JP2012141068A - Fluid device unit structure - Google Patents

Fluid device unit structure Download PDF

Info

Publication number
JP2012141068A
JP2012141068A JP2012103293A JP2012103293A JP2012141068A JP 2012141068 A JP2012141068 A JP 2012141068A JP 2012103293 A JP2012103293 A JP 2012103293A JP 2012103293 A JP2012103293 A JP 2012103293A JP 2012141068 A JP2012141068 A JP 2012141068A
Authority
JP
Japan
Prior art keywords
fluid
chemical solution
device unit
flow path
unit structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012103293A
Other languages
Japanese (ja)
Other versions
JP5425260B2 (en
Inventor
Hironori Igarashi
裕規 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Surpass Industry Co Ltd
Original Assignee
Surpass Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Surpass Industry Co Ltd filed Critical Surpass Industry Co Ltd
Priority to JP2012103293A priority Critical patent/JP5425260B2/en
Publication of JP2012141068A publication Critical patent/JP2012141068A/en
Application granted granted Critical
Publication of JP5425260B2 publication Critical patent/JP5425260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Valve Housings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact fluid device unit structure proper for a use of taking out a chemical solution as required, while circulating the chemical solution and water, and capable of preventing solidification of fluid such as the chemical solution.SOLUTION: In the fluid device unit structure having a plurality of fluid devices connected to via a flow path and formed in one body by integrating them to a base member 10, a connecting flow path 15 connecting between a pneumatic operation valve 20A and a manual operation valve 30A adjacent to each other, while forming a first chemical solution flow-out path 12A for circulating the chemical solution, is offset from a flow direction upstream side to a downstream side.

Description

本発明は、弁や圧力スイッチ等の流体機器類を一体化した流体機器ユニット構造に関する。   The present invention relates to a fluid device unit structure in which fluid devices such as valves and pressure switches are integrated.

従来、薬品等の流体(薬液)を取り扱う装置においては、構成要素となる各種の流体機器類(弁類、レギュレータ、圧力センサ等の各種センサ類及び圧力スイッチ等の各種スイッチ類など)を配管で接続して一体化した流体機器ユニット構造(集積構造)とされる。このような流体機器ユニット構造においては、スラリ状の薬液循環と水循環とを行いつつ、必要に応じて薬液を取り出す用途のものがある。
また、たとえば半導体製造装置のように複数の薬液用流体機器を使用する場合、配管を用いることなく薬液用流体機器どうしの連結を可能とする集積構造が提案されており、配管が不要になるため装置全体のコンパクト化が可能になるとされる。(たとえば、特許文献1参照)
Conventionally, in devices that handle fluids (chemical solutions) such as chemicals, various fluid equipment (various sensors such as valves, regulators, pressure sensors, and various switches such as pressure switches) that are constituent elements are connected by piping. A fluid device unit structure (integrated structure) integrated and connected. In such a fluid device unit structure, there is an application in which a chemical solution is taken out as necessary while performing slurry-like chemical solution circulation and water circulation.
Further, for example, when a plurality of fluid devices for chemical liquids are used like a semiconductor manufacturing apparatus, an integrated structure that enables the connection of fluid devices for chemical liquids without using piping is proposed, and piping is unnecessary. It is said that the entire apparatus can be made compact. (For example, see Patent Document 1)

特開2000−120903号公報(図1参照)JP 2000-120903 A (see FIG. 1)

ところで、薬液(スラリ)循環と水循環とを行いつつ、必要に応じて薬液を取り出す用途の流体機器ユニット構造においては、スラリ状の薬液が滞留すると凝固しやすいという問題が指摘されている。このため、スラリ状の薬液等を取り扱う流体機器ユニット構造においては、薬液等が滞留・凝固する流路をできるだけ小さくしてコンパクト化した集積構造が望まれている。   By the way, in the fluid device unit structure for the purpose of taking out the chemical liquid as necessary while performing the chemical liquid (slurry) circulation and the water circulation, a problem has been pointed out that if the slurry-like chemical liquid is retained, it tends to solidify. For this reason, in a fluid device unit structure that handles slurry-like chemical liquids or the like, an integrated structure in which the flow path in which the chemical liquid or the like stays and solidifies is made as small as possible is desired.

図7に示す流体機器ユニット構造は、3つの弁1A,1B,1Cが同一軸線上の流路2によって直列に連結された構成を備えている。このようなインラインタイプの構成では、各弁内に形成されている弁体収納用の空間部3において、一般的に流路断面積が拡大されている。
このため、流路2と空間部3との位置関係等により、たとえば図7に示すハッチング部のように、流体の流れを滞留させる淀み領域Sが形成されることがある。図示の例において、弁1Aから弁1Bに流れ込んだ流体は、主流が下方の流体出口4から流路2を通って弁1Cへ向かうものの、主流の中心から遠くなる空間部3の周辺部には凹形状部分の空間が形成されているので、この凹形状部分に流体の一部が滞留して淀み領域Sを形成することとなる。
The fluid device unit structure shown in FIG. 7 has a configuration in which three valves 1A, 1B, 1C are connected in series by a flow path 2 on the same axis. In such an in-line type configuration, the flow path cross-sectional area is generally enlarged in the valve body housing space 3 formed in each valve.
For this reason, the stagnation area | region S which retains the flow of the fluid may be formed like the hatching part shown in FIG. In the illustrated example, the fluid flowing into the valve 1B from the valve 1A flows from the lower fluid outlet 4 through the flow path 2 to the valve 1C, but in the periphery of the space 3 that is far from the center of the mainstream. Since the space of the concave portion is formed, a part of the fluid stays in the concave portion and the stagnation region S is formed.

上述した淀み領域Sの形成は、特にスラリ状の薬液のように凝固しやすい流体を流す場合、弁内に薬液の凝固物が固着するなどして好ましくない。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、たとえば薬液循環と水循環とを行いつつ必要に応じて薬液を取り出す用途に適し、薬液等の流体が凝固しにくいコンパクトな流体機器ユニット構造を提供することにある。
The formation of the stagnation region S described above is not preferable, particularly when a fluid that is easily solidified, such as a slurry-like chemical solution, is flown, because the solidified product of the chemical solution is fixed in the valve.
The present invention has been made in view of the above circumstances, and the object of the present invention is, for example, suitable for applications in which a chemical solution is taken out while performing a chemical solution circulation and a water circulation, and a fluid such as a chemical solution coagulates. The object is to provide a compact fluid device unit structure that is difficult to achieve.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明の請求項1は、流路を介して接続される複数の流体機器類をベース部材に集積して一体化する流体機器ユニット構造において、薬液循環を行う流路を形成して隣接する流体機器類間の連結流路が流れ方向上流側から下流側へ下向きに傾斜していることを特徴とするものです。
In order to solve the above problems, the present invention employs the following means.
According to a first aspect of the present invention, in a fluid device unit structure in which a plurality of fluid devices connected via a flow channel are integrated and integrated on a base member, a fluid that forms a flow channel for circulating a chemical solution and is adjacent It is characterized in that the connecting flow path between devices is inclined downward from the upstream side to the downstream side in the flow direction.

このような流体機器ユニット構造によれば、薬液循環を行う流路を形成して隣接する流体機器類間の連結流路が流れ方向上流側から下流側へ下向きに傾斜しているので、滞留・凝固しやすい薬液は、下向きに傾斜した連結流路を通って自重により流下することができる。   According to such a fluid device unit structure, a flow path for performing chemical solution circulation is formed, and the connection flow channel between adjacent fluid devices is inclined downward from the upstream side to the downstream side in the flow direction. The chemical solution that is likely to coagulate can flow down by its own weight through the connecting channel inclined downward.

本発明の請求項2は、流路を介して接続される複数の流体機器類をベース部材に集積して一体化する流体機器ユニット構造において、前記ベース部材は、薬液循環を行う流路を形成して隣接する流体機器類間で高さの異なる複数の機器設置面を備え、該機器設置面を流れ方向上流側から下流側へ段階的に下げたことを特徴とするものです。   According to a second aspect of the present invention, in the fluid device unit structure in which a plurality of fluid devices connected via a flow path are integrated and integrated on a base member, the base member forms a flow path for circulating a chemical solution. In addition, it has a plurality of equipment installation surfaces with different heights between adjacent fluid devices, and the device installation surface is lowered stepwise from the upstream side to the downstream side in the flow direction.

このような流体機器ユニット構造によれば、ベース部材は、薬液循環を行う流路を形成して隣接する流体機器類間で高さの異なる複数の機器設置面を備え、該機器設置面を流れ方向上流側から下流側へ段階的に下げたので、低部の薬液滞留部分が形成されることはない。   According to such a fluid device unit structure, the base member includes a plurality of device installation surfaces having different heights between adjacent fluid devices by forming a flow path for circulating the chemical solution, and flows through the device installation surface. Since the direction is lowered stepwise from the upstream side to the downstream side, a low chemical liquid retention portion is not formed.

上記の発明において、薬液循環を行う薬液循環用流路は、薬液循環と水循環とを行いつつ必要に応じて薬液を取り出す流体回路を形成し、かつ、前記薬液循環用流路が、水循環用の流路に配置された弁の弁体収納空間を経由して形成されていることが好ましく、これにより、流路を低減することが可能になる。
この場合、前記弁が前記弁体収納空間にプラグ型の弁体を備え、前記水循環回路が前記弁体の下方に連通されていることが好ましく、これにより、水による薬液の置換・洗浄が容易になる。
In the above invention, the chemical solution circulation channel for performing chemical solution circulation forms a fluid circuit for taking out the chemical solution as necessary while performing chemical solution circulation and water circulation, and the chemical solution circulation channel is used for water circulation. It is preferably formed via the valve element storage space of the valve disposed in the flow path, and this makes it possible to reduce the flow path.
In this case, it is preferable that the valve is provided with a plug-type valve body in the valve body housing space, and the water circulation circuit is communicated below the valve body, so that replacement / washing of the chemical with water is easy. become.

また、本発明に係る流体機器ユニット構造の参考例によれば、薬液循環を行う流路を形成して隣接する流体機器類間の連結流路が流体機器類軸中心からオフセットされているので、流体機器類に流れ込んだ流体には、空間内で旋回する流れが形成される。
この場合の流体機器類は、プラグ型の弁体を備えた弁であることが好ましく、これにより、凹部のない底部に形成される開口部の縁部を弁座とすることができる。
In addition, according to the reference example of the fluid device unit structure according to the present invention, the flow path for performing chemical circulation is formed and the connection flow path between adjacent fluid devices is offset from the center of the fluid device axis. A fluid swirling in the space is formed in the fluid flowing into the fluid device.
In this case, the fluid device is preferably a valve provided with a plug-type valve body, whereby the edge of the opening formed in the bottom without the recess can be used as the valve seat.

上述した本発明の流体機器ユニット構造によれば、空間内で旋回する流れを形成して流体機器ユニット構造の流路内に淀み領域Sが形成されることを防止し、特に、スラリ状の薬液のように凝固しやすい流体が滞留・凝固することにより、弁内に薬液の凝固物が固着することを防止または抑制できるようになる。従って、薬液循環と水循環とを行いつつ必要に応じて薬液を取り出す用途に適し、しかも、薬液等の流体が凝固しにくいコンパクトな流体機器ユニット構造の提供が可能になる。   According to the fluid device unit structure of the present invention described above, it is possible to prevent a stagnation region S from being formed in the flow path of the fluid device unit structure by forming a swirling flow in the space. When the fluid that is easily solidified as described above stays and solidifies, it is possible to prevent or suppress the solidified substance of the chemical solution from adhering to the valve. Therefore, it is possible to provide a compact fluid device unit structure that is suitable for the purpose of taking out a chemical liquid as necessary while performing a chemical liquid circulation and a water circulation, and in which a fluid such as a chemical liquid is difficult to coagulate.

本発明に係る流体機器ユニット構造の一実施形態として、ベース部材に形成された流路を示す要部の平面図である。It is a top view of the principal part which shows the flow path formed in the base member as one Embodiment of the fluid apparatus unit structure which concerns on this invention. 本発明に係る流体機器ユニット構造の一実施形態として、外観を示す平面図である。It is a top view which shows an external appearance as one Embodiment of the fluid apparatus unit structure which concerns on this invention. 図2の流体機器ユニット内に形成された流路構成例を示す系統図である。It is a systematic diagram which shows the example of a flow-path structure formed in the fluid apparatus unit of FIG. 図2に示す流体機器ユニットを正面から見た要部断面図である。It is principal part sectional drawing which looked at the fluid apparatus unit shown in FIG. 2 from the front. 図2の右側面図である。FIG. 3 is a right side view of FIG. 2. 図1に示したベース部材の変形例である。It is a modification of the base member shown in FIG. ベース部材に形成された流路の従来例を示す要部平面図である。It is a principal part top view which shows the prior art example of the flow path formed in the base member.

以下、本発明に係る流体機器ユニット構造の一実施形態を図面に基づいて説明する。
図2から図5に示す流体機器ユニットFUの構造は、流路を介して接続される複数の流体機器類をベース部材10に集積して一体化したものである。図示の構成例では、流体機器ユニット1の主要部が耐薬品性のフッ素樹脂製とされ、流体機器類として四つの空気圧操作弁20A,20B,20C、20Dと、二つの手動操作弁30A、30Bとを使用し、これらの流体機器類をベース部材10に集積して一体化したものである。なお、図中の符号11はベース固定板である。
Hereinafter, an embodiment of a fluid device unit structure according to the present invention will be described with reference to the drawings.
The structure of the fluid device unit FU shown in FIG. 2 to FIG. 5 is obtained by integrating a plurality of fluid devices connected via a flow path into the base member 10 and integrating them. In the illustrated configuration example, the main part of the fluid device unit 1 is made of chemical-resistant fluororesin, and four pneumatic operation valves 20A, 20B, 20C and 20D and two manual operation valves 30A and 30B are used as fluid devices. These fluid devices are integrated on the base member 10 and integrated. In addition, the code | symbol 11 in a figure is a base fixing plate.

図3は流体機器ユニットFUの流路(回路)構成を示しており、この流路構成例では、薬液流路12から分岐した第1薬液流出流路12Aに第1の空気圧操作弁20A及び第1の手動操作弁30Aが設けられ、同じく薬液流路12から分岐した第2薬液流出流路12Bに第2の空気圧操作弁20B及び第2の手動操作弁30Bが設けられている。ここで使用する空気圧操作弁20A,20Bは、たとえばノーマルクローズタイプの開閉弁である。   FIG. 3 shows the flow path (circuit) configuration of the fluid device unit FU. In this flow path configuration example, the first pneumatic operation valve 20A and the first pneumatic operation valve 20A are connected to the first chemical liquid outflow path 12A branched from the chemical liquid flow path 12. One manual operation valve 30A is provided, and a second pneumatic operation valve 20B and a second manual operation valve 30B are provided in the second chemical liquid outflow passage 12B which is also branched from the chemical liquid passage 12. The pneumatic operation valves 20A and 20B used here are, for example, normally closed type on-off valves.

また、超純水(DIW)流路13から分岐し、第1薬液流出流路12Aの空気圧操作弁20Aより下流側に連結されている第1純水流路13Aに第3の空気圧操作弁20Cが設けられ、同じく超純水(DIW)流路13から分岐し、第2薬液流出流路12Bの空気圧操作弁20Bより下流側に連結されている第2純水流路13Bに第4の空気圧操作弁20Dが設けられている。ここで使用する空気圧操作弁20A,20Bは、たとえばノーマルクローズタイプの開閉弁に開度調整機構を備えたものである。
なお、図中の符号12aは薬液入口、12bは第1薬液出口、12cは第2薬液出口、12dは薬液リターン出口、13aは純水入口、13bは純水出口である。
A third pneumatic operation valve 20C is branched from the ultrapure water (DIW) flow path 13 and is connected to the first pure water flow path 13A connected to the downstream side of the pneumatic operation valve 20A of the first chemical liquid outflow path 12A. A fourth pneumatic operation valve is provided in a second pure water flow path 13B that is provided and is branched from the ultrapure water (DIW) flow path 13 and connected downstream of the pneumatic operation valve 20B of the second chemical liquid outflow flow path 12B. 20D is provided. Pneumatically operated valves 20A and 20B used here are, for example, normally closed type on-off valves equipped with an opening adjustment mechanism.
In the figure, reference numeral 12a is a chemical liquid inlet, 12b is a first chemical liquid outlet, 12c is a second chemical liquid outlet, 12d is a chemical liquid return outlet, 13a is a pure water inlet, and 13b is a pure water outlet.

ベース部材10は、たとえば図4に示すように、上述した流体機器類を設置するために設けた高さの異なる複数の設置面14を備えている。これら複数の設置面14間は、ベース部材10の内部に形成した上述の各種流路によって連結されている。
図示の構成において、ベース部材10は略直方体形状とされ、その上面には上述した流体機器類を設置するため、各中心位置が矩形を描くように配置された6つの設置面が設けられている。
そして、以下の説明では、第1薬液流出流路12A及び第2薬液流出流路12Bが実質的に同じ構成となるため、第1薬液流出流路12A側について説明する。なお、第1の空気圧操作弁20Aを設置する設置面を第1設置面14Aとし、第3の空気圧操作弁20Cを設置する設置面を第2設置面14B、第1の手動操作弁30Aを設置する設置面を第3設置面14Cとする。
For example, as shown in FIG. 4, the base member 10 includes a plurality of installation surfaces 14 having different heights provided for installing the above-described fluid devices. The plurality of installation surfaces 14 are connected by the above-described various flow paths formed inside the base member 10.
In the illustrated configuration, the base member 10 has a substantially rectangular parallelepiped shape, and on the upper surface thereof, in order to install the above-described fluid devices, there are provided six installation surfaces arranged so that each center position draws a rectangle. .
In the following description, since the first chemical liquid outflow channel 12A and the second chemical liquid outflow channel 12B have substantially the same configuration, the first chemical liquid outflow channel 12A side will be described. The installation surface on which the first pneumatic operation valve 20A is installed is the first installation surface 14A, the installation surface on which the third pneumatic operation valve 20C is installed is the second installation surface 14B, and the first manual operation valve 30A is installed. Let the installation surface to perform be the 3rd installation surface 14C.

図3に示す流路構成では、通常の運転時において、二つの手動弁30A,30Bがともに開とされ、さらに、二つの空気圧操作弁20A,20Bが全開に設定され、残る二つの空気圧操作弁20C,20Dには流量調整機能が設けられており、それぞれ全開時もしくは全閉時のバルブ開度を調整することができる。この状態で薬液流路12の薬液入口12aから流体機器ユニットFU内にスラリ状の薬液が導入され、必要に応じて空気圧操作弁20Aを開けて薬液を第1薬液出口12b供給する。
また、超純水を第1薬液出口12bより供給する際には、空気圧操作弁20Aを閉じ、空気圧操作弁20Cを開く。このとき、超純水の供給については、空気圧操作弁20Cの流量調整機能を利用し、超純水の供給量を調整することができる。なお、薬液入口12aに導入された薬液のうち、第1薬液流出流路12A及び第2薬液流出流路12Bに分配されなかった残りについては、薬液リターン出口12dから流体機器ユニットFUの外部へ流出する。
In the flow path configuration shown in FIG. 3, during normal operation, the two manual valves 30A and 30B are both opened, and the two pneumatic operation valves 20A and 20B are set to fully open, and the remaining two pneumatic operation valves. 20C and 20D are provided with a flow rate adjusting function, and the valve opening degree when fully opened or fully closed can be adjusted. In this state, a slurry-like chemical liquid is introduced into the fluid device unit FU from the chemical liquid inlet 12a of the chemical liquid flow path 12, and the pneumatic operation valve 20A is opened as necessary to supply the chemical liquid to the first chemical liquid outlet 12b.
When supplying ultrapure water from the first chemical solution outlet 12b, the pneumatic operation valve 20A is closed and the pneumatic operation valve 20C is opened. At this time, for the supply of ultrapure water, the supply amount of ultrapure water can be adjusted using the flow rate adjustment function of the pneumatic operation valve 20C. Of the chemical liquid introduced into the chemical liquid inlet 12a, the remainder not distributed to the first chemical liquid outlet flow path 12A and the second chemical liquid outlet flow path 12B flows out of the fluid device unit FU from the chemical liquid return outlet 12d. To do.

また、空気圧操作弁20A,20Bが閉じている際には、薬液入口12aから導入された薬液は、薬液リターン出口12dから流体機器ユニットFUの外部へ流出して循環を行っている。これにより、薬液は、空気圧操作弁20A,20B等の開閉状態に関係なく、常に滞留することなく流れているので、スラリ状の薬液が滞留・凝固することを防止することができる。
そして、超純水流路13側においても、上述した薬液流路12と同様のことが行われている。すなわち、純水入口13aから導入された超純水は、純水出口13bより流出し、空気圧操作弁20C,20Dの開閉状態に関係なく、常に滞留することなく流れて循環することができる。これにより、超純水の場合は、流れが止まったりした場合に生じるバクテリアの発生等の問題を解消することができる。
Further, when the pneumatic operation valves 20A and 20B are closed, the chemical liquid introduced from the chemical liquid inlet 12a flows out of the fluid device unit FU from the chemical liquid return outlet 12d and circulates. As a result, the chemical liquid always flows without stagnation regardless of the open / closed state of the pneumatic operation valves 20A, 20B, etc., so that the slurry-like chemical liquid can be prevented from staying and coagulating.
And the same thing as the chemical | medical solution flow path 12 mentioned above is performed also in the ultrapure water flow path 13 side. That is, the ultrapure water introduced from the pure water inlet 13a flows out of the pure water outlet 13b, and can always flow and circulate without staying regardless of the open / closed state of the pneumatic operation valves 20C and 20D. Thereby, in the case of ultrapure water, problems such as generation of bacteria that occur when the flow stops can be solved.

上述したように、流路を介して接続される複数の流体機器類をベース部材10に集積して一体化した流体機器ユニット構造FUにおいては、薬液循環を行う流路を形成して隣接する流体機器類間の連結流路が流体機器類軸中心からオフセットされている。
この構成について、図1及び図4を参照して具体的に説明する。図1はベース部材10の平面図であり、上述した流体機器ユニット構造FUの第1薬液流出流路12a側半分について、弁体を取り除いた状態が示されている。すなわち、紙面右側から順に、手動操作弁30A用の設置面14C、空気圧操作弁20A用の設置面14A及び空気圧操作弁20C用の設置面14Bが同一軸線上に一列に並んでいる。
As described above, in the fluid device unit structure FU in which a plurality of fluid devices connected via the flow channel are integrated and integrated in the base member 10, the fluids adjacent to each other by forming a flow channel for circulating the chemical solution. The connecting flow path between the devices is offset from the fluid device shaft center.
This configuration will be specifically described with reference to FIGS. FIG. 1 is a plan view of the base member 10 and shows a state where the valve body is removed from the above-described half of the fluid device unit structure FU on the first chemical liquid outflow passage 12a side half. That is, the installation surface 14C for the manual operation valve 30A, the installation surface 14A for the pneumatic operation valve 20A, and the installation surface 14B for the pneumatic operation valve 20C are arranged in a line on the same axis in order from the right side of the page.

このうち、薬液を流す流路を形成して隣接する手動操作弁30Aと空気圧操作弁20Aとの間は、両弁の軸中心位置を結ぶ軸線からオフセットされた連結流路15により接続されている。
すなわち、一方の手動操作弁30A側では、設置面14Cに弁体31を収納設置する凹部の収納空間32が略円筒形状に形成されており、該収納空間32の下面(底部)には、下方の薬液流路12に連通する薬液の入口開口33が弁中心位置に開口している。また、空気圧操作弁20A側では、設置面14Aに弁体21を収納設置する凹部の収納空間22が略円筒形状に形成され、該収納空間22の下面(底部)には、薬液の出口開口23が弁中心位置に開口している。なお、手動操作弁30A及び空気圧操作弁20Aの弁中心位置は、同一軸線上に配置されている。
Among these, the manual operation valve 30A and the pneumatic operation valve 20A that form a flow path for flowing a chemical solution are connected by a connection flow path 15 that is offset from an axis that connects the axial center positions of both valves. .
That is, on one manual operation valve 30A side, a recess storage space 32 for storing and installing the valve body 31 is formed in a substantially cylindrical shape on the installation surface 14C, and the lower surface (bottom) of the storage space 32 A chemical solution inlet opening 33 communicating with the chemical solution flow path 12 is opened at the center of the valve. On the pneumatic operation valve 20A side, a recess storage space 22 for storing and installing the valve element 21 is formed in a substantially cylindrical shape on the installation surface 14A, and a chemical solution outlet opening 23 is formed on the lower surface (bottom) of the storage space 22. Is open at the center of the valve. The valve center positions of the manually operated valve 30A and the pneumatically operated valve 20A are arranged on the same axis.

この場合、空気圧操作弁20A及び手動操作弁30Aは、プラグ型の弁体21,31を採用した構成とされる。このため、空気圧操作弁20A及び手動操作弁30Aの収納空間22,32は、薬液の滞留場所となるような凹部が全くない底部に形成される開口部の縁部を弁座として使用できる。すなわち、プラグ型とした弁体21,31の先端部が出口開口23,33に入り込むようにしてシールするので、出口開口23,33の縁部23a,33aを弁座として使用することができる。従って、空気圧操作弁20A及び手動操作弁30Aの収納空間22,32は、底部に凹部のない構造となって薬液の滞留を防止することができる。   In this case, the pneumatic operation valve 20A and the manual operation valve 30A are configured to employ plug-type valve bodies 21 and 31. For this reason, the storage spaces 22 and 32 of the pneumatic operation valve 20A and the manual operation valve 30A can use, as a valve seat, the edge of the opening formed at the bottom where there is no concave portion that becomes a place where the chemical solution stays. That is, the plug-type valve bodies 21 and 31 are sealed so that the front ends thereof enter the outlet openings 23 and 33, so that the edge portions 23a and 33a of the outlet openings 23 and 33 can be used as valve seats. Therefore, the storage spaces 22 and 32 of the pneumatic operation valve 20A and the manual operation valve 30A have a structure having no recess at the bottom, and can prevent the chemical liquid from staying.

そして、手動操作弁30Aの収納空間32となる凹部と空気圧操作弁20Aの収納空間22となる凹部との間を連結する連結流路15は、互いの弁中心位置を結ぶ軸中心線から平行移動させた位置に設けられている。図示の例では、互いの弁中心位置を結ぶ軸中心線から流体機器ユニット構造FUの第2薬液流出流路12B側へ平行移動されている。
また、この場合の連結流路15は、流れ方向上流側から下流側へ下向きに傾斜して設けられている。すなわち、手動操作弁30A側の収納空間32となる凹部が空気圧操作弁20A側の収納空間22となる凹部より高い位置にあり、薬液の流れ方向において、薬液流路12に近い上流側の手動操作弁30A側から下流側の空気圧操作弁20A側へ向けて、薬液が下向きに傾斜した連結流路15を流れるようになっている。
And the connection flow path 15 which connects between the recessed part used as the storage space 32 of 30 A of manual operation valves, and the recessed part used as the storage space 22 of the pneumatically operated valve 20A is parallel-translated from the axial centerline which connects each valve center position. It is provided at the position. In the example shown in the figure, they are translated from the axial center line connecting the valve center positions to the second chemical liquid outflow channel 12B side of the fluid device unit structure FU.
In this case, the connecting channel 15 is provided so as to be inclined downward from the upstream side in the flow direction to the downstream side. That is, the recessed portion that becomes the storage space 32 on the manual operation valve 30A side is located higher than the recessed portion that becomes the storage space 22 on the pneumatic operation valve 20A side, and the upstream manual operation close to the chemical liquid flow path 12 in the flow direction of the chemical liquid. From the valve 30 </ b> A side toward the downstream pneumatic operation valve 20 </ b> A side, the chemical liquid flows through the connection channel 15 inclined downward.

このような構成を採用することにより、手動操作弁30Aから空気圧操作弁20Aに薬液が導入されると、この薬液は、略円形断面の収納空間22に対して軸中心からずれた位置に流入する。このため、収納空間22内には薬液の旋回流が生じるので、出口開口21から離れた位置となる収納空間22の外周側においても薬液の滞留は生じにくくなる。すなわち、収納空間22内に流れ込んだ薬液は、旋回流を形成するため滞留して淀むことがなく、収納空間22内を旋回して流れながら出口開口23から流出する。このため、空気圧操作弁20Aの収納空間22内においては、スラリ状の薬液が滞留しないので、薬液が淀んで凝固することを防止できる。   By adopting such a configuration, when a chemical solution is introduced from the manual operation valve 30A to the pneumatic operation valve 20A, the chemical solution flows into a position shifted from the axial center with respect to the storage space 22 having a substantially circular cross section. . For this reason, since the swirling flow of the chemical solution is generated in the storage space 22, the retention of the chemical solution is less likely to occur on the outer peripheral side of the storage space 22 that is located away from the outlet opening 21. That is, the chemical solution that has flowed into the storage space 22 forms a swirling flow and does not stay and stagnant, and flows out of the outlet opening 23 while swirling in the storage space 22. For this reason, since the slurry-like chemical liquid does not stay in the storage space 22 of the pneumatic operation valve 20A, it is possible to prevent the chemical liquid from being stagnated and solidified.

このような旋回流を形成する流路のオフセット構造は、図1に示した連結流路15に限定されることはなく、たとえば図6に示すような変形例も可能である。なお、図6においては、上述した実施形態と同様の部分には同じ符号が付されている。
この変形例では、互いの弁中心位置を結ぶ軸中心線と交差させた連結流路15Aが設けられている。このような連結流路15Aとしても、空気圧操作弁20Aの収納空間22内には、上述した連結流路15と同様の旋回流を形成することができる。
The offset structure of the flow path that forms such a swirl flow is not limited to the connection flow path 15 shown in FIG. 1, and for example, a modification as shown in FIG. 6 is possible. In FIG. 6, the same parts as those in the above-described embodiment are denoted by the same reference numerals.
In this modification, a connecting flow path 15A is provided that intersects with the axial center line connecting the valve center positions. Even in such a connection flow path 15A, a swirl flow similar to that of the connection flow path 15 described above can be formed in the storage space 22 of the pneumatic operation valve 20A.

また、連結流路15は下向きに傾斜しているので、薬液の流れが止まっても自重により流下するので、連結流路15内に薬液が滞留して凝固するようなことはない。
また、手動操作弁30A側においては、薬液が収納空間32の下方から流入するとともに、プラグ型の弁体31を採用したことにより底部に凹部のない形状の収納空間32となっているので、収納空間32内に残留した薬液は、入口開口33を通って薬液流路12へ流下するか、あるいは、連結流路15を通って空気圧操作弁20A側へ流下する。この結果、手動操作弁30A内に薬液が残留し、その薬液が凝固することを防止できる。
In addition, since the connecting channel 15 is inclined downward, even if the flow of the chemical solution stops, it flows down by its own weight, so that the chemical solution does not stay in the connecting channel 15 and solidify.
On the manual operation valve 30A side, the chemical liquid flows in from the lower side of the storage space 32, and the plug-type valve body 31 is used to form the storage space 32 having no recess at the bottom. The chemical liquid remaining in the space 32 flows down to the chemical liquid flow path 12 through the inlet opening 33, or flows down to the pneumatic operation valve 20 </ b> A side through the connection flow path 15. As a result, it is possible to prevent the chemical liquid from remaining in the manual operation valve 30A and coagulating the chemical liquid.

上述したように、薬液循環と水循環とを行いつつ必要に応じて薬液を取り出す流体回路が、流路を介して接続される複数の流体機器類(弁等)をベース部材10に集積して一体化されている流体機器ユニット構造においては、薬液循環用の流路が、水循環用の流路に配置された弁の弁体収納空間を経由して形成されている。
すなわち、図1及び図4を参照して具体的に説明すると、薬液循環用の流路である第1薬液流出流路12A,12Bが、水循環用の流路である第1純水流路13A,13Bに配置された空気圧操作弁20C,20Dの弁体21を収納する収納空間22を経由して形成されている。
As described above, the fluid circuit for taking out the chemical liquid as needed while performing the chemical liquid circulation and the water circulation is integrated with the base member 10 by integrating a plurality of fluid devices (valves or the like) connected through the flow path. In the fluid device unit structure, the chemical liquid circulation channel is formed via the valve element storage space of the valve disposed in the water circulation channel.
Specifically, referring to FIG. 1 and FIG. 4, the first chemical liquid outflow channels 12A and 12B, which are the chemical circulation channels, are replaced with the first pure water flow channels 13A, It is formed via a storage space 22 for storing the valve elements 21 of the pneumatic operation valves 20C and 20D arranged at 13B.

従って、図1及び図4に示す第1薬液流出流路12Aは、上述した手動操作弁30Aから空気圧操作弁20Aの収納空間22に流入した後、連結流路16を通って空気圧操作弁20Cの収納空間22に導かれる。そして、空気圧操作弁20Cの開閉状態にかかわらず、同操作弁20Cの収納空間22が薬液の流路となり、第1薬液出口12bに連通する第1薬液流出流路12Aの一部となっている。
このような流体機器ユニット構造FUとすれば、薬液循環用の第1薬液流出流路12Aが、水(超純水)循環用の第1純水流路13Aに配置された空気圧操作弁20Cの弁体21を収納する収納空間22を経由して形成されているので、ベース部材10内に形成する流路の低減が可能になる。また、上述した流路構成では、空気圧操作弁20Aが収納空間22の底面側に出口開口23を備えていることから、空気圧操作弁20Cの設置面14Bを空気圧操作弁20Aの設置面14Aより低くすることで、両弁20A,20C間に低部の薬液滞留部分が形成されることはない。
Accordingly, the first chemical liquid outflow passage 12A shown in FIGS. 1 and 4 flows into the storage space 22 of the pneumatic operation valve 20A from the manual operation valve 30A described above, and then passes through the connection passage 16 to the pneumatic operation valve 20C. Guided to the storage space 22. Regardless of the open / closed state of the pneumatic operation valve 20C, the storage space 22 of the operation valve 20C serves as a chemical liquid flow path, and is a part of the first chemical liquid outflow flow path 12A communicating with the first chemical liquid outlet 12b. .
With such a fluid device unit structure FU, the first chemical solution outflow passage 12A for circulating the chemical solution is a valve of the pneumatic operation valve 20C disposed in the first pure water passage 13A for circulating water (ultra pure water). Since it is formed via the storage space 22 in which the body 21 is stored, the number of flow paths formed in the base member 10 can be reduced. Further, in the above-described flow path configuration, since the pneumatic operation valve 20A includes the outlet opening 23 on the bottom surface side of the storage space 22, the installation surface 14B of the pneumatic operation valve 20C is lower than the installation surface 14A of the pneumatic operation valve 20A. By doing so, a low chemical solution retention portion is not formed between the valves 20A and 20C.

特に、上述した流路構成では、空気圧操作弁20Cが収納空間22にプラグ型の弁体21を備え、水循環回路である超純水流路13との間が、第1純水流路13Aを介して弁体21の下方に連通されている。従って、手動操作弁30Aを全閉とし、空気圧操作弁20A,20Cを全開にして超純水を供給すれば、手動操作弁30Aより下流側となる連結流路15,16及び収納空間22の内部に残留する薬液を超純水により容易に置換・洗浄することができる。   In particular, in the above-described flow path configuration, the pneumatic operation valve 20C includes the plug-type valve body 21 in the storage space 22, and the ultrapure water flow path 13 that is a water circulation circuit is connected via the first pure water flow path 13A. The valve body 21 communicates below. Therefore, if the manual operation valve 30A is fully closed, the pneumatic operation valves 20A and 20C are fully opened and ultrapure water is supplied, the inside of the connecting flow paths 15 and 16 and the storage space 22 on the downstream side of the manual operation valve 30A. The chemical solution remaining in the substrate can be easily replaced and washed with ultrapure water.

上述したように、本発明の流体機器ユニットFUによれば、収納空間22の空間内で旋回する流れを形成することにより、ベース部材10ないに形成される薬液循環流路内に淀み領域Sが形成されることを防止することができる。特に、スラリ状の薬液のように凝固しやすい流体を取り扱う流体機器ユニットFUでは、薬液の滞留・凝固により内部に凝固物が固着することを防止または抑制できるので、薬液循環と水循環とを行いつつ必要に応じて薬液を取り出す用途に適したものとなり、しかも、薬液等の流体が凝固しにくいコンパクトな流体機器ユニット構造の提供が可能になる。   As described above, according to the fluid equipment unit FU of the present invention, the stagnation region S is formed in the chemical circulation path formed in the base member 10 by forming a flow that swirls in the space of the storage space 22. It can be prevented from being formed. In particular, in a fluid equipment unit FU that handles a fluid that easily solidifies such as a slurry-like chemical liquid, it is possible to prevent or suppress the solidified substance from adhering to the inside due to the retention and solidification of the chemical liquid. It becomes suitable for the purpose of taking out the chemical liquid as needed, and it is possible to provide a compact fluid device unit structure in which the fluid such as the chemical liquid is difficult to coagulate.

ところで、上述した実施形態においては、6つの設置面14を設けたベース部材10としたが、設置面14の数や配置等については特に限定されることはなく、ユニット化する流体機器の数に応じて適宜変更可能である。また、薬液流路12に設置される手動操作弁や空気圧操作弁等の流体機器類についても、上述した実施形態に限定されることはなく、配置の順序や数、手動や空気圧等の操作方式など、目的や用途に応じて、本発明の要旨を逸脱しない範囲内において適宜変更することができる。   By the way, in embodiment mentioned above, it was set as the base member 10 which provided the six installation surfaces 14, However, It does not specifically limit about the number, arrangement | positioning, etc. of the installation surfaces 14, It is the number of the fluid apparatuses unitized. It can be changed as appropriate. Further, the fluid devices such as a manual operation valve and a pneumatic operation valve installed in the chemical liquid flow path 12 are not limited to the above-described embodiment, and the order and number of arrangements, and the operation methods such as manual operation and air pressure In accordance with the purpose and application, it can be appropriately changed within the scope not departing from the gist of the present invention.

FU 流体機器ユニット
10 ベース部材
11 ベース固定板
12 薬液流路
12A 第1薬液流出流路
12B 第2薬液流出流路
13 超純水流路
13A 第1純水流路
13B 第2純水流路
14 設置面
15,15A,16 連結流路
20A,20B,20C,20D (第1〜第4の)空気圧操作弁
21,31 弁体
22,32 収納空間
23 出口開口
23a,33a 縁部
30A,30B 手動操作弁
31 弁体
32 収納空間
33 入口開口
FU Fluid device unit 10 Base member 11 Base fixing plate 12 Chemical liquid flow path 12A First chemical liquid outflow path 12B Second chemical liquid outflow path 13 Ultrapure water flow path 13A First pure water flow path 13B Second pure water flow path 14 Installation surface 15 , 15A, 16 Connecting flow path 20A, 20B, 20C, 20D (First to fourth) pneumatic operation valves 21, 31 Valve bodies 22, 32 Storage space 23 Outlet opening 23a, 33a Edge portions 30A, 30B Manual operation valve 31 Valve body 32 Storage space 33 Entrance opening

Claims (4)

流路を介して接続される複数の流体機器類をベース部材に集積して一体化する流体機器ユニット構造において、
薬液循環を行う流路を形成して隣接する流体機器類間の連結流路が流れ方向上流側から下流側へ下向きに傾斜していることを特徴とする流体機器ユニット構造。
In a fluid device unit structure in which a plurality of fluid devices connected via a flow path are integrated and integrated on a base member,
A fluid device unit structure in which a flow channel for performing chemical circulation is formed and a connection channel between adjacent fluid devices is inclined downward from the upstream side in the flow direction to the downstream side.
流路を介して接続される複数の流体機器類をベース部材に集積して一体化する流体機器ユニット構造において、
前記ベース部材は、薬液循環を行う流路を形成して隣接する流体機器類間で高さの異なる複数の機器設置面を備え、該機器設置面を流れ方向上流側から下流側へ段階的に下げたことを特徴とする流体機器ユニット構造。
In a fluid device unit structure in which a plurality of fluid devices connected via a flow path are integrated and integrated on a base member,
The base member includes a plurality of device installation surfaces having different heights between adjacent fluid devices by forming a flow path for chemical solution circulation, and the device installation surface is gradually changed from the upstream side to the downstream side in the flow direction. Fluid device unit structure characterized by being lowered.
前記薬液循環を行う薬液循環用流路は、薬液循環と水循環とを行いつつ必要に応じて薬液を取り出す流体回路を形成し、かつ、前記薬液循環用流路が、前記水循環用の流路に配置された弁の弁体収納空間を経由して形成されていることを特徴とする請求項1または2に記載の流体機器ユニット構造。   The chemical solution circulation channel for performing the chemical solution circulation forms a fluid circuit for taking out the chemical solution as needed while performing the chemical solution circulation and the water circulation, and the chemical solution circulation channel serves as the water circulation channel. The fluid device unit structure according to claim 1, wherein the fluid device unit structure is formed through a valve body storage space of the arranged valve. 前記弁が前記弁体収納空間にプラグ型の弁体を備え、前記水循環回路が前記弁体の下方に連通されていることを特徴とする請求項3に記載の流体機器ユニット構造。
4. The fluid device unit structure according to claim 3, wherein the valve includes a plug-type valve body in the valve body housing space, and the water circulation circuit communicates below the valve body.
JP2012103293A 2012-04-27 2012-04-27 Fluid equipment unit structure Active JP5425260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012103293A JP5425260B2 (en) 2012-04-27 2012-04-27 Fluid equipment unit structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012103293A JP5425260B2 (en) 2012-04-27 2012-04-27 Fluid equipment unit structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007139286A Division JP2008291941A (en) 2007-05-25 2007-05-25 Fluid apparatus unit structure

Publications (2)

Publication Number Publication Date
JP2012141068A true JP2012141068A (en) 2012-07-26
JP5425260B2 JP5425260B2 (en) 2014-02-26

Family

ID=46677518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012103293A Active JP5425260B2 (en) 2012-04-27 2012-04-27 Fluid equipment unit structure

Country Status (1)

Country Link
JP (1) JP5425260B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164183U (en) * 1984-04-09 1985-10-31 本田技研工業株式会社 flow control valve
JPH06117559A (en) * 1992-10-08 1994-04-26 Hitachi Ltd Valve structure
JPH1011147A (en) * 1996-06-25 1998-01-16 Tadahiro Omi Breaking and opening unit and fluid controller equipped with the same
JP2001082621A (en) * 1999-09-09 2001-03-30 Ckd Corp Process gas supply unit
JP2003185039A (en) * 2001-12-12 2003-07-03 Asahi Organic Chem Ind Co Ltd Manifold valve
JP2004063833A (en) * 2002-07-30 2004-02-26 Applied Materials Inc Liquid supply structure
JP2005114090A (en) * 2003-10-09 2005-04-28 Ckd Corp Fluid control valve
US20050284528A1 (en) * 2004-01-30 2005-12-29 Applied Materials, Inc. Methods and apparatus for providing fluid to a semiconductor device processing apparatus
JP2007263356A (en) * 2006-03-02 2007-10-11 Surpass Kogyo Kk Fluid instrument unit structure
JP2007327542A (en) * 2006-06-07 2007-12-20 Surpass Kogyo Kk Fluid apparatus unit structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164183U (en) * 1984-04-09 1985-10-31 本田技研工業株式会社 flow control valve
JPH06117559A (en) * 1992-10-08 1994-04-26 Hitachi Ltd Valve structure
JPH1011147A (en) * 1996-06-25 1998-01-16 Tadahiro Omi Breaking and opening unit and fluid controller equipped with the same
JP2001082621A (en) * 1999-09-09 2001-03-30 Ckd Corp Process gas supply unit
JP2003185039A (en) * 2001-12-12 2003-07-03 Asahi Organic Chem Ind Co Ltd Manifold valve
JP2004063833A (en) * 2002-07-30 2004-02-26 Applied Materials Inc Liquid supply structure
JP2005114090A (en) * 2003-10-09 2005-04-28 Ckd Corp Fluid control valve
US20050284528A1 (en) * 2004-01-30 2005-12-29 Applied Materials, Inc. Methods and apparatus for providing fluid to a semiconductor device processing apparatus
JP2007263356A (en) * 2006-03-02 2007-10-11 Surpass Kogyo Kk Fluid instrument unit structure
JP2007327542A (en) * 2006-06-07 2007-12-20 Surpass Kogyo Kk Fluid apparatus unit structure

Also Published As

Publication number Publication date
JP5425260B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP2008291941A (en) Fluid apparatus unit structure
JP6751552B2 (en) Fluid equipment
JP2000274537A (en) Assembly with gate valve, and device for circulating and distributing of fluid furnished with such assembly
US9309983B2 (en) Fluid control apparatus joint, and fluid control apparatus
JP6677097B2 (en) Ion exchanger
JP5425260B2 (en) Fluid equipment unit structure
CN205653848U (en) Sanitary embedded unit
JP2007327542A (en) Fluid apparatus unit structure
JP2017176935A (en) Ion exchanger
JP2016124617A (en) Liquid pouring device, shut-off valve and blocking member
WO2012140706A1 (en) Switch cock for water purifier
JP6651137B2 (en) Faucet device
JP7314053B2 (en) Apparatus for extracorporeal blood treatment and method for operating extracorporeal blood treatment apparatus
JP2009092191A (en) Fluid device unit structure
JP6474025B2 (en) Valve unit and faucet device
JP3081892B2 (en) Switching cock for water purifier
JP2018069226A (en) Ion exchanger
JP2012017791A (en) Single lever faucet
JP4892183B2 (en) Fluid mixing device
JP2012007646A (en) Hot water/water mixing device and water heater with the same
JP6263731B2 (en) Liquid mixing device and hot water storage water heater provided with the same
JP2012149478A (en) Combination faucet with branch port
JP2000087290A (en) Wafer plating apparatus
JP2006037705A (en) Member for ejection of water
JP2005127452A (en) Ball valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131126

R150 Certificate of patent or registration of utility model

Ref document number: 5425260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250