JP2012165719A - Method for constructing three-dimensional carcinoma tissue model under pseudo-microgravity environment - Google Patents

Method for constructing three-dimensional carcinoma tissue model under pseudo-microgravity environment Download PDF

Info

Publication number
JP2012165719A
JP2012165719A JP2011031122A JP2011031122A JP2012165719A JP 2012165719 A JP2012165719 A JP 2012165719A JP 2011031122 A JP2011031122 A JP 2011031122A JP 2011031122 A JP2011031122 A JP 2011031122A JP 2012165719 A JP2012165719 A JP 2012165719A
Authority
JP
Japan
Prior art keywords
dimensional
construction method
cancer
collagen
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011031122A
Other languages
Japanese (ja)
Inventor
Toshikimi Uemura
壽公 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011031122A priority Critical patent/JP2012165719A/en
Publication of JP2012165719A publication Critical patent/JP2012165719A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently constructing a homogeneous three-dimensional carcinoma tissue model.SOLUTION: The method for constructing the three-dimensional carcinoma tissue model includes culturing a carcinoma cell under a pseudo-microgravity environment. Preferably, the carcinoma cell to be seeded is an established cell line or a primary culture cell.

Description

本発明は、擬微小重力環境下での三次元癌組織モデルの構築方法に関する。特に、本発明は、癌細胞が播種された多数の細胞足場材料を用いて、多数の三次元癌組織モデルを同時かつ均質に構築する方法に関する。   The present invention relates to a method for constructing a three-dimensional cancer tissue model in a pseudo microgravity environment. In particular, the present invention relates to a method for simultaneously and homogeneously constructing a large number of three-dimensional cancer tissue models using a large number of cell scaffold materials seeded with cancer cells.

従来の癌細胞の薬効スクリーニングは、汎用の単層細胞培養用ディッシュ上に癌細胞を播種・培養した後、効能を調べる薬剤を溶かした培養液を添加し、癌細胞の増殖特性が低下するか、アポトーシスを起こすかなどで評価されてきた。しかし、近年、二次元培養して得られた癌組織モデルがインビボと同様の薬剤応答を示さない可能性が示唆されている。癌細胞の立体的な三次元集合体(すなわち、三次元癌組織モデル)においては、投与された抗癌剤の表面への到達は可能でも物理的空間の問題から内部まで到達するのは難しいとされ、二次元(単層培養)の癌組織モデルと三次元の癌組織モデルでは、投与された薬剤に対する反応性は異なってくると考えられる。   In conventional cancer cell efficacy screening, cancer cells are seeded and cultured on a general-purpose monolayer cell culture dish, and then a culture solution in which a drug for examining the effect is added is added. It has been evaluated whether it causes apoptosis. However, in recent years, it has been suggested that a cancer tissue model obtained by two-dimensional culture may not exhibit the same drug response as in vivo. In a three-dimensional assembly of cancer cells (that is, a three-dimensional cancer tissue model), it is considered that it is difficult to reach the inside due to physical space problems, although it is possible to reach the surface of the administered anticancer drug, It is considered that the reactivity to the administered drug differs between the two-dimensional (monolayer culture) cancer tissue model and the three-dimensional cancer tissue model.

このような背景からよりインビボの状態に近い三次元癌組織モデルを用いた評価が望まれている。その一つの解決法として、凹凸などを持った特殊な表面上に癌細胞を播種・培養しスフェロイドを作製し評価する手法が考案されている(非特許文献1)。   From such a background, evaluation using a three-dimensional cancer tissue model closer to an in vivo state is desired. As one solution, a technique has been devised in which cancer cells are seeded and cultured on a special surface having irregularities and the like to produce and evaluate spheroids (Non-patent Document 1).

この手法は、三次元癌組織モデルを構築できる点で有利であるが、構築されるスフェロイド組織の形状や大きさを一定にすることが困難である。そのため薬効スクリーニングにおいて当該三次元癌組織モデルを用いた場合、データのばらつきを回避できず、多数のドラッグライブラリーから効能のある薬剤を選択することは非常に困難である。   This method is advantageous in that a three-dimensional cancer tissue model can be constructed, but it is difficult to make the shape and size of the constructed spheroid tissue constant. Therefore, when the three-dimensional cancer tissue model is used in drug efficacy screening, data variation cannot be avoided, and it is very difficult to select a drug with efficacy from a large number of drug libraries.

単層培養、スフェロイド培養による癌細胞の薬効評価は上記の問題点を有しており、均質な三次元組織モデルを効率的に構築できる技術が、当該分野において求められている。   Evaluation of drug efficacy of cancer cells by monolayer culture and spheroid culture has the above-mentioned problems, and a technique capable of efficiently constructing a homogeneous three-dimensional tissue model is demanded in this field.

擬微小重力環境は、宇宙空間における微小重力環境を模して人工的に作り出された微小重力(simulated microgravity)環境を意味する。今日、擬微小重力環境を生じる様々なバイオリアクターが開発されており(例えば、RWV(Ratating−Wall Vessel:特許文献1)、RCCS(Rotary Cell Culture SystemTM:Synthecon Incorporated)、3Dクリノスタット)、細胞の三次元培養に用いられている(特許文献2)。 The pseudo-microgravity environment means a simulated microgravity environment artificially created by imitating the microgravity environment in outer space. Today, various bioreactors that generate a pseudo microgravity environment have been developed (for example, RWV (Rating-Wall Vessel: Patent Document 1), RCCS (Rotary Cell Culture System : Synthecon Incorporated), 3D Clinostat), and cells. (Patent Literature 2).

米国特許第5,002,890号US Pat. No. 5,002,890 WO2005/056072WO2005 / 056072

Watanabe M. et al, Biological behavior of prostate cancer cells in 3D culture systems. 2008 Jan;128(1):37−44. Review. JapaneseWatanabe M.M. et al, Biological behavior of prosthetic cancer cells in 3D culture systems. 2008 Jan; 128 (1): 37-44. Review. Japanese

本発明は、均質な三次元癌組織モデルを効率的に、同時にまた多数構築する方法を提供することを目的とする。   An object of the present invention is to provide a method for efficiently and simultaneously constructing a large number of homogeneous three-dimensional cancer tissue models.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、擬微小重力環境下での三次元組織培養により均質な三次元癌組織モデルを構築できることを見出した。さらに、多数の足場材料に同数の癌細胞を播種して、擬微小重力環境下にて同時に回転培養することにより、多数の均質な三次元癌組織モデルを構築できることを見出した。本発明はこれらの知見に基づく。   As a result of intensive studies to solve the above problems, the present inventors have found that a homogeneous three-dimensional cancer tissue model can be constructed by three-dimensional tissue culture in a pseudo microgravity environment. Furthermore, it was found that a large number of homogeneous three-dimensional cancer tissue models can be constructed by seeding a large number of scaffold materials with the same number of cancer cells and rotating them simultaneously in a pseudo-microgravity environment. The present invention is based on these findings.

本発明は以下の特徴を有する。
[1] 癌細胞を擬微小重力環境下で培養することを特徴とする、三次元癌組織モデルの構築方法。
[2] 播種される癌細胞が樹立細胞株または初代培養細胞である、[1]の構築方法。
[3] 癌細胞を複数の均質な細胞足場材料に播種する工程、および擬微小重力環境下で該細胞足場材料に播種された癌細胞を培養する工程、を含む、[1]または[2]の構築方法。
[4] 細胞足場材料がコラーゲン、ポリマー、またはそれらの混合物を含む、[3]の構築方法。
[5] コラーゲンが、I型コラーゲン、II型コラーゲン、III型コラーゲン、IV型コラーゲン、V型コラーゲン、VI型コラーゲン、VII型コラーゲンおよびそれらの混合物からなる群より選択される、[4]の構築方法。
[6] ポリマーが、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、ポリアルギン酸、およびポリ(D,L−乳酸)からなる群より選択される、1種または2種以上の物質を含む、[4]の構築方法。
[7] 細胞足場材料への癌細胞の播種が、該癌細胞の懸濁液中に該細胞足場材料を浸漬することによって行われる、[4]〜[6]のいずれかの構築方法。
[8] 癌細胞の懸濁液中に細胞足場材料を浸漬する工程を減圧下にて行う、[7]の構築方法。
[9] 擬微小重力環境が、時間平均して地球の重力の1/100〜1/10に相当する重力を物体に与える環境である、[1]〜[8]のいずれかの構築方法。
[10] 擬微小重力環境が、回転で生じる応力によって地球の重力を相殺することにより、地上で擬微小重力環境を実現する、1軸回転式バイオリアクター、または2軸式回転バイオリアクターを用いて実現される、[1]〜[9]のいずれかの構築方法。
[11] 1軸回転式バイオリアクターがRWV(Rotating Wall Vessel)バイオリアクターである、[10]の構築方法。
[12] 2軸式バイオリアクターがクリノスタットである、[10]の構築方法。
[13]さらに、擬微小重力環境下で培養することにより得られた三次元癌組織モデルを、単層培養または三次元培養に付す工程を含む、[1]〜[12]のいずれかの構築方法。
The present invention has the following features.
[1] A method for constructing a three-dimensional cancer tissue model, comprising culturing cancer cells in a pseudo-microgravity environment.
[2] The construction method of [1], wherein the cancer cells to be seeded are established cell lines or primary cultured cells.
[3] The method includes the steps of seeding cancer cells on a plurality of homogeneous cell scaffold materials, and culturing the cancer cells seeded on the cell scaffold materials in a pseudo microgravity environment, [1] or [2] How to build.
[4] The construction method according to [3], wherein the cell scaffold material includes collagen, a polymer, or a mixture thereof.
[5] The construction of [4], wherein the collagen is selected from the group consisting of type I collagen, type II collagen, type III collagen, type IV collagen, type V collagen, type VI collagen, type VII collagen, and mixtures thereof. Method.
[6] The polymer contains one or more substances selected from the group consisting of polycaprolactone, polylactic acid, polyglycolic acid, polyalginic acid, and poly (D, L-lactic acid), [4] How to build.
[7] The construction method according to any of [4] to [6], wherein the seeding of the cancer cells on the cell scaffold material is performed by immersing the cell scaffold material in a suspension of the cancer cells.
[8] The construction method according to [7], wherein the step of immersing the cell scaffold material in a suspension of cancer cells is performed under reduced pressure.
[9] The construction method according to any one of [1] to [8], wherein the pseudo microgravity environment is an environment that gives the object gravity equivalent to 1/100 to 1/10 of the earth's gravity on a time average.
[10] Using a uniaxial rotating bioreactor or a biaxial rotating bioreactor that realizes a pseudo microgravity environment on the ground by offsetting the gravity of the earth by the stress generated by the rotation. The construction method according to any one of [1] to [9] realized.
[11] The construction method according to [10], wherein the uniaxial rotating bioreactor is an RWV (Rotating Wall Vessel) bioreactor.
[12] The construction method according to [10], wherein the biaxial bioreactor is a clinostat.
[13] The construction according to any one of [1] to [12], further comprising a step of subjecting a three-dimensional cancer tissue model obtained by culturing in a pseudo microgravity environment to monolayer culture or three-dimensional culture. Method.

本発明によれば、均質な三次元癌組織モデルを効率的に構築することができる。本発明によれば、足場材料を用いることによって、多数の均質な三次元癌組織モデルを効率的に構築することができる。多数の均質な三次元癌組織モデルを利用することによって、抗癌剤など薬効スクリーニングおよび薬効評価を精度高く行うことができる。   According to the present invention, a homogeneous three-dimensional cancer tissue model can be efficiently constructed. According to the present invention, a large number of homogeneous three-dimensional cancer tissue models can be efficiently constructed by using a scaffold material. By using a large number of homogeneous three-dimensional cancer tissue models, it is possible to perform drug screening such as anticancer drugs and drug efficacy evaluation with high accuracy.

図1は、足場材料を用いずにRWV回転培養により作製したMG63三次元癌組織モデルのヘマトキシリン・エオジン染色像を示す写真図である。FIG. 1 is a photograph showing a hematoxylin-eosin stained image of an MG63 three-dimensional cancer tissue model prepared by RWV rotation culture without using a scaffold material. 図2は、RWV回転培養により作製したMG63三次元癌組織モデルのドキソルビシン曝露により生じるDNA量の経時的変化を示すグラフ図である。FIG. 2 is a graph showing changes over time in the amount of DNA produced by exposure to doxorubicin in an MG63 three-dimensional cancer tissue model produced by RWV rotation culture. 図3は、平面培養により作製したMG63癌組織モデルのドキソルビシン曝露により生じるDNA量の経時的変化を示すグラフ図である。FIG. 3 is a graph showing changes over time in the amount of DNA produced by exposure to doxorubicin in an MG63 cancer tissue model prepared by planar culture. 図4は、平面培養(Flat)またはRWV回転培養(3D)により作製したMG63の癌組織モデルのドキソルビシン曝露により生じるDNA量の比較(左24時間、右48時間)を示すグラフ図である。FIG. 4 is a graph showing a comparison of the amount of DNA generated by exposure to doxorubicin in a cancer tissue model of MG63 produced by flat culture (Flat) or RWV rotation culture (3D) (left 24 hours, right 48 hours).

本発明は、癌細胞を、擬微小重力環境で培養することを特徴とした、三次元癌組織モデルの構築方法に関する。   The present invention relates to a method for constructing a three-dimensional cancer tissue model, which comprises culturing cancer cells in a pseudo microgravity environment.

本発明の方法により作製される三次元癌組織モデルは、抗癌剤などの薬効スクリーニングおよび薬効評価に用いることができる。   The three-dimensional cancer tissue model produced by the method of the present invention can be used for drug efficacy screening and drug efficacy evaluation of anticancer agents and the like.

「三次元癌組織モデル」とは、癌細胞を三次元培養することによって得られる癌細胞の立体的な集合体(三次元集合体)を意味する。当該三次元集合体において、癌細胞は三次元的に増殖することが可能であり、細胞が細胞培養用プレートなどの上に張り付くように二次元的に延伸する細胞培養(二次元細胞培養)によって得られる組織モデルと比べて、より生体内に近い培養環境を実現することができる。   The “three-dimensional cancer tissue model” means a three-dimensional aggregate (three-dimensional aggregate) of cancer cells obtained by three-dimensional culture of cancer cells. In the three-dimensional assembly, cancer cells can grow three-dimensionally, and by cell culture (two-dimensional cell culture) that extends two-dimensionally so that the cells stick on a cell culture plate or the like. Compared to the obtained tissue model, it is possible to realize a culture environment closer to that in the living body.

本発明において「癌細胞」は、特に限定されることなく様々なものを利用することができる。好ましくは、固形癌由来の癌細胞である。固形癌とは、血液の癌(白血病など)を除く癌を意味し例えば、胃癌、食道癌、大腸癌、結腸癌、直腸癌、膵臓癌、乳癌、卵巣癌、前立腺癌、扁平上皮細胞癌、基底細胞癌、腺癌、骨髄癌、腎細胞癌、尿管癌、肝癌、胆管癌、子宮頚癌、子宮内膜癌、精巣癌、小細胞肺癌、非小細胞肺癌、膀胱癌、上皮癌、頭蓋咽頭癌、喉頭癌、舌癌、繊維肉腫、粘膜肉腫、脂肪肉腫、軟骨肉腫、骨原性肉腫、脊索腫、血管肉腫、リンパ管肉腫、リンパ管内皮肉腫、滑膜腫、中皮腫、ユーイング腫瘍、平滑筋肉腫、横紋筋肉腫、精上皮腫、ウィルムス腫瘍、神経膠腫、星状細胞腫、骨髄芽種、髄膜腫、黒色腫、神経芽細胞腫、髄芽腫、網膜芽細胞腫などが挙げられるが、これらに限定されない。癌細胞は、樹立細胞株であっても、初代培養細胞であっても良い。   In the present invention, various cancer cells can be used without any particular limitation. Preferably, it is a cancer cell derived from solid cancer. Solid cancer means cancer excluding blood cancer (such as leukemia), for example, stomach cancer, esophageal cancer, colon cancer, colon cancer, rectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, Basal cell cancer, adenocarcinoma, bone marrow cancer, renal cell cancer, ureter cancer, liver cancer, bile duct cancer, cervical cancer, endometrial cancer, testicular cancer, small cell lung cancer, non-small cell lung cancer, bladder cancer, epithelial cancer, Craniopharyngeal cancer, laryngeal cancer, tongue cancer, fibrosarcoma, mucosal sarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, hemangiosarcoma, lymphangiosarcoma, lymphatic endothelial sarcoma, synovial tumor, mesothelioma, Ewing tumor, leiomyosarcoma, rhabdomyosarcoma, seminoma, Wilms tumor, glioma, astrocytoma, myeloblastoma, meningioma, melanoma, neuroblastoma, medulloblastoma, retinoblast Examples include, but are not limited to, cell tumors. The cancer cell may be an established cell line or a primary cultured cell.

癌細胞は、細胞足場材料(スキャホールド)に播種されたものであっても良い。
細胞足場材料を用いることによって、同一条件下にて複数の三次元癌組織モデルを同時に構築することが可能であり、均質な複数の三次元癌組織モデルを製造することが可能である。これに対して、細胞足場材料を用いない場合においては、培地中に播種された細胞は、下記に詳細に記載される回転培養において、一つに凝集し、細胞足場材料を用いた場合と比べて大型の三次元癌組織モデルを製造することが可能である。
The cancer cells may be seeded on a cell scaffold material (scaffold).
By using a cell scaffold material, a plurality of three-dimensional cancer tissue models can be constructed simultaneously under the same conditions, and a plurality of homogeneous three-dimensional cancer tissue models can be produced. In contrast, when the cell scaffold material is not used, the cells seeded in the medium aggregate in one in the rotation culture described in detail below, compared with the case where the cell scaffold material is used. Large three-dimensional cancer tissue models can be manufactured.

ここで「均質」とは、構築される各三次元癌組織モデルの間で性質的に違いがほとんどないか、極めてわずかであることを意味し、例えば、同一条件下において同一に与えられる刺激に対して、個々の三次元癌組織モデルが同一の反応を示すことを意味する。   Here, “homogeneous” means that there is little or very little property difference between each constructed three-dimensional cancer tissue model, for example, for stimuli given identically under the same conditions. On the other hand, it means that each three-dimensional cancer tissue model shows the same reaction.

「細胞足場材料」とは、癌細胞が当該材料と接することによって、細胞の接着、増殖、分化、活性化、移動、遊走、形態変化など様々な細胞機能が発現、促進される材料を意味する。そのような材料としては、例えばハイドロキシアパタイトやβ−TCP(リン酸三カルシウム)、α−TCP等のセラミックス、コラーゲン、ポリマー等が挙げられるが、これらに限定されない。好ましくは、細胞足場材料は、コラーゲン、ポリマー、又はそれらの混合物を含んでなる。ここで、「コラーゲン」とは、I型〜VII型コラーゲンのいずれか、またはそれらの混合物である。使用するコラーゲンは、市販のものでもよいし、動物組織から抽出・精製したものでもよいし、または組み換え的に発現させた後、精製したものでもよい。また、「ポリマー」とは、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、ポリアルギン酸、ポリ(D,L−乳酸)のうち1種または2種以上を含む。上記の材料の列挙は例示であって、限定的なものではない。   “Cell scaffold material” means a material in which various cell functions such as cell adhesion, proliferation, differentiation, activation, migration, migration, and morphological change are expressed and promoted by cancer cells coming into contact with the material. . Examples of such a material include, but are not limited to, hydroxyapatite, β-TCP (tricalcium phosphate), ceramics such as α-TCP, collagen, polymer, and the like. Preferably, the cell scaffold material comprises collagen, a polymer, or a mixture thereof. Here, “collagen” is any of type I to type VII collagen, or a mixture thereof. The collagen used may be commercially available, extracted and purified from animal tissue, or purified after recombinant expression. The “polymer” includes one or more of polycaprolactone, polylactic acid, polyglycolic acid, polyalginic acid, and poly (D, L-lactic acid). The above list of materials is exemplary and not limiting.

細胞足場材料は、上記物質のいずれか一種からなるものであっても良いし、複数種を含む複合体からなるものであっても良い。   The cell scaffold material may be composed of any one of the above substances, or may be composed of a complex containing a plurality of kinds.

細胞足場材料の形態は特に限定されず、スポンジ、メッシュ、不繊布状成形物などの形態を有することができるが、細胞の均一な播種が可能となるよう、多孔性であることが好ましい。「多孔性」とは、数μm〜数100μm程度の無数の孔(空隙)が存在する構造であり、本発明においては、空隙率(細胞足場材料の全体積に比した空隙部分の体積の割合)は40〜90%、より好ましくは60〜90%である。空隙率が低すぎると、細胞の侵入が不十分になり、空隙率が高すぎると、構造の強度を保つことができない。   The form of the cell scaffold material is not particularly limited, and can be a sponge, a mesh, a non-woven cloth shaped article, or the like, but is preferably porous so that cells can be uniformly seeded. “Porosity” is a structure in which an infinite number of pores (voids) of several μm to several 100 μm exist, and in the present invention, the porosity (ratio of the volume of the void portion relative to the total volume of the cell scaffold material) ) Is 40 to 90%, more preferably 60 to 90%. If the porosity is too low, cell penetration becomes insufficient, and if the porosity is too high, the strength of the structure cannot be maintained.

細胞足場材料の形状は、特に限定されず、球状、ディスク状、粒子状、ブロック状など任意の形状を用いることができる。細胞足場材料の大きさは、特に限定されず、例えば最長部の長さ(直径など)を、0.2mm〜10mmの範囲より適宜選択することができる。   The shape of the cell scaffold material is not particularly limited, and any shape such as a spherical shape, a disk shape, a particle shape, or a block shape can be used. The size of the cell scaffold material is not particularly limited, and for example, the length (diameter and the like) of the longest portion can be appropriately selected from the range of 0.2 mm to 10 mm.

細胞足場材料は、市販のもの(特に限定されないが、テルダーミス(オリンパステルモバイオマテリアル株式会社)など)を利用することができる。   As the cell scaffold material, a commercially available material (not particularly limited, for example, Terdermis (Olympus Terumo Biomaterial Co., Ltd.)) can be used.

培養に用いられる細胞足場材料は、構築される三次元癌組織モデルの均質性を確保すべく、材料や大きさなどすべて同一であることが好ましい。   The cell scaffold materials used for the culture are preferably all the same in material and size in order to ensure the homogeneity of the three-dimensional cancer tissue model to be constructed.

培養に用いられる細胞足場材料の個数は、用いるバイオリアクターの容積や、所望される三次元癌組織モデルの数等に応じて適宜調整することが好ましい。通常、癌細胞が播種された細胞足場材料一つから、一つの三次元癌組織モデルが構築される。   The number of cell scaffold materials used for the culture is preferably adjusted as appropriate according to the volume of the bioreactor used, the number of desired three-dimensional cancer tissue models, and the like. Usually, a single three-dimensional cancer tissue model is constructed from one cell scaffold material seeded with cancer cells.

癌細胞の細胞足場材料への播種は、公知の手法を用いて行うことができ、緩衝液、生理食塩水、培養液、またはコラーゲン溶液等の液体に癌細胞を懸濁して得られた懸濁液に細胞足場材料を浸漬する、あるいは当該懸濁液を細胞足場材料へ注入することによって行うことができる。また、必要に応じて、引圧または加圧条件下で播種してもよい。播種する細胞の数(播種密度)は、懸濁液の細胞濃度や注入量によって調整することが可能であり、用いる細胞の種類の特性や足場材料に応じて適宜調整することが好ましい。   The seeding of the cancer cells on the cell scaffold material can be performed using a known method, and the suspension obtained by suspending the cancer cells in a liquid such as a buffer solution, physiological saline, a culture solution, or a collagen solution. It can be carried out by immersing the cell scaffold material in a liquid, or by injecting the suspension into the cell scaffold material. Moreover, you may seed | inoculate on drawing pressure or pressurization conditions as needed. The number of cells to be seeded (seeding density) can be adjusted by the cell concentration and the injection amount of the suspension, and is preferably adjusted as appropriate according to the characteristics of the type of cells used and the scaffold material.

癌細胞が播種された細胞足場材料は、擬微小重力環境下で培養する前に、1時間〜24時間の静置培養に供し、癌細胞を細胞足場材料に接着させることが好ましい。   The cell scaffold material seeded with cancer cells is preferably subjected to static culture for 1 to 24 hours before culturing in a pseudo-microgravity environment to adhere the cancer cells to the cell scaffold material.

本発明において「擬微小重力環境」とは、宇宙空間における微小重力環境を模して人工的に作り出された微小重力(simulated microgravity)環境を意味する。こうした擬微小重力環境は、例えば、回転で生じる応力によって地球の重力を相殺することにより実現される。すなわち、回転している物体は、地球の重力と応力とのベクトル和で表される力を受けるため、その大きさと方向は時間により変化する。したがって、時間平均すると物体には地球の重力(g)よりもはるかに小さな重力しか作用しないこととなり、宇宙空間によく似た「擬微小重力環境」が実現される。   In the present invention, the “pseudo microgravity environment” means a simulated microgravity environment artificially created by imitating the microgravity environment in outer space. Such a pseudo microgravity environment is realized, for example, by offsetting the earth's gravity by the stress generated by the rotation. That is, since the rotating object receives a force represented by the vector sum of the earth's gravity and stress, its size and direction change with time. Therefore, on a time-average basis, the object acts only with a gravity much smaller than the earth's gravity (g), and a “pseudo-microgravity environment” that closely resembles outer space is realized.

「擬微小重力環境」は、細胞が沈降することなく均一に分散した状態で増殖分化し、三次元的に凝集して、組織塊を形成できるような環境であることが必要である。言い換えれば、播種細胞の沈降速度に同調するように回転速度を調節して、細胞に対する地球の重力の影響を最小化することが望まれる。具体的には、培養細胞にかかる微小重力は、時間平均して地球の重力(g)の1/100〜1/10倍程度であることが望ましい。   The “pseudo microgravity environment” needs to be an environment in which cells can proliferate and differentiate in a uniformly dispersed state without sedimentation, and aggregate in three dimensions to form a tissue mass. In other words, it is desirable to adjust the rotational speed to synchronize with the sedimentation speed of the seeded cells to minimize the effect of the Earth's gravity on the cells. Specifically, the microgravity applied to the cultured cells is desirably about 1/100 to 1/10 times the earth's gravity (g) on a time average.

本発明では、擬微小重力環境を実現するために、好ましくは、回転式のバイオリアクターを使用する。そのようなバイオリアクターとしては、例えば、RWV(Ratating−Wall Vessel:米国特許第5,002,890号)、RCCS(Rotary Cell Culture SystemTM:Synthecon Incorporated)、3Dクリノスタット、並びに特開平8−173143号、特開平9−37767号、及び特開2002−45173号に記載されているものなどを用いることができる。なかでも、RWV及びRCCSはガス交換機能を備えているという点で優れている。 In the present invention, a rotating bioreactor is preferably used in order to realize a pseudo microgravity environment. Examples of such bioreactors include RWV (Rating-Wall Vessel: US Pat. No. 5,002,890), RCCS (Rotary Cell Culture System : Synthecon Incorporated), 3D clinostat, and JP-A-8-173143. No. 9, JP-A-9-37767, JP-A-2002-45173, and the like can be used. Among them, RWV and RCCS are excellent in that they have a gas exchange function.

これらのバイオリアクターの中には、1軸回転式のものと2軸以上の多軸回転式のものがあるが、本発明では1軸回転式のバイオリアクターを用いることが好ましい。多軸回転式(例えば、2軸式クリノスタット等)では、ずり応力(シェアストレス)を最小化することができず、またサンプル自体も回転するため、1軸式バイオリアクターのようにベッセル内にサンプルがふわふわと浮かんだ状態を再現することができないからである。このふわふわと浮かんだ状態が、特別な足場材料がない場合でも大きな三次元組織塊を得るために重要である。   Among these bioreactors, there are a uniaxial rotating type and a multi-axial rotating type having two or more axes. In the present invention, it is preferable to use a uniaxial rotating type bioreactor. In multi-axis rotation type (for example, 2-axis type clinostat etc.), shear stress (shear stress) cannot be minimized, and the sample itself rotates, so that it is in the vessel like a single axis bioreactor. This is because the state where the sample floats softly cannot be reproduced. This fluffy state is important to obtain a large three-dimensional tissue mass even in the absence of special scaffold materials.

本発明の実施例で用いられているRWVは、アメリカ航空宇宙局(NASA)によって開発されたガス交換機能を備えた1軸式の回転式バイオリアクターである。RWVは、横向き円筒形バイオリアクター内に培養液を満たし、細胞を播種した後、その円筒の水平軸方向に沿って回転しながら培養を行う。バイオリアクター内には、回転による応力のため、実質的に地球の重力よりもはるかに小さい「微小重力環境」が実現される。この擬微小重力環境下において、細胞は培養液内に均一に懸濁され、最小のずり応力下で必要時間にわたって培養され、凝集して組織塊を形成する。足場材料を用いる培養の場合、細胞は足場材料全体に均一に広がり、良好に増殖する。   The RWV used in the embodiments of the present invention is a single-shaft rotary bioreactor with a gas exchange function developed by the National Aeronautics and Space Administration (NASA). The RWV is filled with a culture solution in a horizontal cylindrical bioreactor and seeded with cells, and then cultured while rotating along the horizontal axis direction of the cylinder. Within the bioreactor, a “microgravity environment” is realized that is substantially smaller than the Earth's gravity due to the stress of rotation. In this pseudo-microgravity environment, the cells are uniformly suspended in the culture solution, cultured for a required time under a minimum shear stress, and aggregate to form a tissue mass. In the case of culture using the scaffold material, the cells spread uniformly throughout the scaffold material and grow well.

回転式バイオリアクターの回転速度は、バイオリアクター内の細胞塊または組織塊が、回転することなく、ほぼ一定の位置にふわふわと浮かんだ状態となるように適宜調整する。上記状態を維持すべく、回転式バイオリアクターの回転速度は、培養期間中、経時的に適宜変更することができる。   The rotation speed of the rotary bioreactor is appropriately adjusted so that the cell mass or tissue mass in the bioreactor floats in a substantially constant position without rotating. In order to maintain the above state, the rotational speed of the rotary bioreactor can be appropriately changed over time during the culture period.

RWVを用いた場合の好ましい回転速度は、ベッセルの直径および組織塊の大きさや質量に応じて適宜設定され、例えば直径10cmのベッセルを用いた場合であれば、足場材料を用いない場合において8〜24rpm程度、足場材料を用いる場合において12〜15rpm程度であることが望ましい。このような回転速度で培養を行うとき、ベッセル内の細胞に作用する重力は実質的に地上の重力(1g)の1/10〜1/100程度となる。   The preferred rotational speed when using RWV is appropriately set according to the diameter of the vessel and the size and mass of the tissue mass. For example, if a vessel with a diameter of 10 cm is used, it is 8 to 8 when no scaffold material is used. When using a scaffold material, about 24 rpm, it is desirable that it is about 12-15 rpm. When culturing at such a rotational speed, the gravity acting on the cells in the vessel is substantially about 1/10 to 1/100 of the ground gravity (1 g).

培地はMEM培地、α−MEM培地、DMEM培地等、癌細胞の培養に通常用いられる培地を、細胞の特性に合わせて適宜選んで用いることができる。また、これらの培地には、FBS(Sigma社製)やAntibiotic−Antimycotic(GIBCO BRL社製)等の抗生物質等を添加しても良い。   As the medium, a medium usually used for culturing cancer cells, such as a MEM medium, an α-MEM medium, and a DMEM medium, can be appropriately selected according to the characteristics of the cells. In addition, antibiotics such as FBS (manufactured by Sigma) and Antibiotic-Antilytic (manufactured by GIBCO BRL) may be added to these media.

細胞の培養は、3〜10%CO、30〜40℃、特に5%CO、37℃の条件下で行うことが望ましい。培養期間は、特に限定されないが、少なくとも4日、好ましくは6〜28日である。 It is desirable to culture the cells under conditions of 3 to 10% CO 2 and 30 to 40 ° C., particularly 5% CO 2 and 37 ° C. The culture period is not particularly limited, but is at least 4 days, preferably 6 to 28 days.

本発明方法によれば、均質な三次元癌組織モデルを同時に多数構築することができる。当該三次元癌組織モデルは、均質であるが故に、同一の化合物に対する反応性のばらつきを低減または回避することができ、多数のドラッグライブラリーから抗癌作用などの効能を有する化合物をスクリーニングするに際して極めて有用であるといえる。   According to the method of the present invention, a large number of homogeneous three-dimensional cancer tissue models can be constructed simultaneously. Since the three-dimensional cancer tissue model is homogeneous, variation in reactivity to the same compound can be reduced or avoided, and a compound having efficacy such as anticancer activity can be screened from a large number of drug libraries. It can be said that it is extremely useful.

当該三次元癌組織モデルを用いた化合物のスクリーニングおよび薬効評価は、従来公知の一般的な手法を用いて行うことができる。例えば、三次元癌組織モデルと候補化合物とを接触させ、三次元癌組織モデルが所望の反応を示す化合物を選択・同定することによって行うことができる。例えば、抗癌作用を有する化合物をスクリーニングする場合においては、三次元癌組織モデルと候補化合物とを接触させ、当該三次元癌組織モデルにおいて増殖抑制および/またはアポトーシスを生じる化合物を選択・同定する。増殖抑制および/またはアポトーシスの検出は、従来公知の一般的な手法を用いて行うことができる。   Compound screening and drug efficacy evaluation using the three-dimensional cancer tissue model can be performed using a conventionally known general technique. For example, a three-dimensional cancer tissue model and a candidate compound are brought into contact with each other, and a compound showing a desired reaction in the three-dimensional cancer tissue model can be selected and identified. For example, in the case of screening a compound having an anticancer activity, a 3D cancer tissue model is brought into contact with a candidate compound, and a compound that causes growth inhibition and / or apoptosis in the 3D cancer tissue model is selected and identified. Growth inhibition and / or detection of apoptosis can be performed using a conventionally known general technique.

化合物のスクリーニングおよび/または薬効評価において、三次元癌組織モデルの培養は、単層培養で行っても良いし、三次元培養によって行っても良い。この場合において「単層培養」とは、三次元癌組織モデルを構成する一部の細胞が培養皿表面上に接着していれば良く、三次元癌組織モデルはその三次元構造の一部または全体を保持した状態での培養を意味する。また、この場合において「三次元培養」は、クリノスタットを利用して行うことが好ましい。これらの培養方法を用いることによって、化合物のスクリーニング等の操作を簡便にすることができる。   In compound screening and / or drug efficacy evaluation, the three-dimensional cancer tissue model may be cultured in a monolayer culture or in a three-dimensional culture. In this case, the “monolayer culture” means that a part of cells constituting the three-dimensional cancer tissue model may adhere to the surface of the culture dish, and the three-dimensional cancer tissue model is a part of the three-dimensional structure or It means culture in a state where the whole is maintained. In this case, the “three-dimensional culture” is preferably performed using a clinostat. By using these culture methods, operations such as screening of compounds can be simplified.

以下、実施例を用いて本発明をより詳細に説明する。しかしながら、本発明の技術的範囲はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the technical scope of the present invention is not limited to these examples.

実施例1:細胞足場材料を用いない培養による三次元癌組織モデルの構築
MG63(ヒト骨髄腫由来樹立細胞株)を、培養液 (DMEM(high glucose)(WAKO)+10%FBS(Sigma)+antibiotics−antimycotics(Gibco,BRL))で単層培養した後、トリプシンを用いて剥離・回収した。回収した細胞を同じ組成の培養液50ccに懸濁し(細胞濃度2x10細胞/ml)、RWVバイオリアクター(Synthecon社製)を用いて回転培養を行った。
Example 1: Construction of a three-dimensional cancer tissue model by culturing without using a cell scaffold material MG63 (human myeloma-derived cell line) was cultured in a culture solution (DMEM (high glucose) (WAKO) + 10% FBS (Sigma) + antibiotics−. After monolayer culture with antimycotics (Gibco, BRL)), they were detached and collected using trypsin. The collected cells were suspended in 50 cc of a culture solution having the same composition (cell concentration 2 × 10 6 cells / ml), and rotational culture was performed using an RWV bioreactor (manufactured by Synthecon).

RWVバイオリアクターによる回転培養は直径10cm(容量50cc)の容器を用い、回転数8〜24rpm、37℃、5%COの条件下で3週間行った。回転数は目視で細胞塊が液中に浮いている状態になるように頻繁に調整した。3日に一度培養液の交換と培養ベッセル中にたまった泡抜きを行った。 Rotational culture using the RWV bioreactor was performed for 3 weeks under the conditions of a rotational speed of 8 to 24 rpm, 37 ° C., and 5% CO 2 using a vessel having a diameter of 10 cm (capacity 50 cc). The number of rotations was frequently adjusted so that the cell mass was visually floating. The culture medium was exchanged once every 3 days and the bubbles collected in the culture vessel were removed.

培養後、得られた細胞塊は、4%パラフォルムアルデヒド、0.1%グルタールアルデヒドを用いてマイクロウエーブ固定を行い、常法に従って脱水しパラフィンに包埋した。5μmの厚さで切片を作製し、常法に従ってヘマトキシリン・エオジン染色を行い顕微鏡で観察した。   After culturing, the obtained cell mass was fixed with microwaves using 4% paraformaldehyde and 0.1% glutaraldehyde, dehydrated according to a conventional method, and embedded in paraffin. Sections were prepared with a thickness of 5 μm, stained with hematoxylin and eosin according to a conventional method, and observed with a microscope.

ヘマトキシリン・エオジン染色の結果を図1に示す。図1に示すように大型(直径〜1.5cm程度)の均質な三次元癌組織モデルを構築することができた。   The results of hematoxylin and eosin staining are shown in FIG. As shown in FIG. 1, a large-sized (about 1.5 cm diameter) homogeneous three-dimensional cancer tissue model could be constructed.

実施例2:細胞足場材料を用いた、多数の三次元癌組織モデルの構築
細胞足場材料は、コラーゲンスポンジ(テルダーミス(真皮欠損用グラフト:コラーゲン単層タイプ:オリンパステルモバイオマテリアル株式会社))を生検パンチ(3mmφ)でくり抜いたもの(150個)を用いた。
Example 2: Construction of a large number of three-dimensional cancer tissue models using cell scaffold materials Cell scaffold materials produced collagen sponges (Terdermis (graft for dermal defect: collagen monolayer type: Olympus Terumo Biomaterials Co., Ltd.)) The ones (150 pieces) cut out by the inspection punch (3 mmφ) were used.

MG63(ヒト骨髄種由来樹立細胞株)を、培養液(DMEM(high glucose)(WAKO)+10%FBS(Sigma)+antibiotics−antimycotics(Gibco,BRL))で単層培養した後、トリプシンを用いて剥離・回収した。回収した細胞を同培地に懸濁し(細胞濃度1x10細胞/ml)、得られた懸濁液にコラーゲンスポンジ150個を浸漬して、減圧下にて当該コラーゲンスポンジに細胞を播種した。その後、5時間静置培養した後、RWVバイオリアクターの培養ベッセル(250cc用)に足場材料/癌細胞コンポジット150個を新鮮な培養液(同組成)とともに注ぎ、回転培養を行った。回転速度は最初12rpmからはじめ、足場材料/癌細胞コンポジットが培養液中にふわふわ浮く状態に回転速度を目視で調整した。6日間培養した(回転速度は12〜15rpmの範囲で調整した)後、多数の均質な三次元癌組織モデルを構築することができた(直径1.5mm程度の大きさ)。 MG63 (Established cell line derived from human bone marrow species) was cultured in a single layer in a culture solution (DMEM (high glucose) (WAKO) + 10% FBS (Sigma) + antibiotics-antimycotics (Gibco, BRL)), and then detached using trypsin.・ Recovered. The collected cells were suspended in the same medium (cell concentration: 1 × 10 6 cells / ml), 150 collagen sponges were immersed in the obtained suspension, and cells were seeded on the collagen sponge under reduced pressure. Then, after static culture for 5 hours, 150 scaffold materials / cancer cell composites were poured into a culture vessel (for 250 cc) of the RWV bioreactor together with a fresh culture solution (same composition), and rotational culture was performed. The rotation speed was initially 12 rpm, and the rotation speed was visually adjusted so that the scaffold material / cancer cell composite floated softly in the culture medium. After culturing for 6 days (rotational speed was adjusted in the range of 12 to 15 rpm), a large number of homogeneous three-dimensional cancer tissue models could be constructed (a size of about 1.5 mm in diameter).

実施例3:三次元癌組織モデルの薬効評価
実施例2で得られた三次元癌組織モデルを、96穴プレートに移動し、新鮮な培養液(DMEM(high glucose)(WAKO)+10%FBS(Sigma)+antibiotics−antimycotics(Gibco,BRL))で静置培養を24時間行った。次に、抗ガン剤(ドキソルビシン,Sigma)を添加した培地(それぞれ10μg/ml,1.0μg/ml,0.1μg/ml,0μg/ml)に置換し、2日間培養した。12時間ごとにサンプリングを行い(各抗ガン剤組成に対してn=6サンプル)、−80℃にて保存した。比較実験のために、96穴プレートにMG63を平面培養(5000細胞/well)して二次元癌組織モデルを構築し、上と同様にドキソルビシンで処理して、−80℃にて保存した。
Example 3: Evaluation of efficacy of 3D cancer tissue model The 3D cancer tissue model obtained in Example 2 was transferred to a 96-well plate, and fresh culture solution (DMEM (high glucose) (WAKO) + 10% FBS ( (Sigma) + antibiotics-antimycotics (Gibco, BRL)) for 24 hours. Next, the medium was replaced with a medium (10 μg / ml, 1.0 μg / ml, 0.1 μg / ml, 0 μg / ml, respectively) supplemented with an anticancer drug (doxorubicin, Sigma), and cultured for 2 days. Sampling was performed every 12 hours (n = 6 samples for each anticancer agent composition) and stored at −80 ° C. For comparative experiments, MG63 was flat-cultured (5000 cells / well) in a 96-well plate to construct a two-dimensional cancer tissue model, treated with doxorubicin as above, and stored at −80 ° C.

DNA定量:ピコグリーンアッセイ
各癌組織モデルのDNA定量には、PicoGreen(Quanti−iTTM PicoGreen dsDNA Reagent and Kits P11496, invitrogen)を用いた。−80℃にて保存したサンプルを自然解凍し、それに細胞溶解液(SCIVAX Spheroid Lysis Buffer:SLB)を培養液の10%ずつ加え室温でホモジナイズした(キアゲン;TissueLyserII)。遠心により上澄みを回収後、同量のTE緩衝液を加え、製造元のプロトコールに従いpicogreen溶液を調整し、サンプル液に加えて10分間放置し、その後蛍光測定を行うことによりDNA量を測定した(Molecular Devices SPECTRA MAX GEMINI EM)。
DNA quantification: Picogreen assay PicoGreen (Quanti-T PicoGreen dsDNA Reagent and Kits P11396, Invitrogen) was used for DNA quantification of each cancer tissue model. A sample stored at −80 ° C. was naturally thawed, and a cell lysate (SCIVAX Spheroid Lysis Buffer: SLB) was added to each sample at 10% of the culture solution and homogenized at room temperature (Qiagen; TissueLyser II). After collecting the supernatant by centrifugation, the same amount of TE buffer solution was added, the picogreen solution was prepared according to the manufacturer's protocol, added to the sample solution and allowed to stand for 10 minutes, and then the amount of DNA was measured by performing fluorescence measurement (Molecular) Devices SPECTRA MAX GEMINI EM).

各癌組織モデルにおけるDNAの定量結果を図2〜4に示す。
図2に示すように、RWV回転培養により得られた三次元癌組織モデルのドキソルビシン曝露によるDNA量の変化はドキソルビシンの濃度依存的であった。しかし、ドキソルビシン濃度が0μg/ml(Dox0)および0.1μg/mlである場合、三次元癌組織モデルのDNA量に与える影響は小さく、ドキソルビシン濃度が1μg/mlおよび10μg/mlである場合、三次元癌組織モデルのDNA量に与える影響が比較的大きくなることが観察された。
The quantification results of DNA in each cancer tissue model are shown in FIGS.
As shown in FIG. 2, the change in the amount of DNA due to doxorubicin exposure in the three-dimensional cancer tissue model obtained by RWV rotation culture was dependent on the concentration of doxorubicin. However, when the doxorubicin concentration is 0 μg / ml (Dox0) and 0.1 μg / ml, the influence on the DNA amount of the three-dimensional cancer tissue model is small, and when the doxorubicin concentration is 1 μg / ml and 10 μg / ml, the tertiary It was observed that the influence of the original cancer tissue model on the amount of DNA was relatively large.

一方、図3に示すように、平面培養により得られた二次元癌組織モデルのドキソルビシン曝露によるDNA量の変化も、ドキソルビシンの濃度依存的であった。しかしながら、ドキソルビシンの濃度変化とDNA量との間には、逆比例の関係が見られ、図2の三次元癌組織モデルの結果とは明らかに異なっていた。   On the other hand, as shown in FIG. 3, the change in the amount of DNA due to exposure of doxorubicin in the two-dimensional cancer tissue model obtained by planar culture was also dependent on the concentration of doxorubicin. However, an inversely proportional relationship was observed between the concentration change of doxorubicin and the amount of DNA, which was clearly different from the results of the three-dimensional cancer tissue model in FIG.

図4は、ドキソルビシン曝露後24時間および48時間における各癌組織モデルのDNA量を示す棒グラフ図である。各癌組織モデルのDNA量は、それぞれドキソルビシン濃度が0μg/ml(Dox0)である場合の発現量を100とする相対値によって示す。この結果より明らかなように、平面培養により得られた二次元癌組織モデル(Flat)においてはドキソルビシンの濃度変化とDNA量との間には、逆比例の関係が見られるのに対して、RWV回転培養により得られた三次元癌組織モデル(3D)においては、1μg/ml以上の濃度のドキソルビシンを用いた場合に、飛躍的に高い効果が得られた。   FIG. 4 is a bar graph showing the DNA amount of each cancer tissue model at 24 hours and 48 hours after exposure to doxorubicin. The amount of DNA in each cancer tissue model is indicated by a relative value where the expression level is 100 when the doxorubicin concentration is 0 μg / ml (Dox0). As is clear from this result, in the two-dimensional cancer tissue model (Flat) obtained by planar culture, there is an inversely proportional relationship between the concentration change of doxorubicin and the amount of DNA, whereas RWV In the three-dimensional cancer tissue model (3D) obtained by rotating culture, a drastically high effect was obtained when doxorubicin at a concentration of 1 μg / ml or more was used.

これらの結果は、二次元培養により得られた癌組織モデルと三次元培養により得られた癌組織モデルでは、同じ薬剤の効能が大きく変わってくることを示す。一般に、抗癌剤の効果は、固形癌において低いことが臨床的報告により示されている。その理由として、癌細胞が三次元の組織構造を有することにより、当該組織の内部まで抗癌剤が浸潤しにくいこと、また当該三次元組織によって、抗癌剤に対する反応性が二次元培養の場合とは異なっていることが挙げられる。上記のとおり三次元培養により得られた癌組織モデルのデータは、二次元培養により得られた癌組織モデルのデータとは明らかに異なっていた。これは、抗癌剤の癌組織モデルの組織内部への浸潤性の違いであり、および/または三次元組織の抗癌剤に対する反応性の変化であると考えられる。   These results indicate that the efficacy of the same drug varies greatly between a cancer tissue model obtained by two-dimensional culture and a cancer tissue model obtained by three-dimensional culture. In general, clinical reports have shown that the effects of anticancer agents are low in solid cancers. The reason is that the cancer cells have a three-dimensional tissue structure, so that the anticancer agent is less likely to infiltrate the inside of the tissue, and the reactivity to the anticancer agent is different from that in the two-dimensional culture depending on the three-dimensional tissue. It is mentioned. As described above, the data of the cancer tissue model obtained by the three-dimensional culture was clearly different from the data of the cancer tissue model obtained by the two-dimensional culture. This is considered to be a difference in invasiveness of the anticancer agent into the tissue of the cancer tissue model and / or a change in the reactivity of the three-dimensional tissue to the anticancer agent.

本発明方法により得られた三次元癌組織モデルは、抗癌剤に対する固形癌の反応性を反映していると考えられ、真に癌組織に効能を持つ薬剤のスクリーニングに適している。   The three-dimensional cancer tissue model obtained by the method of the present invention is considered to reflect the reactivity of solid cancer with anticancer agents, and is suitable for screening drugs that are truly effective in cancer tissues.

本発明によれば、均質な三次元癌組織モデルを効率的に構築することができる。このため、本発明は抗癌剤など薬効スクリーニングおよび薬効評価を行うのに有用な三次元癌組織モデルを提供することが可能であり、抗癌剤開発の分野における貢献が大いに期待される。   According to the present invention, a homogeneous three-dimensional cancer tissue model can be efficiently constructed. For this reason, the present invention can provide a three-dimensional cancer tissue model useful for drug efficacy screening and drug efficacy evaluation such as anticancer drugs, and a great contribution is expected in the field of anticancer drug development.

Claims (13)

癌細胞を擬微小重力環境下で培養することを特徴とする、三次元癌組織モデルの構築方法。   A method for constructing a three-dimensional cancer tissue model, comprising culturing cancer cells in a pseudo-microgravity environment. 播種される癌細胞が樹立細胞株または初代培養細胞である、請求項1に記載の構築方法。   The construction method according to claim 1, wherein the cancer cells to be seeded are established cell lines or primary cultured cells. 癌細胞を複数の均質な細胞足場材料に播種する工程、および擬微小重力環境下で該細胞足場材料に播種された癌細胞を培養する工程、を含む、請求項1または2に記載の構築方法。   The construction method according to claim 1, comprising the steps of seeding cancer cells on a plurality of homogeneous cell scaffold materials, and culturing the cancer cells seeded on the cell scaffold materials in a pseudo-microgravity environment. . 細胞足場材料がコラーゲン、ポリマー、またはそれらの混合物を含む、請求項3に記載の構築方法。   The construction method of claim 3, wherein the cell scaffold material comprises collagen, a polymer, or a mixture thereof. コラーゲンが、I型コラーゲン、II型コラーゲン、III型コラーゲン、IV型コラーゲン、V型コラーゲン、VI型コラーゲン、VII型コラーゲンおよびそれらの混合物からなる群より選択される、請求項4に記載の構築方法。   The construction method according to claim 4, wherein the collagen is selected from the group consisting of type I collagen, type II collagen, type III collagen, type IV collagen, type V collagen, type VI collagen, type VII collagen, and a mixture thereof. . ポリマーが、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、ポリアルギン酸、およびポリ(D,L−乳酸)からなる群より選択される、1種または2種以上の物質を含む、請求項4に記載の構築方法。   5. The polymer of claim 4, wherein the polymer comprises one or more substances selected from the group consisting of polycaprolactone, polylactic acid, polyglycolic acid, polyalginic acid, and poly (D, L-lactic acid). Construction method. 細胞足場材料への癌細胞の播種が、該癌細胞の懸濁液中に該細胞足場材料を浸漬することによって行われる、請求項4〜6のいずれか1項に記載の構築方法。   The construction method according to any one of claims 4 to 6, wherein the seeding of the cancer cells on the cell scaffold material is performed by immersing the cell scaffold material in a suspension of the cancer cells. 癌細胞の懸濁液中に細胞足場材料を浸漬する工程を減圧下にて行う、請求項7に記載の構築方法。   The construction method according to claim 7, wherein the step of immersing the cell scaffold material in a suspension of cancer cells is performed under reduced pressure. 擬微小重力環境が、時間平均して地球の重力の1/100〜1/10に相当する重力を物体に与える環境である、請求項1〜8のいずれか1項に記載の構築方法。   The construction method according to any one of claims 1 to 8, wherein the pseudo microgravity environment is an environment that gives an object gravity corresponding to 1/100 to 1/10 of the earth's gravity on a time average. 擬微小重力環境が、回転で生じる応力によって地球の重力を相殺することにより、地上で擬微小重力環境を実現する、1軸回転式バイオリアクター、または2軸式回転バイオリアクターを用いて実現される、請求項1〜9のいずれか1項に記載の構築方法。   A pseudo microgravity environment is realized by using a single-axis rotating bioreactor or a biaxial rotating bioreactor that realizes a pseudo-microgravity environment on the ground by offsetting the gravity of the earth by the stress generated by the rotation. The construction method according to any one of claims 1 to 9. 1軸回転式バイオリアクターがRWV(Rotating Wall Vessel)バイオリアクターである、請求項10に記載の構築方法。   The construction method according to claim 10, wherein the single-shaft rotating bioreactor is an RWV (Rotating Wall Vessel) bioreactor. 2軸式バイオリアクターがクリノスタットである、請求項10に記載の構築方法。   The construction method according to claim 10, wherein the biaxial bioreactor is a clinostat. さらに、擬微小重力環境下で培養することにより得られた三次元癌組織モデルを、単層培養または三次元培養に付す工程を含む、請求項1〜12のいずれか1項に記載の構築方法。   Furthermore, the construction method of any one of Claims 1-12 including the process of attaching | subjecting the three-dimensional cancer tissue model obtained by culture | cultivating in a pseudo microgravity environment to a monolayer culture or a three-dimensional culture. .
JP2011031122A 2011-02-16 2011-02-16 Method for constructing three-dimensional carcinoma tissue model under pseudo-microgravity environment Pending JP2012165719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011031122A JP2012165719A (en) 2011-02-16 2011-02-16 Method for constructing three-dimensional carcinoma tissue model under pseudo-microgravity environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011031122A JP2012165719A (en) 2011-02-16 2011-02-16 Method for constructing three-dimensional carcinoma tissue model under pseudo-microgravity environment

Publications (1)

Publication Number Publication Date
JP2012165719A true JP2012165719A (en) 2012-09-06

Family

ID=46970544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011031122A Pending JP2012165719A (en) 2011-02-16 2011-02-16 Method for constructing three-dimensional carcinoma tissue model under pseudo-microgravity environment

Country Status (1)

Country Link
JP (1) JP2012165719A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192568A (en) * 1997-07-22 1999-04-06 Kanebo Ltd Spongy spherical particle and production thereof
WO2003011343A1 (en) * 2001-07-27 2003-02-13 National Institute Of Advanced Industrial Science And Technology Method of regenerating bone/chondral tissues by transferring transcriptional factor gene
JP2004059344A (en) * 2002-07-25 2004-02-26 Toshiba Ceramics Co Ltd Ceramic super-porous body, its manufacturing process and substrate for cell culture using the same
JP2004329045A (en) * 2003-05-01 2004-11-25 Applied Cell Biotechnologies Inc Carrier holder for culturing cell and method for culturing cell in high density
WO2005056072A1 (en) * 2003-12-11 2005-06-23 Japan Science And Technology Agency Method of constructing three-dimensional cartilage tissue by using myeloid cells in pseudo-microgravity environment
JP2009125068A (en) * 2007-11-23 2009-06-11 Otake:Kk Multilayered culturing apparatus
JP2010508851A (en) * 2006-11-13 2010-03-25 エシコン・インコーポレイテッド In vitro expansion of postpartum-derived cells using microcarriers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192568A (en) * 1997-07-22 1999-04-06 Kanebo Ltd Spongy spherical particle and production thereof
WO2003011343A1 (en) * 2001-07-27 2003-02-13 National Institute Of Advanced Industrial Science And Technology Method of regenerating bone/chondral tissues by transferring transcriptional factor gene
JP2004059344A (en) * 2002-07-25 2004-02-26 Toshiba Ceramics Co Ltd Ceramic super-porous body, its manufacturing process and substrate for cell culture using the same
JP2004329045A (en) * 2003-05-01 2004-11-25 Applied Cell Biotechnologies Inc Carrier holder for culturing cell and method for culturing cell in high density
WO2005056072A1 (en) * 2003-12-11 2005-06-23 Japan Science And Technology Agency Method of constructing three-dimensional cartilage tissue by using myeloid cells in pseudo-microgravity environment
JP2010508851A (en) * 2006-11-13 2010-03-25 エシコン・インコーポレイテッド In vitro expansion of postpartum-derived cells using microcarriers
JP2009125068A (en) * 2007-11-23 2009-06-11 Otake:Kk Multilayered culturing apparatus

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BIOTECHNIQUES, vol. 33, 5, JPN6014046400, 2002, pages 1070 - 1072, ISSN: 0002933551 *
BIOTECHNOLOGY AND BIOENGINEERING, vol. 50, JPN6014046387, 1996, pages 587 - 597, ISSN: 0002933550 *
JOURNAL OF CELLULAR BIOCHEMISTRY, vol. 51, JPN6014046390, 1993, pages 290 - 300, ISSN: 0002933552 *
PROCEEDINGS OF THE ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY S, JPN6014046393, 2005, pages 564 - 566, ISSN: 0002933555 *
SIMULATED MICROGRAVITY IMPROVES PRODUCTION OF COLONIC GROWTH FACTORS., vol. 1-4, JPN6014046396, 1993, ISSN: 0002933554 *
TISSUE ENGINEERING. PART A, vol. 15, 3, JPN6014046392, 2009, pages 559 - 567, ISSN: 0002933553 *

Similar Documents

Publication Publication Date Title
Jubelin et al. Three-dimensional in vitro culture models in oncology research
Sitarski et al. 3D tissue engineered in vitro models of cancer in bone
Bray et al. Addressing patient specificity in the engineering of tumor models
Krontiras et al. Adipogenic differentiation of stem cells in three‐dimensional porous bacterial nanocellulose scaffolds
Camarero-Espinosa et al. Directed cell growth in multi-zonal scaffolds for cartilage tissue engineering
Lamhamedi-Cherradi et al. 3D tissue-engineered model of Ewing's sarcoma
Arya et al. Gelatin methacrylate hydrogels as biomimetic three-dimensional matrixes for modeling breast cancer invasion and chemoresponse in vitro
Bhaskar et al. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA‐only scaffolds
Haycock 3D cell culture: a review of current approaches and techniques
Chang et al. Cell responses to surface and architecture of tissue engineering scaffolds
Lin et al. In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering
Dadsetan et al. Effect of hydrogel porosity on marrow stromal cell phenotypic expression
Pisanti et al. Tubular perfusion system culture of human mesenchymal stem cells on poly‐L‐lactic acid scaffolds produced using a supercritical carbon dioxide‐assisted process
Hoo et al. Preparation of a soft and interconnected macroporous hydroxypropyl cellulose methacrylate scaffold for adipose tissue engineering
Pampaloni et al. Three-dimensional tissue models for drug discovery and toxicology
Han et al. Effect of pore sizes of silk scaffolds for cartilage tissue engineering
Xiong et al. Creation of macropores in three-dimensional bacterial cellulose scaffold for potential cancer cell culture
Fan et al. Preparation and characterization of chitosan/galactosylated hyaluronic acid scaffolds for primary hepatocytes culture
Wu et al. Self-assembly of dendritic DNA into a hydrogel: Application in three-dimensional cell culture
Egger et al. Application of a parallelizable perfusion bioreactor for physiologic 3D cell culture
Wang et al. A biomimetic honeycomb‐like scaffold prepared by flow‐focusing technology for cartilage regeneration
Jasuja et al. Perfusion bioreactor enabled fluid-derived shear stress conditions for novel bone metastatic prostate cancer testbed
Bonartsev et al. Poly (3-hydroxybutyrate)/poly (ethylene glycol) scaffolds with different microstructure: the effect on growth of mesenchymal stem cells
Singh et al. Three‐dimensional cryogel matrix for spheroid formation and anti‐cancer drug screening
WO2014200997A2 (en) Method for preparing three-dimensional, organotypic cell cultures and uses thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150623