of the chamber 2 can be maintained at a predetermined pressure.
また、成膜装置1の両側には、リールに巻かれたテープ状の配向金属基板Sをチャンバ2に送出す送出し機8と、チャンバ2内で表面に酸化物超電導膜が成膜された配向金属基板Sをリールに巻取る巻取り機9が備えられており、これらは外気から独立した雰囲気に保たれている。 Further, on both sides of the film forming apparatus 1, an oxide superconducting film was formed on the surface inside the chamber 2, and a delivery device 8 for sending the tape-shaped oriented metal substrate S wound around the reel to the chamber 2. A winder 9 for winding the oriented metal substrate S on a reel is provided, and these are maintained in an atmosphere independent from the outside air.
2.酸化物超電導薄膜の形成
次に、上記の成膜装置を用いた酸化物超電導薄膜の形成につき、説明する。
2. Formation of Oxide Superconducting Thin Film Next, formation of the oxide superconducting thin film using the above-described film forming apparatus will be described.
まず、リールに巻かれたテープ状の配向金属基板Sが送出し機8からチャンバ2に向けて送出される。 First, a tape-shaped oriented metal substrate S wound around a reel is sent from the delivery device 8 toward the chamber 2.
チャンバ2内では、エキシマレーザ4がパルスレーザ光を発生し、このパルスレーザ光がターゲット3に照射されることにより、ターゲット3の酸化物超電導膜材料からプルームPが発生する。 In the chamber 2, the excimer laser 4 generates pulsed laser light, and the target 3 is irradiated with the pulsed laser light, so that a plume P is generated from the oxide superconducting film material of the target 3.
そして、このプルームPが、送込まれた配向金属基板Sの表面に堆積、成長して酸化物超電導薄膜が形成される。 Then, the plume P is deposited and grown on the surface of the fed alignment metal substrate S to form an oxide superconducting thin film.
酸化物超電導薄膜が形成された配向金属基板Sは、その後、巻取り機9により巻取られる。 The oriented metal substrate S on which the oxide superconducting thin film is formed is then wound up by a winder 9.
以上の過程を繰り返すことにより、配向金属基板S上に厚膜の酸化物超電導薄膜が形成される。 By repeating the above process, a thick oxide superconducting thin film is formed on the oriented metal substrate S.
前記した通り、酸化物超電導薄膜のIcは、一定の膜厚を超えると膜厚に比例した伸びを得ることができない。このため、酸化物超電導薄膜の形成が繰り返されて所定の厚みとなった時点で、表面を研磨して、酸化物超電導薄膜の厚みを調整する。なお、この所定の厚みや研磨後の厚みについては、別途、予め実験により設定しておく。 As described above, Ic of the oxide superconducting thin film cannot obtain an elongation proportional to the film thickness when it exceeds a certain film thickness. For this reason, when the formation of the oxide superconducting thin film is repeated to obtain a predetermined thickness, the surface is polished to adjust the thickness of the oxide superconducting thin film. Note that the predetermined thickness and the thickness after polishing are separately set in advance by experiments.
酸化物超電導薄膜の厚みが調整された後、再び、所定の厚みの酸化物超電導薄膜が積層されるまで、上記の成膜を行う。 After the thickness of the oxide superconducting thin film is adjusted, the above film formation is performed until an oxide superconducting thin film having a predetermined thickness is again laminated.
以下、これを繰り返すことにより、所望するIcの酸化物超電導薄膜を形成することができる。 Thereafter, by repeating this, a desired Ic oxide superconducting thin film can be formed.
以下に実施例を用いて、本発明を具体的に説明する。 The present invention will be specifically described below with reference to examples.
(実施例)
1.配向金属基板の作製
最初に、SUS基板上に、配向Ni層を形成させた総厚120μmのクラッド材の上に、スパッタ法を用いて、CeO2(厚み140nm)/YSZ(厚み300nm)/CeO2(厚み70nm)の順で、3層からなる中間層を形成し、配向金属基板(幅30mm×長さ10m)とした。
(Example)
1. Preparation of Oriented Metal Substrate First, CeO 2 (thickness 140 nm) / YSZ (thickness 300 nm) / CeO is formed on a SUS substrate on a clad material having a total thickness of 120 μm by using a sputtering method. An intermediate layer composed of three layers was formed in the order of 2 (thickness 70 nm) to obtain an oriented metal substrate (width 30 mm × length 10 m).
2.酸化物超電導薄膜の形成
(1)第1成膜工程
前記の配向金属基板の上に、以下の成膜条件で4回の成膜を行い、総厚1.4μmのGdBCO超電導薄膜を形成した。
2. Formation of oxide superconducting thin film (1) First film forming step On the above-mentioned oriented metal substrate, film forming was performed four times under the following film forming conditions to form a GdBCO superconducting thin film having a total thickness of 1.4 μm.
成膜法:PLD法
レーザー種類 :エキシマレーザ
周波数 :300Hz
出力 :300W
エネルギー :1J
ターゲット :GdBCO
ヒーター直下温度:1010℃
チャンバ内雰囲気 :O216Pa
線速 :24m/h
Film formation method: PLD method
Laser type: Excimer laser
Frequency: 300Hz
Output: 300W
Energy: 1J
Target: GdBCO
Temperature just below the heater: 1010 ° C
Atmosphere in chamber: O 2 16 Pa
Line speed: 24m / h
なお、成膜4回終了後、成膜表面に数百nm程度の粒子が多く観察された。 In addition, after completion of the film formation four times, many particles of about several hundred nm were observed on the film formation surface.
(2)第1研磨工程
以下の研磨条件で、成膜表面を0.2μm研磨した。
(2) First Polishing Step The film formation surface was polished by 0.2 μm under the following polishing conditions.
研磨機 :(株)日本ミクロコーテイング社製
回転数 :290rpm
研磨剤 :クリアライト(粒径70nmと15nmの2種類のSiO2
粉末の懸濁液)
線速 :5.3m/h
Polishing machine: Nippon Micro Coating Co., Ltd. Rotation speed: 290 rpm
Abrasive: Clearlite (2 types of SiO 2 with particle size of 70 nm and 15 nm
Powder suspension)
Line speed: 5.3m / h
(3)第2成膜工程
研磨後のGdBCO超電導薄膜の上に、ヒーター直下温度を1060℃(温度低下を補うために第1成膜工程よりも高温に設定)としたこと以外は、第1成膜工程と同様にして、2回の成膜を行い、0.7μmのGdBCO超電導薄膜を積層し、最終的に配向金属基板上に総厚1.9μmのGdBCO超電導膜が形成された超電導線材を得た。
(3) Second film forming step First, except that the temperature immediately below the heater is set to 1060 ° C. (set higher than the first film forming step to compensate for the temperature drop) on the polished GdBCO superconducting thin film. In the same manner as the film forming process, the film was formed twice, a 0.7 μm GdBCO superconducting thin film was laminated, and a GdBCO superconducting film having a total thickness of 1.9 μm was finally formed on the oriented metal substrate. Got.
(比較例)
途中に研磨工程を設けることなく、第1成膜工程と同様にして、6回の成膜を行い、配向金属基板上に総厚2.1μmのGdBCO超電導薄膜が形成された超電導線材を得た。
(Comparative example)
A superconducting wire in which a GdBCO superconducting thin film having a total thickness of 2.1 μm was formed on an oriented metal substrate was obtained in the same manner as in the first film-forming step without providing a polishing step. .
3.研磨前と研磨後の酸化物超電導膜の観察
第1研磨工程の前後における酸化物超電導膜の表面状態をSEMにより観察した。結果をそれぞれ図3と図4に示す。
3. Observation of oxide superconducting film before and after polishing The surface state of the oxide superconducting film before and after the first polishing step was observed by SEM. The results are shown in FIGS. 3 and 4, respectively.
図3、4より、研磨により酸化物超電導膜の表面が平滑化されていることが確認された。 3 and 4, it was confirmed that the surface of the oxide superconducting film was smoothed by polishing.
4.Icの測定
実施例および比較例で得られた各酸化物超電導膜を、77K、自己磁場下において、Icを測定したところ、実施例の場合には420(A/cm)であり、比較例の370(A/cm)に比べて、明らかにIcが伸びていることが確認された。
4). Measurement of Ic Ic was measured for each oxide superconducting film obtained in Examples and Comparative Examples at 77 K under a self-magnetic field. In the case of Examples, it was 420 (A / cm). Compared to 370 (A / cm), it was confirmed that Ic was clearly extended.
以上のように、本発明によれば、膜厚の増加に比例してIcが増加し、所望する高いIcの酸化物超電導膜を得ることができる。 As described above, according to the present invention, Ic increases in proportion to the increase in film thickness, and a desired high Ic oxide superconducting film can be obtained.
以上、本発明の実施の形態について説明したが、本発明は、上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.
1 成膜装置
2 チャンバ
3 ターゲット
4 エキシマレーザ
7 ヒーター
8 送出し機
9 巻取り機
P プルーム
S 配向金属基板
DESCRIPTION OF SYMBOLS 1 Film-forming apparatus 2 Chamber 3 Target 4 Excimer laser 7 Heater 8 Sending machine 9 Winding machine P Plume S Oriented metal substrate
Claims (3)
成膜された酸化物超電導薄膜の表面を平滑化する平滑化工程と
を繰り返して厚膜の酸化物超電導膜を形成することを特徴とする酸化物超電導膜の製造方法。 A thin film deposition step of forming a predetermined thickness by repeatedly forming an oxide superconducting thin film using physical vapor deposition on a substrate;
A method for producing an oxide superconducting film, comprising forming a thick oxide superconducting film by repeating a smoothing step of smoothing a surface of the formed oxide superconducting thin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011027078A JP2012169062A (en) | 2011-02-10 | 2011-02-10 | Method for producing oxide superconducting film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011027078A JP2012169062A (en) | 2011-02-10 | 2011-02-10 | Method for producing oxide superconducting film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012169062A true JP2012169062A (en) | 2012-09-06 |
Family
ID=46973046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011027078A Pending JP2012169062A (en) | 2011-02-10 | 2011-02-10 | Method for producing oxide superconducting film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012169062A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006027958A (en) * | 2004-07-16 | 2006-02-02 | Sumitomo Electric Ind Ltd | Thin film material and manufacturing method thereof |
JP2006216365A (en) * | 2005-02-03 | 2006-08-17 | Sumitomo Electric Ind Ltd | Superconducting thin film material, superconducting wire, and manufacturing method thereof |
-
2011
- 2011-02-10 JP JP2011027078A patent/JP2012169062A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006027958A (en) * | 2004-07-16 | 2006-02-02 | Sumitomo Electric Ind Ltd | Thin film material and manufacturing method thereof |
JP2006216365A (en) * | 2005-02-03 | 2006-08-17 | Sumitomo Electric Ind Ltd | Superconducting thin film material, superconducting wire, and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4690246B2 (en) | Superconducting thin film material and manufacturing method thereof | |
CN100477020C (en) | Superconducting wire and its manufacturing method | |
KR20070026446A (en) | Biaxially-Textured Film Deposition for Superconductor Coated Tapes | |
JP2009507357A5 (en) | ||
WO2012165109A1 (en) | Superconducting thin-film material and method for manufacturing same | |
WO2006082747A1 (en) | Superconducting thin film material, superconducting wire rod and methods for manufacturing such superconducting thin film material and superconducting wire rod | |
KR20080041665A (en) | High Critical Current Density in WiBIO Coatings | |
JP5799081B2 (en) | Thick oxide film with single layer coating | |
JP5693398B2 (en) | Oxide superconducting conductor and manufacturing method thereof | |
JP2003505888A (en) | Methods and compositions for making multilayer bodies | |
JP5686437B2 (en) | Oxide superconducting thin film wire and method for producing the same | |
JP2012169062A (en) | Method for producing oxide superconducting film | |
JP5881107B2 (en) | Method for introducing nanoscale crystal defects into high temperature superconducting oxide thin films | |
JP2012022882A (en) | Base material for oxide superconducting conductor and method of manufacturing the same, and oxide superconducting conductor and method of manufacturing the same | |
JP4619697B2 (en) | Oxide superconducting conductor and manufacturing method thereof | |
JP2012049086A (en) | Oxide superconductive thin film wire rod, metal substrate for oxide superconductive thin film wire rod, and method of manufacturing the same | |
JP2011249162A (en) | Method for manufacturing superconducting wire rod | |
JP4519540B2 (en) | Method for manufacturing oxide superconductor and oxide superconductor | |
JP2005113220A (en) | Polycrystalline thin film and manufacturing method thereof, oxide superconducting conductor | |
JP2010007164A (en) | Method for forming thin film of oxide | |
JP2004244263A (en) | Preparation method of superconducting oxide thin film with high critical current density | |
JP2011096593A (en) | Method of manufacturing oxide superconducting thin film | |
JP5713440B2 (en) | Oxide superconducting thin film and manufacturing method thereof | |
JP2013012354A (en) | Method for manufacturing superconducting wire | |
Kai et al. | Influence of Growth Temperature on Microstructure and Superconducting Properties of ${\rm ErBa} _ {2}{\rm Cu} _ {3}{\rm O} _ {7-\delta} $ Films With ${\rm Ba}({\rm Er} _ {0.5}{\rm Nb} _ {0.5}){\rm O} _ {3} $ Nanorods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141015 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150302 |