JP2012154263A - Compressor and refrigerating cycle system - Google Patents

Compressor and refrigerating cycle system Download PDF

Info

Publication number
JP2012154263A
JP2012154263A JP2011014666A JP2011014666A JP2012154263A JP 2012154263 A JP2012154263 A JP 2012154263A JP 2011014666 A JP2011014666 A JP 2011014666A JP 2011014666 A JP2011014666 A JP 2011014666A JP 2012154263 A JP2012154263 A JP 2012154263A
Authority
JP
Japan
Prior art keywords
cylinder
roller
peripheral surface
cylinder chamber
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011014666A
Other languages
Japanese (ja)
Inventor
Takuya Hirayama
卓也 平山
Takeshi Tominaga
健 富永
Koji Hirano
浩二 平野
Shoichiro Kitaichi
昌一郎 北市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2011014666A priority Critical patent/JP2012154263A/en
Priority to CN201210031199.5A priority patent/CN102619755B/en
Publication of JP2012154263A publication Critical patent/JP2012154263A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a compressor in which a cylinder section and a bearing section are integrally formed and a curved surface with a certain curvature radius is formed on a boundary corner part inside a cylinder chamber installed on the inner surface of the cylinder section, and a gap space is formed between the outer peripheral surface of a roller and the apical surface of a blade which abuts against the outer peripheral surface if the curvature radius of the boundary corner part inside the cylinder chamber and the curvature radius of the corner part of the roller facing the boundary corner part are made the same.SOLUTION: The compressor is provided with an integrated cylinder composed of the bearing section and the cylinder section which are formed integrally. The cylinder chamber is blocked by a blocking member formed separate from the integrated cylinder and is provided inside with the roller placed in an eccentrically rotatable manner and the blade placed in a reciprocally slidable manner inside a blade groove installed on the cylinder section. The curvature radius of the boundary corner part of the cylinder inner periphery surface and the bearing inner surface of the integrated cylinder is made larger than the curvature radius of a first corner part of the outer peripheral surface of the roller and the bearing side end surface.

Description

本発明の実施の形態は、圧縮機及びこの圧縮機を備えた冷凍サイクル装置に関する。   Embodiments described herein relate generally to a compressor and a refrigeration cycle apparatus including the compressor.

一般的な圧縮機として、圧縮機構部のシリンダ室内を、ローラが偏心回転することで、流体を圧縮するロータリ型の圧縮機が知られている。このような圧縮機の圧縮機構部は、内周面に囲まれたシリンダ室を有するシリンダ部と、回転軸を支持するとともに、シリンダ室を閉塞する閉塞部材と、ローラの外周面に当接しシリンダ室内を吸込み側と吐出側とに二分するブレードを有している。
更に、上記圧縮機には、シリンダ部と軸受部とが一体に形成された圧縮機構部を備えたものがある。
As a general compressor, there is known a rotary type compressor that compresses a fluid by rotating a roller eccentrically in a cylinder chamber of a compression mechanism section. The compression mechanism portion of such a compressor has a cylinder portion having a cylinder chamber surrounded by an inner peripheral surface, a closing member that supports the rotation shaft and closes the cylinder chamber, and an outer peripheral surface of the roller in contact with the cylinder. It has a blade that divides the room into a suction side and a discharge side.
Further, some of the compressors include a compression mechanism portion in which a cylinder portion and a bearing portion are integrally formed.

シリンダ部と軸受部とが一体に形成された場合、シリンダ部の内面に設けられるシリンダ室内の境界角部には、生産過程において一定の曲率半径を有する曲面が形成される。そして、シリンダ室内を偏心回転するローラのシリンダ室内の境界角部に対向する角部にも、同等の曲率半径を有する曲面が設けられる。   When the cylinder portion and the bearing portion are integrally formed, a curved surface having a constant radius of curvature is formed in the boundary corner portion in the cylinder chamber provided on the inner surface of the cylinder portion in the production process. A curved surface having an equivalent radius of curvature is also provided at a corner portion of the roller that rotates eccentrically in the cylinder chamber and that faces the boundary corner portion in the cylinder chamber.

しかし、シリンダ室内の境界角部の曲率半径と、境界角部に対向するローラの角部の曲率半径を同等にすると、ローラの外周面と外周面に当接するブレードの先端面に間隙空間が形成される。ローラの外周面と、ブレードの先端面とで形成される間隙空間が大きいと、シリンダ室内を吸込み側と吐出側とに二分するブレードの機密性が低下し、圧縮機の体積効率が低下する。   However, if the radius of curvature of the boundary corner in the cylinder chamber is equal to the radius of curvature of the corner of the roller facing the boundary corner, a gap space is formed on the outer peripheral surface of the roller and the tip surface of the blade that contacts the outer peripheral surface. Is done. If the gap space formed by the outer peripheral surface of the roller and the tip surface of the blade is large, the confidentiality of the blade that divides the cylinder chamber into the suction side and the discharge side is lowered, and the volume efficiency of the compressor is lowered.

特開平10−131879号公報Japanese Patent Laid-Open No. 10-131879

本発明の実施形態によれば、シリンダ室内を吸込み側と吐出側とに二分するブレードの機密性の低下を抑え、体積効率の高い圧縮機を提供する。   According to the embodiment of the present invention, it is possible to suppress a decrease in confidentiality of a blade that bisects a cylinder chamber into a suction side and a discharge side, and provide a compressor with high volumetric efficiency.

本発明の実施形態の圧縮機は、回転軸と、回転軸を支持する軸受部と、内周面に囲まれたシリンダ室を有するシリンダ部とが一体に形成されてなる一体型シリンダを有している。
一体型シリンダのシリンダ室は、一体型シリンダと別体に形成された閉塞部材により閉塞されたおり、シリンダ室内には摺動回転可能に配置されたローラと、シリンダ部に設けられたブレード溝内を往復摺動可能に配置されたブレードが備えられている。
そして、一体型シリンダのシリンダ内周面と軸受部内面の境界角部の曲率半径よりも、ローラの外周面と軸受部側端面の第1角部の曲率半径が小さく形成されている。
A compressor according to an embodiment of the present invention includes an integral cylinder in which a rotating shaft, a bearing portion that supports the rotating shaft, and a cylinder portion having a cylinder chamber surrounded by an inner peripheral surface are integrally formed. ing.
The cylinder chamber of the integrated cylinder is closed by a closing member formed separately from the integrated cylinder. Inside the cylinder chamber, a roller disposed so as to be slidable and rotatable, and a blade groove provided in the cylinder portion. Are provided so as to be slidable back and forth.
And the curvature radius of the 1st corner | angular part of the outer peripheral surface of a roller and a bearing part side end surface is formed smaller than the curvature radius of the boundary corner | angular part of the cylinder internal peripheral surface and bearing part inner surface of an integrated cylinder.

第1の実施形態に係る圧縮機の縦断面図。The longitudinal cross-sectional view of the compressor which concerns on 1st Embodiment. 第1の実施形態に係るシリンダ室内の要部縦断面の概略図。Schematic of the principal part longitudinal cross-section in the cylinder chamber which concerns on 1st Embodiment. 第2の実施形態に係るシリンダ室内の要部縦断面の概略図。Schematic of the principal part longitudinal cross-section in the cylinder chamber which concerns on 2nd Embodiment. 第3の実施形態に係るシリンダ室内の要部縦断面の概略図。Schematic of the principal part longitudinal cross-section in the cylinder chamber which concerns on 3rd Embodiment. 第4の実施形態に係る冷凍サイクル装置の概略図。Schematic of the refrigerating cycle device concerning a 4th embodiment.

以下、本発明の実施形態を図面に基づいて説明する。
(第1の実施形態)
図1に本実施形態の圧縮機100の縦断面図を示す。
第1の実施形態の圧縮機100は冷媒を圧縮する密閉型のロータリ圧縮機であり、縦長円筒状の密閉ケース1の内部に、下方に配置された圧縮機構部2と上方に配置された電動機部3を備えている。圧縮機構部2と電動機部3は、回転軸9によって連結されており、電動機部3で発生した回転動力は回転軸9を介して圧縮機構部2に伝達される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 shows a longitudinal sectional view of a compressor 100 of the present embodiment.
The compressor 100 according to the first embodiment is a hermetic rotary compressor that compresses a refrigerant, and includes a compression mechanism unit 2 disposed below and an electric motor disposed above in a vertically long cylindrical sealed case 1. Part 3 is provided. The compression mechanism unit 2 and the electric motor unit 3 are connected by a rotation shaft 9, and the rotational power generated by the electric motor unit 3 is transmitted to the compression mechanism unit 2 through the rotation shaft 9.

圧縮機構部2は、一体型シリンダ20を有している。一体型シリンダ20は、下方に位置するシリンダ部5と、シリンダ部5の上方に配され回転軸9を回転可能に支持するための主軸受部6とが一体に形成され構成されている。
一体型シリンダ20は、シリンダ部5の下方端面からエンドミル加工などの切削加工によって穿設された空洞部であるシリンダ室4が設けられている。このシリンダ室4内には回転軸9の中途部に設けられた軸偏心部8と、軸偏心部8に嵌合されるローラ10が偏心回転と自転可能に配される。シリンダ室4の下方開口部は、閉塞部材であり、回転軸9の支持部材でもある副軸受7によって閉塞される。
The compression mechanism unit 2 has an integrated cylinder 20. The integrated cylinder 20 is formed by integrally forming a cylinder portion 5 positioned below and a main bearing portion 6 disposed above the cylinder portion 5 and rotatably supporting the rotating shaft 9.
The integrated cylinder 20 is provided with a cylinder chamber 4 which is a hollow portion formed by cutting such as end milling from the lower end surface of the cylinder portion 5. In the cylinder chamber 4, a shaft eccentric portion 8 provided in the middle portion of the rotary shaft 9 and a roller 10 fitted to the shaft eccentric portion 8 are arranged so as to be capable of rotating eccentrically and rotating. The lower opening of the cylinder chamber 4 is a closing member and is closed by a sub-bearing 7 that is also a support member of the rotating shaft 9.

即ち、シリンダ室4は、シリンダ部5の内周面4aと、主軸受部6の底部内面6aと、閉塞部材である副軸受部6とによって閉塞されている。
また、ローラ10は、シリンダ室4の内周面4aに対面し凹凸がなく滑らかに形成された外周面10aと、軸受部に対向する平面である一端側面10bと、前記閉塞部材に対向する平面である他端側面10cを有する略円筒形状に形成されている。
That is, the cylinder chamber 4 is closed by the inner peripheral surface 4a of the cylinder portion 5, the bottom inner surface 6a of the main bearing portion 6, and the auxiliary bearing portion 6 that is a closing member.
Further, the roller 10 faces the inner peripheral surface 4a of the cylinder chamber 4 and has an outer peripheral surface 10a that is smoothly formed without unevenness, one end side surface 10b that is a flat surface that faces the bearing portion, and a flat surface that faces the blocking member. It is formed in the substantially cylindrical shape which has the other end side surface 10c which is.

シリンダ部5には、シリンダ室4に開口したブレード溝11が穿設されており、略矩形状のブレード12が往復移動自在に配されている。
ブレード12は基端がバネ30により押圧され、先端面12aがローラ10の外周面10aに当接されたまま、ローラ10の偏心回転に伴ってブレード溝11内を往復移動する。これにより、シリンダ室4内を低圧の吸込側と高圧の吐出側とに二分している。
シリンダ室4の吸込み側には、密閉ケース1外部から冷媒を吸込むための図示しない吸込み口が設けられており、この吸込み口は密閉ケース1外部の気液分離器40に連通している。また、主軸受部6には図示しない吐出通路が設けられており、この吐出通路は吐出方向にのみ開閉可能な吐出弁14によって閉塞されている。また、主軸受部6の上部には吐出マフラ15が設けられており、吐出通路を覆っている。
密閉ケース1内の下方には潤滑油31が貯留されており、圧縮機構部2内のシリンダ室4や主軸受部6及び副軸受7の摺動面に供給されるようになっている。
A blade groove 11 opened in the cylinder chamber 4 is formed in the cylinder portion 5, and a substantially rectangular blade 12 is disposed so as to be reciprocally movable.
The base end of the blade 12 is pressed by a spring 30 and reciprocates in the blade groove 11 as the roller 10 rotates eccentrically while the front end surface 12a is in contact with the outer peripheral surface 10a of the roller 10. Thereby, the inside of the cylinder chamber 4 is divided into a low pressure suction side and a high pressure discharge side.
A suction port (not shown) for sucking refrigerant from the outside of the sealed case 1 is provided on the suction side of the cylinder chamber 4, and this suction port communicates with the gas-liquid separator 40 outside the sealed case 1. The main bearing portion 6 is provided with a discharge passage (not shown), and this discharge passage is closed by a discharge valve 14 that can be opened and closed only in the discharge direction. Further, a discharge muffler 15 is provided at the upper part of the main bearing portion 6 and covers the discharge passage.
Lubricating oil 31 is stored below the sealed case 1 and is supplied to the sliding surfaces of the cylinder chamber 4, the main bearing portion 6, and the auxiliary bearing 7 in the compression mechanism portion 2.

ここで、図2に示すように、シリンダ室4の内周面4aと主軸受部6の底部内面6aとによって境界角部16が形成される。境界角部16は、シリンダ室4が加工成形される際に研削工具の先端形状が転写されるために、曲率を有する曲面として内周面4aの略全周に亘り形成される。この転写された曲面の曲率半径をRcとする。
シリンダ室4内に設けられるローラ10は、主軸受部6に対向する一端側面10bと外周面10aの交わるコーナー部の全周に亘り構成される第1角部18と、副軸受7側の他端側面10cと外周面10aの交わるコーナー部の全周に亘り構成される第2角部19を有している。ここで、第1角部18は曲率半径Rr1で構成されており、第2角部19は曲率半径Rr2で構成されている。
Here, as shown in FIG. 2, a boundary corner portion 16 is formed by the inner peripheral surface 4 a of the cylinder chamber 4 and the bottom inner surface 6 a of the main bearing portion 6. The boundary corner portion 16 is formed over substantially the entire circumference of the inner peripheral surface 4a as a curved surface having a curvature because the tip shape of the grinding tool is transferred when the cylinder chamber 4 is processed and molded. Let Rc be the radius of curvature of the transferred curved surface.
The roller 10 provided in the cylinder chamber 4 includes a first corner portion 18 configured over the entire periphery of the corner portion where the one end side surface 10b facing the main bearing portion 6 and the outer peripheral surface 10a intersect, and the other side of the auxiliary bearing 7 side. It has the 2nd corner | angular part 19 comprised over the perimeter of the corner part where the end surface 10c and the outer peripheral surface 10a cross. Here, the 1st corner | angular part 18 is comprised by the curvature radius Rr1, and the 2nd corner | angular part 19 is comprised by the curvature radius Rr2.

ローラ10の外周面10aとシリンダ室4の内周面4aの間隙Csと、ローラ10の一端側面10bと主軸受部6底部内面6aとの間隙Ctは、潤滑油31による油膜で満たされており、ローラ10の摺動回転が良好で、シリンダ室4内の気密性が保持されている。   A gap Cs between the outer peripheral surface 10 a of the roller 10 and the inner peripheral surface 4 a of the cylinder chamber 4 and a gap Ct between the one end side surface 10 b of the roller 10 and the bottom inner surface 6 a of the main bearing portion 6 are filled with an oil film by the lubricating oil 31. The sliding rotation of the roller 10 is good and the airtightness in the cylinder chamber 4 is maintained.

境界角部16にエンドミルなどの切削工具刃物の先端形状が転写された境界角部16を有するシリンダ室4内をローラ10が摺動回転する圧縮機について、一般的に、ローラ10とシリンダ室4との間隙Ct、Csを最小とするために、第1角部18の曲率半径Rr1と境界角部16の曲率半径Rcとが等しく(Rr1=Rc)なるように形成される。しかし、この場合、ローラ10の外周面10aと主軸受部6の底部内面6aとブレード12の先端面12aとで囲まれた空間Uが大となり、シリンダ室4の吸込側と吐出側との高い気密性を維持できなくなる。特にシリンダ室4が小さく形成され、切削工具の大きさが相対的に大きくなる場合には、ローラ10の外周面10aと主軸受部6の底部内面6aとブレード12の先端面12aとで囲まれた空間Uの大きさによる気密性への影響は顕著となる。   In general, a compressor in which a roller 10 slides and rotates in a cylinder chamber 4 having a boundary corner portion 16 in which the tip shape of a cutting tool cutter such as an end mill is transferred to the boundary corner portion 16 is generally the roller 10 and the cylinder chamber 4. In order to minimize the gaps Ct and Cs, the curvature radius Rr1 of the first corner 18 and the curvature radius Rc of the boundary corner 16 are equal (Rr1 = Rc). However, in this case, the space U surrounded by the outer peripheral surface 10 a of the roller 10, the bottom inner surface 6 a of the main bearing portion 6, and the tip end surface 12 a of the blade 12 becomes large, and the suction side and the discharge side of the cylinder chamber 4 are high. Airtightness cannot be maintained. In particular, when the cylinder chamber 4 is formed small and the size of the cutting tool is relatively large, it is surrounded by the outer peripheral surface 10 a of the roller 10, the bottom inner surface 6 a of the main bearing 6, and the tip surface 12 a of the blade 12. The effect on the airtightness due to the size of the space U becomes remarkable.

そのため、本実施形態におけるローラ10の第1角部18の曲率半径Rr1は、境界角部16の曲率半径Rcよりも小さく(Rr1<Rc)なるように形成されている。これにより、図2中の破線Xで示す境界角部16の曲率半径Rcと第1角部18の曲率半径Rr1が等しい(Rc=Rr1)場合に比べて、主軸受部6とローラ10とブレード12とで囲まれた空間Uが小さくなり、高い気密性を確保することができる。ここで、第1角部18の曲率半径Rr1は、境界角部16の曲率半径Rcよりも小さく(Rr1<Rc)、且つ、油膜により気密性が確保される間隙Ct、Csが保持され、境界角部16と第1角部18とが接触する程度で、干渉又は摩耗しない程度であることが望ましい。
また、ローラ10の第2角部19の曲率半径Rr2は、第1角部18の曲率半径Rr1よりも小さく(Rr2<Rr1)形成されており、図2の一点鎖線Yで示す第1角部18と第2角部19の曲率半径Rr1、Rr2が等しい場合に比べて、シリンダ室4の内周面4aと副軸受7のシリンダ室閉塞面7aとローラ10の外周面10aによって囲まれる空間Vと、副軸受7のシリンダ室閉塞面7aとブレード12の先端面12aとローラ10の外周面10aによって囲まれる空間Wを小さく形成することができる。
上記のように、空間U、V、Wが小さく形成されると、より気密性の高いシリンダ室4とすることができ、シリンダ室4内を低圧の吸込み側と高圧の吐出側に二分された圧縮機構部2とすることができる。
Therefore, the radius of curvature Rr1 of the first corner 18 of the roller 10 in this embodiment is formed to be smaller than the radius of curvature Rc of the boundary corner 16 (Rr1 <Rc). Accordingly, the main bearing portion 6, the roller 10, and the blade are compared with the case where the curvature radius Rc of the boundary corner portion 16 indicated by the broken line X in FIG. 2 is equal to the curvature radius Rr1 of the first corner portion 18 (Rc = Rr1). The space U surrounded by 12 becomes small, and high airtightness can be secured. Here, the radius of curvature Rr1 of the first corner 18 is smaller than the radius of curvature Rc of the boundary corner 16 (Rr1 <Rc), and the gaps Ct and Cs in which airtightness is ensured by the oil film are retained, and the boundary It is desirable that the corner 16 and the first corner 18 are in contact with each other and do not interfere or wear.
Further, the radius of curvature Rr2 of the second corner 19 of the roller 10 is smaller than the radius of curvature Rr1 of the first corner 18 (Rr2 <Rr1), and the first corner indicated by the one-dot chain line Y in FIG. Compared to the case where the radii of curvature Rr1 and Rr2 of the 18 and the second corner 19 are equal, the space V surrounded by the inner peripheral surface 4a of the cylinder chamber 4, the cylinder chamber closing surface 7a of the auxiliary bearing 7, and the outer peripheral surface 10a of the roller 10. In addition, the space W surrounded by the cylinder chamber closing surface 7a of the auxiliary bearing 7, the tip surface 12a of the blade 12, and the outer peripheral surface 10a of the roller 10 can be formed small.
As described above, when the spaces U, V, and W are formed small, the cylinder chamber 4 can be made more airtight, and the inside of the cylinder chamber 4 is divided into a low pressure suction side and a high pressure discharge side. The compression mechanism unit 2 can be used.

更に、ローラ10の外周面10aには、ブレード12に常時当接する溝部が設けられておらず、回転軸9が回転し、軸偏心部8とローラ10とが偏心回転すると、ローラ10は軸偏心部8の周囲で滑らかに自転するようになっている。これにより、ローラ10の外周面10aが局部的にブレード12の先端面12aに当接することがなく、外周面10aの一部分が摩耗し、摩耗粉が圧縮機構部2内へ飛散することがない。
また、ローラ10が自転することにより、外周面10aとシリンダ室4の内周面4aとの間隙Csに供給される潤滑油が多くなり、良好な潤滑性と気密性が得られる。
Further, the outer peripheral surface 10a of the roller 10 is not provided with a groove portion that is always in contact with the blade 12, and when the rotating shaft 9 rotates and the shaft eccentric portion 8 and the roller 10 rotate eccentrically, the roller 10 becomes shaft eccentric. It rotates smoothly around the part 8. As a result, the outer peripheral surface 10a of the roller 10 does not locally contact the tip surface 12a of the blade 12, and a part of the outer peripheral surface 10a is worn away, so that wear powder does not scatter into the compression mechanism portion 2.
Further, as the roller 10 rotates, the lubricating oil supplied to the gap Cs between the outer peripheral surface 10a and the inner peripheral surface 4a of the cylinder chamber 4 increases, and good lubricity and airtightness are obtained.

上記のように構成された圧縮機100の運転を以下に説明する。
圧縮機100外部から駆動電流が供給され、電動機部3が駆動すると、回転軸9が回転し、圧縮機構部2のシリンダ部5のシリンダ室4内で、軸偏心部8及びローラ10が偏心回転する。そして、圧縮機100の吸込口から吸込まれた低温低圧の冷媒が圧縮機構部2のシリンダ室4の吸込み側へ吸込まれる。シリンダ室4内へ吸込まれた冷媒は、ローラ10の偏心回転により圧縮されて高温高圧の冷媒となり、シリンダ室の吐出側から吐出通路13と吐出マフラを介して密閉ケース1内へ吐出され、密閉ケース1の上部に設けられた吐出管32から密閉ケース1外部へ吐出される。
The operation of the compressor 100 configured as described above will be described below.
When a drive current is supplied from the outside of the compressor 100 and the motor unit 3 is driven, the rotating shaft 9 rotates, and the shaft eccentric portion 8 and the roller 10 rotate eccentrically in the cylinder chamber 4 of the cylinder portion 5 of the compression mechanism portion 2. To do. Then, the low-temperature and low-pressure refrigerant sucked from the suction port of the compressor 100 is sucked into the suction side of the cylinder chamber 4 of the compression mechanism unit 2. The refrigerant sucked into the cylinder chamber 4 is compressed by the eccentric rotation of the roller 10 to become a high-temperature and high-pressure refrigerant, and is discharged from the discharge side of the cylinder chamber into the sealed case 1 through the discharge passage 13 and the discharge muffler. It is discharged from the discharge pipe 32 provided at the upper part of the case 1 to the outside of the sealed case 1.

本実施形態のように、シリンダ部5と主軸受部6が一体として形成された一体型シリンダ20を有する圧縮機であっても、ローラ10の第1角部18の曲率半径Rr1と切削工具刃物の先端形状が転写されたシリンダ室4の境界角部16の曲率半径Rcを、Rr1<Rcとし、曲率半径Rr1と第2角部19の曲率半径Rr2をRr1<Rr2とすることで、機密性と潤滑性が高く、体積効率の高い圧縮機100を提供することができる。
また、ローラ10の外周面10aに溝部を設けず滑らかに自転可能とすることができ、ローラ10が摩耗しない信頼性の高い圧縮機100を提供することができる。
Even in the compressor having the integrated cylinder 20 in which the cylinder portion 5 and the main bearing portion 6 are integrally formed as in the present embodiment, the curvature radius Rr1 of the first corner portion 18 of the roller 10 and the cutting tool blade The radius of curvature Rc of the boundary corner 16 of the cylinder chamber 4 to which the tip shape of the cylinder is transferred is Rr1 <Rc, and the radius of curvature Rr1 and the radius of curvature Rr2 of the second corner 19 are Rr1 <Rr2. In addition, the compressor 100 having high lubricity and high volumetric efficiency can be provided.
Further, it is possible to provide a highly reliable compressor 100 that can smoothly rotate without being provided with a groove portion on the outer peripheral surface 10a of the roller 10 and that does not wear the roller 10.

なお、第1の実施形態の一体型シリンダでは、主軸受部6を電動機部3側に配置したが、主軸受部6と副軸受7の上下を入れ替えて、閉塞部材である副軸受7を電動機部3側に配置した場合でも、同様の効果が得られる。   In the integrated cylinder of the first embodiment, the main bearing portion 6 is arranged on the electric motor portion 3 side. However, the upper and lower sides of the main bearing portion 6 and the auxiliary bearing 7 are interchanged, and the auxiliary bearing 7 that is a closing member is connected to the electric motor. The same effect can be obtained even when arranged on the part 3 side.

(第2の実施形態)
ここで、図3に第2の実施形態でのシリンダ室4内の要部縦断面の概略図を示す。本実施形態の圧縮機100は第1の実施形態の圧縮機100同様に、密閉ケース1内に圧縮機構部2と電動機部3と回転軸9を備えており、同様の構成について説明を省略する。
図3に示すように、一体型シリンダ20の境界角部16は主軸受部6側に凹陥した曲率半径Rcの曲面として形成されている。
この凹陥した境界角部16は、製造過程においてエンドミルなどの切削工具を用いてシリンダ室4を形成される際に、切削工具の送りを境界角部16でのみ深くし、切削されることで形成される。
(Second Embodiment)
Here, FIG. 3 shows a schematic diagram of a longitudinal section of a main part in the cylinder chamber 4 in the second embodiment. The compressor 100 of this embodiment is provided with the compression mechanism part 2, the electric motor part 3, and the rotating shaft 9 in the airtight case 1 like the compressor 100 of 1st Embodiment, and description is abbreviate | omitted about the same structure. .
As shown in FIG. 3, the boundary corner portion 16 of the integrated cylinder 20 is formed as a curved surface having a curvature radius Rc that is recessed toward the main bearing portion 6 side.
The recessed boundary corner 16 is formed by cutting the feed of the cutting tool only at the boundary corner 16 when the cylinder chamber 4 is formed using a cutting tool such as an end mill in the manufacturing process. Is done.

第1の実施形態での第1角部18の曲率半径Rr1を図3の破線Zに示す。境界角部16を凹陥させることによって、破線Zと比較して曲率半径Rr1を更に小さくすることができ、間隙Ct、Csを維持したまま、主軸受部6の底部内面6aとローラ10の外周面10aとブレード12の先端面12aとで囲まれた空間Uをさらに狭めることができる。
これにより、第1の実施形態の圧縮機よりも、更にブレード12での機密性が高く、体積効率の高い圧縮機100を提供することができる。
また、境界角部16が凹陥することにより、潤滑油31の油溜りとなりローラ10の潤滑性が向上し、機械損失を低減することができる。
A radius of curvature Rr1 of the first corner 18 in the first embodiment is shown by a broken line Z in FIG. By recessing the boundary corner portion 16, the radius of curvature Rr1 can be further reduced as compared with the broken line Z, and the inner surface of the bottom portion 6a of the main bearing portion 6 and the outer peripheral surface of the roller 10 while maintaining the gaps Ct and Cs. The space U surrounded by 10a and the front end surface 12a of the blade 12 can be further narrowed.
Accordingly, it is possible to provide the compressor 100 with higher confidentiality and higher volumetric efficiency at the blade 12 than the compressor of the first embodiment.
Further, when the boundary corner portion 16 is recessed, it becomes a sump of the lubricating oil 31 and the lubricity of the roller 10 is improved, and the mechanical loss can be reduced.

(第3の実施形態)
図4に第3の実施形態のシリンダ室4内の要部縦断面の概略図を示す。本実施形態の圧縮機100について、第2の実施形態の圧縮機100と同様の構成については説明を省略する。第2の実施形態と異なる構成として、図4に示すように、一体型シリンダ20の境界角部16が、シリンダ室4の内周面4a側に凹陥した曲率半径Rcによって構成されている。
この場合でも、第2の実施形態と同様に、第1の実施形態の圧縮機よりも、更にブレード12の機密性が高く、体積効率の高い圧縮機100を提供することができる。また、境界角部16が凹陥することにより、潤滑油31の油溜りとなりローラ10の潤滑性が向上する。
(Third embodiment)
FIG. 4 shows a schematic diagram of a longitudinal section of an essential part in the cylinder chamber 4 of the third embodiment. About the compressor 100 of this embodiment, description is abbreviate | omitted about the structure similar to the compressor 100 of 2nd Embodiment. As a configuration different from the second embodiment, as shown in FIG. 4, the boundary corner portion 16 of the integrated cylinder 20 is configured by a curvature radius Rc that is recessed toward the inner peripheral surface 4 a side of the cylinder chamber 4.
Even in this case, similarly to the second embodiment, it is possible to provide the compressor 100 with higher confidentiality of the blade 12 and higher volume efficiency than the compressor of the first embodiment. Further, when the boundary corner portion 16 is recessed, the lubricating oil 31 becomes an oil reservoir and the lubricity of the roller 10 is improved.

(第4の実施形態)
上記第1乃至第3の実施形態の圧縮機100は、例えば空気調和機やヒートポンプ給湯機等の冷凍サイクル装置Aに設けられる。第4の実施形態は圧縮機100を用いた冷凍サイクル装置Aに関するもので、冷凍サイクル装置Aの概略を図5に示し説明する。
冷凍サイクル装置Aは、圧縮機100に接続された四方弁101と、第1熱交換器102と、膨張装置103と、第2熱交換器104とを備えており、順次冷媒配管で接続されている。この冷凍サイクル装置100内には作動流体である冷媒が封入されている。
(Fourth embodiment)
The compressor 100 of the said 1st thru | or 3rd embodiment is provided in refrigeration cycle apparatuses A, such as an air conditioner and a heat pump water heater, for example. The fourth embodiment relates to the refrigeration cycle apparatus A using the compressor 100. The outline of the refrigeration cycle apparatus A will be described with reference to FIG.
The refrigeration cycle apparatus A includes a four-way valve 101 connected to the compressor 100, a first heat exchanger 102, an expansion device 103, and a second heat exchanger 104, which are sequentially connected by refrigerant piping. Yes. In the refrigeration cycle apparatus 100, a refrigerant that is a working fluid is sealed.

圧縮機100で圧縮され吐出された冷媒は、四方弁101を介して実線矢印で示すように第1熱交換器102に供給される。このとき、第1熱交換器102は凝縮器として機能し、冷媒から凝縮熱を奪いつつ凝縮させる。
第1熱交換器102で凝縮された作動冷媒は、冷媒配管を介して膨張装置103で減圧されつつ第2熱交換器104に流動される。第2熱交換器104は蒸発器として機能し、冷媒から蒸発熱を奪いつつ蒸発させる。蒸発した作動冷媒は、冷媒配管と四方弁101を介して圧縮機100に吸い込まれ、冷媒は以上の経路を循環し、冷凍サイクル装置Aの運転は継続される。
The refrigerant compressed and discharged by the compressor 100 is supplied to the first heat exchanger 102 through the four-way valve 101 as indicated by a solid arrow. At this time, the first heat exchanger 102 functions as a condenser, and condenses while taking condensation heat from the refrigerant.
The working refrigerant condensed in the first heat exchanger 102 flows to the second heat exchanger 104 while being decompressed by the expansion device 103 via the refrigerant pipe. The second heat exchanger 104 functions as an evaporator and evaporates while taking heat of evaporation from the refrigerant. The evaporated working refrigerant is sucked into the compressor 100 via the refrigerant pipe and the four-way valve 101, the refrigerant circulates through the above path, and the operation of the refrigeration cycle apparatus A is continued.

また、四方弁101により流路が切替えられることで、冷媒は図5の破線矢印で示される経路を循環する。即ち、圧縮機100から吐出された冷媒は、四方弁101から第2熱交換器104と、膨張装置103と、第1熱交換器102を順次流動し四方弁101を介して圧縮機100へ吸込まれる経路を循環する。このとき、第1熱交換器102は蒸発器として機能し、第2熱交換器104は凝縮器として機能する。   Further, the flow path is switched by the four-way valve 101, whereby the refrigerant circulates along a path indicated by a broken-line arrow in FIG. That is, the refrigerant discharged from the compressor 100 sequentially flows from the four-way valve 101 through the second heat exchanger 104, the expansion device 103, and the first heat exchanger 102, and is sucked into the compressor 100 through the four-way valve 101. It circulates through the route. At this time, the first heat exchanger 102 functions as an evaporator, and the second heat exchanger 104 functions as a condenser.

上記のように、冷凍サイクル装置Aに、体積効率が高く、信頼性の高い圧縮機100を用いることで、性能が高く信頼性の高い冷凍サイクル装置を提供することができる。   As described above, by using the compressor 100 with high volumetric efficiency and high reliability for the refrigeration cycle apparatus A, a refrigeration cycle apparatus with high performance and high reliability can be provided.

なお、上記第1乃至第3の実施形態は、圧縮機構部が1段の圧縮機について説明したが、圧縮機構部を複数用いても良い。例えば、2段の圧縮機構部を設けて、一体型シリンダのシリンダ室を閉塞する閉塞部材として、2段の圧縮機構部を仕切る仕切り板を用いても良い。
また、密閉ケース内に圧縮機構部と電動機部が設けられた密閉型の圧縮機について説明したが、開放型のケース内に圧縮機構部を設け、ケース外に電動機部やエンジン等の駆動要素を配置して用いても良い。
In the first to third embodiments, a compressor having a single-stage compression mechanism has been described. However, a plurality of compression mechanisms may be used. For example, a partition plate that partitions the two-stage compression mechanism portion may be used as a closing member that closes the cylinder chamber of the integrated cylinder by providing a two-stage compression mechanism portion.
In addition, although the closed type compressor in which the compression mechanism unit and the motor unit are provided in the sealed case has been described, the compression mechanism unit is provided in the open type case, and the driving elements such as the motor unit and the engine are provided outside the case. You may arrange and use.

また、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成できる。全ての構成要素からいくつかの構成要素を削除してもよい。   Further, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. Some components may be deleted from all the components.

1…密閉ケース、2…圧縮機構部、3…電動機部、4…シリンダ室、5…シリンダ部、6…主軸受部、7…副軸受、8…軸偏心部、9…回転軸、10…ローラ、10a…外周面、11…ブレード溝、12…ブレード、12a…先端面、14…吐出弁装置、16…境界角部、18…第1角部、19…第2角部、20…一体型シリンダ、30…バネ、31…潤滑油、40…気液分離器、100…圧縮機、101…四方弁、102…第1熱交換機、103…膨張装置、104…第2熱交換器、A…冷凍サイクル装置  DESCRIPTION OF SYMBOLS 1 ... Sealing case, 2 ... Compression mechanism part, 3 ... Electric motor part, 4 ... Cylinder chamber, 5 ... Cylinder part, 6 ... Main bearing part, 7 ... Sub bearing, 8 ... Shaft eccentric part, 9 ... Rotating shaft, 10 ... Roller, 10a ... outer peripheral surface, 11 ... blade groove, 12 ... blade, 12a ... tip surface, 14 ... discharge valve device, 16 ... boundary corner, 18 ... first corner, 19 ... second corner, 20 ... one Body cylinder, 30 ... spring, 31 ... lubricating oil, 40 ... gas-liquid separator, 100 ... compressor, 101 ... four-way valve, 102 ... first heat exchanger, 103 ... expansion device, 104 ... second heat exchanger, A ... Refrigeration cycle equipment

Claims (4)

回転軸と、
前記回転軸を支持する軸受部と、内周面に囲まれたシリンダ室を有するシリンダ部とが一体に形成されてなる一体型シリンダと、
前記シリンダ室を閉塞する端面を有し、前記一体型シリンダと別体に形成された閉塞部材と、
前記シリンダ室の内周面に対面する外周面と、軸受部に対向する一端側面と、前記閉塞部材に対向する他端側面を有し、前記シリンダ室内に偏心回転可能に配置されたローラと、
前記ローラの外周面に当接する先端面を有し、前記シリンダ部に設けられたブレード溝内に配置されたブレードとを備え、
前記シリンダ室の内周面と軸受部内面の境界角部の曲率半径よりも、前記ローラの外周面と一端側面で形成される第1角部の曲率半径が、小さいことを特徴とする圧縮機。
A rotation axis;
An integral cylinder in which a bearing portion supporting the rotating shaft and a cylinder portion having a cylinder chamber surrounded by an inner peripheral surface are integrally formed;
A closing member having an end face for closing the cylinder chamber and formed separately from the integrated cylinder;
An outer peripheral surface facing the inner peripheral surface of the cylinder chamber, one end side surface facing the bearing portion, and the other end side surface facing the closing member, and a roller disposed eccentrically rotatable in the cylinder chamber;
A front end surface that contacts the outer peripheral surface of the roller, and a blade disposed in a blade groove provided in the cylinder portion,
A compressor characterized in that the radius of curvature of the first corner formed by the outer peripheral surface and one end side surface of the roller is smaller than the radius of curvature of the boundary corner between the inner peripheral surface of the cylinder chamber and the inner surface of the bearing portion. .
前記ローラの第1角部の曲率半径よりも、前記ローラの外周面と他端側面とで形成される第2角部の曲率半径が小さいことを特徴とする請求項1に記載の圧縮機。   2. The compressor according to claim 1, wherein a radius of curvature of a second corner formed by an outer peripheral surface of the roller and a side surface of the other end is smaller than a radius of curvature of the first corner of the roller. 前記一体型シリンダの境界角部が、前記シリンダ内周面または前記軸受部内面から凹陥して形成されていることを特徴とする、請求項1又は2に記載の圧縮機。   The compressor according to claim 1 or 2, wherein a boundary corner portion of the integral cylinder is formed to be recessed from an inner peripheral surface of the cylinder or an inner surface of the bearing portion. 前記請求項1乃至3のいずれかに記載の圧縮機を備えたことを特徴とする冷凍サイクル装置。   A refrigeration cycle apparatus comprising the compressor according to any one of claims 1 to 3.
JP2011014666A 2011-01-27 2011-01-27 Compressor and refrigerating cycle system Pending JP2012154263A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011014666A JP2012154263A (en) 2011-01-27 2011-01-27 Compressor and refrigerating cycle system
CN201210031199.5A CN102619755B (en) 2011-01-27 2012-01-20 Compressor and refrigerating cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011014666A JP2012154263A (en) 2011-01-27 2011-01-27 Compressor and refrigerating cycle system

Publications (1)

Publication Number Publication Date
JP2012154263A true JP2012154263A (en) 2012-08-16

Family

ID=46559891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011014666A Pending JP2012154263A (en) 2011-01-27 2011-01-27 Compressor and refrigerating cycle system

Country Status (2)

Country Link
JP (1) JP2012154263A (en)
CN (1) CN102619755B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112576502B (en) * 2020-12-03 2022-05-17 珠海格力节能环保制冷技术研究中心有限公司 Pump body assembly, compressor and air conditioner with same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138478A (en) * 1989-07-28 1991-06-12 Gold Star Co Ltd Rotary compressor
JPH05187371A (en) * 1992-01-13 1993-07-27 Hitachi Ltd Scroll compressor and end mill for machining scroll lap
JPH07109980A (en) * 1993-10-13 1995-04-25 Nippondenso Co Ltd Pressure resistant structure in scroll compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1003384B (en) * 1984-11-27 1989-02-22 三菱重工业株式会社 Scroll-type fluid pressure booster and process for mfg. scroll used therein
US5878488A (en) * 1996-09-04 1999-03-09 General Motors Corporation Washerless bolt head seal for compressor housing
JPH10131879A (en) * 1996-10-29 1998-05-19 Matsushita Refrig Co Ltd Rotary refrigerant compressor
JP2006112276A (en) * 2004-10-13 2006-04-27 Calsonic Compressor Inc Electric gas compressor
JP4813135B2 (en) * 2005-09-21 2011-11-09 三菱電機株式会社 Rotary compressor
JP4305550B2 (en) * 2007-09-28 2009-07-29 ダイキン工業株式会社 Rotary fluid machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138478A (en) * 1989-07-28 1991-06-12 Gold Star Co Ltd Rotary compressor
JPH05187371A (en) * 1992-01-13 1993-07-27 Hitachi Ltd Scroll compressor and end mill for machining scroll lap
JPH07109980A (en) * 1993-10-13 1995-04-25 Nippondenso Co Ltd Pressure resistant structure in scroll compressor

Also Published As

Publication number Publication date
CN102619755A (en) 2012-08-01
CN102619755B (en) 2014-12-31

Similar Documents

Publication Publication Date Title
JP4909597B2 (en) Hermetic rotary compressor and refrigeration cycle apparatus
CN101688536B (en) Rotary compressor and refrigeration cycle device
JP2005320929A (en) Rotary fluid machine
WO2006006297A1 (en) Rotary fluid machine
JP2007177633A (en) Rotary compressor
JP5040934B2 (en) Hermetic compressor
JP2010031785A (en) Refrigerant compressor
JP2006177227A (en) Rotary two-stage compressor
JP3801185B2 (en) Rotary fluid machine
JP2009062930A (en) Two-cylinder rotary compressor and refrigerating cycle device
CN102094821A (en) Rotary compressor
JP6083408B2 (en) Vane type compressor
WO2016076064A1 (en) Rotating compressor and refrigeration cycle device
JP2012154263A (en) Compressor and refrigerating cycle system
JP6374732B2 (en) Rotary compressor and refrigeration cycle apparatus
JP6704555B1 (en) Compressor and refrigeration cycle device
JP4523902B2 (en) Two-cylinder rotary compressor and refrigeration cycle apparatus
JP5738030B2 (en) Rotary compressor and refrigeration cycle apparatus
JP5797450B2 (en) Compressor manufacturing method.
CN110520625A (en) Hermetic type compressor and refrigerating circulatory device
JP5738036B2 (en) Rotary compressor and refrigeration cycle apparatus
JP2012215125A (en) Hermetically sealed rotary compressor
JP2012167659A (en) Compressor and refrigeration cycle device
JP2015001217A (en) Compressor
JP6556372B1 (en) Hermetic compressor and refrigeration cycle apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150107