JP2012159415A - Estimation method of precipitation-strengthening amount for precipitation-strengthened type alloy - Google Patents

Estimation method of precipitation-strengthening amount for precipitation-strengthened type alloy Download PDF

Info

Publication number
JP2012159415A
JP2012159415A JP2011019825A JP2011019825A JP2012159415A JP 2012159415 A JP2012159415 A JP 2012159415A JP 2011019825 A JP2011019825 A JP 2011019825A JP 2011019825 A JP2011019825 A JP 2011019825A JP 2012159415 A JP2012159415 A JP 2012159415A
Authority
JP
Japan
Prior art keywords
precipitation
precipitation strengthening
size
alloy material
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011019825A
Other languages
Japanese (ja)
Other versions
JP5553171B2 (en
Inventor
Yukiko Kobayashi
由起子 小林
Atsushi Takahashi
淳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011019825A priority Critical patent/JP5553171B2/en
Publication of JP2012159415A publication Critical patent/JP2012159415A/en
Application granted granted Critical
Publication of JP5553171B2 publication Critical patent/JP5553171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable estimation of the amount of precipitation-strengthening for a size and a number density of precipitation particles.SOLUTION: There is prepared a model alloy material which has the same matrix and kind of a precipitate as a precipitation-strengthened type alloy, and in which, of the amounts of strengthening, only the amount of precipitation strengthening is varied by heat treatment conditions. And the amount of the precipitation strengthening of the model alloy material is obtained by the variation of yield strength caused by precipitation and the solute concentration of elements constituting precipitation particles. Further, a resistance force per one of the precipitation particles is calculated from a size and a number density of the precipitation particles in the model alloy material, and the correlation is obtained between the size of the precipitation particles and the resistance force per one of the precipitation particles. Meanwhile, a size and a number density of precipitation particles in the precipitation-strengthened type alloy is obtained, and, to the obtained correlation, the size of the precipitation particles therein is applied to thereby obtain a resistance force per one of the precipitation particles therein. The amount of precipitation strengthening is obtained by using the obtained resistance force, and the size and the number density of the precipitation particles therein.

Description

本発明は、析出強化型合金の析出強化量推定方法に関し、特に、析出強化型合金の析出強化量を推定するために用いて好適なものである。   The present invention relates to a method for estimating the precipitation strengthening amount of a precipitation strengthening type alloy, and is particularly suitable for use in estimating the precipitation strengthening amount of a precipitation strengthening type alloy.

金属材料の強度を高めるには、金属材料中の結晶粒の微細化、金属材料への固溶元素の添加による固溶強化、金属材料中に析出物を分散させることによる析出強化、金属材料中の転位密度を増加させる転位強化等が有効である。材料の強度をより向上させるため、ひとつの金属材料に対して、これらの金属材料の強度の強化方法を、複合的に付与している場合が多い。これらの強化による強化量を推定することは、材料設計において重要である。結晶粒の微細化による強化量については、結晶粒径から強化量を計算する式が知られ、この式による強化量は実測値と良く一致することが知られている。固溶元素の添加による固溶強化量については、実験から求めた、各種合金と添加固溶元素量との関係が提示されており、この関係から固溶強化量を求めることが知られている。   To increase the strength of metal materials, refinement of crystal grains in metal materials, solid solution strengthening by adding solid solution elements to metal materials, precipitation strengthening by dispersing precipitates in metal materials, Dislocation strengthening that increases the dislocation density is effective. In order to further improve the strength of the material, a method for strengthening the strength of these metal materials is often applied to one metal material in a composite manner. It is important in material design to estimate the amount of reinforcement due to these reinforcements. As for the strengthening amount due to the refinement of crystal grains, an equation for calculating the strengthening amount from the crystal grain size is known, and it is known that the strengthening amount based on this equation agrees well with the actual measurement value. Regarding the amount of solid solution strengthening due to the addition of solid solution elements, the relationship between various alloys and the amount of added solid solution elements obtained from experiments has been presented, and it is known to determine the amount of solid solution strengthening from this relationship .

しかし、析出強化量については、添加元素量のみでは表すことはできず、合金の熱処理による析出物の形成状態(すなわち、析出粒子のサイズや個数密度等)によって、大きく変化する。転位強化量についても、加工や熱処理によって変化し、転位密度の観察は難しいことから、容易に推定することは困難である。
したがって、目的の金属材料の強化量の測定はできても、その強化要因が前記のように多岐に渡っている場合には、析出強化量単独の測定はできない。このように、析出強化のために添加した合金元素がどれほど効率的に活用されているのかを推測することは困難であった。例えば特許文献1では、材料の初期状態、熱間加工、析出、変態、組織、材質をそれぞれモデル化し、このモデルに基づいて、目標とする材質を得るための製造条件を材質との関係で制御し、材質を予測する鋼板の材質予測制御方法を提案している。しかし、特許文献1では、ある析出状態に対する析出強化量が判っている前提での製造条件の制御を目的としており、析出粒子の種類、サイズ、個数密度による析出強化量の変化そのものについては述べられていない。
However, the amount of precipitation strengthening cannot be expressed only by the amount of additive element, and varies greatly depending on the formation state of precipitates by heat treatment of the alloy (that is, the size and number density of the precipitated particles). The amount of dislocation strengthening also varies depending on the processing and heat treatment, and it is difficult to estimate easily because it is difficult to observe the dislocation density.
Therefore, even if the strengthening amount of the target metal material can be measured, if the strengthening factors are diverse as described above, the precipitation strengthening amount alone cannot be measured. Thus, it has been difficult to estimate how efficiently the alloying elements added for precipitation strengthening are utilized. For example, in Patent Document 1, the initial state, hot working, precipitation, transformation, structure, and material of each material are modeled, and based on this model, the manufacturing conditions for obtaining the target material are controlled in relation to the material. In addition, a steel sheet material prediction control method for predicting the material has been proposed. However, Patent Document 1 aims to control the production conditions on the premise that the precipitation strengthening amount for a certain precipitation state is known, and changes in the precipitation strengthening amount depending on the type, size, and number density of the precipitated particles are described. Not.

これに対して、省資源、製造コストの削減、及びリサイクル性向上の観点から、析出強化のための合金元素の削減が求められている。合金元素を削減した上で、多種の合金元素を有する金属材料と同等の強度を確保するためには、限られた合金元素を最大限有効活用し、明確な制御指針を持って析出粒子のサイズ及び個数密度の制御をしなくてはならない。例えば、特許文献2では、析出強化型鋼板の設計方法として、析出強化量が大きくなる炭化物形成元素の組み合わせ方法が述べられている。しかし、特許文献2でも、析出粒子のサイズや個数密度は不明であり、析出粒子のサイズや個数密度が変化したときの析出強化量の変化は調べられていない。
このように、従来は、与えられた析出粒子のサイズ及び個数密度とその析出強化量との定量的関係は明らかになっていなかった。この理由は、析出粒子1個あたりの抵抗力の粒子サイズ依存性を調べることができなかったことに由来する。
On the other hand, reduction of alloy elements for precipitation strengthening is required from the viewpoint of resource saving, reduction of manufacturing cost, and improvement of recyclability. In order to secure the same strength as a metal material with various alloy elements while reducing the number of alloy elements, the limited alloy elements are utilized to the maximum and the size of the precipitated particles with clear control guidelines And the number density must be controlled. For example, Patent Document 2 describes a method of combining carbide forming elements that increases the amount of precipitation strengthening as a method of designing a precipitation strengthened steel sheet. However, even in Patent Document 2, the size and number density of the precipitated particles are unknown, and the change in the precipitation strengthening amount when the size or number density of the precipitated particles is changed has not been investigated.
Thus, conventionally, the quantitative relationship between the size and number density of the given precipitated particles and the precipitation strengthening amount has not been clarified. This reason is derived from the fact that the particle size dependency of the resistance force per precipitated particle could not be examined.

特開平4−361158号公報JP-A-4-361158 特開2005−120430号公報JP 2005-120430 A

「鉄鋼材料」、日本金属学会、丸善、1985年"Steel Materials", The Japan Institute of Metals, Maruzen, 1985 「非鉄材料」、日本金属学会、丸善、1987年"Nonferrous materials", The Japan Institute of Metals, Maruzen, 1987 木村宏著、「改訂材料強度の考え方」、アグネ技術センター、2002年Hiroshi Kimura, “Revision Material Strength Concept”, Agne Technology Center, 2002 「金属データブック」、日本金属学会、丸善、2004年"Metal Data Book", Japan Institute of Metals, Maruzen, 2004

本発明は以上のような問題点に鑑みてなされたものであり、析出粒子のサイズ及び個数密度に対する析出強化量を推定できるようにすることを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to make it possible to estimate the precipitation strengthening amount with respect to the size and number density of the precipitated particles.

本発明者らは、析出強化型合金の析出強化量を推定する方法を吟味し、モデル合金を用いて析出粒子1個あたりの抵抗力(析出物の析出強化への寄与)を予め求めておくことで、コンピュータを用いて任意の析出粒子のサイズ及び個数密度における析出強化量を算出する方法、すなわち、目的の析出強化型合金の析出粒子のサイズ及び個数密度の観察からその析出強化量を計算する方法により、前記の目的を達成することが可能であることを見出し、以下の発明を創案した。   The present inventors examined a method for estimating the precipitation strengthening amount of the precipitation strengthening type alloy, and previously determined the resistance force (contribution to the precipitation strengthening of the precipitate) using a model alloy. Therefore, the amount of precipitation strengthening at the size and number density of any precipitated particles using a computer is calculated, that is, the amount of precipitation strengthening is calculated from the observation of the size and number density of the precipitated particles of the target precipitation strengthened alloy. The inventors have found that the above-described object can be achieved by the method of the above, and have created the following invention.

すなわち、本発明の要旨とするところは以下の通りである。
(1)析出強化型合金の析出強化量を推定する析出強化量推定方法であって、前記析出強化型合金と同じ母相及び析出物種を持ち、且つ、熱処理条件によって析出強化量が変化するモデル合金材料であって、熱処理条件が異なる複数のモデル合金材料を作製する工程と、前記モデル合金材料中の析出粒子のサイズ及び個数密度と、当該析出粒子を構成する元素の固溶濃度と、を測定する工程と、前記モデル合金材料の引張試験を行い、当該モデル合金材料の降伏強度を測定する工程と、前記モデル合金材料の降伏強度と、前記モデル合金材料中の析出粒子を構成する元素の固溶濃度と、に基づいて、前記モデル合金材料の析出強化量を算出する工程と、前記析出強化量と、前記モデル合金材料中の析出粒子のサイズと、前記モデル合金材料中の析出粒子の個数密度と、に基づいて、前記モデル合金材料の析出粒子1個あたりの抵抗力を算出する工程と、前記モデル合金材料中の析出粒子のサイズと、前記モデル合金材料中の析出粒子1個あたりの抵抗力との相関を算出する工程と、前記相関を記憶媒体に格納する工程と、前記析出強化型合金中の析出粒子のサイズ及び個数密度を測定する工程と、前記相関に前記析出強化型合金中の析出粒子のサイズを当てはめ、前記析出強化型合金材の析出粒子1個あたりの抵抗力を求める工程と、前記析出強化型合金の析出粒子1個あたりの抵抗力と、当該析出粒子のサイズ及び個数密度と、に基づいて、前記析出強化型合金の析出強化量を算出する工程と、を有することを特徴とする析出強化型合金の析出強化量推定方法。
(2)前記モデル合金材料は、常温から該モデル合金材料の溶体化温度に至るまで、変態を起こさない成分系である鋼であることを特徴とする(1)に記載の析出強化型合金の析出強化量推定方法。
(3)前記析出粒子のサイズ及び個数密度と、当該析出粒子を構成する元素の固溶濃度とを、三次元アトムプローブ法を用いて測定することを特徴とする(1)又は(2)に記載の析出強化型合金の析出強化量推定方法。
That is, the gist of the present invention is as follows.
(1) Precipitation strengthening amount estimation method for estimating the precipitation strengthening amount of a precipitation strengthening type alloy, which has the same matrix and precipitate type as the precipitation strengthening type alloy, and the precipitation strengthening amount varies depending on heat treatment conditions. A step of producing a plurality of model alloy materials having different heat treatment conditions, the size and number density of the precipitated particles in the model alloy material, and the solid solution concentration of the elements constituting the precipitated particles. A step of measuring, a step of performing a tensile test of the model alloy material, measuring a yield strength of the model alloy material, a yield strength of the model alloy material, and an element constituting the precipitated particles in the model alloy material. A step of calculating the precipitation strengthening amount of the model alloy material based on the solid solution concentration, the precipitation strengthening amount, the size of the precipitated particles in the model alloy material, and the model alloy material A step of calculating a resistance force per precipitation particle of the model alloy material based on the number density of the precipitation particles, a size of the precipitation particles in the model alloy material, and a precipitation particle in the model alloy material A step of calculating a correlation with the resistance force per piece, a step of storing the correlation in a storage medium, a step of measuring the size and number density of precipitated particles in the precipitation-strengthened alloy, and the correlation Applying the size of the precipitated particles in the precipitation strengthened alloy to determine the resistance per precipitation particle of the precipitation strengthened alloy material, the resistance per precipitation particle of the precipitation strengthened alloy, And a step of calculating the precipitation strengthening amount of the precipitation strengthening type alloy based on the size and number density of the precipitated particles.
(2) The precipitation-strengthened alloy according to (1), wherein the model alloy material is steel that is a component system that does not cause transformation from room temperature to a solution temperature of the model alloy material. Precipitation strengthening amount estimation method.
(3) According to (1) or (2), the size and number density of the precipitated particles and the solid solution concentration of the elements constituting the precipitated particles are measured using a three-dimensional atom probe method. The precipitation strengthening amount estimation method of the precipitation strengthening type alloy described.

本発明によれば、析出粒子のサイズ及び個数密度に対する析出強化量を推定することができる。よって、析出強化、固溶強化、結晶粒の微細化による強化等が複合的に付与されている場合においても、析出強化量の精度良い予測が可能となる。   According to the present invention, the precipitation strengthening amount with respect to the size and number density of the precipitated particles can be estimated. Therefore, even when precipitation strengthening, solid solution strengthening, strengthening by refining crystal grains, and the like are combined, it is possible to accurately predict the amount of precipitation strengthening.

析出強化型合金の析出強化量の推定方法の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the estimation method of the precipitation strengthening amount of a precipitation strengthening type alloy. 実施例1の析出粒子1個あたりの抵抗力の粒子サイズ依存性を示す図である。It is a figure which shows the particle size dependence of the resistance force per precipitation particle | grain of Example 1. FIG. 実施例2の析出粒子1個あたりの抵抗力の粒子サイズ依存性を示す図である。It is a figure which shows the particle size dependence of the resistance force per precipitation particle | grain of Example 2. FIG.

以下、図面を参照しながら、本発明の一実施形態を説明する。
図1は、析出強化型合金の析出強化量の推定方法の流れの一例を示すフローチャートである。
まず、図1の各工程の概要を説明する。
ステップS1のモデル合金材料作製工程では、熱処理条件を違えて析出粒子のサイズと個数密度とを変化させ、その結果、析出強化量が異なるモデル合金材料を作製する。
次に、ステップS2の析出粒子のアトムプローブ測定工程では、三次元アトムプローブを用いて析出粒子のサイズと個数密度を測定すると共に、析出粒子を構成する元素の固溶濃度を測定する。
一方で、ステップS3の引張試験による降伏強度測定工程では、引張試験により、モデル合金材料の降伏強度を測定する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart showing an example of the flow of a method for estimating the precipitation strengthening amount of a precipitation strengthening type alloy.
First, the outline of each process in FIG. 1 will be described.
In the model alloy material production process of step S1, the size and number density of the precipitated particles are changed under different heat treatment conditions, and as a result, model alloy materials having different precipitation strengthening amounts are produced.
Next, in the atom probe measuring step of the precipitated particles in step S2, the size and number density of the precipitated particles are measured using a three-dimensional atom probe, and the solid solution concentration of the elements constituting the precipitated particles is measured.
On the other hand, in the yield strength measuring step by the tensile test in step S3, the yield strength of the model alloy material is measured by the tensile test.

ステップS4の析出強化量算出工程では、まず、ステップS2で得られた元素の固溶濃度から固溶強化量を算出する。次に、熱処理を施していない試料と、熱処理を施した各試料とについて、それぞれステップS3で測定された降伏強度から、固溶強化量を差し引いた値を求め、熱処理を施した試料の値の、熱処理を施していない試料の値からの増分を、熱処理を施した各試料の析出強化量とする。
次に、ステップS5のメモリー格納工程では、ステップS2で測定された析出粒子のサイズ、析出粒子の個数密度、及びステップS4で求められた析出強化量をメモリーに格納しておく。
In the precipitation strengthening amount calculation step in step S4, first, the solid solution strengthening amount is calculated from the solid solution concentration of the element obtained in step S2. Next, a value obtained by subtracting the amount of solid solution strengthening from the yield strength measured in step S3 for each of the sample not subjected to heat treatment and each sample subjected to heat treatment is obtained, and the value of the sample subjected to heat treatment is determined. The increment from the value of the sample not subjected to heat treatment is defined as the precipitation strengthening amount of each sample subjected to heat treatment.
Next, in the memory storing step of step S5, the size of the precipitated particles measured in step S2, the number density of the precipitated particles, and the precipitation strengthening amount obtained in step S4 are stored in the memory.

次に、ステップS6の析出粒子1個あたりの抵抗力算出工程では、ステップS5でメモリーに格納された「析出粒子のサイズ、個数密度、及び析出強化量」を、析出強化の理論式に代入し、析出粒子の各サイズにおける析出粒子1個あたりの抵抗力を計算する。
次に、ステップS7の相関算出工程では、ステップS5で格納された析出粒子のサイズと、ステップS6で計算された析出粒子1個あたりの抵抗力との相関を最も良く表す適当な関数を求める。以上の結果から、あらゆる析出粒子のあらゆるサイズにおける1個あたりの抵抗力が求めることができるようになった。ステップS7で得られた相関(関数)は、ステップS8のメモリー格納工程でメモリーに格納される。
Next, in the step of calculating the resistance per precipitate particle in step S6, the “precipitation particle size, number density, and precipitation strengthening amount” stored in the memory in step S5 is substituted into the theoretical formula of precipitation strengthening. The resistance force per precipitation particle in each size of the precipitation particles is calculated.
Next, in the correlation calculating step in step S7, an appropriate function that best represents the correlation between the size of the precipitated particles stored in step S5 and the resistance force per precipitated particle calculated in step S6 is obtained. From the above results, it became possible to determine the resistance force per particle at any size of any precipitated particles. The correlation (function) obtained in step S7 is stored in the memory in the memory storing step in step S8.

一方で、ステップS9の析出粒子のアトムプローブ測定工程では、析出強化量を求めたい合金(推定対象試料)の析出粒子のサイズと個数密度を、三次元アトムプローブを用いて測定する。
次に、ステップS10の析出粒子1個あたりの抵抗力算出工程では、ステップS9で測定された析出粒子のサイズを、ステップS8で格納された関数に代入することで、析出強化量を求めたい合金に含まれる析出粒子1個あたりの抵抗力を求める。
次に、ステップS11の析出強化量算出工程では、ステップS10で求められた析出粒子1個あたりの抵抗力と、ステップS9で測定された析出粒子のサイズ及び個数密度とを、析出強化の理論式に代入し、合金の析出強化量を算出し推定する。
最後に、ステップS12の出力・表示工程では、ステップS11で算出された析出強化量を出力・表示する。具体的に出力・表示工程では、ステップS11で算出された析出強化量を、例えば、記憶メディアに記憶したり、外部装置に送信したり、液晶ディスプレイ等に表示したりする。
On the other hand, in the atom probe measuring step of the precipitated particles in step S9, the size and number density of the precipitated particles of the alloy (estimation target sample) whose precipitation strengthening amount is to be obtained are measured using a three-dimensional atom probe.
Next, in the step of calculating the resistance per precipitation particle in step S10, an alloy whose precipitation strengthening amount is desired to be obtained by substituting the size of the precipitation particle measured in step S9 into the function stored in step S8. The resistance force per precipitation particle contained in is obtained.
Next, in the precipitation strengthening amount calculation step of step S11, the resistance per one precipitated particle obtained in step S10 and the size and number density of the precipitated particles measured in step S9 are expressed by a theoretical formula for precipitation strengthening. To calculate and estimate the precipitation strengthening amount of the alloy.
Finally, in the output / display process of step S12, the precipitation strengthening amount calculated in step S11 is output / displayed. Specifically, in the output / display process, the precipitation strengthening amount calculated in step S11 is stored in, for example, a storage medium, transmitted to an external device, or displayed on a liquid crystal display or the like.

本実施形態では、析出強化型合金の析出強化量を推定する析出強化量推定装置として、コンピュータ装置を用いることができる。この析出強化量推定装置は、例えば、CPU、ROM、RAM、HDD、及び各種のインターフェースを有し、図1のステップS4〜S8、S10〜S12の処理(図1の破線で囲まれているブロックにおける処理)を実現する。図1のステップS4〜S8、S10〜S12は、析出強化量推定装置のHDD等に記憶されたコンピュータプログラムをCPUが実行することにより実現される。ステップS4、S5、S10、S11のように、外部からの情報を受信する工程では、析出強化量推定装置の通信インターフェースが用いられる。また、ステップS5、S8のメモリー格納工程で使用されるメモリーには、例えば、析出強化量推定装置のRAMやHDD等が用いられる。   In the present embodiment, a computer device can be used as the precipitation strengthening amount estimation device for estimating the precipitation strengthening amount of the precipitation strengthening type alloy. This precipitation strengthening amount estimation device has, for example, a CPU, a ROM, a RAM, an HDD, and various interfaces, and performs the processes in steps S4 to S8 and S10 to S12 in FIG. 1 (blocks surrounded by broken lines in FIG. Process). Steps S4 to S8 and S10 to S12 in FIG. 1 are realized by the CPU executing a computer program stored in the HDD or the like of the precipitation strengthening amount estimation device. As in steps S4, S5, S10, and S11, in the process of receiving information from the outside, the communication interface of the precipitation strengthening amount estimation device is used. In addition, for example, a RAM or HDD of a precipitation strengthening amount estimation device is used as the memory used in the memory storing step in steps S5 and S8.

以下、本発明の各工程について詳細に説明する。
<モデル合金材料作製工程:ステップS1>
本工程は、熱処理条件によって析出強化量のみの強化量が変化するモデル合金材料を作製する工程である。
本実施形態では、析出強化型合金の析出強化量の推定のために、析出強化量を推定する析出強化型合金と同じ母相及び析出物種を持ち、且つ、強化量のうち、熱処理条件によって析出強化量のみの強化量が変化するモデル合金材料を作製しなければならない。ここで、析出強化量のみの強化量が変化するとは、熱処理することによって、析出状態(すなわち、析出粒子のサイズ及び個数密度)が変化することに伴って析出強化量が変化し、その他の強化量(すなわち、結晶粒径の変化や転位密度の変化による強化量)の変化がないことを意味する。しかしながら、析出物が形成されることによって、析出物を形成する元素の固溶濃度は低下する。このため、モデル合金材料において析出物を形成する元素による固溶強化量は例外的に変化しても良いとする。ただし、モデル合金材料において析出物を構成する元素以外の元素による固溶強化量は、変化してはならない。
Hereafter, each process of this invention is demonstrated in detail.
<Model alloy material production process: Step S1>
This step is a step of producing a model alloy material in which only the precipitation strengthening amount changes depending on the heat treatment conditions.
In this embodiment, in order to estimate the precipitation strengthening amount of the precipitation strengthening type alloy, it has the same matrix and precipitate type as the precipitation strengthening type alloy for estimating the precipitation strengthening amount, and the precipitation amount depends on the heat treatment condition in the strengthening amount. A model alloy material in which only the strengthening amount changes in the strengthening amount must be produced. Here, the amount of strengthening of only precipitation strengthening changes that the amount of precipitation strengthening changes as the precipitation state (that is, the size and number density of precipitated particles) changes by heat treatment, and other strengthening. It means that there is no change in the amount (that is, the amount of strengthening due to change in crystal grain size or change in dislocation density). However, when the precipitate is formed, the solid solution concentration of the element forming the precipitate is lowered. For this reason, it is assumed that the amount of solid solution strengthening by the elements that form precipitates in the model alloy material may vary exceptionally. However, the amount of solid solution strengthening by elements other than the elements constituting the precipitates in the model alloy material should not change.

熱処理条件によって析出強化量のみの強化量が変化するモデル合金材料の作製のためには、まず、状態図等を参考にして、目的の析出物の溶体化温度から常温に至るまで、母相が単相となるような合金組成を設計することが好ましい。定法によって合金を溶製、鋳造し、得られた合金片(試験片)に熱間圧延などの加工を加えても良い。次に、適当なサイズに切り出した合金片(試験片)に、前述の溶体化温度における熱処理を施し、水冷などの急冷をもって過飽和の固溶体にすることが必要である。急冷された試験片を、目的の析出物が析出する温度域の温度に保持する熱処理を行う。このとき、保持温度や時間を変化させることによって析出粒子のサイズが変化するよう複数の合金片(試験片)を作製する。常温から溶体化温度まで単相となるようにする理由は、合金片(試験片)を溶体化した後、過飽和の固溶体にするための冷却中に、体積変化を伴う変態が合金片(試験片)に起きると、変態時の歪みによって多量の転位が導入され、その後の析出を形成させるための熱処理の際に、転位が回復して転位強化量が低下するために、正確な析出強化量が求められなくなるためである。   In order to produce a model alloy material in which the strengthening amount of only the precipitation strengthening amount varies depending on the heat treatment conditions, first, referring to the phase diagram etc., the matrix phase is changed from the solution temperature of the target precipitate to the room temperature. It is preferable to design the alloy composition so as to be a single phase. The alloy may be melted and cast by a conventional method, and the obtained alloy piece (test piece) may be subjected to processing such as hot rolling. Next, it is necessary to heat-treat the alloy piece (test piece) cut out to an appropriate size at the above-mentioned solution temperature and to make a supersaturated solid solution by rapid cooling such as water cooling. A heat treatment is performed to hold the rapidly cooled specimen at a temperature in a temperature range where the target precipitate is deposited. At this time, a plurality of alloy pieces (test pieces) are prepared so that the size of the precipitated particles changes by changing the holding temperature and time. The reason for achieving a single phase from room temperature to the solution temperature is that the alloy piece (test piece) undergoes transformation accompanied by volume change during the cooling to form a supersaturated solid solution after the alloy piece (test piece) is made into solution. ), A large amount of dislocations are introduced due to strain at the time of transformation, and during the subsequent heat treatment to form precipitates, the dislocations recover and decrease the amount of dislocation strengthening. This is because it is no longer required.

以上のようなモデル合金材料の一例として、鋼の場合、常温から溶体化温度に至るまで変態を起こさない成分系であることが好ましい。鉄鋼材料のフェライト母相中の析出強化量を推定する場合には、1.5質量%以上10質量%以下のAlを含むモデル合金材料を利用することが好ましい。モデル合金材料におけるAlの質量割合を1.5質量%以上としたのは、1.5質量%以上のAlを添加すると、常温から溶体化温度に至るまで変態が生じなくなるからである。一方、モデル合金材料におけるAlの質量割合の上限を10質量%としたのは、Alを10質量%より多く添加すると、FeとAlとの金属間化合物が生じやすく、母相が単相でなくなり、やはり正確な析出強化量が測定できなくなるからである。モデル合金材料におけるAlの質量割合は、より好ましくは、2質量%以上8質量%以下である。Alの場合と同様の理由で、Siを1.5質量%以上7質量%以下含む合金をモデル合金材料として利用しても良い。また、常温から溶体化温度に至るまで母相をフェライト単相にするという狙いで、Al、Siの他にCr、Ti、Mo、V、W等を一種または二種以上添加して前述した目的を達成しても良い。
鉄鋼材料のオーステナイト母相中の析出強化量を推定する場合には、常温から溶体化温度に至るまでオーステナイト単相となるモデル合金材料を利用することが好ましい。例として、Ni、Mn、Co等をモデル合金材料に添加すると効果がある。
As an example of the model alloy material as described above, in the case of steel, a component system that does not cause transformation from room temperature to a solution temperature is preferable. When estimating the precipitation strengthening amount in the ferritic matrix of the steel material, it is preferable to use a model alloy material containing 1.5 mass% or more and 10 mass% or less of Al. The reason why the mass proportion of Al in the model alloy material is 1.5 mass% or more is that when 1.5 mass% or more of Al is added, transformation does not occur from room temperature to the solution temperature. On the other hand, the upper limit of the mass ratio of Al in the model alloy material is set to 10% by mass. When Al is added in an amount of more than 10% by mass, an intermetallic compound of Fe and Al is likely to be formed, and the parent phase is not a single phase. This is because an accurate precipitation strengthening amount cannot be measured. The mass ratio of Al in the model alloy material is more preferably 2% by mass or more and 8% by mass or less. For the same reason as in the case of Al, an alloy containing 1.5 mass% or more and 7 mass% or less of Si may be used as a model alloy material. In addition, with the aim of making the parent phase a ferrite single phase from room temperature to the solution temperature, one or more of Cr, Ti, Mo, V, W, etc., in addition to Al and Si, have been added for the purpose described above. May be achieved.
When estimating the precipitation strengthening amount in the austenite matrix of the steel material, it is preferable to use a model alloy material that becomes an austenite single phase from room temperature to the solution temperature. For example, it is effective to add Ni, Mn, Co or the like to the model alloy material.

<析出粒子のアトムプローブ測定工程:ステップS2>
本工程は、モデル合金材料中の析出粒子のサイズ及び個数密度と、析出粒子を構成する元素の固溶濃度とを三次元アトムプローブ法により測定する工程である。
モデル合金材料中の析出粒子のサイズ及び個数密度を測定するために、三次元アトムプローブ法を利用することで、直径1nm未満の微細析出粒子から数10nmに至る析出粒子までの析出粒子のサイズと、実質的に析出強化に寄与する範囲の個数密度とを正確に測定することができる。そのために、切断及び電解研磨法(必要に応じて電解研磨法と併せて集束イオンビーム加工法)を活用し、熱処理後の試料から針状の試料を作製する。三次元アトムプローブ法による測定では、積算されたデータを再構築して実空間での実際の原子の立体分布像を求めることができる。原子の立体分布像の体積と、その立体分布像に含まれる析出粒子の数とに基づき、析出粒子の個数密度が求まる。また、析出粒子のサイズは、観察された析出粒子の構成原子数と析出粒子の格子定数とに基づき、析出粒子を球状と仮定して算出した直径である。任意に30個以上の析出粒子の直径を測定し、その平均値を析出粒子のサイズとして求める。
また、以上のような三次元アトムプローブ法による測定により得られた原子の立体分布像において、析出物以外の部分に存在する原子は固溶原子と見なせる。析出物を構成する元素の、析出物以外の部分での原子数濃度から、元素の固溶濃度を見積もる。
なお、三次元アトムプローブ法自体は、公知の技術で実現できるので、ここでは、その詳細な説明を省略する。また、析出粒子のサイズ及び個数密度と、析出粒子を構成する元素の固溶濃度とを測定するには、三次元アトムプローブ法を用いるのが好ましいが、これらの測定は、必ずしも三次元アトムプローブ法に限定されるものではない。
<Atom probe measurement process of precipitated particles: Step S2>
This step is a step of measuring the size and number density of the precipitated particles in the model alloy material and the solid solution concentration of the elements constituting the precipitated particles by a three-dimensional atom probe method.
In order to measure the size and number density of the precipitated particles in the model alloy material, by using the three-dimensional atom probe method, the size of the precipitated particles from the fine precipitated particles having a diameter of less than 1 nm to the precipitated particles reaching several tens of nm Thus, the number density in a range substantially contributing to precipitation strengthening can be accurately measured. For this purpose, a needle-like sample is prepared from the heat-treated sample by utilizing a cutting and electropolishing method (if necessary, a focused ion beam processing method in combination with the electropolishing method). In the measurement by the three-dimensional atom probe method, the accumulated data can be reconstructed to obtain a three-dimensional distribution image of actual atoms in real space. Based on the volume of the three-dimensional distribution image of atoms and the number of precipitation particles included in the three-dimensional distribution image, the number density of the precipitation particles is obtained. Further, the size of the precipitated particles is a diameter calculated on the basis of the observed number of constituent atoms of the precipitated particles and the lattice constant of the precipitated particles, assuming that the precipitated particles are spherical. The diameter of 30 or more precipitated particles is measured arbitrarily, and the average value is obtained as the size of the precipitated particles.
Further, in the three-dimensional atom distribution image obtained by the measurement by the three-dimensional atom probe method as described above, atoms existing in a portion other than the precipitate can be regarded as solid solution atoms. The solid solution concentration of the element is estimated from the atomic number concentration of the element constituting the precipitate other than the precipitate.
Since the three-dimensional atom probe method itself can be realized by a known technique, detailed description thereof is omitted here. Further, in order to measure the size and number density of the precipitated particles and the solid solution concentration of the elements constituting the precipitated particles, it is preferable to use a three-dimensional atom probe method, but these measurements are not necessarily performed by the three-dimensional atom probe. It is not limited to the law.

<引張試験による降伏強度測定工程:ステップS3>
本工程は、モデル合金材料の引張試験を行い、モデル合金材料の降伏強度を測定する工程である。
前記モデル合金材料においては、熱処理により変化した強度差が、析出強化量と固溶強化量とを足し合わせたものの変化に対応する。ステップS1で作製されたモデル合金材料を切り出し、引張試験に供することで、熱処理をしていない試料の降伏強度と、各熱処理温度で熱処理した試料の降伏強度とを測定する。
なお、降伏強度の測定は、公知の技術で実現できるので、ここでは、その詳細な説明を省略する。
<Yield strength measurement process by tensile test: Step S3>
This step is a step of performing a tensile test of the model alloy material and measuring the yield strength of the model alloy material.
In the model alloy material, the strength difference changed by the heat treatment corresponds to the change of the sum of the precipitation strengthening amount and the solid solution strengthening amount. The model alloy material produced in step S1 is cut out and subjected to a tensile test, thereby measuring the yield strength of the sample not subjected to heat treatment and the yield strength of the sample heat treated at each heat treatment temperature.
In addition, since the measurement of yield strength can be realized by a known technique, detailed description thereof is omitted here.

<析出強化量算出工程:ステップS4>
本工程は、ステップS3で得られた降伏強度と、ステップS2で得られた元素の固溶濃度とを入力し、それら降伏強度と固溶濃度とに基づいて、モデル合金材料の析出強化量を算出する工程である。
析出物を構成する元素の固溶濃度が変化することによって固溶強化量が変化する場合には、前記三次元アトムプローブ法により測定した固溶濃度から、各試料の固溶強化量を計算する。固溶強化量の計算にあたっては、固溶元素の添加量と固溶強化量との関係を、文献値(例えば、非特許文献1(「鉄鋼材料」(日本金属学会、1985年発行、丸善、第87頁))、あるいは非特許文献2(「非鉄材料」(日本金属学会、1987年発行、丸善、第85頁)))から直接読み取れば、求めることができる。全く析出の起きていない試料(すなわち、溶体化処理後、熱処理を施していない試料)と、析出を狙い熱処理を施した各試料とについて、それぞれステップS3で測定された降伏強度から固溶強化量を差し引いた値を求める。そして、熱処理を施した各試料の値の、熱処理を施していない試料の値からの増分を各試料の析出強化量とする。
<Precipitation strengthening amount calculation step: Step S4>
In this process, the yield strength obtained in step S3 and the solid solution concentration of the element obtained in step S2 are input, and the precipitation strengthening amount of the model alloy material is determined based on the yield strength and solid solution concentration. It is a process of calculating.
When the solid solution strengthening amount changes due to changes in the solid solution concentration of the elements constituting the precipitate, the solid solution strengthening amount of each sample is calculated from the solid solution concentration measured by the three-dimensional atom probe method. . In calculating the amount of solid solution strengthening, the relationship between the amount of solid solution element added and the amount of solid solution strengthening is described as a literature value (for example, Non-Patent Document 1 (“Steel Material” (Japan Institute of Metals, 1985, Maruzen, 87)), or non-patent document 2 ("Nonferrous materials" (The Japan Institute of Metals, published in 1987, Maruzen, page 85))). The amount of solid solution strengthening from the yield strength measured in step S3 for each sample in which no precipitation occurred (that is, a sample that was not subjected to heat treatment after solution treatment) and each sample that was heat-treated for precipitation. Find the value minus. Then, the increment of the value of each sample subjected to the heat treatment from the value of the sample not subjected to the heat treatment is defined as the precipitation strengthening amount of each sample.

<メモリー格納工程:ステップS5>
本工程は、モデル合金材料中の析出粒子のサイズ、個数密度、及び析出強化量を入力しメモリーに格納する工程である。
モデル合金材料の各熱処理試料について測定された、析出粒子のサイズ、個数密度、及び析出強化量は、一対一で対応付けられてメモリーに格納される。
<Memory storing step: Step S5>
In this step, the size, number density, and precipitation strengthening amount of the precipitated particles in the model alloy material are input and stored in the memory.
The size, number density, and precipitation strengthening amount of the precipitated particles measured for each heat-treated sample of the model alloy material are stored in the memory in a one-to-one correspondence.

<析出粒子1個あたりの抵抗力算出工程:ステップS6>
本工程は、析出強化量から析出粒子1個あたりの抵抗力を算出する工程である。
例えば、非特許文献3(「改訂材料強度の考え方」(木村宏著、2002年発行、アグネ技術センター、第322頁))に、析出強化量は、析出粒子1個あたりの抵抗力と、析出粒子の隙間間隔とから記述されることが述べられている。すなわち、析出粒子1個あたりの抵抗力は、析出粒子の隙間間隔と析出強化量とを用いて、以下の(1)式のように記述される。
<Resistance calculation process per precipitation particle: Step S6>
This step is a step of calculating the resistance per precipitation particle from the precipitation strengthening amount.
For example, in Non-Patent Document 3 ("Concept of Revised Material Strength" (Hiroshi Kimura, 2002, Agne Technology Center, p. 322)), the precipitation strengthening amount is the resistance per precipitation particle and the precipitation strength. It is stated that it is described from the gap spacing of the particles. That is, the resistance force per precipitation particle is described as the following equation (1) using the gap interval between precipitation particles and the precipitation strengthening amount.

Figure 2012159415
Figure 2012159415

ここで、σcは、析出強化量(Pa)であり、Fは、析出粒子1個あたりの抵抗力(N)であり、Lは、析出粒子の隙間間隔(m)であり、Gは、母相金属の剛性率(Pa)であり、bは、バーガースベクトル(m)であり、Mは、テイラー因子である。GとbとMの値としては、非特許文献4(例えば「金属データブック」(日本金属学会、2004年発行、丸善))に記載されているデータを用いることができる。また、析出粒子の隙間間隔Lは、析出粒子のサイズをR(m)、個数密度をD(m-3)とすると、以下の(2)式のように記述される。 Here, σ c is the precipitation strengthening amount (Pa), F is the resistance force (N) per precipitated particle, L is the gap interval (m) of the precipitated particles, and G is It is a rigidity factor (Pa) of a parent phase metal, b is a Burgers vector (m), and M is a Taylor factor. As values of G, b, and M, data described in Non-Patent Document 4 (for example, “Metal Data Book” (published by the Japan Institute of Metals, 2004, Maruzen)) can be used. Further, the gap interval L between the precipitated particles is described as the following equation (2), where R (m) is the size of the precipitated particles and D (m −3 ) is the number density.

Figure 2012159415
Figure 2012159415

すなわち、析出粒子1個あたりの抵抗力は、析出粒子のサイズ、個数密度、及び析出強化量を用いて記述される。(1)式に示す、析出強化量と、粒子隙間間隔と、粒子1個あたりの抵抗力との関係式は、析出粒子1個あたりの抵抗力Fが小さく、析出粒子のピン止めから転位が外れる離脱角φcが100°以上(又は100°超)のときに成り立つとされる。離脱角φcは、析出粒子1個あたりの抵抗力Fと、以下の(3)式の関係で記述される。
F=G×b2×cos(φc/2) ・・・(3)
また、析出粒子1個あたりの抵抗力Fが大きく、転位の離脱角φcが100°未満(又は以下)の場合には、析出強化量σcは、以下の(4)式で表される。
That is, the resistance force per precipitation particle is described using the size, number density, and precipitation strengthening amount of the precipitation particles. The relational expression between the precipitation strengthening amount, the particle gap interval, and the resistance force per particle shown in the equation (1) shows that the resistance force F per precipitation particle is small, and dislocation occurs from pinning of the precipitation particles. It is assumed that the separation angle φ c that deviates is 100 ° or more (or more than 100 °). The separation angle φ c is described by the relationship of the resistance force F per precipitated particle and the following equation (3).
F = G × b 2 × cos (φ c / 2) (3)
Further, when the resistance force F per precipitated particle is large and the dislocation separation angle φ c is less than 100 ° (or below), the precipitation strengthening amount σ c is expressed by the following equation (4). .

Figure 2012159415
Figure 2012159415

まず、(1)式と(4)式との両方で、析出粒子1個あたりの抵抗力Fの値を計算する。そして、離脱角φcが100°以上(又は100°超)と求まれば、(1)式で計算した、析出粒子1個あたりの抵抗力Fの値を選択する。一方、離脱角φcが100°未満(又は100°以下)と求まれば、(4)式で計算した、析出粒子1個あたりの抵抗力Fの値を選択する。
以上の(1)式、(4)式の関係式を用いて、それぞれの析出粒子のサイズにおける、析出粒子1個あたりの抵抗力Fが求められる。
First, the value of the resistance force F per precipitated particle is calculated by both the equations (1) and (4). If the separation angle φ c is found to be 100 ° or more (or more than 100 °), the value of the resistance force F per precipitated particle calculated by the equation (1) is selected. On the other hand, if the separation angle φ c is found to be less than 100 ° (or 100 ° or less), the value of the resistance force F per precipitated particle calculated by the equation (4) is selected.
Using the above relational expressions (1) and (4), the resistance force F per precipitation particle in the size of each precipitation particle is obtained.

<相関算出工程:ステップS7>
本工程は、モデル合金材料中の析出粒子1個あたりの抵抗力と粒子サイズとの相関を算出する工程である。
まず、前述のステップS5でメモリーに格納された析出粒子のサイズを横軸とし、ステップS6で求められた析出粒子1個あたりの抵抗力を縦軸として値をプロットする。次に、これらの相関を最も良く表す適当な関数を求める。最も単純な場合は一次関数であり、その他、平方根、指数関数、対数関数、双曲線関数、またはこれらの和として表されるよう、回帰計算を行う。
<Correlation calculation step: Step S7>
This step is a step of calculating the correlation between the resistance force per precipitated particle in the model alloy material and the particle size.
First, the values are plotted with the horizontal axis representing the size of the precipitated particles stored in the memory in step S5 described above and the vertical axis representing the resistance per one precipitated particle determined in step S6. Next, an appropriate function that best represents these correlations is determined. In the simplest case, it is a linear function, and the regression calculation is performed so as to be expressed as a square root, an exponential function, a logarithmic function, a hyperbolic function, or a sum thereof.

<メモリー格納工程:ステップS8>
本工程は、モデル合金材料中の析出粒子のサイズと、析出粒子1個あたりの抵抗力との相関をメモリーに格納する工程である。
<析出粒子のアトムプローブ測定工程:ステップS9>
本工程は、析出強化型合金中の析出粒子のサイズおよび個数密度を、三次元アトムプローブ法により測定する工程である。
析出強化量の推定対象試料である析出強化型合金の観察により、析出強化型合金中の析出粒子のサイズおよび個数密度を求める。析出粒子のサイズ及び個数密度の測定は、例えば、ステップS2の析出粒子のアトムプローブ測定工程でモデル合金材料を測定したのと同じ方法で行い、三次元アトムプローブ法を利用することが好ましい。
<Memory storing step: Step S8>
This step is a step of storing the correlation between the size of the precipitated particles in the model alloy material and the resistance per one precipitated particle in the memory.
<Atom probe measurement process of precipitated particles: Step S9>
This step is a step of measuring the size and number density of the precipitated particles in the precipitation strengthened alloy by a three-dimensional atom probe method.
The size and number density of the precipitated particles in the precipitation strengthened alloy are determined by observing the precipitation strengthened alloy, which is a sample subject to estimation of the precipitation strengthening amount. The size and number density of the precipitated particles are preferably measured by the same method as that used for measuring the model alloy material in the atom probe measuring step of the precipitated particles in step S2, for example, and it is preferable to use the three-dimensional atom probe method.

<析出粒子1個あたりの抵抗力算出工程:ステップS10>
本工程は、モデル合金材料中の析出粒子のサイズと、析出粒子1個あたりの抵抗力との相関に、析出強化型合金中の析出粒子のサイズを当てはめ、析出強化型合金材の析出粒子1個あたりの抵抗力を算出する工程である。
モデル合金材料中の析出粒子のサイズと、析出粒子1個あたりの抵抗力との相関と、ステップS9で測定された析出強化型合金の析出粒子のサイズとから、析出強化型合金中の析出粒子1個あたりの抵抗力を算出する。
<Resistance calculation process per precipitation particle: Step S10>
In this process, the size of the precipitated particles in the precipitation strengthened alloy material is applied to the correlation between the size of the precipitated particles in the model alloy material and the resistance per one precipitated particle, and the precipitated particles 1 of the precipitation strengthened alloy material. This is a step of calculating the resistance force per piece.
From the correlation between the size of the precipitated particles in the model alloy material and the resistance per one precipitated particle, and the size of the precipitated particles of the precipitation strengthened alloy measured in step S9, the precipitated particles in the precipitation strengthened alloy. The resistance force per piece is calculated.

<析出強化量算出工程:ステップS11>
本工程は、析出強化型合金材中の析出粒子1個あたりの抵抗力と、析出強化型合金材中の析出粒子のサイズと、析出強化型合金材中の析出粒子の個数密度とを用いて、析出強化型合金材の析出強化量を算出する工程である。
「析出強化量と、析出粒子1個あたりの抵抗力と、析出粒子の隙間間隔との関係」及び「析出粒子の隙間間隔と、析出粒子のサイズと、析出粒子の個数密度との関係」を利用し、ステップS10で算出された析出強化型合金中の析出粒子1個あたりの抵抗力と、ステップS9で測定された析出粒子のサイズ及び個数密度と、を用いて、析出強化型合金の析出強化量を算出する。
<Precipitation strengthening amount calculation step: Step S11>
This step uses the resistance per precipitation particle in the precipitation strengthening alloy material, the size of the precipitation particles in the precipitation strengthening alloy material, and the number density of the precipitation particles in the precipitation strengthening alloy material. This is a step of calculating the precipitation strengthening amount of the precipitation strengthening type alloy material.
“Relationship between precipitation strengthening amount, resistance per precipitation particle, and gap distance between precipitation particles” and “Relationship between gap distance between precipitation particles, size of precipitation particles, and number density of precipitation particles” Precipitation of the precipitation strengthening type alloy using the resistance force per precipitation particle in the precipitation strengthening type alloy calculated in Step S10 and the size and number density of the precipitation particles measured in Step S9. Calculate the amount of reinforcement.

<出力・表示工程:ステップS12>
本工程は、析出強化型合金材の析出強化量を出力し表示する工程である。ステップS11で算出された析出強化型合金の析出強化量を出力し、表示する。
<Output / Display Process: Step S12>
This step is a step of outputting and displaying the precipitation strengthening amount of the precipitation strengthening type alloy material. The precipitation strengthening amount of the precipitation strengthening type alloy calculated in step S11 is output and displayed.

以上の通り、本実施形態では、まず、析出強化量を求めたい析出強化型合金と同じ母相及び析出物種を持ち、且つ、強化量のうち、熱処理条件によって析出強化量のみが変化するモデル合金材料を作製する。そして、析出による降伏強度の変化と、析出粒子を構成する元素の固溶濃度とからモデル合金材料の析出強化量を求める。さらに、モデル合金材料中の析出粒子のサイズ及び個数密度から、当該析出粒子1個あたりの抵抗力を算出し、当該析出粒子のサイズと、当該析出粒子1個あたりの抵抗力との相関を求めて記憶しておく。一方、析出強化型合金の観察により、析出強化型合金中の析出粒子のサイズ及び個数密度を求める。モデル合金材料中の析出粒子のサイズと、析出粒子1個あたりの抵抗力との相関に、析出強化型合金中の析出粒子のサイズを当てはめ、析出強化型合金中の析出粒子1個あたりの抵抗力を求め、析出強化型合金中の析出粒子1個あたりの抵抗力と、析出強化型合金中の析出粒子のサイズ及び個数密度とを用いて析出強化量を求める。したがって、析出粒子のサイズ及び個数密度に対する析出強化量を一意に推定することができる。すなわち、析出強化、固溶強化、結晶粒の微細化による強化等が複合的に付与されている場合においても、目的の析出強化型合金における、任意の析出粒子のサイズ及び個数密度における析出強化量の推定を精度良く行うことが可能となる。よって、合金元素を最も効率的に活用するための析出粒子のサイズ及び個数密度の予想を高精度に行うことが可能となり、限られた合金元素を最大限有効活用し、明確な制御指針を持って析出粒子のサイズ及び個数密度の制御を行うことができる。さらには特性の向上や省合金を達成することができる。   As described above, in the present embodiment, first, a model alloy having the same matrix and precipitate type as the precipitation strengthening type alloy whose precipitation strengthening amount is desired to be obtained, and only the precipitation strengthening amount changes depending on the heat treatment condition among the strengthening amounts. Make the material. And the precipitation strengthening amount of a model alloy material is calculated | required from the change of the yield strength by precipitation, and the solid solution concentration of the element which comprises precipitation particle | grains. Further, the resistance force per precipitate particle is calculated from the size and number density of the precipitate particles in the model alloy material, and the correlation between the size of the precipitate particles and the resistance force per the precipitate particles is obtained. And remember. On the other hand, the size and number density of the precipitated particles in the precipitation strengthened alloy are determined by observing the precipitation strengthened alloy. By applying the size of the precipitation particles in the precipitation strengthened alloy to the correlation between the size of the precipitation particles in the model alloy material and the resistance per precipitation particle, the resistance per precipitation particle in the precipitation strengthened alloy is applied. The amount of precipitation strengthening is determined using the resistance force per precipitation particle in the precipitation strengthening type alloy and the size and number density of the precipitation particles in the precipitation strengthening type alloy. Therefore, the precipitation strengthening amount with respect to the size and number density of the precipitated particles can be uniquely estimated. That is, even when precipitation strengthening, solid solution strengthening, strengthening by refining crystal grains, etc. are given in combination, the amount of precipitation strengthening at the size and number density of any precipitated particles in the target precipitation strengthened alloy Can be estimated with high accuracy. Therefore, it is possible to predict the size and number density of the precipitated particles for the most efficient use of alloy elements with high accuracy, make the most effective use of limited alloy elements, and have clear control guidelines. Thus, the size and number density of the precipitated particles can be controlled. Furthermore, improvement of characteristics and alloy saving can be achieved.

次に、本発明の実施例を説明する。
(実施例1)
本実施例では、Al−Mg−Si合金中のMgSiクラスタ粒子による析出強化量を推定した例を示す。MgSiクラスタ粒子と表記したのは、安定な析出相であるMg2Si析出物になる以前であったためである。強化量の推定に際してはクラスタ粒子であっても析出粒子と全く同様に、粒子1個あたりの抵抗力の見積もりや強化量の推測ができる。したがって、以降、クラスタ粒子を析出粒子として扱い、表記もMgSi析出粒子とする。
Next, examples of the present invention will be described.
Example 1
In this example, an example is shown in which the precipitation strengthening amount due to MgSi cluster particles in the Al—Mg—Si alloy is estimated. The reason why it was described as MgSi cluster particles was before it became Mg 2 Si precipitates which are stable precipitation phases. In the estimation of the strengthening amount, even in the case of cluster particles, the resistance per particle and the strengthening amount can be estimated just like the precipitated particles. Therefore, hereinafter, the cluster particles are treated as precipitated particles, and the notation is also referred to as MgSi precipitated particles.

モデル合金としてAl−0.7Mg−0.4Si(ただし数値は質量%)を有する合金を溶解、鋳造後、試料として切り出した。次に、試料を550℃において溶体化処理した後、水冷し、90℃または175℃においてMgSiを析出させた試料A〜Dをそれぞれ作製した。試料A〜D、及び溶体化処理後熱処理を施していない試料について、三次元アトムプローブ法により、MgSi析出粒子のサイズ及び個数密度と、Mg及びSiの固溶濃度とを測定した。   An alloy having Al-0.7Mg-0.4Si (however, the numerical value is mass%) as a model alloy was melted and cast, and then cut out as a sample. Next, after subjecting the sample to a solution treatment at 550 ° C., the sample was cooled with water, and Samples A to D in which MgSi was deposited at 90 ° C. or 175 ° C. were prepared. For the samples A to D and the sample not subjected to the heat treatment after solution treatment, the size and number density of MgSi precipitated particles and the solid solution concentrations of Mg and Si were measured by a three-dimensional atom probe method.

溶体化処理後、熱処理を施していない試料には、MgSi析出粒子は生成されていなかった。また、試料A〜Dと、溶体化処理後、熱処理を施していない試料とについて、平行部の直径が6mmφ、長さが32mmの丸棒引張試験片を採取し、JIS Z 2241に記載の測定方法に従って引張試験を行い、それぞれの降伏強度を測定した。各試料A〜DにおけるMg及びSiの固溶強化量の見積もりには、「非鉄材料」(日本金属学会、1987年発行、丸善、第85頁)に記載のある、各元素の固溶濃度と固溶強化量との関係を用いた。降伏強度と、Mg及びSiの固溶強化量とを用いて、試料A〜Dの析出強化量を求めた。これらの結果を表1に示す。   After the solution treatment, MgSi precipitated particles were not generated in the sample not subjected to the heat treatment. In addition, for samples A to D and a sample not subjected to heat treatment after solution treatment, a round bar tensile test piece having a parallel part diameter of 6 mmφ and a length of 32 mm was collected and measured according to JIS Z 2241. A tensile test was performed according to the method, and the yield strength of each was measured. To estimate the solid solution strengthening amount of Mg and Si in each sample A to D, the solid solution concentration of each element described in “Nonferrous materials” (Japan Institute of Metals, 1987, Maruzen, page 85) The relationship with the solid solution strengthening amount was used. Using the yield strength and the solid solution strengthening amounts of Mg and Si, the precipitation strengthening amounts of the samples A to D were obtained. These results are shown in Table 1.

Figure 2012159415
Figure 2012159415

試料A〜Dのそれぞれについて、析出粒子のサイズ、析出粒子の個数密度、及び析出強化量をメモリーに入力し、各試料A〜Dの析出粒子の平均サイズに対する、析出粒子1個あたりの抵抗力を求めた。ここで、剛性率Gとして26.0×109(Pa)、バーガースベクトルbとして0.29×10-9(m)、テイラー因子Mとして3.06を用いた。
続いて試料A〜Dについて析出粒子1個あたりの抵抗力と析出粒子サイズとの関係をプロットし、これらの相関を回帰計算により算出した。図2は、MgSi析出粒子1個あたりの抵抗力と粒子サイズとの関係の一例を示す。図2に示されるように、析出粒子1個あたりの抵抗力は、析出粒子のサイズに依存し、これらの関係は線形近似できる。
For each of the samples A to D, the size of the precipitated particles, the number density of the precipitated particles, and the precipitation strengthening amount are input to the memory, and the resistance force per precipitated particle against the average size of the precipitated particles of each sample A to D Asked. Here, the rigidity G was 26.0 × 10 9 (Pa), the Burgers vector b was 0.29 × 10 −9 (m), and the Taylor factor M was 3.06.
Subsequently, for samples A to D, the relationship between the resistance per precipitated particle and the size of the precipitated particles was plotted, and these correlations were calculated by regression calculation. FIG. 2 shows an example of the relationship between the resistance per one MgSi deposited particle and the particle size. As shown in FIG. 2, the resistance force per precipitated particle depends on the size of the precipitated particle, and these relationships can be linearly approximated.

析出粒子1個あたりの抵抗力と、析出粒子のサイズとの相関から、析出粒子の任意の平均サイズ及び任意の個数密度のMgSi析出物を含むAl合金について、MgSi析出物による析出強化量を推定することができる。ここでは、引張試験で析出強化量を調べることのできる前記モデル合金を利用して、推定値と実験値とが一致することを示す。
Al−0.7Mg−0.4Si(ただし数値は質量%)合金を用い、550℃で溶体化処理をした後、水冷し、150℃においてそれぞれ熱処理した試料E、Fを作製した。それぞれの試料E、Fについて三次元アトムプローブ法により、MgSi析出粒子のサイズ及び個数密度と、Mg及びSiの固溶濃度とを測定した。続いて、析出強化量の推定のために、前記算出されたMgSi析出粒子1個あたりの抵抗力と析出粒子のサイズとの相関に、各試料における析出粒子のサイズを当てはめ、各試料E、Fにおける析出粒子1個あたりの抵抗力を算出する。さらに、各試料E、Fにおける析出粒子のサイズと、各試料E、Fにおける析出粒子の個数密度と、を用いて、析出強化型合金材の析出強化量(推定値)を算出した。一方で、試料E、Fの引張試験により測定した降伏強度と、Mg及びSiの固溶強化量から見積もった固溶濃度とを用いて、析出強化量を求めた。表2に示すように、推定値と実測値は良い一致を示した。
Predicting the amount of precipitation strengthening due to MgSi precipitates for Al alloys containing MgSi precipitates of any average size and any number density of precipitate particles from the correlation between the resistance per precipitate particle and the size of the precipitate particles can do. Here, it is shown that the estimated value agrees with the experimental value by using the model alloy whose amount of precipitation strengthening can be examined by a tensile test.
Samples E and F were prepared using an Al-0.7Mg-0.4Si (however, the numerical value is% by mass) solution treatment at 550 ° C., followed by water cooling and heat treatment at 150 ° C., respectively. For each of the samples E and F, the size and number density of MgSi precipitated particles and the solid solution concentration of Mg and Si were measured by a three-dimensional atom probe method. Subsequently, in order to estimate the precipitation strengthening amount, the size of the precipitated particles in each sample is applied to the correlation between the calculated resistance per one MgSi precipitated particle and the size of the precipitated particles, and each sample E, F The resistance per precipitated particle is calculated. Furthermore, the precipitation strengthening amount (estimated value) of the precipitation strengthening type alloy material was calculated using the size of the precipitated particles in each of the samples E and F and the number density of the precipitated particles in each of the samples E and F. On the other hand, the precipitation strengthening amount was calculated | required using the yield strength measured by the tensile test of the samples E and F, and the solid solution concentration estimated from the solid solution strengthening amount of Mg and Si. As shown in Table 2, the estimated value and the actually measured value are in good agreement.

Figure 2012159415
Figure 2012159415

(比較例1)
比較例として、本実施形態の工程と異なる工程を利用した場合を示す。モデル合金として作製した前記試料A〜Dを用い、走査電子顕微鏡により析出粒子のサイズ及び個数密度の測定を試みた。しかし、試料A〜Dの全てにおいてMgSi析出粒子を観察することができなかった。また、引張試験を行ったところ、試料A〜Dの析出強化量は変化しているため、析出粒子1個あたりの抵抗力と析出粒子のサイズとの相関を算出することができなかった。
(Comparative Example 1)
As a comparative example, a case where a process different from the process of the present embodiment is used is shown. Using the samples A to D prepared as model alloys, an attempt was made to measure the size and number density of the precipitated particles with a scanning electron microscope. However, MgSi precipitated particles could not be observed in all of the samples A to D. Moreover, when the tensile test was done, since the precipitation strengthening amount of samples AD changed, it was not possible to calculate the correlation between the resistance per precipitation particle and the size of the precipitation particle.

(実施例2)
本実施例では、フェライト鋼中のTiC析出粒子による析出強化量を推定した例を示す。モデル合金としてフェライト鋼であるFe−0.03C−0.12Ti−4Al(ただし数値は質量%)を有する鋼を溶解、鋳造後、試料として切り出した。このフェライト鋼は、常温から溶体化温度に至るまで、変態を起こさない成分系である鋼である。次に、試料を1200℃において溶体化処理した後、水冷し、580℃において熱処理時間を違えてTiC析出物を生成させた試料G〜Jをそれぞれ作製した。試料G〜J、及び溶体化処理後熱処理を施していない試料について、三次元アトムプローブ法により、TiC析出粒子のサイズ及び個数密度と、Ti及びCの固溶濃度とを測定した。
(Example 2)
In this example, an example in which the precipitation strengthening amount due to TiC precipitated particles in ferritic steel is estimated will be shown. A steel having Fe-0.03C-0.12Ti-4Al (the numerical value is mass%), which is a ferritic steel, was melted and cast as a model alloy, and then cut out as a sample. This ferritic steel is a steel that is a component system that does not undergo transformation from room temperature to solution temperature. Next, after subjecting the sample to solution treatment at 1200 ° C., water cooling was performed, and samples G to J in which TiC precipitates were generated at 580 ° C. with different heat treatment times were produced. With respect to the samples G to J and the sample not subjected to the heat treatment after solution treatment, the size and number density of TiC precipitated particles and the solid solution concentrations of Ti and C were measured by a three-dimensional atom probe method.

溶体化処理後、熱処理を施していない試料には、TiC析出物は生成されていなかった。また、試料G〜Jと、溶体化処理後、熱処理を施していない試料とについて、平行部の直径が6mmφ、長さが32mmの丸棒引張試験片を採取し、JIS Z 2241に記載の測定方法に従って引張試験を行い、それぞれの降伏強度を測定した。各試料G〜JにおけるTi及びCの固溶強化量の見積もりには、「鉄鋼材料」(日本金属学会、1985年発行、丸善、第87頁)に記載のある、各元素の固溶濃度と固溶強化量との関係を用いた。降伏強度と、Ti及びCの固溶強化量とを用いて、試料G〜Jの析出強化量を求めた。これらの結果を表3に示す。   After the solution treatment, no TiC precipitate was generated in the sample that had not been heat-treated. Moreover, about the sample GJ and the sample which has not been heat-treated after the solution treatment, a round bar tensile test piece having a parallel part diameter of 6 mmφ and a length of 32 mm was collected and measured according to JIS Z 2241. A tensile test was performed according to the method, and the yield strength of each was measured. To estimate the solid solution strengthening amount of Ti and C in each sample G to J, the solid solution concentration of each element described in “Iron and steel materials” (Japan Institute of Metals, 1985, Maruzen, p. 87) The relationship with the solid solution strengthening amount was used. Using the yield strength and the solid solution strengthening amounts of Ti and C, the precipitation strengthening amounts of samples G to J were determined. These results are shown in Table 3.

Figure 2012159415
Figure 2012159415

試料G〜Jのそれぞれについて、析出粒子のサイズ、析出粒子の個数密度、及び析出強化量をメモリーに入力し、各試料G〜Jの析出粒子の平均サイズに対する、析出粒子1個あたりの抵抗力を求めた。ここで、剛性率Gとして81.6×109(Pa)、バーガースベクトルbとして0.25×10-9(m)、テイラー因子Mとして2を用いた。
続いて試料G〜Jについて析出粒子1個あたりの抵抗力と析出粒子サイズとの関係をプロットし、これらの相関を回帰計算により算出した。図3は、TiC析出粒子1個あたりの抵抗力と粒子サイズとの関係の一例を示す。図3に示されるように、析出粒子1個あたりの抵抗力は、析出粒子のサイズに依存し、これらの関係は線形近似できる。
For each of the samples G to J, the size of the precipitated particles, the number density of the precipitated particles, and the amount of precipitation strengthening are input to the memory, and the resistance force per precipitated particle against the average size of the precipitated particles of each sample G to J Asked. Here, 81.6 × 10 9 (Pa) as the rigidity G, 0.25 × 10 −9 (m) as the Burgers vector b, and 2 as the Taylor factor M were used.
Subsequently, for the samples G to J, the relationship between the resistance per precipitated particle and the size of the precipitated particles was plotted, and these correlations were calculated by regression calculation. FIG. 3 shows an example of the relationship between the resistance force per TiC precipitated particle and the particle size. As shown in FIG. 3, the resistance force per precipitated particle depends on the size of the precipitated particles, and these relationships can be linearly approximated.

析出粒子1個あたりの抵抗力と、析出粒子サイズとの相関から、析出粒子の任意の平均サイズ及び任意の個数密度のTiC析出物を含むフェライト鋼について、TiC析出物による析出強化量を推定することができる。ここでは、引張試験で析出強化量を調べることのできる前記モデル合金を利用して、推定値と実験値とが一致することを示す。
Fe−0.05C−0.20Ti−3Al(ただし数値は質量%)を有する鋼を用い、1200℃で溶体化処理後をした後、水冷し、560℃、580℃及び650℃においてそれぞれ熱処理した試料K、L、Mを作製した。それぞれについて三次元アトムプローブ法により、TiC析出粒子のサイズ及び個数密度と、Ti及びCの固溶濃度とを測定した。続いて、析出強化量の推定のために、前記算出されたTiC析出粒子1個あたりの抵抗力と析出粒子サイズとの相関に、各試料K、L、Mにおける析出粒子のサイズを当てはめ、各試料K、L、Mにおける析出粒子1個あたりの抵抗力を算出する。さらに、各試料K、L、Mにおける析出粒子のサイズと、各試料K、L、Mにおける析出粒子の個数密度と、を用いて、析出強化型合金材の析出強化量(推定値)を算出した。一方で、試料K、L、Mの引張試験により測定した降伏強度と、Ti及びCの固溶強化量から見積もった固溶濃度とを用いて、析出強化量を求めた。表4に示すように、推定値と実測値は良い一致を示した。
From the correlation between the resistance per precipitate particle and the size of the precipitate particles, the precipitation strengthening amount due to the TiC precipitates is estimated for ferritic steel containing TiC precipitates having an arbitrary average size and an arbitrary number density of the precipitate particles. be able to. Here, it is shown that the estimated value agrees with the experimental value by using the model alloy whose amount of precipitation strengthening can be examined by a tensile test.
Using steel having Fe-0.05C-0.20Ti-3Al (however, the numerical value is% by mass), after solution treatment at 1200 ° C, water cooling and heat treatment at 560 ° C, 580 ° C and 650 ° C, respectively. Samples K, L, and M were prepared. About each, the size and number density of TiC precipitation particle | grains, and the solid solution concentration of Ti and C were measured by the three-dimensional atom probe method. Subsequently, in order to estimate the precipitation strengthening amount, the size of the precipitation particles in each of the samples K, L, and M is applied to the correlation between the calculated resistance per TiC precipitation particle and the precipitation particle size, The resistance force per precipitation particle in samples K, L, and M is calculated. Further, the precipitation strengthening amount (estimated value) of the precipitation strengthening type alloy material is calculated using the size of the precipitated particles in each of the samples K, L, and M and the number density of the precipitated particles in each of the samples K, L, and M. did. On the other hand, the precipitation strengthening amount was calculated | required using the yield strength measured by the tensile test of the samples K, L, and M, and the solid solution concentration estimated from the solid solution strengthening amount of Ti and C. As shown in Table 4, the estimated value and the actually measured value showed good agreement.

Figure 2012159415
Figure 2012159415

(比較例2)
比較例として、常温から溶体化温度の間に変態を伴うために、前述したモデル合金に当てはまらないFe−0.03C−0.1Ti(ただし数値は質量%)を有する鋼を溶解、鋳造後、試料として切り出した。次に、試料を、溶体化処理した後、水冷し、580℃において熱処理時間を違えてTiC析出物を生成させた試料N〜Pをそれぞれ作製した。しかし、引張試験を行ったところ、試料N〜Pはいずれも、溶体化処理後、熱処理を施していない試料よりも強度が低下しており、いずれも正しい析出強化量を評価することができなかった。したがって、析出粒子1個あたりの抵抗力と、析出粒子のサイズとの相関を求めることができなかった。
(Comparative Example 2)
As a comparative example, a steel having Fe-0.03C-0.1Ti (the numerical value is% by mass) which does not apply to the above-described model alloy because of transformation between room temperature and solution temperature, after casting, It cut out as a sample. Next, samples were subjected to solution treatment, then water-cooled, and samples N to P in which TiC precipitates were produced at different heat treatment times at 580 ° C. were prepared. However, when a tensile test was performed, all of the samples N to P had a lower strength than the sample that had not been heat-treated after the solution treatment, and none of them could evaluate the correct precipitation strengthening amount. It was. Therefore, the correlation between the resistance per precipitated particle and the size of the precipitated particle could not be obtained.

尚、以上説明した本発明の実施形態のうち、少なくとも、図1のステップS4〜S8、S10〜S12の処理(図1の破線で囲まれているブロックにおける処理)は、コンピュータがプログラムを実行することによって実現することができる。また、プログラムをコンピュータに供給するための手段、例えばかかるプログラムを記録したCD−ROM等のコンピュータ読み取り可能な記録媒体、又はかかるプログラムを伝送する伝送媒体も本発明の実施の形態として適用することができる。また、前記プログラムを記録したコンピュータ読み取り可能な記録媒体などのプログラムプロダクトも本発明の実施の形態として適用することができる。前記のプログラム、コンピュータ読み取り可能な記録媒体、伝送媒体及びプログラムプロダクトは、本発明の範疇に含まれる。
また、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
Of the embodiments of the present invention described above, at least the processes in steps S4 to S8 and S10 to S12 in FIG. 1 (the processes in the blocks surrounded by the broken lines in FIG. 1) are executed by the computer. Can be realized. Further, a means for supplying the program to the computer, for example, a computer-readable recording medium such as a CD-ROM recording such a program, or a transmission medium for transmitting such a program may be applied as an embodiment of the present invention. it can. A program product such as a computer-readable recording medium that records the program can also be applied as an embodiment of the present invention. The programs, computer-readable recording media, transmission media, and program products are included in the scope of the present invention.
In addition, the embodiments of the present invention described above are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed as being limited thereto. Is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

Claims (3)

析出強化型合金の析出強化量を推定する析出強化量推定方法であって、
前記析出強化型合金と同じ母相及び析出物種を持ち、且つ、熱処理条件によって析出強化量が変化するモデル合金材料であって、熱処理条件が異なる複数のモデル合金材料を作製する工程と、
前記モデル合金材料中の析出粒子のサイズ及び個数密度と、当該析出粒子を構成する元素の固溶濃度と、を測定する工程と、
前記モデル合金材料の引張試験を行い、当該モデル合金材料の降伏強度を測定する工程と、
前記モデル合金材料の降伏強度と、前記モデル合金材料中の析出粒子を構成する元素の固溶濃度と、に基づいて、前記モデル合金材料の析出強化量を算出する工程と、
前記析出強化量と、前記モデル合金材料中の析出粒子のサイズと、前記モデル合金材料中の析出粒子の個数密度と、に基づいて、前記モデル合金材料の析出粒子1個あたりの抵抗力を算出する工程と、
前記モデル合金材料中の析出粒子のサイズと、前記モデル合金材料中の析出粒子1個あたりの抵抗力との相関を算出する工程と、
前記相関を記憶媒体に格納する工程と、
前記析出強化型合金中の析出粒子のサイズ及び個数密度を測定する工程と、
前記相関に前記析出強化型合金中の析出粒子のサイズを当てはめ、前記析出強化型合金材の析出粒子1個あたりの抵抗力を求める工程と、
前記析出強化型合金の析出粒子1個あたりの抵抗力と、当該析出粒子のサイズ及び個数密度と、に基づいて、前記析出強化型合金の析出強化量を算出する工程と、
を有することを特徴とする析出強化型合金の析出強化量推定方法。
A precipitation strengthening amount estimation method for estimating a precipitation strengthening amount of a precipitation strengthening type alloy,
A model alloy material having the same matrix and precipitate species as the precipitation strengthening type alloy and having a precipitation strengthening amount that varies depending on heat treatment conditions, and producing a plurality of model alloy materials having different heat treatment conditions;
Measuring the size and number density of the precipitated particles in the model alloy material, and the solid solution concentration of the elements constituting the precipitated particles;
Performing a tensile test of the model alloy material and measuring the yield strength of the model alloy material;
Calculating the precipitation strengthening amount of the model alloy material based on the yield strength of the model alloy material and the solid solution concentration of the elements constituting the precipitated particles in the model alloy material;
Based on the precipitation strengthening amount, the size of the precipitated particles in the model alloy material, and the number density of the precipitated particles in the model alloy material, the resistance force per precipitated particle of the model alloy material is calculated. And a process of
Calculating a correlation between the size of the precipitated particles in the model alloy material and the resistance per one precipitated particle in the model alloy material;
Storing the correlation in a storage medium;
Measuring the size and number density of precipitated particles in the precipitation strengthened alloy;
Applying the size of the precipitated particles in the precipitation-strengthened alloy to the correlation, and determining the resistance per precipitated particle of the precipitation-strengthened alloy material;
Calculating the precipitation strengthening amount of the precipitation strengthening alloy based on the resistance per precipitation particle of the precipitation strengthening alloy and the size and number density of the precipitation particles;
A precipitation strengthening amount estimation method for a precipitation strengthening type alloy, comprising:
前記モデル合金材料は、常温から該モデル合金材料の溶体化温度に至るまで、変態を起こさない成分系である鋼であることを特徴とする請求項1に記載の析出強化型合金の析出強化量推定方法。   The precipitation strengthening amount of the precipitation strengthening type alloy according to claim 1, wherein the model alloy material is steel which is a component system which does not cause transformation from a normal temperature to a solution temperature of the model alloy material. Estimation method. 前記析出粒子のサイズ及び個数密度と、当該析出粒子を構成する元素の固溶濃度とを、三次元アトムプローブ法を用いて測定することを特徴とする請求項1又は2に記載の析出強化型合金の析出強化量推定方法。   3. The precipitation strengthening type according to claim 1, wherein the size and number density of the precipitated particles and the solid solution concentration of the elements constituting the precipitated particles are measured using a three-dimensional atom probe method. Method for estimating precipitation strengthening amount of alloy.
JP2011019825A 2011-02-01 2011-02-01 Precipitation strengthening estimation method for precipitation strengthened alloys Active JP5553171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011019825A JP5553171B2 (en) 2011-02-01 2011-02-01 Precipitation strengthening estimation method for precipitation strengthened alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011019825A JP5553171B2 (en) 2011-02-01 2011-02-01 Precipitation strengthening estimation method for precipitation strengthened alloys

Publications (2)

Publication Number Publication Date
JP2012159415A true JP2012159415A (en) 2012-08-23
JP5553171B2 JP5553171B2 (en) 2014-07-16

Family

ID=46840069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011019825A Active JP5553171B2 (en) 2011-02-01 2011-02-01 Precipitation strengthening estimation method for precipitation strengthened alloys

Country Status (1)

Country Link
JP (1) JP5553171B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327393B1 (en) * 2017-02-28 2018-05-23 株式会社Sumco Method for evaluating impurity gettering ability of epitaxial silicon wafer and epitaxial silicon wafer
CN114807670A (en) * 2022-06-06 2022-07-29 大连理工大学 Fe-containing copper-based material with dispersion and precipitation strengthening functions and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719583A (en) * 1983-10-21 1988-01-12 Nippon Steel Corporation Method and apparatus of evaluating mechanical properties of steel
JPH10123123A (en) * 1996-10-22 1998-05-15 Hitachi Ltd Method for estimating creep life of gas turbine high-temperature part
JP2005120430A (en) * 2003-10-16 2005-05-12 Jfe Steel Kk Designing method for precipitation-strengthened high-strength steel sheet, manufacturing method therefor, and precipitation-strengthened high-strength steel sheet
JP2006029786A (en) * 2004-07-12 2006-02-02 Jfe Steel Kk Strengthening evaluation method for precipitation strengthening type high-strength steel
JP2009215600A (en) * 2008-03-10 2009-09-24 Kobe Steel Ltd High strength cold rolled steel sheet excellent in yield stress, elongation and stretch-flange formability
JP2011176894A (en) * 1999-03-05 2011-09-08 Ipr Licensing Inc Forward error correction on multiplexed cdma channel enabling high performance coding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719583A (en) * 1983-10-21 1988-01-12 Nippon Steel Corporation Method and apparatus of evaluating mechanical properties of steel
JPH10123123A (en) * 1996-10-22 1998-05-15 Hitachi Ltd Method for estimating creep life of gas turbine high-temperature part
JP2011176894A (en) * 1999-03-05 2011-09-08 Ipr Licensing Inc Forward error correction on multiplexed cdma channel enabling high performance coding
JP2005120430A (en) * 2003-10-16 2005-05-12 Jfe Steel Kk Designing method for precipitation-strengthened high-strength steel sheet, manufacturing method therefor, and precipitation-strengthened high-strength steel sheet
JP2006029786A (en) * 2004-07-12 2006-02-02 Jfe Steel Kk Strengthening evaluation method for precipitation strengthening type high-strength steel
JP2009215600A (en) * 2008-03-10 2009-09-24 Kobe Steel Ltd High strength cold rolled steel sheet excellent in yield stress, elongation and stretch-flange formability

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327393B1 (en) * 2017-02-28 2018-05-23 株式会社Sumco Method for evaluating impurity gettering ability of epitaxial silicon wafer and epitaxial silicon wafer
WO2018159140A1 (en) * 2017-02-28 2018-09-07 株式会社Sumco Method for evaluating impurity gettering ability of epitaxial silicon wafer and epitaxial silicon wafer
JP2018142689A (en) * 2017-02-28 2018-09-13 株式会社Sumco Epitaxial silicon wafer and evaluation method of impurity gettering performance of epitaxial silicon wafer
TWI657504B (en) * 2017-02-28 2019-04-21 日商Sumco股份有限公司 Method for evaluating impurity absorption capability of epitaxial silicon wafer and epitaxial silicon wafer
KR20190108612A (en) * 2017-02-28 2019-09-24 가부시키가이샤 사무코 Evaluation method of impurity gettering ability of epitaxial silicon wafer and epitaxial silicon wafer
CN110546745A (en) * 2017-02-28 2019-12-06 胜高股份有限公司 Method for evaluating impurity adsorption capacity of epitaxial silicon wafer and epitaxial silicon wafer
US10861709B2 (en) 2017-02-28 2020-12-08 Sumco Corporation Method of evaluating impurity gettering capability of epitaxial silicon wafer and epitaxial silicon wafer
KR102313461B1 (en) 2017-02-28 2021-10-14 가부시키가이샤 사무코 Method for Evaluating Impurity Gettering Ability of Epitaxial Silicon Wafer and Epitaxial Silicon Wafer
CN110546745B (en) * 2017-02-28 2023-03-31 胜高股份有限公司 Method for evaluating impurity adsorption capacity of epitaxial silicon wafer, and epitaxial silicon wafer
CN114807670A (en) * 2022-06-06 2022-07-29 大连理工大学 Fe-containing copper-based material with dispersion and precipitation strengthening functions and preparation method thereof
CN114807670B (en) * 2022-06-06 2022-09-20 大连理工大学 Fe-containing copper-based material with dispersion and precipitation strengthening functions and preparation method thereof

Also Published As

Publication number Publication date
JP5553171B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
Gludovatz et al. Processing, microstructure and mechanical properties of the CrMnFeCoNi high-entropy alloy
Tsao et al. The high temperature tensile and creep behaviors of high entropy superalloy
Páramo-Kañetas et al. High-temperature deformation of delta-processed Inconel 718
Wu et al. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy
Knezevic et al. Deformation behavior of the cobalt-based superalloy Haynes 25: Experimental characterization and crystal plasticity modeling
Lyndon et al. Electrochemical behaviour of the β-phase intermetallic (Mg2Al3) as a function of pH as relevant to corrosion of aluminium–magnesium alloys
Starink Dislocation versus grain boundary strengthening in SPD processed metals: Non-causal relation between grain size and strength of deformed polycrystals
Bian et al. Regulating the coarsening of the γ′ phase in superalloys
Laurent-Brocq et al. From diluted solid solutions to high entropy alloys: On the evolution of properties with composition of multi-components alloys
Dehghan-Manshadi et al. Effect of δ-ferrite co-existence on hot deformation and recrystallization of austenite
US20160060742A1 (en) Computationally-designed transformation-toughened near-alpha titanium alloy
Rout et al. Cross rolling: a metal forming process
Mukherjee et al. Modelling the strain-induced precipitation kinetics of vanadium carbonitride during hot working of precipitation-hardened Ferritic–Pearlitic steels
Mishra et al. On the high temperature deformation behaviour of 2507 super duplex stainless steel
Jain et al. Hot workability of Co–Fe–Mn–Ni–Ti eutectic high entropy alloy
Fu et al. Gradient structure of Ti-55531 with nano-ultrafine grains fabricated by simulation and suction casting
Sonkusare et al. Establishing processing-microstructure-property paradigm in complex concentrated equiatomic CoCuFeMnNi alloy
Abdelghany et al. Hot deformation behavior and constitutive modeling of a cost-effective Al8Cr12Mn25Ni20Fe35 high-entropy alloy
Xu et al. Experimental and theoretical study on static recrystallization of a low-density ferritic steel containing 4 mass% aluminum
Van de Langkruis et al. Assessment of constitutive equations in modelling the hot deformability of some overaged Al–Mg–Si alloys with varying solute contents
Wang et al. Thermodynamic investigation of new high-strength low-alloy steels with heusler phase strengthening for welding and additive manufacturing: high-throughput CALPHAD calculations and key experiments for database verification
Wen et al. Structure and tensile properties of Mx (MnFeCoNi) 100-x solid solution strengthened high entropy alloys
JP5553171B2 (en) Precipitation strengthening estimation method for precipitation strengthened alloys
Biermair et al. Influence of alloying on thermodynamic properties of AlCoCrFeNiTi high entropy alloys from DFT calculations
Liao et al. Insight into microstructure evolution on anti-corrosion property of Al x CoCrFeNiC0. 01 high-entropy alloys using scanning vibration electrode technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140514

R151 Written notification of patent or utility model registration

Ref document number: 5553171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350