JP2012132086A - Deposition material for forming thin film, thin-film sheet having the thin film, and laminated sheet - Google Patents

Deposition material for forming thin film, thin-film sheet having the thin film, and laminated sheet Download PDF

Info

Publication number
JP2012132086A
JP2012132086A JP2011020724A JP2011020724A JP2012132086A JP 2012132086 A JP2012132086 A JP 2012132086A JP 2011020724 A JP2011020724 A JP 2011020724A JP 2011020724 A JP2011020724 A JP 2011020724A JP 2012132086 A JP2012132086 A JP 2012132086A
Authority
JP
Japan
Prior art keywords
vapor deposition
deposition material
oxide
powder
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011020724A
Other languages
Japanese (ja)
Inventor
Yoshiaki Mayuzumi
良享 黛
Kumiko Ariizumi
久美子 有泉
Yoshio Kuromitsu
祥郎 黒光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011020724A priority Critical patent/JP2012132086A/en
Priority to CN2011100459540A priority patent/CN102191458A/en
Publication of JP2012132086A publication Critical patent/JP2012132086A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide: a deposition material suitable for forming a thin film excellent in transparency and gas barrier property; a thin-film sheet having the thin film; and a laminated sheet.SOLUTION: In the deposition material manufactured by mixing first oxide powder and second oxide powder, the first oxide powder is TiOpowder, the first oxide purity of the first oxide powder is not lower than 98%, the second oxide powder is one kind of powder or two or more kinds of mixed powder which are selected from a group composed of ZnO, MgO and CaO, the second oxide purity of the second oxide powder is not lower than 98%, the deposition material is composed of a pellet containing a first oxide particle and a second oxide particle, a mol ratio between a first oxide and a second oxide in deposition is 5 to 85:95 to 15, and the basicity of the pellet is not lower than 0.1.

Description

本発明は、透明性、ガスバリア性等の諸特性に優れた薄膜の形成に好適な蒸着材及び該薄膜を備える薄膜シート並びに積層シートに関する。更に詳しくは、これらの諸特性に優れ、特に液晶ディスプレイ、有機ELディスプレイ又は太陽電池モジュール等のガスバリア材として好適な薄膜の形成に用いる蒸着材及び該薄膜を備える薄膜シート並びに積層シートに関するものである。   The present invention relates to a vapor deposition material suitable for forming a thin film excellent in various properties such as transparency and gas barrier properties, a thin film sheet including the thin film, and a laminated sheet. More particularly, the present invention relates to a vapor deposition material used for forming a thin film suitable as a gas barrier material for a liquid crystal display, an organic EL display or a solar cell module, a thin film sheet including the thin film, and a laminated sheet. .

液晶ディスプレイ、有機ELディスプレイ或いは太陽電池等の機器は、一般に湿気に弱く、吸湿によって急速にその特性を劣化させるため、高防湿性、即ち酸素や水蒸気等の透過又は侵入を防止するガスバリア性を有する部品を装備することが不可欠である。   Devices such as liquid crystal displays, organic EL displays, or solar cells are generally vulnerable to moisture, and their characteristics are rapidly degraded by moisture absorption. Therefore, they have high moisture resistance, that is, gas barrier properties that prevent permeation or penetration of oxygen, water vapor, and the like. It is essential to equip the parts.

例えば、太陽電池の例では、太陽電池モジュールの受光面とは反対側の裏面にバックシートが設けられている。このバックシートは、基材に、高防湿性を有するガスバリア材と、それらを保護する部材等から構成されたものが代表的である。   For example, in the example of a solar cell, the back sheet is provided on the back surface opposite to the light receiving surface of the solar cell module. This back sheet is typically composed of a gas barrier material having high moisture resistance and a member for protecting them as a base material.

このような太陽電池モジュールを構成するバックシートとしては、例えば、高強度の耐熱性耐候性樹脂により防湿性金属箔をサンドイッチし、更にその一方にガラス質の蒸着皮膜を設けてなる太陽電池モジュールの裏面保護用シート材料が開示されている(例えば、特許文献1参照。)。このシート材料では、ガスバリア材として、アルミニウム箔、亜鉛メッキ鉄箔、錫メッキ鉄箔等の金属箔が用いられている。また、高防湿フィルムと高耐候フィルムとを積層して一体化してなる太陽電池カバー材を、裏面側保護部材に用いた太陽電池が開示されている(例えば、特許文献2参照。)。この太陽電池カバー材における高防湿フィルムには、PETフィルム等の基材フィルムに、ガスバリア材として、CVD(化学蒸着)、PVD(反応蒸着)法等によってシリカ、アルミナ等の無機酸化物のコーティング膜よりなる防湿膜を形成したものが用いられている。また、無機酸化物層を呈するプラスチックフィルム又はプラスチック複合材からなるバリア層を備えた光起電モジュールが開示されている(例えば、特許文献3参照。)。この無機酸化物層には、酸化アルミニウム又は酸化珪素がそのコーティング材料として使用されている。   As a back sheet constituting such a solar cell module, for example, a solar cell module in which a moisture-proof metal foil is sandwiched by a high-strength heat-resistant weather-resistant resin and a glassy vapor-deposited film is provided on one of the moisture-proof metal foils. A sheet material for protecting the back surface is disclosed (for example, see Patent Document 1). In this sheet material, a metal foil such as an aluminum foil, a galvanized iron foil, or a tin-plated iron foil is used as a gas barrier material. Moreover, the solar cell which used the solar cell cover material formed by laminating | stacking and integrating a high moisture-proof film and a high weather resistance film for the back surface side protection member is disclosed (for example, refer patent document 2). The high moisture-proof film in this solar cell cover material is a coating film of inorganic oxides such as silica and alumina by a base film such as a PET film, a gas barrier material by CVD (chemical vapor deposition), PVD (reactive vapor deposition), etc. What formed the moisture-proof film | membrane which consists of is used. Moreover, the photovoltaic module provided with the barrier layer which consists of a plastic film or a plastic composite material which exhibits an inorganic oxide layer is disclosed (for example, refer patent document 3). In this inorganic oxide layer, aluminum oxide or silicon oxide is used as a coating material.

実公平2−44995号公報(実用新案登録請求の範囲及びカラム5の41〜44行目)Japanese Utility Model Publication 2-44995 (Utility Model Registration Request and Columns 41-44) 特開2000−174296号公報(請求項1、請求項7及び段落[0019])JP 2000-174296 A (Claim 1, claim 7 and paragraph [0019]) 特表2002−520820号公報(請求項1、及び段落[0019])JP-T-2002-520820 (Claim 1 and paragraph [0019])

しかしながら、上記特許文献1に示された裏面保護用シート材料は、ガスバリア材として、アルミニウム箔等の金属箔が使用されているため、このシート材料を太陽電池モジュールのバックシートに適用すると、耐電圧性が低下し、電流がリークするおそれがある。また、金属箔を使用したシート材料は、金属箔の厚さが20μm以下になると、耐熱性耐候性樹脂と金属箔との間に発生するピンホールが増加し、ガスバリア性が著しく低下する。一方、金属箔の厚さを厚くすれば、製造コストが上がってしまうという問題が生じる。また、上記特許文献2及び3において使用されているシリカ、アルミナ等の無機酸化物の場合、高いガスバリア性を得るには膜の厚さを100nm以上確保しなければならず、それでもガスバリア性が十分であるとは言えない。   However, since the sheet material for back surface protection shown in Patent Document 1 uses a metal foil such as an aluminum foil as a gas barrier material, when this sheet material is applied to a back sheet of a solar cell module, a withstand voltage is obtained. May decrease and current may leak. Further, in the sheet material using the metal foil, when the thickness of the metal foil is 20 μm or less, pinholes generated between the heat resistant weather resistant resin and the metal foil are increased, and the gas barrier property is remarkably lowered. On the other hand, if the thickness of the metal foil is increased, there arises a problem that the manufacturing cost increases. In addition, in the case of inorganic oxides such as silica and alumina used in Patent Documents 2 and 3, the film thickness must be 100 nm or more in order to obtain high gas barrier properties, and the gas barrier properties are still sufficient. I can't say that.

本発明の目的は、透明性及びガスバリア性に優れた薄膜を形成するのに好適な蒸着材を提供することにある。   The objective of this invention is providing the vapor deposition material suitable for forming the thin film excellent in transparency and gas barrier property.

本発明の別の目的は、透明性及びガスバリア性に優れた薄膜を備える薄膜シート及び積層シートを提供することにある。   Another object of the present invention is to provide a thin film sheet and a laminated sheet provided with a thin film excellent in transparency and gas barrier properties.

本発明の第1の観点は、第1酸化物粉末と第2酸化物粉末とを混合して作られた蒸着材において、上記第1酸化物粉末がTiO2粉末であって、この第1酸化物粉末の第1酸化物純度が98%以上であり、上記第2酸化物粉末がZnO、MgO及びCaOからなる群より選ばれた1種の粉末又は2種以上の混合粉末であって、この第2酸化物粉末の第2酸化物純度が98%以上であり、蒸着材が第1酸化物粒子と第2酸化物粒子を含有するペレットからなり、蒸着材中の第1酸化物と第2酸化物とのモル比が5〜85:95〜15であり、かつ、ペレットの塩基度が0.1以上であることを特徴とする。 According to a first aspect of the present invention, in the vapor deposition material produced by mixing the first oxide powder and the second oxide powder, the first oxide powder is a TiO 2 powder, and the first oxidation The first oxide purity of the product powder is 98% or more, and the second oxide powder is one kind of powder selected from the group consisting of ZnO, MgO and CaO or two or more kinds of mixed powder, The second oxide purity of the second oxide powder is 98% or more, the vapor deposition material is composed of pellets containing the first oxide particles and the second oxide particles, and the first oxide and the second oxide in the vapor deposition material. The molar ratio with the oxide is 5 to 85:95 to 15, and the basicity of the pellet is 0.1 or more.

本発明の第2の観点は、第1の観点に基づく発明であって、更に第1酸化物粒子の平均粒径が0.1〜10μmであり、かつ第2酸化物粒子の平均粒径が0.1〜10μmであることを特徴とする。   A second aspect of the present invention is an invention based on the first aspect, wherein the average particle diameter of the first oxide particles is 0.1 to 10 μm, and the average particle diameter of the second oxide particles is It is 0.1-10 micrometers, It is characterized by the above-mentioned.

本発明の第3の観点は、第1又は第2の観点に基づく蒸着材をターゲット材として用いた真空成膜法により第1基材フィルム上に第1酸化物に含まれる金属元素A及び第2酸化物に含まれる金属元素Bを含む酸化物薄膜を形成することを特徴とする膜の製造方法である。   According to a third aspect of the present invention, the metal element A and the first element contained in the first oxide are formed on the first base film by a vacuum film formation method using the vapor deposition material based on the first or second aspect as a target material. An oxide thin film containing a metal element B contained in two oxides is formed.

本発明の第4の観点は、図1に示すように、第1又は第2の観点に基づく蒸着材をターゲット材として用いた真空成膜法により第1基材フィルム11上に第1酸化物に含まれる金属元素A及び第2酸化物に含まれる金属元素Bを含む酸化物薄膜12を形成してなり、薄膜12中の金属元素Aと金属元素Bとのモル比が5〜85:95〜15である薄膜シート10である。   As shown in FIG. 1, the fourth aspect of the present invention is the first oxide on the first base film 11 by a vacuum film forming method using the vapor deposition material based on the first or second aspect as a target material. The oxide thin film 12 containing the metal element A contained in the metal oxide B and the metal element B contained in the second oxide is formed, and the molar ratio of the metal element A to the metal element B in the thin film 12 is 5 to 85:95. It is the thin film sheet 10 which is ~ 15.

本発明の第5の観点は、第4の観点に基づく発明であって、更に真空成膜法が電子ビーム蒸着法、イオンプレーティング法、反応性プラズマ蒸着法、抵抗加熱法又は誘導加熱法のいずれかであることを特徴とする。   A fifth aspect of the present invention is an invention based on the fourth aspect, wherein the vacuum film forming method is an electron beam vapor deposition method, an ion plating method, a reactive plasma vapor deposition method, a resistance heating method or an induction heating method. It is either.

本発明の第6の観点は、第4又は第5の観点に基づく発明であって、更に温度20℃、相対湿度50%RHの条件で1時間放置したときの水蒸気透過度Sが0.3g/m2・day以下であることを特徴とする。 A sixth aspect of the present invention is an invention based on the fourth or fifth aspect, and further has a water vapor permeability S of 0.3 g when left for 1 hour under the conditions of a temperature of 20 ° C. and a relative humidity of 50% RH. / M 2 · day or less.

本発明の第7の観点は、第6の観点に基づく発明であって、更に温度20℃、相対湿度50%RHの条件で1時間放置した後、温度85℃、相対湿度90%RHの条件で更に100時間放置したときの水蒸気透過度をTとするとき、水蒸気透過度Tの、水蒸気透過度Sに対する変化率(T/S×100)が200%以下であることを特徴とする。   The seventh aspect of the present invention is the invention based on the sixth aspect, and further, after standing for 1 hour under conditions of a temperature of 20 ° C. and a relative humidity of 50% RH, a condition of a temperature of 85 ° C. and a relative humidity of 90% RH. Further, when the water vapor permeability when left for 100 hours is T, the rate of change of the water vapor permeability T with respect to the water vapor permeability S (T / S × 100) is 200% or less.

本発明の第8の観点は、図1に示すように、第4ないし第7の観点に基づく薄膜シート10の薄膜12形成側に接着層13を介して第2基材フィルム14を積層してなる積層シート20である。   As shown in FIG. 1, the eighth aspect of the present invention is that a second base film 14 is laminated via an adhesive layer 13 on the thin film 12 forming side of the thin film sheet 10 based on the fourth to seventh aspects. It is the laminated sheet 20 which becomes.

本発明の第1の観点の蒸着材では、第1酸化物粉末がTiO2粉末であって、この第1酸化物粉末の第1酸化物純度が98%以上であり、上記第2酸化物粉末がZnO、MgO及びCaOからなる群より選ばれた1種の粉末又は2種以上の混合粉末であって、この第2酸化物粉末の第2酸化物純度が98%以上であり、蒸着材が第1酸化物粒子と第2酸化物粒子を含有するペレットからなり、蒸着材中の第1酸化物と第2酸化物とのモル比が5〜85:95〜15であり、かつ、ペレットの塩基度が0.1以上であることにより、従来のガスバリア材よりも、ガスバリア性が大幅に向上する薄膜を形成することができる。 In the vapor deposition material according to the first aspect of the present invention, the first oxide powder is a TiO 2 powder, and the first oxide purity of the first oxide powder is 98% or more. Is a powder selected from the group consisting of ZnO, MgO and CaO, or a mixed powder of two or more kinds, and the second oxide purity of the second oxide powder is 98% or more, and the deposition material is It consists of pellets containing the first oxide particles and the second oxide particles, the molar ratio of the first oxide to the second oxide in the vapor deposition material is 5 to 85:95 to 15, and the pellets When the basicity is 0.1 or more, it is possible to form a thin film whose gas barrier properties are significantly improved as compared with conventional gas barrier materials.

本発明の第2の観点の蒸着材では、第1酸化物粒子の平均粒径が0.1〜10μmであり、かつ第2酸化物粒子の平均粒径が0.1〜10μmであることにより、蒸着効率の良い、稠密な蒸着膜に形成できるので、高いガスバリア性を維持し安定化させることができる。   In the vapor deposition material according to the second aspect of the present invention, the average particle diameter of the first oxide particles is 0.1 to 10 μm, and the average particle diameter of the second oxide particles is 0.1 to 10 μm. Since it can be formed into a dense vapor-deposited film with good vapor deposition efficiency, high gas barrier properties can be maintained and stabilized.

本発明の第4の観点の薄膜シートでは、第1酸化物に含まれる金属元素A及び第2酸化物に含まれる金属元素Bを含む薄膜中の金属元素Aと金属元素Bとのモル比が5〜85:95〜15である薄膜を備えることにより、優れた透明性及びガスバリア性を有する。   In the thin film sheet according to the fourth aspect of the present invention, the molar ratio of the metal element A and the metal element B in the thin film containing the metal element A contained in the first oxide and the metal element B contained in the second oxide is By providing the thin film which is 5-85: 95-15, it has the outstanding transparency and gas-barrier property.

本発明の第6の観点の薄膜シートでは、温度20℃、相対湿度50%RHの条件で1時間放置したときの水蒸気透過度Sが0.3g/m2・day以下という非常に高く、かつ時間経過による劣化が少ないガスバリア性を有する。 In the thin film sheet of the sixth aspect of the present invention, the water vapor permeability S when left for 1 hour at a temperature of 20 ° C. and a relative humidity of 50% RH is as high as 0.3 g / m 2 · day or less, and It has gas barrier properties with little deterioration over time.

本発明の第7の観点の薄膜シートでは、温度20℃、相対湿度50%RHの条件で1時間放置した後、温度85℃、相対湿度90%RHの条件で更に100時間放置したときの水蒸気透過度をTとするとき、水蒸気透過度Tの、水蒸気透過度Sに対する変化率(T/S×100)が200%以下という時間経過による劣化が非常に少ないガスバリア性を有する。   In the thin film sheet of the seventh aspect of the present invention, the water vapor when left for 1 hour under the conditions of a temperature of 20 ° C. and a relative humidity of 50% RH and then for 100 hours under the conditions of a temperature of 85 ° C. and a relative humidity of 90% RH. When the permeability is T, the rate of change of the water vapor transmission rate T with respect to the water vapor transmission rate S (T / S × 100) is 200% or less, and the gas barrier property has very little deterioration over time.

本発明の第8の観点の積層シートでは、第4ないし第7の観点の薄膜シートの薄膜形成側に、更に接着層を介して第2基材フィルムが積層する構造をとる。これにより、第2基材フィルムが薄膜を保護できるため、高いガスバリア性を維持し安定化させることができる。   The laminated sheet according to the eighth aspect of the present invention has a structure in which the second base film is further laminated on the thin film forming side of the thin film sheet according to the fourth to seventh aspects via an adhesive layer. Thereby, since a 2nd base film can protect a thin film, high gas barrier property can be maintained and stabilized.

本発明実施形態の薄膜シート及び積層シートの積層構造を模式的に表した断面図である。It is sectional drawing which represented typically the laminated structure of the thin film sheet and laminated sheet of this invention embodiment. 従来の薄膜シートの断面構造を模式的に表した図である。It is the figure which represented typically the cross-sectional structure of the conventional thin film sheet. 本発明実施形態の薄膜シートの断面構造を模式的に表した図である。It is the figure which represented typically the cross-sectional structure of the thin film sheet of this invention embodiment.

次に本発明を実施するための形態を図面に基づいて説明する。本発明の蒸着材は、薄膜の形成に好適に用いることができる。この蒸着材を用いて形成される薄膜は、酸素や水蒸気等の透過又は侵入を防止するガスバリア材として機能するものである。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings. The vapor deposition material of this invention can be used suitably for formation of a thin film. The thin film formed using this vapor deposition material functions as a gas barrier material that prevents permeation or penetration of oxygen, water vapor, or the like.

この蒸着材は、第1酸化物粉末と第2酸化物粉末とを混合して作られる。蒸着材の作製に用いる第1酸化物粉末はTiO2粉末であって、この第1酸化物粉末の第1酸化物純度は98%以上、好ましくは98.4%以上であり、第2酸化物粉末はZnO、MgO及びCaOからなる群より選ばれた1種の粉末又は2種以上の混合粉末であって、この第2酸化物粉末の第2酸化物純度は98%以上、好ましくは99.5%以上である。ここで、第1酸化物粉末における第1酸化物純度を98%以上に限定したのは、98%未満では不純物により結晶性が悪化し、結果的にバリア特性が低下する理由からである。また、第2酸化物粉末の第2酸化物純度を98%以上に限定したのは、98%未満では不純物により結晶性が悪化し、結果的にバリア特性が低下する理由からである。なお、本明細書における粉末の純度とは、分光分析法(誘導結合プラズマ発光分析装置:日本ジャーレルアッシュ製 ICAP−88)によって測定したものである。また、この蒸着材は、第1酸化物粒子と第2酸化物粒子を含有する多結晶ペレットからなり、その相対密度は90%以上、好ましくは95%以上であることが好ましい。相対密度を90%以上とするのは、90%未満では成膜時のスプラッシュが増大するからである。なお、この実施の形態では、ペレットの組織を多結晶としたが、単結晶であってもよい。 This vapor deposition material is made by mixing the first oxide powder and the second oxide powder. The first oxide powder used for producing the vapor deposition material is TiO 2 powder, and the purity of the first oxide of the first oxide powder is 98% or higher, preferably 98.4% or higher. The powder is one kind of powder selected from the group consisting of ZnO, MgO and CaO or a mixed powder of two or more kinds, and the second oxide purity of the second oxide powder is 98% or more, preferably 99. 5% or more. Here, the reason why the purity of the first oxide in the first oxide powder is limited to 98% or more is that if it is less than 98%, the crystallinity is deteriorated by impurities, and as a result, the barrier characteristics are lowered. The reason why the second oxide purity of the second oxide powder is limited to 98% or more is that if it is less than 98%, the crystallinity deteriorates due to the impurities, and as a result, the barrier characteristics are lowered. In addition, the purity of the powder in this specification is measured by a spectroscopic analysis method (inductively coupled plasma emission analyzer: ICAP-88 manufactured by Nippon Jarrell Ash). Moreover, this vapor deposition material consists of the polycrystalline pellet containing a 1st oxide particle and a 2nd oxide particle, and the relative density is 90% or more, Preferably it is preferable that it is 95% or more. The reason why the relative density is 90% or more is that if it is less than 90%, the splash during film formation increases. In this embodiment, the pellet structure is polycrystalline, but it may be a single crystal.

また、この蒸着材に含まれる第1酸化物粒子の平均粒径は0.1〜10μmであり、かつ第2酸化物粒子の平均粒径は0.1〜10μmであり、蒸着材中の第1酸化物と第2酸化物とのモル比が5〜85:95〜15である。更に、ペレットの塩基度が0.1以上である。このように微細化した第1酸化物粒子並びに第2酸化物粒子を所定の割合で含有させることにより、この蒸着材を用いて形成される膜に、高いガスバリア性を発現させることができる。   The average particle diameter of the first oxide particles contained in the vapor deposition material is 0.1 to 10 μm, and the average particle diameter of the second oxide particles is 0.1 to 10 μm. The molar ratio of the first oxide to the second oxide is 5 to 85:95 to 15. Furthermore, the basicity of the pellet is 0.1 or more. By containing the first oxide particles and the second oxide particles thus refined in a predetermined ratio, a high gas barrier property can be expressed in the film formed using the vapor deposition material.

その技術的な理由は、通常、(1)第1酸化物粒子のみで第2酸化物粒子を含まない蒸着材、(2)第2酸化物粒子のみで第1酸化物粒子を含まない蒸着材、(3)第1酸化物粒子及び第2酸化物粒子の双方を含むが第1酸化物粒子の含有割合が少ない蒸着材、或いは(4)第1酸化物粒子及び第2酸化物粒子の双方を含むが第2酸化物粒子の含有割合が少ない蒸着材を用いた場合、図2に示すように、第1基材フィルム11上に形成される酸化物薄膜32は、柱状晶の結晶がガスの浸透方向に対して平行に集合した構造になる。水蒸気等のガス分子は平行に集合した粒界の界面に沿って進むため、上記柱状晶の結晶が平行に集合した構造の薄膜32ではバリア性が低いことになる。一方、微細化した第1酸化物粒子又は第2酸化物粒子を所定の割合となるように含有させた蒸着材を用いた場合、図3に示すように、第1基材フィルム11上に形成される酸化物薄膜12は、単一組成の蒸着材を用いた際に形成されていた柱状晶の一部が崩れ、アモルファス状態に近い緻密な微細構造になる。アモルファス状態に近い緻密な微細構造では水蒸気等のガス分子は迷路状の中を長距離にわたり移動する必要があるため、上記アモルファス状態に近い緻密な微細構造の薄膜12ではバリア性が向上することになる。このように、結晶構造が柱状晶ではなく、水分等の透過又は侵入を防ぐのに好適な構造に成膜されることによって、ガスバリア性が向上するものと推定される。また、含有する第1酸化物粒子及び第2酸化物粒子の双方が微細化されていれば、蒸着法により膜を成長させる際に、僅かな電子ビーム又はプラズマの量で成膜できるため、緻密な膜が形成でき、これによりガスバリア性が向上するとも考えられる。ここで、蒸着材、即ちペレットに含まれる第1酸化物粒子及び第2酸化物粒子の双方の平均粒径を上記範囲に限定したのは、各々の平均粒径が下限値未満では、蒸着材の製造工程において、粉末の凝集が著しくなり、均一な混合が妨げられるからであり、各々の平均粒径が上限値を越えると、ガスバリア性向上に寄与する擬似固容体を形成する効果が十分に得られないからである。このうち、第1酸化物粒子の平均粒径は0.1〜10μmの範囲内が、第2酸化物粒子の平均粒径は0.1〜10μmの範囲内であることが特に好ましい。なお、本明細書中、平均粒径とは、レーザー回折・散乱法(マイクロトラック法)に従い、日機装社製(FRA型)を用い、分散媒としてヘキサメタりん酸Naを使用し、1回の測定時間を30秒として3回測定した値を平均化したものである。   The technical reasons are usually (1) a vapor deposition material containing only the first oxide particles and no second oxide particles, and (2) a vapor deposition material containing only the second oxide particles and no first oxide particles. (3) Vapor deposition material containing both the first oxide particles and the second oxide particles but having a small content ratio of the first oxide particles, or (4) Both the first oxide particles and the second oxide particles In the case where a vapor deposition material containing a small amount of the second oxide particles is used, the oxide thin film 32 formed on the first base film 11 has a columnar crystal gas as shown in FIG. It becomes a structure gathered in parallel to the penetration direction. Since gas molecules such as water vapor travel along the interface of grain boundaries gathered in parallel, the thin film 32 having a structure in which the columnar crystals gather in parallel has low barrier properties. On the other hand, when a vapor deposition material containing the refined first oxide particles or second oxide particles in a predetermined ratio is used, as shown in FIG. 3, the first oxide particles are formed on the first base film 11. In the oxide thin film 12, a part of the columnar crystal formed when a vapor deposition material having a single composition is broken, and a fine microstructure close to an amorphous state is obtained. In a dense microstructure close to the amorphous state, gas molecules such as water vapor need to move through the labyrinth for a long distance. Therefore, the barrier property is improved in the thin film 12 having a dense microstructure close to the amorphous state. Become. As described above, it is presumed that the gas barrier property is improved by forming the film in a structure suitable for preventing permeation or intrusion of moisture or the like instead of the columnar crystal. Further, if both the first oxide particles and the second oxide particles contained are miniaturized, the film can be formed with a slight amount of electron beam or plasma when growing the film by vapor deposition. It is considered that a gas barrier property can be improved. Here, the vapor deposition material, that is, the average particle size of both the first oxide particles and the second oxide particles contained in the pellets is limited to the above range. In the production process, powder aggregation becomes remarkable and uniform mixing is hindered. When the average particle size of each exceeds the upper limit, the effect of forming a pseudo-solid body that contributes to improvement of gas barrier properties is sufficiently obtained. It is because it cannot be obtained. Among these, the average particle diameter of the first oxide particles is particularly preferably in the range of 0.1 to 10 μm, and the average particle diameter of the second oxide particles is particularly preferably in the range of 0.1 to 10 μm. In the present specification, the average particle diameter is measured once by using Nikkiso Co., Ltd. (FRA type) according to the laser diffraction / scattering method (microtrack method) and using sodium hexametaphosphate as a dispersion medium. Values obtained by averaging three times with a time of 30 seconds are averaged.

また、蒸着材に含まれる第1酸化物と第2酸化物とのモル比を上記範囲に限定したのは、第1酸化物のモル比が5未満或いは第2酸化物のモル比が5未満では、第1酸化物粒子或いは第2酸化物粒子の含有割合が少なくなりすぎて、単一組成に近づくことで、柱状晶の結晶がガスの浸透方向に対して平行に集合した構造をとり易くなるため、緻密な微細構造を有する薄膜が形成できないからである。   The reason why the molar ratio of the first oxide and the second oxide contained in the vapor deposition material is limited to the above range is that the molar ratio of the first oxide is less than 5 or the molar ratio of the second oxide is less than 5. Then, since the content ratio of the first oxide particles or the second oxide particles becomes too small and approaches a single composition, it is easy to take a structure in which columnar crystals are gathered in parallel to the gas permeation direction. Therefore, a thin film having a dense microstructure cannot be formed.

更に、ペレットの塩基度を0.1以上に規定したのは、0.1未満では、薄膜が、柱状晶の一部が崩れたアモルファス状態に近い緻密な微細構造をとり難くなるためである。この「塩基度」は、森永健次らにより提案されたものであり、例えば彼の著書「K.Morinaga, H.Yoshida And H.Takebe:J.Am Cerm.Soc.,77,3113(1994)」の中で以下に示すような式を用いてガラス粉末の塩基度を規定している。この抜粋を以下に示す。   Furthermore, the reason why the basicity of the pellet is defined to be 0.1 or more is that if it is less than 0.1, it is difficult for the thin film to have a dense microstructure close to an amorphous state in which part of the columnar crystals is broken. This `` basicity '' was proposed by Kenji Morinaga et al., For example, his book `` K. Morinaga, H. Yoshida And H. Takebe: J. Am Cerm. Soc., 77, 3113 (1994) ''. The basicity of the glass powder is defined using the following formula. This excerpt is shown below.

「酸化物MiOのMi−O間の結合力は陽イオン−酸素イオン間引力Aiとして次式で与えられる。 "Coupling force between M i -O oxide M i O cation - given by the following equation as an oxygen ion attraction between A i.

i=Zi・Z02-/(ri+r02-2=Zi・2/(ri+1.40)2
i:陽イオンの価数,酸素イオンは2
i:陽イオンのイオン半径(Å),酸素イオンは1.40Å
このAiの逆数Bi(1/Ai)を単成分酸化物MiOの酸素供与能力とする。
A i = Z i · Z 02− / (r i + r 02− ) 2 = Z i · 2 / (r i +1.40) 2
Z i : valence of cation, oxygen ion is 2
R i : cation radius (Å), oxygen ion is 1.40Å
The A i of the inverse B i a (1 / A i) a single-component oxide M i O oxygen donating ability.

i≡1/Ai
このBiをBCaO=1、BSiO2=0と規格化すると、各単成分酸化物のBi−指標が与えられる。この各成分のBi−指標を陽イオン分率により多成分系へ拡張すると、任意の組成のガラス酸化物の融体のB−指標(=塩基度)が算出できる。B=Σni・Bi
i:陽イオン分率
このようにして規定された塩基度は上記のように酸素供与能力をあらわし、値が大きいほど酸素を供与し易く、他の金属酸化物との酸素の授受が起こり易い。」
本発明では、ガラス粉末の塩基度の指標について、ガラスを酸化物と置き換えて解釈することで、酸化物混合物の塩基度を薄膜におけるアモルファス状態に近い緻密な微細構造になり易さの指標として整理したものである。ガラスの場合は溶融という概念であるが、本発明では、成膜時にガラス形成のメカニズムが発生することを基本としている。蒸着材から昇華された元素がイオン状態になり、基板上で非平衡な状態で元素が堆積する。このとき上記式により得られるペレットの塩基度が0.1以上であれば、ガラス状(アモルファス)で膜が成長し、非常に緻密な状態で整然と元素が配列されていく。
B i ≡1 / A i
When the B i B CaO = 1, B SiO2 = to 0 and the normalized, B i of each single component oxides - index is given. When the Bi -index of each component is expanded to a multi-component system by the cation fraction, the B-index (= basicity) of a glass oxide melt having an arbitrary composition can be calculated. B = Σn i・ B i
n i : Cation fraction The basicity defined in this way represents the oxygen donating ability as described above, and the larger the value, the easier it is to donate oxygen and the easier transfer of oxygen with other metal oxides. . "
In the present invention, the basicity index of the glass powder is interpreted by replacing glass with an oxide, so that the basicity of the oxide mixture is arranged as an index of the ease of becoming a fine microstructure close to the amorphous state in the thin film. It is a thing. In the case of glass, the concept is melting, but the present invention is based on the fact that a glass formation mechanism occurs during film formation. The element sublimated from the vapor deposition material becomes an ionic state, and the element is deposited in a non-equilibrium state on the substrate. At this time, if the basicity of the pellet obtained by the above formula is 0.1 or more, the film grows in a glassy state (amorphous), and the elements are arranged in an orderly manner in a very dense state.

本発明の蒸着材を用いて形成される薄膜は、高いガスバリア性を有することから、太陽電池のバックシートを構成する防湿膜等のガスバリア材の用途の他に、液晶ディスプレイ、有機ELディスプレイ又は照明用有機ELディスプレイ等のガスバリア材としても好適に利用できる。また、この薄膜は、透過率が85〜95%程度の透明性を有するため、高いガスバリア性が要求され、なおかつ光の透過が要求されるような部材、例えば、太陽電池の受光面側や、ディスプレイの画像視覚側等に用いられるガスバリア材等としても好適である。   Since the thin film formed using the vapor deposition material of the present invention has a high gas barrier property, in addition to the use of a gas barrier material such as a moisture-proof film constituting a back sheet of a solar cell, a liquid crystal display, an organic EL display, or an illumination It can also be suitably used as a gas barrier material for organic EL displays. In addition, since this thin film has a transparency of about 85 to 95%, a member that requires a high gas barrier property and requires light transmission, for example, a light receiving surface side of a solar cell, It is also suitable as a gas barrier material used on the image viewing side of the display.

次に、本発明の蒸着材の製造方法を焼結法により作製する場合を代表して説明する。先ず第1酸化物粉末として純度が98%以上の高純度粉末と、第2酸化物粉末として純度が98%以上の高純度粉末と、バインダと、有機溶媒とを混合して、濃度が30〜75質量%のスラリーを調製する。好ましくは40〜65質量%のスラリーを調製する。なお、第1酸化物粉末と第2酸化物粉末は、製造後の蒸着材中の第1酸化物と第2酸化物とのモル比が上記範囲を満たすように調整し混合する。スラリーの濃度を30〜75質量%に限定したのは、75質量%を越えると上記スラリーが非水系であるため、安定した混合造粒が難しい問題点があり、30質量%未満では均一な組織を有する緻密な焼結体が得られないからである。また、使用する第1酸化物粉末の平均粒径、第2酸化物粉末の平均粒径は、製造後の蒸着材に含まれる第1酸化物粉末の平均粒径、第2酸化物粒子の平均粒径を上述した範囲に調整する理由から、第1酸化物粉末を0.1〜10μmの範囲内、第2酸化物粉末を0.1〜10μmの範囲内とするのが好ましい。   Next, the manufacturing method of the vapor deposition material of the present invention will be described as a representative case where it is produced by a sintering method. First, a high-purity powder having a purity of 98% or more as the first oxide powder, a high-purity powder having a purity of 98% or more as the second oxide powder, a binder, and an organic solvent are mixed, and the concentration is 30 to 30%. A 75% by weight slurry is prepared. Preferably, a slurry of 40 to 65% by mass is prepared. In addition, 1st oxide powder and 2nd oxide powder adjust and mix so that the molar ratio of the 1st oxide in a vapor deposition material after manufacture may satisfy | fill the said range. The reason why the concentration of the slurry is limited to 30 to 75% by mass is that when the content exceeds 75% by mass, the slurry is non-aqueous, so there is a problem that stable mixed granulation is difficult. This is because a dense sintered body having the above cannot be obtained. Moreover, the average particle diameter of the 1st oxide powder to be used and the average particle diameter of the 2nd oxide powder are the average particle diameter of the 1st oxide powder contained in the vapor deposition material after manufacture, and the average of 2nd oxide particle. For the reason of adjusting the particle size to the above-described range, it is preferable that the first oxide powder is in the range of 0.1 to 10 μm and the second oxide powder is in the range of 0.1 to 10 μm.

バインダとしてはポリエチレングリコールやポリビニールブチラール等を、有機溶媒としてはエタノールやプロパノール等を用いることが好ましい。バインダは0.2〜5.0質量%添加することが好ましい。   It is preferable to use polyethylene glycol or polyvinyl butyral as the binder, and ethanol or propanol as the organic solvent. The binder is preferably added in an amount of 0.2 to 5.0% by mass.

また高純度粉末とバインダと有機溶媒との湿式混合、特に高純度粉末と分散媒である有機溶媒との湿式混合は、湿式ボールミル又は撹拌ミルにより行われる。湿式ボールミルでは、ZrO2製ボールを用いる場合には、直径5〜10mmの多数のZrO2製ボールを用いて8〜24時間、好ましくは20〜24時間湿式混合される。ZrO2製ボールの直径を5〜10mmと限定したのは、5mm未満では混合が不十分となることからであり、10mmを越えると不純物が増える不具合があるからである。また混合時間が最長24時間と長いのは、長時間連続混合しても不純物の発生が少ないからである。 The wet mixing of the high purity powder, the binder, and the organic solvent, particularly the wet mixing of the high purity powder and the organic solvent that is the dispersion medium is performed by a wet ball mill or a stirring mill. In the wet ball mill, when ZrO 2 balls are used, wet mixing is performed for 8 to 24 hours, preferably 20 to 24 hours, using a large number of ZrO 2 balls having a diameter of 5 to 10 mm. The reason why the diameter of the ZrO 2 balls is limited to 5 to 10 mm is that mixing is insufficient when the diameter is less than 5 mm, and there is a problem that impurities increase when the diameter exceeds 10 mm. The reason why the mixing time is as long as 24 hours is that the generation of impurities is small even if the mixing is continued for a long time.

撹拌ミルでは、直径1〜3mmのZrO2製ボールを用いて0.5〜1時間湿式混合される。ZrO2製ボールの直径を1〜3mmと限定したのは、1mm未満では混合が不十分となるからであり、3mmを越えると不純物が増える不具合があるからである。また混合時間が最長1時間と短いのは、1時間を越えると原料の混合のみならずボール自体が摩損するため、不純物の発生の原因となり、また1時間もあれば十分に混合できるからである。 In the stirring mill, wet mixing is performed for 0.5 to 1 hour using a ZrO 2 ball having a diameter of 1 to 3 mm. The reason why the diameter of the ZrO 2 balls is limited to 1 to 3 mm is that the mixing is insufficient when the diameter is less than 1 mm, and the impurity increases when the diameter exceeds 3 mm. Also, the mixing time is as short as 1 hour at maximum, because if the time exceeds 1 hour, not only the mixing of the raw materials but also the balls themselves are worn out, which causes the generation of impurities and can be sufficiently mixed in 1 hour. .

次に上記スラリーを噴霧乾燥して平均粒径が50〜250μm、好ましくは50〜200μmの混合造粒粉末を得る。この造粒粉末を所定の型に入れて所定の圧力で成形する。上記噴霧乾燥はスプレードライヤを用いて行われることが好ましく、所定の型は一軸プレス装置又は冷間静水圧(CIP;Cold Isostatic Press)成形装置が用いられる。一軸プレス装置では、造粒粉末を750〜2000kg/cm2(73.55〜196.1MPa)、好ましくは1000〜1500kg/cm2(98.1〜147.1MPa)の圧力で一軸加圧成形し、CIP成形装置では、造粒粉末を1000〜3000kg/cm2(98.1〜294.2MPa)、好ましくは1500〜2000kg/cm2(147.1〜196.1MPa)の圧力でCIP成形する。圧力を上記範囲に限定したのは、成形体の密度を高めるとともに焼結後の変形を防止し、後加工を不要にするためである。 Next, the slurry is spray-dried to obtain a mixed granulated powder having an average particle size of 50 to 250 μm, preferably 50 to 200 μm. This granulated powder is put into a predetermined mold and molded at a predetermined pressure. The spray drying is preferably performed using a spray dryer, and the predetermined mold is a uniaxial press apparatus or a cold isostatic press (CIP) molding apparatus. In uniaxial pressing apparatus, granulated powder 750~2000kg / cm 2 (73.55~196.1MPa), preferably uniaxial pressing at a pressure of 1000~1500kg / cm 2 (98.1~147.1MPa) In the CIP molding apparatus, the granulated powder is CIP molded at a pressure of 1000 to 3000 kg / cm 2 (98.1 to 294.2 MPa), preferably 1500 to 2000 kg / cm 2 (147.1 to 196.1 MPa). The reason why the pressure is limited to the above range is to increase the density of the molded body, prevent deformation after sintering, and eliminate the need for post-processing.

更に成形体を所定の温度で焼結する。焼結は大気、不活性ガス、真空又は還元ガス雰囲気中で1000℃以上、好ましくは1200〜1400℃の温度で1〜10時間、好ましくは2〜5時間行う。これにより相対密度が90%以上のペレットが得られる。上記焼結は大気圧下で行うが、ホットプレス(HP)焼結や熱間静水圧プレス(HIP;Hot Isostatic Press)焼結のように加圧焼結を行う場合には、不活性ガス、真空又は還元ガス雰囲気中で1000℃以上の温度で1〜5時間行うことが好ましい。   Further, the compact is sintered at a predetermined temperature. Sintering is carried out at a temperature of 1000 ° C. or higher, preferably 1200 to 1400 ° C. for 1 to 10 hours, preferably 2 to 5 hours in the atmosphere, inert gas, vacuum or reducing gas atmosphere. Thereby, a pellet having a relative density of 90% or more is obtained. The above sintering is performed at atmospheric pressure, but when performing pressure sintering such as hot press (HP) sintering or hot isostatic press (HIP) sintering, an inert gas, It is preferable to carry out at a temperature of 1000 ° C. or higher for 1 to 5 hours in a vacuum or a reducing gas atmosphere.

続いて、本発明の薄膜シート及び積層シートについて、その製造方法とともに説明する。図1に示すように、本発明の薄膜シート10は、第1基材フィルム11と、好ましくは上記蒸着材を用いて形成された本発明の薄膜12を有する。そして、本発明の積層シート20は、上記本発明の薄膜シート10と、この薄膜シート10の薄膜形成側に接着層13を介して接着された第2基材フィルム14とを有する。   Subsequently, the thin film sheet and the laminated sheet of the present invention will be described together with the manufacturing method thereof. As shown in FIG. 1, a thin film sheet 10 of the present invention includes a first base film 11 and a thin film 12 of the present invention that is preferably formed using the above-described vapor deposition material. And the lamination sheet 20 of this invention has the 2nd base film 14 adhere | attached through the contact bonding layer 13 on the thin film formation side of this thin film sheet 10 of the said invention.

第1基材フィルム11及び第2基材フィルム14は、長時間の高温高湿度環境試験に耐え得る機械的強度や耐候性等を有するものが好ましい。例えば、ポリエチレンテレフテレート(PET)、ポリカーボネート、ポリメチルメタクリレート、ポリアクリレート、ポリエチレンナフタレート(PEN)、ポリアリレート、ポリエーテルスルフォン、トリアセチルセルロース(TAC)、環状オレフィン(コ)ポリマー等の樹脂フィルムが挙げられる。これらの樹脂フィルムは、必要に応じて難燃剤、酸化防止剤、紫外線吸収剤、帯電防止剤等が配合されていても構わない。第1基材フィルム11及び第2基材フィルム14の厚さは、好ましくは5〜300μm、更に好ましくは10〜150μmである。   It is preferable that the first base film 11 and the second base film 14 have mechanical strength, weather resistance, and the like that can withstand a long-term high temperature and high humidity environment test. For example, resin films such as polyethylene terephthalate (PET), polycarbonate, polymethyl methacrylate, polyacrylate, polyethylene naphthalate (PEN), polyarylate, polyether sulfone, triacetyl cellulose (TAC), and cyclic olefin (co) polymer Is mentioned. These resin films may contain a flame retardant, an antioxidant, an ultraviolet absorber, an antistatic agent, and the like as necessary. The thickness of the 1st base film 11 and the 2nd base film 14 becomes like this. Preferably it is 5-300 micrometers, More preferably, it is 10-150 micrometers.

この第1基材フィルム11上に、好ましくは上述した本発明の蒸着材を用いて、ガスバリア材としての薄膜12が形成される。蒸着材中の第1酸化物に含まれる金属元素をA、第2酸化物に含まれる金属元素をBとすると、薄膜12中の金属元素Aと金属元素Bとのモル比が5〜85:95〜15である。薄膜12中の金属元素A,Bの含有割合が上記範囲外になると、それぞれ各酸化物の結晶状態が優先となり、アモルファス状で緻密で微細な構造を得られないといった不具合を生じる。薄膜12の厚さは10〜200nmの範囲内が好ましい。下限値未満では、ガスバリア材としての十分なガスバリア性が得られ難く、また、膜の耐久性が低下し易い。一方、上限値を越えると材料が無駄になり、また、厚み効果により、折り曲げ等の外力によるクラックが生じ易くなる。このうち、薄膜12の厚さは、20〜100nmの範囲内が特に好ましい。蒸着材を用いた薄膜12の形成方法としては、電子ビーム蒸着法(Electron Beam Evaporation Method 以下、EB法という)、イオンプレーティング法、反応性プラズマ蒸着法(Reactive Plasma Deposition Method 以下、RPD法という)、抵抗加熱法又は誘導加熱法等の真空成膜法が好ましい。   A thin film 12 as a gas barrier material is formed on the first base film 11, preferably using the above-described vapor deposition material of the present invention. When the metal element contained in the first oxide in the vapor deposition material is A and the metal element contained in the second oxide is B, the molar ratio of the metal element A to the metal element B in the thin film 12 is 5 to 85: 95-15. When the content ratio of the metal elements A and B in the thin film 12 is out of the above range, the crystal state of each oxide is prioritized, resulting in a problem that an amorphous, dense and fine structure cannot be obtained. The thickness of the thin film 12 is preferably in the range of 10 to 200 nm. If it is less than the lower limit, it is difficult to obtain sufficient gas barrier properties as a gas barrier material, and the durability of the film tends to be lowered. On the other hand, if the upper limit is exceeded, the material is wasted, and cracks due to external forces such as bending tend to occur due to the thickness effect. Among these, the thickness of the thin film 12 is particularly preferably in the range of 20 to 100 nm. As a method of forming the thin film 12 using a vapor deposition material, an electron beam evaporation method (hereinafter referred to as an EB method), an ion plating method, a reactive plasma deposition method (hereinafter referred to as an RPD method). A vacuum film forming method such as a resistance heating method or an induction heating method is preferable.

なお、図1には図示しないが、第1基材フィルム11上には薄膜12との密着強度を向上させるため、必要に応じて、アクリルポリオール、イソシアネート、シランカップリング剤からなるプライマーコーティング層を設けるか、或いは蒸着工程前にプラズマ等を用いた表面処理を施しても構わない。   In addition, although not shown in FIG. 1, in order to improve the adhesive strength with the thin film 12 on the 1st base film 11, the primer coating layer which consists of an acrylic polyol, isocyanate, and a silane coupling agent is needed as needed. Alternatively, surface treatment using plasma or the like may be performed before the vapor deposition step.

一方、形成した薄膜12表面が剥き出しの状態では、シートを取扱う際に、膜の表面にキズがついたり、こすれたりすると、ガスバリア性に大きな影響を与える。そのため、薄膜12上には、図示しない薄膜12表面を保護するガスバリア性被膜等を設けるのが好ましい。このガスバリア性被膜は、例えばアルコキシル基を有するケイ素化合物、チタン化合物、ジルコニア化合物、錫化合物又はその加水分解物と水酸基を有する水溶性高分子とを混合した溶液を、薄膜12表面に塗布した後、加熱乾燥して形成することができる。このガスバリア性被膜は、薄膜12の保護層として機能するだけではなく、ガスバリア性を向上させる効果も有する。   On the other hand, when the surface of the formed thin film 12 is exposed, if the surface of the film is scratched or rubbed when the sheet is handled, the gas barrier property is greatly affected. Therefore, it is preferable to provide a gas barrier film or the like that protects the surface of the thin film 12 (not shown) on the thin film 12. The gas barrier film is formed by, for example, applying a solution obtained by mixing a silicon compound having an alkoxyl group, a titanium compound, a zirconia compound, a tin compound or a hydrolyzate thereof and a water-soluble polymer having a hydroxyl group to the surface of the thin film 12. It can be formed by heating and drying. This gas barrier film not only functions as a protective layer for the thin film 12, but also has an effect of improving the gas barrier property.

このように形成された本発明の薄膜シート10は、例えば、温度20℃、相対湿度50%RHの条件で1時間放置した後、温度40℃、相対湿度90%RHの条件で測定した水蒸気透過度Sが0.3g/m2・day以下を示す。また、温度20℃、相対湿度50%RHの条件で1時間放置した後、温度85℃、相対湿度90%RHの条件で更に100時間放置し、その後上記と同条件で測定した水蒸気透過度をTとするとき、水蒸気透過度Tの水蒸気透過度Sに対する変化率(T/S×100)が200%以下を示す。即ちこの薄膜シート10は、非常に高く、かつ時間経過による劣化が少ないガスバリア性を有する。 The thin film sheet 10 of the present invention thus formed is, for example, left for 1 hour under the conditions of a temperature of 20 ° C. and a relative humidity of 50% RH, and then measured for water vapor transmission measured under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH. Degree S is 0.3 g / m 2 · day or less. Further, after being left for 1 hour under the conditions of a temperature of 20 ° C. and a relative humidity of 50% RH, it was further left for 100 hours under the conditions of a temperature of 85 ° C. and a relative humidity of 90% RH. When T, the rate of change of the water vapor transmission rate T with respect to the water vapor transmission rate S (T / S × 100) is 200% or less. That is, the thin film sheet 10 has a gas barrier property that is very high and has little deterioration over time.

更に、本発明の積層シート20では、上記本発明の薄膜シート10の薄膜形成側、即ち薄膜12上又は上記ガスバリア性被膜上に、接着層13が形成され、この接着層13は、薄膜12が形成された第1基材フィルム11と第2基材フィルム14とを貼り合わせるための接着剤として機能するものである。そのため、接着強度が長期間にわたって劣化せず、デラミネーション等を生じないこと、また、黄変しないこと等の条件が必要であり、例えばポリウレタン系、ポリエステル系、ポリエステル−ポリウレタン系、ポリカーボネート系、ポリエポキシ−アミン系、ホットメルト系接着剤等が挙げられる。接着層13の積層方法は、ドライラミネート法等の公知の方法で積層することができる。   Furthermore, in the laminated sheet 20 of the present invention, an adhesive layer 13 is formed on the thin film forming side of the thin film sheet 10 of the present invention, that is, on the thin film 12 or on the gas barrier film. It functions as an adhesive for bonding the formed first base film 11 and second base film 14 together. Therefore, it is necessary that the adhesive strength does not deteriorate over a long period of time, does not cause delamination, and does not yellow, such as polyurethane, polyester, polyester-polyurethane, polycarbonate, Examples thereof include an epoxy-amine-based adhesive and a hot-melt adhesive. The adhesive layer 13 can be laminated by a known method such as a dry lamination method.

この接着層13上に第2基材フィルム14を接着して貼り合わせることにより、積層シート20が完成する。なお、薄膜12と接着層13は、図1に示すように、それぞれが1層ずつ積層したものに限定する必要はなく、薄膜12と接着層13を交互に、或いは薄膜12、上記ガスバリア性被膜等の他の部材及び接着層13を交互又はランダムに積層した2〜10層の複層としても良い。これにより、更にガスバリア性や耐候性も向上させることができる。   The laminated sheet 20 is completed by bonding and bonding the second base film 14 on the adhesive layer 13. As shown in FIG. 1, the thin film 12 and the adhesive layer 13 do not need to be limited to those laminated one by one, but the thin film 12 and the adhesive layer 13 are alternately arranged, or the thin film 12 and the gas barrier coating. It is good also as a 2-10 layer multilayer which laminated | stacked other members, such as these, and the contact bonding layer 13 alternately or at random. Thereby, gas barrier property and a weather resistance can be improved further.

この積層シート20は、太陽電池モジュールのバックシート、液晶ディスプレイ又は有機ELディスプレイ又は照明用有機ELディスプレイ等の用途として好適に利用できる。   This laminated sheet 20 can be suitably used as a back sheet of a solar cell module, a liquid crystal display, an organic EL display, an organic EL display for illumination, or the like.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
先ず、第1酸化物粉末、第2酸化物粉末、バインダ及び有機溶媒をボールミルによる湿式混合により所定の割合で混合して、濃度が40質量%のスラリーを調製した。このとき、第1酸化物粉末として平均粒径が1.3μm、純度が99.8%の高純度TiO2粉末を、第2酸化物粉末として平均粒径が0.8μm、純度が99.8%の高純度ZnO粉末を、バインダとしてポリビニルブチラールを、有機溶媒としてエタノールをそれぞれ使用した。また、TiO2粉末並びにZnO粉末の混合量は、形成後の蒸着材に含まれるTiO2が5モル%、ZnOが95モル%となるように調整した。
<Example 1>
First, a first oxide powder, a second oxide powder, a binder and an organic solvent were mixed at a predetermined ratio by wet mixing with a ball mill to prepare a slurry having a concentration of 40% by mass. At this time, a high-purity TiO 2 powder having an average particle diameter of 1.3 μm and a purity of 99.8% as the first oxide powder, and an average particle diameter of 0.8 μm and a purity of 99.8 as the second oxide powder. % High-purity ZnO powder, polyvinyl butyral as a binder, and ethanol as an organic solvent. Moreover, the mixing amount of the TiO 2 powder and the ZnO powder was adjusted so that TiO 2 contained in the deposited material after formation was 5 mol% and ZnO was 95 mol%.

次に、調製したスラリーをスプレードライヤを用いて噴霧乾燥し、平均粒径が200μmの混合造粒粉末を得た後、この造粒粉末を所定の型に入れて一軸プレス装置によりプレス成形した。得られた成形体を、大気雰囲気中1300℃の温度で5時間焼結させて、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びZnO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnOの含有量、ペレットの塩基度を以下の表1に示す。 Next, the prepared slurry was spray-dried using a spray dryer to obtain a mixed granulated powder having an average particle size of 200 μm, and the granulated powder was put into a predetermined mold and press-molded by a uniaxial press machine. The obtained molded body was sintered in an air atmosphere at a temperature of 1300 ° C. for 5 hours to obtain a vapor deposition material. Table 1 below shows the average particle diameters of TiO 2 particles and ZnO particles contained in the obtained vapor deposition material, the contents of TiO 2 and ZnO contained in the vapor deposition material, and the basicity of the pellets.

<実施例2>
TiO2粉末並びにZnO粉末の混合量を、形成後の蒸着材に含まれるTiO2が10モル%、ZnOが90モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びZnO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 2>
The vapor deposition material was the same as in Example 1 except that the mixing amount of the TiO 2 powder and the ZnO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 10 mol% and ZnO was 90 mol%. Got. Table 1 below shows the average particle diameters of TiO 2 particles and ZnO particles contained in the obtained vapor deposition material, the contents of TiO 2 and ZnO contained in the vapor deposition material, and the basicity of the pellets.

<実施例3>
TiO2粉末並びにZnO粉末の混合量を、形成後の蒸着材に含まれるTiO2が20モル%、ZnOが80モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びZnO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 3>
The vapor deposition material was the same as in Example 1 except that the mixing amount of the TiO 2 powder and the ZnO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 20 mol% and ZnO was 80 mol%. Got. Table 1 below shows the average particle diameters of TiO 2 particles and ZnO particles contained in the obtained vapor deposition material, the contents of TiO 2 and ZnO contained in the vapor deposition material, and the basicity of the pellets.

<実施例4>
TiO2粉末並びにZnO粉末の混合量を、形成後の蒸着材に含まれるTiO2が30モル%、ZnOが70モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びZnO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 4>
The vapor deposition material was the same as in Example 1 except that the mixing amount of the TiO 2 powder and the ZnO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 30 mol% and ZnO was 70 mol%. Got. Table 1 below shows the average particle diameters of TiO 2 particles and ZnO particles contained in the obtained vapor deposition material, the contents of TiO 2 and ZnO contained in the vapor deposition material, and the basicity of the pellets.

<実施例5>
TiO2粉末並びにZnO粉末の混合量を、形成後の蒸着材に含まれるTiO2が40モル%、ZnOが60モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びZnO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 5>
The vapor deposition material was the same as in Example 1 except that the mixing amount of the TiO 2 powder and the ZnO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 40 mol% and ZnO was 60 mol%. Got. Table 1 below shows the average particle diameters of TiO 2 particles and ZnO particles contained in the obtained vapor deposition material, the contents of TiO 2 and ZnO contained in the vapor deposition material, and the basicity of the pellets.

<実施例6>
TiO2粉末並びにZnO粉末の混合量を、形成後の蒸着材に含まれるTiO2が50モル%、ZnOが50モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びZnO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 6>
The vapor deposition material was the same as in Example 1 except that the mixing amount of the TiO 2 powder and the ZnO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 50 mol% and ZnO was 50 mol%. Got. Table 1 below shows the average particle diameters of TiO 2 particles and ZnO particles contained in the obtained vapor deposition material, the contents of TiO 2 and ZnO contained in the vapor deposition material, and the basicity of the pellets.

<実施例7>
TiO2粉末並びにZnO粉末の混合量を、形成後の蒸着材に含まれるTiO2が60モル%、ZnOが40モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びZnO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 7>
The vapor deposition material was the same as in Example 1 except that the mixing amount of the TiO 2 powder and the ZnO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 60 mol% and ZnO was 40 mol%. Got. Table 1 below shows the average particle diameters of TiO 2 particles and ZnO particles contained in the obtained vapor deposition material, the contents of TiO 2 and ZnO contained in the vapor deposition material, and the basicity of the pellets.

<実施例8>
TiO2粉末並びにZnO粉末の混合量を、形成後の蒸着材に含まれるTiO2が70モル%、ZnOが30モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びZnO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 8>
The vapor deposition material was the same as in Example 1 except that the mixing amount of the TiO 2 powder and the ZnO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 70 mol% and ZnO was 30 mol%. Got. Table 1 below shows the average particle diameters of TiO 2 particles and ZnO particles contained in the obtained vapor deposition material, the contents of TiO 2 and ZnO contained in the vapor deposition material, and the basicity of the pellets.

<実施例9>
TiO2粉末並びにZnO粉末の混合量を、形成後の蒸着材に含まれるTiO2が80モル%、ZnOが20モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びZnO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 9>
The vapor deposition material was the same as in Example 1 except that the mixing amount of the TiO 2 powder and the ZnO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 80 mol% and ZnO was 20 mol%. Got. Table 1 below shows the average particle diameters of TiO 2 particles and ZnO particles contained in the obtained vapor deposition material, the contents of TiO 2 and ZnO contained in the vapor deposition material, and the basicity of the pellets.

<実施例10>
TiO2粉末並びにZnO粉末の混合量を、形成後の蒸着材に含まれるTiO2が85モル%、ZnOが15モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びZnO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 10>
The vapor deposition material was the same as in Example 1 except that the mixing amount of the TiO 2 powder and the ZnO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 85 mol% and ZnO was 15 mol%. Got. Table 1 below shows the average particle diameters of TiO 2 particles and ZnO particles contained in the obtained vapor deposition material, the contents of TiO 2 and ZnO contained in the vapor deposition material, and the basicity of the pellets.

<実施例11>
第2酸化物粉末として平均粒径が0.9μm、純度が99.7%の高純度MgO粉末を用いたこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びMgO粒子の平均粒径、また、蒸着材に含まれるTiO2、MgOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 11>
A vapor deposition material was obtained in the same manner as in Example 1 except that a high-purity MgO powder having an average particle size of 0.9 μm and a purity of 99.7% was used as the second oxide powder. Table 1 below shows the average particle diameters of TiO 2 particles and MgO particles contained in the obtained vapor deposition material, the contents of TiO 2 and MgO contained in the vapor deposition material, and the basicity of the pellets.

<実施例12>
TiO2粉末並びにMgO粉末の混合量を、形成後の蒸着材に含まれるTiO2が30モル%、MgOが70モル%となるように調整したこと以外は、実施例11と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びMgO粒子の平均粒径、また、蒸着材に含まれるTiO2、MgOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 12>
The vapor deposition material was the same as in Example 11 except that the mixing amount of the TiO 2 powder and the MgO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 30 mol% and MgO was 70 mol%. Got. Table 1 below shows the average particle diameters of TiO 2 particles and MgO particles contained in the obtained vapor deposition material, the contents of TiO 2 and MgO contained in the vapor deposition material, and the basicity of the pellets.

<実施例13>
TiO2粉末並びにMgO粉末の混合量を、形成後の蒸着材に含まれるTiO2が50モル%、MgOが50モル%となるように調整したこと以外は、実施例11と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びMgO粒子の平均粒径、また、蒸着材に含まれるTiO2、MgOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 13>
The vapor deposition material was the same as in Example 11 except that the mixing amount of the TiO 2 powder and the MgO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 50 mol% and MgO was 50 mol%. Got. Table 1 below shows the average particle diameters of TiO 2 particles and MgO particles contained in the obtained vapor deposition material, the contents of TiO 2 and MgO contained in the vapor deposition material, and the basicity of the pellets.

<実施例14>
TiO2粉末並びにMgO粉末の混合量を、形成後の蒸着材に含まれるTiO2が80モル%、MgOが20モル%となるように調整したこと以外は、実施例11と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びMgO粒子の平均粒径、また、蒸着材に含まれるTiO2、MgOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 14>
The vapor deposition material was the same as in Example 11 except that the mixing amount of the TiO 2 powder and the MgO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 80 mol% and MgO was 20 mol%. Got. Table 1 below shows the average particle diameters of TiO 2 particles and MgO particles contained in the obtained vapor deposition material, the contents of TiO 2 and MgO contained in the vapor deposition material, and the basicity of the pellets.

<実施例15>
TiO2粉末並びにMgO粉末の混合量を、形成後の蒸着材に含まれるTiO2が85モル%、MgOが15モル%となるように調整したこと以外は、実施例11と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びMgO粒子の平均粒径、また、蒸着材に含まれるTiO2、MgOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 15>
The vapor deposition material was the same as in Example 11 except that the mixing amount of the TiO 2 powder and the MgO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 85 mol% and MgO was 15 mol%. Got. Table 1 below shows the average particle diameters of TiO 2 particles and MgO particles contained in the obtained vapor deposition material, the contents of TiO 2 and MgO contained in the vapor deposition material, and the basicity of the pellets.

<実施例16>
第2酸化物粉末として平均粒径が0.6μm、純度が99.8%の高純度CaO粉末を用いたこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、CaOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 16>
A vapor deposition material was obtained in the same manner as in Example 1 except that a high-purity CaO powder having an average particle size of 0.6 μm and a purity of 99.8% was used as the second oxide powder. Table 1 below shows the average particle diameters of the TiO 2 particles and CaO particles contained in the obtained vapor deposition material, the contents of TiO 2 and CaO contained in the vapor deposition material, and the basicity of the pellets.

<実施例17>
TiO2粉末並びにCaO粉末の混合量を、形成後の蒸着材に含まれるTiO2が30モル%、CaOが70モル%となるように調整したこと以外は、実施例16と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、CaOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 17>
The vapor deposition material was the same as in Example 16 except that the mixing amount of the TiO 2 powder and CaO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 30 mol% and CaO was 70 mol%. Got. Table 1 below shows the average particle diameters of the TiO 2 particles and CaO particles contained in the obtained vapor deposition material, the contents of TiO 2 and CaO contained in the vapor deposition material, and the basicity of the pellets.

<実施例18>
TiO2粉末並びにCaO粉末の混合量を、形成後の蒸着材に含まれるTiO2が50モル%、CaOが50モル%となるように調整したこと以外は、実施例16と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、CaOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 18>
The vapor deposition material was the same as in Example 16 except that the mixing amount of the TiO 2 powder and the CaO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 50 mol% and CaO was 50 mol%. Got. Table 1 below shows the average particle diameters of the TiO 2 particles and CaO particles contained in the obtained vapor deposition material, the contents of TiO 2 and CaO contained in the vapor deposition material, and the basicity of the pellets.

<実施例19>
TiO2粉末並びにCaO粉末の混合量を、形成後の蒸着材に含まれるTiO2が80モル%、CaOが20モル%となるように調整したこと以外は、実施例16と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、CaOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 19>
The vapor deposition material was the same as in Example 16 except that the mixing amount of the TiO 2 powder and the CaO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 80 mol% and CaO was 20 mol%. Got. Table 1 below shows the average particle diameters of the TiO 2 particles and CaO particles contained in the obtained vapor deposition material, the contents of TiO 2 and CaO contained in the vapor deposition material, and the basicity of the pellets.

<実施例20>
TiO2粉末並びにCaO粉末の混合量を、形成後の蒸着材に含まれるTiO2が85モル%、CaOが15モル%となるように調整したこと以外は、実施例16と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、CaOの含有量、ペレットの塩基度を以下の表1に示す。
<Example 20>
The vapor deposition material was the same as in Example 16 except that the mixing amount of the TiO 2 powder and the CaO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 85 mol% and CaO was 15 mol%. Got. Table 1 below shows the average particle diameters of the TiO 2 particles and CaO particles contained in the obtained vapor deposition material, the contents of TiO 2 and CaO contained in the vapor deposition material, and the basicity of the pellets.

<実施例21>
第2酸化物粉末として平均粒径が0.8μm、純度が99.8%の高純度ZnO粉末と平均粒径が0.9μm、純度が99.7%の高純度MgO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が5モル%、ZnOとMgOがそれぞれ90モル%、5モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子及びMgO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgOの含有量、ペレットの塩基度を以下の表2に示す。
<Example 21>
A mixed powder of a high purity ZnO powder having an average particle size of 0.8 μm and a purity of 99.8% and a high purity MgO powder having an average particle size of 0.9 μm and a purity of 99.7% as the second oxide powder The TiO 2 powder used and the mixing amount of the mixed powder were adjusted so that TiO 2 contained in the deposited material after formation was 5 mol%, and ZnO and MgO were 90 mol% and 5 mol%, respectively. Except for this, a vapor deposition material was obtained in the same manner as in Example 1. Table 2 below shows the average particle diameters of TiO 2 particles, ZnO particles, and MgO particles contained in the obtained vapor deposition material, the contents of TiO 2 , ZnO, and MgO contained in the vapor deposition material, and the basicity of the pellets. .

<実施例22>
第2酸化物粉末として平均粒径が0.8μm、純度が99.8%の高純度ZnO粉末と平均粒径が0.6μm、純度が99.8%の高純度CaO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が5モル%、ZnOとCaOがそれぞれ90モル%、5モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、CaOの含有量、ペレットの塩基度を以下の表2に示す。
<Example 22>
A mixed powder of a high purity ZnO powder having an average particle size of 0.8 μm and a purity of 99.8% and a high purity CaO powder having an average particle size of 0.6 μm and a purity of 99.8% as the second oxide powder The TiO 2 powder used and the amount of the mixed powder were adjusted so that TiO 2 contained in the deposited material was 5 mol%, and ZnO and CaO were 90 mol% and 5 mol%, respectively. Except for this, a vapor deposition material was obtained in the same manner as in Example 1. Table 2 below shows the average particle diameters of TiO 2 particles, ZnO particles, and CaO particles contained in the obtained vapor deposition material, the contents of TiO 2 , ZnO, and CaO contained in the vapor deposition material, and the basicity of the pellets. .

<実施例23>
第2酸化物粉末として平均粒径が0.8μm、純度が99.8%の高純度ZnO粉末と平均粒径が0.9μm、純度が99.7%の高純度MgO粉末と平均粒径が0.6μm、純度が99.8%の高純度CaO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が5モル%、ZnOとMgOとCaOがそれぞれ75モル%、10モル%、10モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgO、CaOの含有量、ペレットの塩基度を以下の表2に示す。
<Example 23>
As the second oxide powder, a high-purity ZnO powder having an average particle size of 0.8 μm and a purity of 99.8%, a high-purity MgO powder having an average particle size of 0.9 μm and a purity of 99.7%, and an average particle size of The mixed powder of 0.6 μm and high purity CaO powder with a purity of 99.8% was used, and the mixed amount of the TiO 2 powder and the mixed powder was 5 mol of TiO 2 contained in the deposited material after formation. %, ZnO, MgO and CaO were obtained in the same manner as in Example 1 except that the amounts were adjusted to 75 mol%, 10 mol% and 10 mol%, respectively. The average particle diameter of TiO 2 particles, ZnO particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the content of TiO 2 , ZnO, MgO, CaO contained in the vapor deposition material, and the basicity of the pellet are as follows: It shows in Table 2.

<実施例24>
第2酸化物粉末として平均粒径が0.8μm、純度が99.8%の高純度ZnO粉末と平均粒径が0.9μm、純度が99.7%の高純度MgO粉末と平均粒径が0.6μm、純度が99.8%の高純度CaO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が5モル%、ZnOとMgOとCaOがそれぞれ55モル%、20モル%、20モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgO、CaOの含有量、ペレットの塩基度を以下の表2に示す。
<Example 24>
As the second oxide powder, a high-purity ZnO powder having an average particle size of 0.8 μm and a purity of 99.8%, a high-purity MgO powder having an average particle size of 0.9 μm and a purity of 99.7%, and an average particle size of The mixed powder of 0.6 μm and high purity CaO powder with a purity of 99.8% was used, and the mixed amount of the TiO 2 powder and the mixed powder was 5 mol of TiO 2 contained in the deposited material after formation. %, ZnO, MgO and CaO were obtained in the same manner as in Example 1 except that they were adjusted to 55 mol%, 20 mol% and 20 mol%, respectively. The average particle diameter of TiO 2 particles, ZnO particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the content of TiO 2 , ZnO, MgO, CaO contained in the vapor deposition material, and the basicity of the pellet are as follows: It shows in Table 2.

<実施例25>
第2酸化物粉末として平均粒径が0.8μm、純度が99.8%の高純度ZnO粉末と平均粒径が0.9μm、純度が99.7%の高純度MgO粉末と平均粒径が0.6μm、純度が99.8%の高純度CaO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が5モル%、ZnOとMgOとCaOがそれぞれ30モル%、35モル%、30モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgO、CaOの含有量、ペレットの塩基度を以下の表2に示す。
<Example 25>
As the second oxide powder, a high-purity ZnO powder having an average particle size of 0.8 μm and a purity of 99.8%, a high-purity MgO powder having an average particle size of 0.9 μm and a purity of 99.7%, and an average particle size of The mixed powder of 0.6 μm and high purity CaO powder with a purity of 99.8% was used, and the mixed amount of the TiO 2 powder and the mixed powder was 5 mol of TiO 2 contained in the deposited material after formation. %, ZnO, MgO, and CaO were obtained in the same manner as in Example 1 except that the contents were adjusted to be 30 mol%, 35 mol%, and 30 mol%, respectively. The average particle diameter of TiO 2 particles, ZnO particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the content of TiO 2 , ZnO, MgO, CaO contained in the vapor deposition material, and the basicity of the pellet are as follows: It shows in Table 2.

<実施例26>
第2酸化物粉末として平均粒径が0.8μm、純度が99.8%の高純度ZnO粉末と平均粒径が0.9μm、純度が99.7%の高純度MgO粉末と平均粒径が0.6μm、純度が99.8%の高純度CaO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が5モル%、ZnOとMgOとCaOがそれぞれ10モル%、35モル%、50モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgO、CaOの含有量、ペレットの塩基度を以下の表2に示す。
<Example 26>
As the second oxide powder, a high-purity ZnO powder having an average particle size of 0.8 μm and a purity of 99.8%, a high-purity MgO powder having an average particle size of 0.9 μm and a purity of 99.7%, and an average particle size of The mixed powder of 0.6 μm and high purity CaO powder with a purity of 99.8% was used, and the mixed amount of the TiO 2 powder and the mixed powder was 5 mol of TiO 2 contained in the deposited material after formation. %, ZnO, MgO and CaO were obtained in the same manner as in Example 1 except that they were adjusted to 10 mol%, 35 mol% and 50 mol%, respectively. The average particle diameter of TiO 2 particles, ZnO particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the content of TiO 2 , ZnO, MgO, CaO contained in the vapor deposition material, and the basicity of the pellet are as follows: It shows in Table 2.

<実施例27>
第2酸化物粉末として平均粒径が0.9μm、純度が99.7%の高純度MgO粉末と平均粒径が0.6μm、純度が99.8%の高純度CaO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が5モル%、MgOとCaOがそれぞれ35モル%、60モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、MgO、CaOの含有量、ペレットの塩基度を以下の表2に示す。
<Example 27>
A mixed powder of a high purity MgO powder having an average particle size of 0.9 μm and a purity of 99.7% and a high purity CaO powder having an average particle size of 0.6 μm and a purity of 99.8% as the second oxide powder The TiO 2 powder used and the amount of the mixed powder were adjusted so that TiO 2 contained in the deposited material after formation was 5 mol%, and MgO and CaO were 35 mol% and 60 mol%, respectively. Except for this, a vapor deposition material was obtained in the same manner as in Example 1. Table 2 below shows the average particle diameters of TiO 2 particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the contents of TiO 2 , MgO and CaO contained in the vapor deposition material, and the basicity of the pellets. .

<実施例28>
第2酸化物粉末として平均粒径が0.8μm、純度が99.8%の高純度ZnO粉末と平均粒径が0.9μm、純度が99.7%の高純度MgO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が30モル%、ZnOとMgOがそれぞれ60モル%、10モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子及びMgO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgOの含有量、ペレットの塩基度を以下の表2に示す。
<Example 28>
A mixed powder of a high purity ZnO powder having an average particle size of 0.8 μm and a purity of 99.8% and a high purity MgO powder having an average particle size of 0.9 μm and a purity of 99.7% as the second oxide powder The TiO 2 powder used and the amount of the mixed powder were adjusted so that TiO 2 contained in the deposited material after formation was 30 mol%, and ZnO and MgO were 60 mol% and 10 mol%, respectively. Except for this, a vapor deposition material was obtained in the same manner as in Example 1. Table 2 below shows the average particle diameters of TiO 2 particles, ZnO particles, and MgO particles contained in the obtained vapor deposition material, the contents of TiO 2 , ZnO, and MgO contained in the vapor deposition material, and the basicity of the pellets. .

<実施例29>
第2酸化物粉末として平均粒径が0.8μm、純度が99.8%の高純度ZnO粉末と平均粒径が0.6μm、純度が99.8%の高純度CaO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が30モル%、ZnOとCaOがそれぞれ60モル%、10モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、CaOの含有量、ペレットの塩基度を以下の表2に示す。
<Example 29>
A mixed powder of a high purity ZnO powder having an average particle size of 0.8 μm and a purity of 99.8% and a high purity CaO powder having an average particle size of 0.6 μm and a purity of 99.8% as the second oxide powder The TiO 2 powder used and the mixing amount of the mixed powder were adjusted so that TiO 2 contained in the deposited material after formation was 30 mol%, and ZnO and CaO were 60 mol% and 10 mol%, respectively. Except for this, a vapor deposition material was obtained in the same manner as in Example 1. Table 2 below shows the average particle diameters of TiO 2 particles, ZnO particles, and CaO particles contained in the obtained vapor deposition material, the contents of TiO 2 , ZnO, and CaO contained in the vapor deposition material, and the basicity of the pellets. .

<実施例30>
第2酸化物粉末として平均粒径が0.8μm、純度が99.8%の高純度ZnO粉末と平均粒径が0.9μm、純度が99.7%の高純度MgO粉末と平均粒径が0.6μm、純度が99.8%の高純度CaO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が30モル%、ZnOとMgOとCaOがそれぞれ30モル%、25モル%、15モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgO、CaOの含有量、ペレットの塩基度を以下の表2に示す。
<Example 30>
As the second oxide powder, a high-purity ZnO powder having an average particle size of 0.8 μm and a purity of 99.8%, a high-purity MgO powder having an average particle size of 0.9 μm and a purity of 99.7%, and an average particle size of The mixed powder of 0.6 μm and high purity CaO powder having a purity of 99.8% was used, and the mixed amount of the TiO 2 powder and the mixed powder was 30 mol of TiO 2 contained in the deposited material after formation. %, ZnO, MgO, and CaO were obtained in the same manner as in Example 1 except that the contents were adjusted to 30 mol%, 25 mol%, and 15 mol%, respectively. The average particle diameter of TiO 2 particles, ZnO particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the content of TiO 2 , ZnO, MgO, CaO contained in the vapor deposition material, and the basicity of the pellet are as follows: It shows in Table 2.

<実施例31>
第2酸化物粉末として平均粒径が0.9μm、純度が99.7%の高純度MgO粉末と平均粒径が0.6μm、純度が99.8%の高純度CaO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が30モル%、MgOとCaOがそれぞれ25モル%、45モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、MgO、CaOの含有量、ペレットの塩基度を以下の表2に示す。
<Example 31>
A mixed powder of a high purity MgO powder having an average particle size of 0.9 μm and a purity of 99.7% and a high purity CaO powder having an average particle size of 0.6 μm and a purity of 99.8% as the second oxide powder The TiO 2 powder used and the mixed amount of the mixed powder were adjusted so that TiO 2 contained in the deposited material after formation was 30 mol%, and MgO and CaO were 25 mol% and 45 mol%, respectively. Except for this, a vapor deposition material was obtained in the same manner as in Example 1. Table 2 below shows the average particle diameters of TiO 2 particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the contents of TiO 2 , MgO and CaO contained in the vapor deposition material, and the basicity of the pellets. .

<実施例32>
第2酸化物粉末として平均粒径が0.8μm、純度が99.8%の高純度ZnO粉末と平均粒径が0.9μm、純度が99.7%の高純度MgO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が85モル%、ZnOとMgOがそれぞれ10モル%、5モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子及びMgO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgOの含有量、ペレットの塩基度を以下の表2に示す。
<Example 32>
A mixed powder of a high purity ZnO powder having an average particle size of 0.8 μm and a purity of 99.8% and a high purity MgO powder having an average particle size of 0.9 μm and a purity of 99.7% as the second oxide powder The TiO 2 powder used and the amount of the mixed powder were adjusted so that TiO 2 contained in the deposited material after formation was 85 mol%, and ZnO and MgO were 10 mol% and 5 mol%, respectively. Except for this, a vapor deposition material was obtained in the same manner as in Example 1. Table 2 below shows the average particle diameters of TiO 2 particles, ZnO particles, and MgO particles contained in the obtained vapor deposition material, the contents of TiO 2 , ZnO, and MgO contained in the vapor deposition material, and the basicity of the pellets. .

<実施例33>
第2酸化物粉末として平均粒径が0.8μm、純度が99.8%の高純度ZnO粉末と平均粒径が0.6μm、純度が99.8%の高純度CaO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が85モル%、ZnOとCaOがそれぞれ10モル%、5モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、CaOの含有量、ペレットの塩基度を以下の表2に示す。
<Example 33>
A mixed powder of a high purity ZnO powder having an average particle size of 0.8 μm and a purity of 99.8% and a high purity CaO powder having an average particle size of 0.6 μm and a purity of 99.8% as the second oxide powder The TiO 2 powder used and the mixing amount of the mixed powder were adjusted so that TiO 2 contained in the deposited material after formation was 85 mol%, and ZnO and CaO were 10 mol% and 5 mol%, respectively. Except for this, a vapor deposition material was obtained in the same manner as in Example 1. Table 2 below shows the average particle diameters of TiO 2 particles, ZnO particles, and CaO particles contained in the obtained vapor deposition material, the contents of TiO 2 , ZnO, and CaO contained in the vapor deposition material, and the basicity of the pellets. .

<実施例34>
第2酸化物粉末として平均粒径が0.8μm、純度が99.8%の高純度ZnO粉末と平均粒径が0.9μm、純度が99.7%の高純度MgO粉末と平均粒径が0.6μm、純度が99.8%の高純度CaO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が85モル%、ZnOとMgOとCaOがそれぞれ5モル%、5モル%、5モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgO、CaOの含有量、ペレットの塩基度を以下の表2に示す。
<Example 34>
As the second oxide powder, a high-purity ZnO powder having an average particle size of 0.8 μm and a purity of 99.8%, a high-purity MgO powder having an average particle size of 0.9 μm and a purity of 99.7%, and an average particle size of The mixed powder of 0.6 μm and high purity CaO powder having a purity of 99.8% was used, and the mixed amount of the TiO 2 powder and the mixed powder was 85 mol of TiO 2 contained in the deposited material after formation. %, ZnO, MgO and CaO were obtained in the same manner as in Example 1 except that they were adjusted to 5 mol%, 5 mol% and 5 mol%, respectively. The average particle diameter of TiO 2 particles, ZnO particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the content of TiO 2 , ZnO, MgO, CaO contained in the vapor deposition material, and the basicity of the pellet are as follows: It shows in Table 2.

<実施例35>
第2酸化物粉末として平均粒径が0.9μm、純度が99.7%の高純度MgO粉末と平均粒径が0.6μm、純度が99.8%の高純度CaO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が85モル%、MgOとCaOがそれぞれ5モル%、10モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、MgO、CaOの含有量、ペレットの塩基度を以下の表2に示す。
<Example 35>
A mixed powder of a high purity MgO powder having an average particle size of 0.9 μm and a purity of 99.7% and a high purity CaO powder having an average particle size of 0.6 μm and a purity of 99.8% as the second oxide powder The TiO 2 powder used and the mixing amount of the mixed powder were adjusted so that TiO 2 contained in the deposited material after formation was 85 mol%, and MgO and CaO were 5 mol% and 10 mol%, respectively. Except for this, a vapor deposition material was obtained in the same manner as in Example 1. Table 2 below shows the average particle diameters of TiO 2 particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the contents of TiO 2 , MgO and CaO contained in the vapor deposition material, and the basicity of the pellets. .

<実施例36>
実施例25と同じ条件で蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgO、CaOの含有量、ペレットの塩基度を以下の表3に示す。
<Example 36>
A vapor deposition material was obtained under the same conditions as in Example 25. The average particle diameter of TiO 2 particles, ZnO particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the content of TiO 2 , ZnO, MgO, CaO contained in the vapor deposition material, and the basicity of the pellet are as follows: Table 3 shows.

<実施例37>
実施例30と同じ条件で蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgO、CaOの含有量、ペレットの塩基度を以下の表3に示す。
<Example 37>
A vapor deposition material was obtained under the same conditions as in Example 30. The average particle diameter of TiO 2 particles, ZnO particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the content of TiO 2 , ZnO, MgO, CaO contained in the vapor deposition material, and the basicity of the pellet are as follows: Table 3 shows.

<実施例38>
実施例34と同じ条件で蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgO、CaOの含有量、ペレットの塩基度を以下の表3に示す。
<Example 38>
A vapor deposition material was obtained under the same conditions as in Example 34. The average particle diameter of TiO 2 particles, ZnO particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the content of TiO 2 , ZnO, MgO, CaO contained in the vapor deposition material, and the basicity of the pellet are as follows: Table 3 shows.

<実施例39>
実施例25と同じ条件で蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgO、CaOの含有量、ペレットの塩基度を以下の表3に示す。
<Example 39>
A vapor deposition material was obtained under the same conditions as in Example 25. The average particle diameter of TiO 2 particles, ZnO particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the content of TiO 2 , ZnO, MgO, CaO contained in the vapor deposition material, and the basicity of the pellet are as follows: Table 3 shows.

<実施例40>
実施例30と同じ条件で蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgO、CaOの含有量、ペレットの塩基度を以下の表3に示す。
<Example 40>
A vapor deposition material was obtained under the same conditions as in Example 30. The average particle diameter of TiO 2 particles, ZnO particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the content of TiO 2 , ZnO, MgO, CaO contained in the vapor deposition material, and the basicity of the pellet are as follows: Table 3 shows.

<実施例41>
実施例34と同じ条件で蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgO、CaOの含有量、ペレットの塩基度を以下の表3に示す。
<Example 41>
A vapor deposition material was obtained under the same conditions as in Example 34. The average particle diameter of TiO 2 particles, ZnO particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the content of TiO 2 , ZnO, MgO, CaO contained in the vapor deposition material, and the basicity of the pellet are as follows: Table 3 shows.

<比較例1>
第1酸化物粒子を混合せずに調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるZnO粒子の平均粒径、ペレットの塩基度を以下の表4に示す。
<Comparative Example 1>
A vapor deposition material was obtained in the same manner as in Example 1 except that the first oxide particles were adjusted without mixing. Table 4 below shows the average particle diameter of the ZnO particles and the basicity of the pellets contained in the obtained vapor deposition material.

<比較例2>
TiO2粉末並びにZnO粉末の混合量を、形成後の蒸着材に含まれるTiO2が3モル%、ZnOが97モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びZnO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnOの含有量、ペレットの塩基度を以下の表4に示す。
<Comparative example 2>
The vapor deposition material was the same as in Example 1 except that the mixing amount of the TiO 2 powder and the ZnO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 3 mol% and ZnO was 97 mol%. Got. Table 4 below shows the average particle diameters of TiO 2 particles and ZnO particles contained in the obtained vapor deposition material, the contents of TiO 2 and ZnO contained in the vapor deposition material, and the basicity of the pellets.

<比較例3>
TiO2粉末並びにZnO粉末の混合量を、形成後の蒸着材に含まれるTiO2が90モル%、ZnOが10モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びZnO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnOの含有量、ペレットの塩基度を以下の表4に示す。
<Comparative Example 3>
The vapor deposition material was the same as in Example 1 except that the mixing amount of the TiO 2 powder and the ZnO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 90 mol% and ZnO was 10 mol%. Got. Table 4 below shows the average particle diameters of TiO 2 particles and ZnO particles contained in the obtained vapor deposition material, the contents of TiO 2 and ZnO contained in the vapor deposition material, and the basicity of the pellets.

<比較例4>
第2酸化物粒子を混合せずに調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子の平均粒径、ペレットの塩基度を以下の表4に示す。
<Comparative example 4>
The vapor deposition material was obtained like Example 1 except having adjusted without mixing the 2nd oxide particle. Table 4 below shows the average particle diameter of the TiO 2 particles contained in the obtained vapor deposition material and the basicity of the pellets.

<比較例5>
第1酸化物粒子を混合せずに調整したこと以外は、実施例11と同様に、蒸着材を得た。得られた蒸着材に含まれるMgO粒子の平均粒径、ペレットの塩基度を以下の表4に示す。
<Comparative Example 5>
A vapor deposition material was obtained in the same manner as in Example 11 except that the first oxide particles were adjusted without mixing. Table 4 below shows the average particle diameter of MgO particles and the basicity of the pellets contained in the obtained vapor deposition material.

<比較例6>
TiO2粉末並びにMgO粉末の混合量を、形成後の蒸着材に含まれるTiO2が3モル%、MgOが97モル%となるように調整したこと以外は、実施例11と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びMgO粒子の平均粒径、また、蒸着材に含まれるTiO2、MgOの含有量、ペレットの塩基度を以下の表4に示す。
<Comparative Example 6>
The vapor deposition material was the same as in Example 11 except that the mixing amount of the TiO 2 powder and the MgO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 3 mol% and MgO was 97 mol%. Got. Table 4 below shows the average particle diameters of TiO 2 particles and MgO particles contained in the obtained vapor deposition material, the contents of TiO 2 and MgO contained in the vapor deposition material, and the basicity of the pellets.

<比較例7>
TiO2粉末並びにMgO粉末の混合量を、形成後の蒸着材に含まれるTiO2が90モル%、MgOが10モル%となるように調整したこと以外は、実施例11と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びMgO粒子の平均粒径、また、蒸着材に含まれるTiO2、MgOの含有量、ペレットの塩基度を以下の表4に示す。
<Comparative Example 7>
The vapor deposition material was the same as in Example 11 except that the mixing amount of the TiO 2 powder and the MgO powder was adjusted so that TiO 2 contained in the deposited vapor deposition material was 90 mol% and MgO was 10 mol%. Got. Table 4 below shows the average particle diameters of TiO 2 particles and MgO particles contained in the obtained vapor deposition material, the contents of TiO 2 and MgO contained in the vapor deposition material, and the basicity of the pellets.

<比較例8>
第2酸化物粒子を混合せずに調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子の平均粒径、ペレットの塩基度を以下の表4に示す。
<Comparative Example 8>
The vapor deposition material was obtained like Example 1 except having adjusted without mixing the 2nd oxide particle. Table 4 below shows the average particle diameter of the TiO 2 particles contained in the obtained vapor deposition material and the basicity of the pellets.

<比較例9>
第1酸化物粒子を混合せずに調整したこと以外は、実施例16と同様に、蒸着材を得た。得られた蒸着材に含まれるCaO粒子の平均粒径、ペレットの塩基度を以下の表4に示す。
<Comparative Example 9>
A vapor deposition material was obtained in the same manner as in Example 16 except that the first oxide particles were adjusted without mixing. Table 4 below shows the average particle diameter of CaO particles contained in the obtained vapor deposition material and the basicity of the pellets.

<比較例10>
TiO2粉末並びにCaO粉末の混合量を、形成後の蒸着材に含まれるTiO2が3モル%、CaOが97モル%となるように調整したこと以外は、実施例16と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、CaOの含有量、ペレットの塩基度を以下の表4に示す。
<Comparative Example 10>
The vapor deposition material was the same as in Example 16 except that the mixing amount of the TiO 2 powder and the CaO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 3 mol% and CaO was 97 mol%. Got. Table 4 below shows the average particle diameters of TiO 2 particles and CaO particles contained in the obtained vapor deposition material, the contents of TiO 2 and CaO contained in the vapor deposition material, and the basicity of the pellets.

<比較例11>
TiO2粉末並びにCaO粉末の混合量を、形成後の蒸着材に含まれるTiO2が90モル%、CaOが10モル%となるように調整したこと以外は、実施例16と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、CaOの含有量、ペレットの塩基度を以下の表4に示す。
<Comparative Example 11>
The vapor deposition material was the same as in Example 16 except that the mixing amount of the TiO 2 powder and the CaO powder was adjusted so that TiO 2 contained in the vapor deposition material after formation was 90 mol% and CaO was 10 mol%. Got. Table 4 below shows the average particle diameters of TiO 2 particles and CaO particles contained in the obtained vapor deposition material, the contents of TiO 2 and CaO contained in the vapor deposition material, and the basicity of the pellets.

<比較例12>
第2酸化物粒子を混合せずに調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子の平均粒径、ペレットの塩基度を以下の表4に示す。
<Comparative Example 12>
The vapor deposition material was obtained like Example 1 except having adjusted without mixing the 2nd oxide particle. Table 4 below shows the average particle diameter of the TiO 2 particles contained in the obtained vapor deposition material and the basicity of the pellets.

<比較例13>
比較例1と同じ条件で蒸着材を得た。得られた蒸着材に含まれるZnO粒子の平均粒径、また、蒸着材に含まれるZnOの含有量、ペレットの塩基度を以下の表4に示す。
<Comparative Example 13>
A vapor deposition material was obtained under the same conditions as in Comparative Example 1. Table 4 below shows the average particle diameter of ZnO particles contained in the obtained vapor deposition material, the content of ZnO contained in the vapor deposition material, and the basicity of the pellets.

<比較例14>
比較例5と同じ条件で蒸着材を得た。得られた蒸着材に含まれるMgO粒子の平均粒径、また、蒸着材に含まれるMgOの含有量、ペレットの塩基度を以下の表4に示す。
<Comparative example 14>
A vapor deposition material was obtained under the same conditions as in Comparative Example 5. Table 4 below shows the average particle diameter of MgO particles contained in the obtained vapor deposition material, the content of MgO contained in the vapor deposition material, and the basicity of the pellets.

<比較例15>
比較例9と同じ条件で蒸着材を得た。得られた蒸着材に含まれるCaO粒子の平均粒径、また、蒸着材に含まれるCaOの含有量、ペレットの塩基度を以下の表4に示す。
<Comparative Example 15>
A vapor deposition material was obtained under the same conditions as in Comparative Example 9. Table 4 below shows the average particle diameter of CaO particles contained in the obtained vapor deposition material, the content of CaO contained in the vapor deposition material, and the basicity of the pellets.

<比較例16>
比較例4と同じ条件で蒸着材を得た。得られた蒸着材に含まれるTiO2粒子の平均粒径、また、蒸着材に含まれるTiO2の含有量、ペレットの塩基度を以下の表4に示す。
<Comparative Example 16>
A vapor deposition material was obtained under the same conditions as in Comparative Example 4. Table 4 below shows the average particle diameter of the TiO 2 particles contained in the obtained vapor deposition material, the content of TiO 2 contained in the vapor deposition material, and the basicity of the pellets.

<比較例17>
比較例1と同じ条件で蒸着材を得た。得られた蒸着材に含まれるZnO粒子の平均粒径、また、蒸着材に含まれるZnOの含有量、ペレットの塩基度を以下の表4に示す。
<Comparative Example 17>
A vapor deposition material was obtained under the same conditions as in Comparative Example 1. Table 4 below shows the average particle diameter of ZnO particles contained in the obtained vapor deposition material, the content of ZnO contained in the vapor deposition material, and the basicity of the pellets.

<比較例18>
比較例5と同じ条件で蒸着材を得た。得られた蒸着材に含まれるMgO粒子の平均粒径、また、蒸着材に含まれるMgOの含有量、ペレットの塩基度を以下の表4に示す。
<Comparative Example 18>
A vapor deposition material was obtained under the same conditions as in Comparative Example 5. Table 4 below shows the average particle diameter of MgO particles contained in the obtained vapor deposition material, the content of MgO contained in the vapor deposition material, and the basicity of the pellets.

<比較例19>
比較例9と同じ条件で蒸着材を得た。得られた蒸着材に含まれるCaO粒子の平均粒径、また、蒸着材に含まれるCaOの含有量、ペレットの塩基度を以下の表4に示す。
<Comparative Example 19>
A vapor deposition material was obtained under the same conditions as in Comparative Example 9. Table 4 below shows the average particle diameter of CaO particles contained in the obtained vapor deposition material, the content of CaO contained in the vapor deposition material, and the basicity of the pellets.

<比較例20>
比較例4と同じ条件で蒸着材を得た。得られた蒸着材に含まれるTiO2粒子の平均粒径、また、蒸着材に含まれるTiO2の含有量、ペレットの塩基度を以下の表4に示す。
<Comparative Example 20>
A vapor deposition material was obtained under the same conditions as in Comparative Example 4. Table 4 below shows the average particle diameter of the TiO 2 particles contained in the obtained vapor deposition material, the content of TiO 2 contained in the vapor deposition material, and the basicity of the pellets.

Figure 2012132086
Figure 2012132086

Figure 2012132086
Figure 2012132086

Figure 2012132086
Figure 2012132086

Figure 2012132086
<比較試験及び評価1>
実施例1〜41及び比較例1〜20で得られた蒸着材を用いて、厚さ75μmのPETフィルム上に、以下の表5〜表7に示す方法により蒸着を行って薄膜を成膜し、薄膜シートを形成した。これらの薄膜シートについて、水蒸気透過度を測定し、ガスバリア性を評価した。また、上記ガスバリア性評価における条件よりも高温、高湿度条件下で長時間放置した後の水蒸気透過度及びその変化率から耐久性を評価した。更に、これらの薄膜シートについて、光透過率を測定し、透明性を評価した。これらの結果を以下の表5〜表7に示す。
Figure 2012132086
<Comparison test and evaluation 1>
Using the vapor deposition materials obtained in Examples 1-41 and Comparative Examples 1-20, a thin film was formed on a 75 μm thick PET film by vapor deposition according to the methods shown in Tables 5 to 7 below. A thin film sheet was formed. About these thin film sheets, water vapor permeability was measured and gas barrier property was evaluated. Moreover, durability was evaluated from the water vapor permeability and the rate of change after standing for a long time under high temperature and high humidity conditions than the conditions in the gas barrier property evaluation. Further, for these thin film sheets, the light transmittance was measured and the transparency was evaluated. These results are shown in Tables 5 to 7 below.

(1) ガスバリア性:薄膜シートを、温度20℃、相対湿度50%RHに設定したクリーンルーム内に1時間放置した後、MOCON社製の水蒸気透過率測定装置(型名:PERMATRAN−Wタイプ3/33)を用い、温度40℃、相対湿度90%RHの条件で水蒸気透過度Sを測定した。   (1) Gas barrier property: After the thin film sheet is left in a clean room set at a temperature of 20 ° C. and a relative humidity of 50% RH for 1 hour, a water vapor transmission rate measuring device manufactured by MOCON (model name: PERMATRAN-W type 3 / 33), the water vapor transmission rate S was measured under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH.

(2) 耐久性:温度20℃、相対湿度50%RHに設定したクリーンルーム内に1時間放置した後の薄膜シートについて、PETフィルムの水蒸気による劣化を防ぐため、薄膜シートの薄膜が外側になるように同じ薄膜シートをそれぞれ2枚ずつ重ね合わせ、四辺をヒートシーラーで接合した。これを温度85℃、相対湿度90%RHに設定した恒温恒湿装置に入れ、100時間放置した。その後、上記ガスバリア性評価と同様に、水蒸気透過率測定装置を用い、温度40℃、相対湿度90%RHの条件で水蒸気透過度Tを測定した。また、測定した水蒸気透過度Tの、上記水蒸気透過度Sに対する変化率(T/S×100)を算出した。   (2) Durability: In order to prevent deterioration of the PET film due to water vapor in the thin film sheet after being left in a clean room set at a temperature of 20 ° C. and a relative humidity of 50% RH for 1 hour, the thin film of the thin film sheet should be on the outside. Two pieces of the same thin film sheet were superposed on each other, and the four sides were joined with a heat sealer. This was placed in a constant temperature and humidity device set at a temperature of 85 ° C. and a relative humidity of 90% RH, and left for 100 hours. Thereafter, similarly to the gas barrier property evaluation, the water vapor transmission rate T was measured under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH using a water vapor transmission rate measuring device. Moreover, the rate of change (T / S × 100) of the measured water vapor transmission rate T with respect to the water vapor transmission rate S was calculated.

(3) 光透過率:薄膜シートを株式会社日立製作所社製の分光光度計(型名:U−4000)を用いて、波長380〜780nmにおける光透過率を測定した。   (3) Light transmittance: The light transmittance at a wavelength of 380 to 780 nm was measured for the thin film sheet using a spectrophotometer (model name: U-4000) manufactured by Hitachi, Ltd.

Figure 2012132086
Figure 2012132086

Figure 2012132086
Figure 2012132086

Figure 2012132086
表5〜表7から明らかなように、第1酸化物及び第2酸化物がTiO2とZnOの組合せとなる実施例1〜10及び比較例1〜4を比較すると、実施例1〜10では、室温で1時間放置した後の水蒸気透過度Sは、0.21g/m2・day以下であり、このうち、実施例4〜8では、0.1g/m2・day以下であった。また、温度85℃、相対湿度90%RHの条件下で更に100時間放置した後の水蒸気透過度Tの、水蒸気透過度Sに対する変化率も200%以下に抑えられ、高温、高湿度環境下で長時間放置した場合の耐久性にも優れていることが判る。
Figure 2012132086
As apparent from Tables 5 to 7, when Examples 1 to 10 and Comparative Examples 1 to 4 in which the first oxide and the second oxide are a combination of TiO 2 and ZnO are compared, in Examples 1 to 10 The water vapor permeability S after standing at room temperature for 1 hour was 0.21 g / m 2 · day or less, and in Examples 4 to 8, it was 0.1 g / m 2 · day or less. In addition, the rate of change of the water vapor transmission rate T with respect to the water vapor transmission rate S after being further left for 100 hours under the conditions of a temperature of 85 ° C. and a relative humidity of 90% RH is suppressed to 200% or less. It can be seen that it is excellent in durability when left for a long time.

一方、ZnOの単一組成からなる蒸着材を用いて形成した比較例1や第1酸化物であるTiO2の含有量が5%未満の蒸着材を用いて形成した比較例2の薄膜シートでは、水蒸気透過度Sは比較的良好であったものの、水蒸気透過度Tの、水蒸気透過度Sに対する変化率が非常に大きくなり、耐久性が悪い結果となった。また、第2酸化物であるZnOの含有量が15%未満の蒸着材を用いて形成した比較例3やTiO2の単一組成からなる蒸着材を用いて形成した比較例4の薄膜シートでは、水蒸気透過度の変化率は小さいものの、水蒸気透過度Sが非常に大きい結果となった。 On the other hand, in the thin film sheet of Comparative Example 1 formed using a vapor deposition material having a single composition of ZnO and Comparative Example 2 formed using a vapor deposition material having a content of TiO 2 as the first oxide of less than 5%. Although the water vapor transmission rate S was relatively good, the rate of change of the water vapor transmission rate T with respect to the water vapor transmission rate S was very large, resulting in poor durability. In the thin film sheet of Comparative Example 3 formed using a vapor deposition material having a single composition of TiO 2 or Comparative Example 3 formed using a vapor deposition material having a ZnO content of less than 15% as the second oxide. Although the rate of change in water vapor transmission rate was small, the water vapor transmission rate S was very high.

また、第1酸化物及び第2酸化物がTiO2とMgOの組合せとなる実施例11〜15及び比較例5〜8を比較すると、実施例11〜15では、室温で1時間放置した後の水蒸気透過度Sは、0.22g/m2・day以下であり、このうち、実施例13では、0.1g/m2・day以下であった。また、温度85℃、相対湿度90%RHの条件下で更に100時間放置した後の水蒸気透過度Tの、水蒸気透過度Sに対する変化率も200%以下に抑えられ、高温、高湿度環境下で長時間放置した場合の耐久性にも優れていることが判る。 In addition, when Examples 11 to 15 and Comparative Examples 5 to 8 in which the first oxide and the second oxide are a combination of TiO 2 and MgO are compared, in Examples 11 to 15, the sample is allowed to stand at room temperature for 1 hour. The water vapor transmission rate S was 0.22 g / m 2 · day or less, and among these, in Example 13, it was 0.1 g / m 2 · day or less. In addition, the rate of change of the water vapor transmission rate T with respect to the water vapor transmission rate S after being further left for 100 hours under the conditions of a temperature of 85 ° C. and a relative humidity of 90% RH is suppressed to 200% or less. It can be seen that it is excellent in durability when left for a long time.

一方、MgOの単一組成からなる蒸着材を用いて形成した比較例5や第1酸化物であるTiO2の含有量が5%未満の蒸着材を用いて形成した比較例6の薄膜シートでは、水蒸気透過度Sが実施例11〜15に比べて大きくなり、また、第2酸化物であるMgOの含有量が15%未満の蒸着材を用いて形成した比較例7やTiO2の単一組成からなる蒸着材を用いて形成した比較例8の薄膜シートでは水蒸気透過度Sが更に大きい結果となった。 On the other hand, in the thin film sheet of Comparative Example 5 formed using a vapor deposition material having a single composition of MgO and Comparative Example 6 formed using a vapor deposition material having a content of TiO 2 as the first oxide of less than 5%. In addition, the water vapor permeability S is larger than those of Examples 11 to 15, and the comparative example 7 formed by using a vapor deposition material having a content of MgO as the second oxide of less than 15% or a single TiO 2 layer . In the thin film sheet of Comparative Example 8 formed using the vapor deposition material having the composition, the water vapor permeability S was further increased.

また、第1酸化物及び第2酸化物がTiO2とCaOの組合せとなる実施例16〜20及び比較例9〜12を比較すると、実施例16〜20では、室温で1時間放置した後の水蒸気透過度Sは、0.21g/m2・day以下であり、このうち、実施例17,18では0.1g/m2・day以下であった。また、温度85℃、相対湿度90%RHの条件下で更に100時間放置した後の水蒸気透過度Tの、水蒸気透過度Sに対する変化率も200%以下に抑えられ、高温、高湿度環境下で長時間放置した場合の耐久性にも優れていることが判る。 In addition, when Examples 16 to 20 and Comparative Examples 9 to 12 in which the first oxide and the second oxide are a combination of TiO 2 and CaO are compared, in Examples 16 to 20, the sample was allowed to stand at room temperature for 1 hour. The water vapor permeability S was 0.21 g / m 2 · day or less, and of these, in Examples 17 and 18, it was 0.1 g / m 2 · day or less. In addition, the rate of change of the water vapor transmission rate T with respect to the water vapor transmission rate S after being further left for 100 hours under the conditions of a temperature of 85 ° C. and a relative humidity of 90% RH is suppressed to 200% or less. It can be seen that it is excellent in durability when left for a long time.

一方、CaOの単一組成からなる蒸着材を用いて形成した比較例9や第1酸化物であるTiO2の含有量が5%未満の蒸着材を用いて形成した比較例10、或いは第2酸化物であるCaOの含有量が15%未満の蒸着材を用いて形成した比較例11やTiO2の単一組成からなる蒸着材を用いて比較例12の薄膜シートでは、水蒸気透過度Sが非常に大きい結果となった。 On the other hand, Comparative Example 9 formed using a vapor deposition material having a single composition of CaO, Comparative Example 10 formed using a vapor deposition material having a content of TiO 2 as the first oxide of less than 5%, or Second Example In the thin film sheet of Comparative Example 11 using a vapor deposition material having a single composition of TiO 2 and Comparative Example 11 formed using a vapor deposition material having a CaO content of less than 15%, the water vapor permeability S is It was a very big result.

また、第2酸化物をZnO、MgO又はCaOの2種以上とした実施例21〜35では、室温で1時間放置した後の水蒸気透過度Sは、0.25g/m2・day以下であり、このうち、実施例24〜31では、0.1g/m2・day以下であった。また、温度85℃、相対湿度90%RHの条件下で更に100時間放置した後の水蒸気透過度Tの、水蒸気透過度Sに対する変化率も200%以下に抑えられており、高いガスバリア性に加え、更に高温、高湿度環境下で長時間放置した場合の耐久性にも優れていることが判る。 In Examples 21 to 35 in which the second oxide was two or more of ZnO, MgO, and CaO, the water vapor permeability S after being allowed to stand at room temperature for 1 hour was 0.25 g / m 2 · day or less. Among these, in Examples 24-31, it was 0.1 g / m < 2 > * day or less. In addition, the rate of change of the water vapor transmission rate T with respect to the water vapor transmission rate S after being further left for 100 hours under the conditions of a temperature of 85 ° C. and a relative humidity of 90% RH is suppressed to 200% or less, in addition to high gas barrier properties. Further, it can be seen that it is excellent in durability when left for a long time in a high temperature and high humidity environment.

また、光透過率に関しては、実施例1〜35は比較例1〜12と遜色ない結果が得られていた。   Regarding the light transmittance, Examples 1 to 35 were inferior to Comparative Examples 1 to 12.

更に、同じ条件で得た蒸着材を用い、かつ異なる方法でそれぞれ成膜を行った実施例25,36,39や、実施例30,37,40、実施例34,38,41、比較例1,13,17、比較例5,14,18、比較例9,15,19、比較例4,16,20についてそれぞれ比較すると、評価項目によってはRPD法で成膜した薄膜よりも若干劣る傾向がみられるものの、EB法で成膜した実施例36,37,38、抵抗加熱法で成膜した実施例39,40,41の薄膜も、十分なガスバリア性、耐久性並びに透明性を備えることが判る。   Furthermore, Examples 25, 36 and 39, Examples 30, 37 and 40, Examples 34, 38 and 41, and Comparative Example 1 were formed by using different vapor deposition materials obtained under the same conditions. , 13, 17, Comparative Examples 5, 14, 18, Comparative Examples 9, 15, 19, and Comparative Examples 4, 16, and 20 tend to be slightly inferior to thin films formed by the RPD method depending on the evaluation items. As can be seen, the thin films of Examples 36, 37, and 38 formed by the EB method and Examples 39, 40, and 41 formed by the resistance heating method also have sufficient gas barrier properties, durability, and transparency. I understand.

これらの結果から、本発明の蒸着材を用いて形成された薄膜は、非常に優れたガスバリア性並びに透明性を有することが確認された。   From these results, it was confirmed that the thin film formed using the vapor deposition material of the present invention has excellent gas barrier properties and transparency.

10 薄膜シート
11 第1基材フィルム
12 薄膜
13 接着層
14 第2基材フィルム
20 積層シート
DESCRIPTION OF SYMBOLS 10 Thin film sheet 11 1st base film 12 Thin film 13 Adhesive layer 14 2nd base film 20 Laminated sheet

<実施例33>
第2酸化物粉末として平均粒径が0.8μm、純度が99.8%の高純度ZnO粉末と平均粒径が0.6μm、純度が99.8%の高純度CaO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が85モル%、ZnOとCaOがそれぞれ10モル%、5モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、CaOの含有量、ペレットの塩基度を以下の表3に示す。
<Example 33>
A mixed powder of a high purity ZnO powder having an average particle size of 0.8 μm and a purity of 99.8% and a high purity CaO powder having an average particle size of 0.6 μm and a purity of 99.8% as the second oxide powder The TiO 2 powder used and the mixing amount of the mixed powder were adjusted so that TiO 2 contained in the deposited material after formation was 85 mol%, and ZnO and CaO were 10 mol% and 5 mol%, respectively. Except for this, a vapor deposition material was obtained in the same manner as in Example 1. Table 3 below shows the average particle diameter of TiO 2 particles, ZnO particles and CaO particles contained in the obtained vapor deposition material, the contents of TiO 2 , ZnO and CaO contained in the vapor deposition material, and the basicity of the pellets. .

<実施例34>
第2酸化物粉末として平均粒径が0.8μm、純度が99.8%の高純度ZnO粉末と平均粒径が0.9μm、純度が99.7%の高純度MgO粉末と平均粒径が0.6μm、純度が99.8%の高純度CaO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が85モル%、ZnOとMgOとCaOがそれぞれ5モル%、5モル%、5モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、ZnO粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、ZnO、MgO、CaOの含有量、ペレットの塩基度を以下の表3に示す。
<Example 34>
As the second oxide powder, a high-purity ZnO powder having an average particle size of 0.8 μm and a purity of 99.8%, a high-purity MgO powder having an average particle size of 0.9 μm and a purity of 99.7%, and an average particle size of The mixed powder of 0.6 μm and high purity CaO powder having a purity of 99.8% was used, and the mixed amount of the TiO 2 powder and the mixed powder was 85 mol of TiO 2 contained in the deposited material after formation. %, ZnO, MgO and CaO were obtained in the same manner as in Example 1 except that they were adjusted to 5 mol%, 5 mol% and 5 mol%, respectively. The average particle diameter of TiO 2 particles, ZnO particles, MgO particles and CaO particles contained in the obtained vapor deposition material, the content of TiO 2 , ZnO, MgO, CaO contained in the vapor deposition material, and the basicity of the pellet are as follows: Table 3 shows.

<実施例35>
第2酸化物粉末として平均粒径が0.9μm、純度が99.7%の高純度MgO粉末と平均粒径が0.6μm、純度が99.8%の高純度CaO粉末との混合粉末を用いたこと、及びTiO2粉末並びに上記混合粉末の混合量を、形成後の蒸着材に含まれるTiO2が85モル%、MgOとCaOがそれぞれ5モル%、10モル%となるように調整したこと以外は、実施例1と同様に、蒸着材を得た。得られた蒸着材に含まれるTiO2粒子、MgO粒子及びCaO粒子の平均粒径、また、蒸着材に含まれるTiO2、MgO、CaOの含有量、ペレットの塩基度を以下の表3に示す。
<Example 35>
A mixed powder of a high purity MgO powder having an average particle size of 0.9 μm and a purity of 99.7% and a high purity CaO powder having an average particle size of 0.6 μm and a purity of 99.8% as the second oxide powder The TiO 2 powder used and the mixing amount of the mixed powder were adjusted so that TiO 2 contained in the deposited material after formation was 85 mol%, and MgO and CaO were 5 mol% and 10 mol%, respectively. Except for this, a vapor deposition material was obtained in the same manner as in Example 1. Table 3 below shows the average particle diameters of TiO 2 particles, MgO particles, and CaO particles contained in the obtained vapor deposition material, the contents of TiO 2 , MgO, and CaO contained in the vapor deposition material, and the basicity of the pellets. .

Claims (8)

第1酸化物粉末と第2酸化物粉末とを混合して作られた蒸着材において、
前記第1酸化物粉末がTiO2粉末であって、前記第1酸化物粉末の第1酸化物純度が98%以上であり、
前記第2酸化物粉末がZnO、MgO及びCaOからなる群より選ばれた1種の粉末又は2種以上の混合粉末であって、前記第2酸化物粉末の第2酸化物純度が98%以上であり、
前記蒸着材が前記第1酸化物粒子と前記第2酸化物粒子を含有するペレットからなり、
前記蒸着材中の第1酸化物と第2酸化物とのモル比が5〜85:95〜15であり、かつ、前記ペレットの塩基度が0.1以上であることを特徴とする蒸着材。
In the vapor deposition material made by mixing the first oxide powder and the second oxide powder,
The first oxide powder is TiO 2 powder, and the purity of the first oxide powder is 98% or more;
The second oxide powder is one powder selected from the group consisting of ZnO, MgO and CaO, or a mixed powder of two or more kinds, and the second oxide purity of the second oxide powder is 98% or more. And
The vapor deposition material comprises pellets containing the first oxide particles and the second oxide particles,
The molar ratio of the first oxide and the second oxide in the vapor deposition material is 5 to 85:95 to 15, and the basicity of the pellet is 0.1 or more. .
前記第1酸化物粒子の平均粒径が0.1〜10μmであり、かつ前記第2酸化物粒子の平均粒径が0.1〜10μmである請求項1記載の蒸着材。   The vapor deposition material according to claim 1, wherein the average particle diameter of the first oxide particles is 0.1 to 10 μm, and the average particle diameter of the second oxide particles is 0.1 to 10 μm. 請求項1又は2記載の蒸着材をターゲット材として用いた真空成膜法により第1基材フィルム上に前記第1酸化物に含まれる金属元素A及び前記第2酸化物に含まれる金属元素Bを含む酸化物薄膜を形成することを特徴とする膜の製造方法。   The metal element A contained in the first oxide and the metal element B contained in the second oxide on the first base film by a vacuum film forming method using the vapor deposition material according to claim 1 or 2 as a target material. A method for producing a film comprising forming an oxide thin film containing 請求項1又は2記載の蒸着材をターゲット材として用いた真空成膜法により第1基材フィルム上に前記第1酸化物に含まれる金属元素A及び前記第2酸化物に含まれる金属元素Bを含む酸化物薄膜を形成してなり、
前記薄膜中の前記金属元素Aと前記金属元素Bとのモル比が5〜85:95〜15である薄膜シート。
The metal element A contained in the first oxide and the metal element B contained in the second oxide on the first base film by a vacuum film forming method using the vapor deposition material according to claim 1 or 2 as a target material. Forming an oxide thin film containing
The thin film sheet whose molar ratio of the said metallic element A and the said metallic element B in the said thin film is 5-85: 95-15.
前記真空成膜法が電子ビーム蒸着法、イオンプレーティング法、反応性プラズマ蒸着法、抵抗加熱法又は誘導加熱法のいずれかである請求項4記載の薄膜シート。   The thin film sheet according to claim 4, wherein the vacuum film formation method is any one of an electron beam evaporation method, an ion plating method, a reactive plasma evaporation method, a resistance heating method, and an induction heating method. 温度20℃、相対湿度50%RHの条件で1時間放置したときの水蒸気透過度Sが0.3g/m2・day以下である請求項4又は5記載の薄膜シート。 The thin film sheet according to claim 4 or 5, wherein the water vapor permeability S when it is allowed to stand for 1 hour at a temperature of 20 ° C and a relative humidity of 50% RH is 0.3 g / m 2 · day or less. 温度20℃、相対湿度50%RHの条件で1時間放置した後、温度85℃、相対湿度90%RHの条件で更に100時間放置したときの水蒸気透過度をTとするとき、前記水蒸気透過度Tの、前記水蒸気透過度Sに対する変化率(T/S×100)が200%以下である請求項6記載の薄膜シート。   The water vapor transmission rate is T, where T is the water vapor transmission rate when left standing for 1 hour under the conditions of a temperature of 20 ° C. and a relative humidity of 50% RH and then for 100 hours under the conditions of a temperature of 85 ° C. and a relative humidity of 90% RH. The thin film sheet according to claim 6, wherein a rate of change of T with respect to the water vapor permeability S (T / S × 100) is 200% or less. 請求項4ないし7いずれか1項に記載の薄膜シートの薄膜形成側に接着層を介して第2基材フィルムを積層してなる積層シート。   The lamination sheet formed by laminating | stacking a 2nd base film through the contact bonding layer on the thin film formation side of the thin film sheet of any one of Claim 4 thru | or 7.
JP2011020724A 2010-03-04 2011-02-02 Deposition material for forming thin film, thin-film sheet having the thin film, and laminated sheet Pending JP2012132086A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011020724A JP2012132086A (en) 2010-03-04 2011-02-02 Deposition material for forming thin film, thin-film sheet having the thin film, and laminated sheet
CN2011100459540A CN102191458A (en) 2010-03-04 2011-02-23 Vapor phase deposition material for formation of film, film sheet material and laminated sheet material having same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010047392 2010-03-04
JP2010047392 2010-03-04
JP2010266845 2010-11-30
JP2010266845 2010-11-30
JP2011020724A JP2012132086A (en) 2010-03-04 2011-02-02 Deposition material for forming thin film, thin-film sheet having the thin film, and laminated sheet

Publications (1)

Publication Number Publication Date
JP2012132086A true JP2012132086A (en) 2012-07-12

Family

ID=46648003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020724A Pending JP2012132086A (en) 2010-03-04 2011-02-02 Deposition material for forming thin film, thin-film sheet having the thin film, and laminated sheet

Country Status (1)

Country Link
JP (1) JP2012132086A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114207A (en) * 2012-11-19 2014-06-26 Tosoh Corp Oxide sintered body, sputtering target using the same and oxide film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09193942A (en) * 1996-01-18 1997-07-29 Dainippon Printing Co Ltd Sticking-plaster pouch
JP2003145664A (en) * 2001-11-15 2003-05-20 Mitsui Chemicals Inc Gas barrier film laminate
JP2006186309A (en) * 2004-11-30 2006-07-13 Asahi Glass Co Ltd Conductive laminate, electromagnetic wave shielding film for plasma display, and protective plate for plasma display
WO2007141994A1 (en) * 2006-06-08 2007-12-13 Sumitomo Metal Mining Co., Ltd. Oxide sinter, target, transparent conductive film obtained from the same, and transparent conductive base
JP2008195992A (en) * 2007-02-09 2008-08-28 Dainippon Printing Co Ltd Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and its manufacturing method, sheet with gas barrier property and its manufacturing method
JP2009024255A (en) * 2007-06-20 2009-02-05 Dainippon Printing Co Ltd Raw material powder for evaporation source material for ion plating, evaporation source material for ion plating, method for producing the evaporation source material, and gas barrier sheet and method for producing the gas barrier sheet
JP2009298649A (en) * 2008-06-13 2009-12-24 Sumitomo Metal Mining Co Ltd Oxide sintered compact, target, transparent conductive film obtained by using the same, and conductive laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09193942A (en) * 1996-01-18 1997-07-29 Dainippon Printing Co Ltd Sticking-plaster pouch
JP2003145664A (en) * 2001-11-15 2003-05-20 Mitsui Chemicals Inc Gas barrier film laminate
JP2006186309A (en) * 2004-11-30 2006-07-13 Asahi Glass Co Ltd Conductive laminate, electromagnetic wave shielding film for plasma display, and protective plate for plasma display
WO2007141994A1 (en) * 2006-06-08 2007-12-13 Sumitomo Metal Mining Co., Ltd. Oxide sinter, target, transparent conductive film obtained from the same, and transparent conductive base
JP2008195992A (en) * 2007-02-09 2008-08-28 Dainippon Printing Co Ltd Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and its manufacturing method, sheet with gas barrier property and its manufacturing method
JP2009024255A (en) * 2007-06-20 2009-02-05 Dainippon Printing Co Ltd Raw material powder for evaporation source material for ion plating, evaporation source material for ion plating, method for producing the evaporation source material, and gas barrier sheet and method for producing the gas barrier sheet
JP2009298649A (en) * 2008-06-13 2009-12-24 Sumitomo Metal Mining Co Ltd Oxide sintered compact, target, transparent conductive film obtained by using the same, and conductive laminate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012023053; 酒井拓也ら: 'TZO薄膜透明導電膜の低抵抗率化' 真空に関する連合講演会講演予稿集 Vol.50th, 20091104, P.106 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114207A (en) * 2012-11-19 2014-06-26 Tosoh Corp Oxide sintered body, sputtering target using the same and oxide film

Similar Documents

Publication Publication Date Title
JP5760857B2 (en) Sputtering target, manufacturing method thereof, thin film using the target, thin film sheet including the thin film, and laminated sheet
JP2013047361A (en) Sputtering target, method for production thereof, thin film using the target, and thin film sheet and laminated sheet provided with the thin film
JP2012158820A (en) Method for producing thin film and vapor deposition material for co-vapor deposition for forming thin film, thin film obtained by the method, thin film sheet having the thin film, and laminated sheet
JP2011202268A (en) Vapor deposition material for forming thin film, thin film sheet having the thin film and laminated sheet
JP5519959B2 (en) Laminated sheet
CN102312193B (en) Thin film formation is deposited with material and possesses diaphragm and the lamination sheets of this thin film
JP5664162B2 (en) Vapor deposition material for forming a thin film, and a thin film sheet and a laminated sheet provided with the thin film
JP5673158B2 (en) Thin film production method and vapor deposition material for co-evaporation for thin film formation
JP5741325B2 (en) Sputtering target, manufacturing method thereof, thin film using the target, thin film sheet including the thin film, and laminated sheet
JP2011214136A (en) Vapor deposition material for forming thin film, thin film sheet having the thin film, and laminated sheet
JP5573554B2 (en) Vapor deposition material for forming a thin film, and a thin film sheet and a laminated sheet provided with the thin film
JP5545104B2 (en) Vapor deposition material for forming a thin film, and a thin film sheet and a laminated sheet provided with the thin film
JP5747738B2 (en) Sputtering target, manufacturing method thereof, thin film using the target, thin film sheet including the thin film, and laminated sheet
JP5720446B2 (en) Vapor deposition material for thin film formation, thin film sheet comprising the thin film, and method for producing laminated sheet
JP2012132086A (en) Deposition material for forming thin film, thin-film sheet having the thin film, and laminated sheet
JP2011214133A (en) Vapor deposition material for forming thin film, thin film sheet having the thin film, and laminated sheet
JP2012132085A (en) Deposition material for forming thin film, thin-film sheet having the thin film, and laminated sheet
JP5720495B2 (en) Vapor deposition material for thin film formation, thin film sheet comprising the thin film, and method for producing laminated sheet
JP2012132087A (en) Deposition material for forming thin film, thin-film sheet having the thin film, and laminated sheet
JP2012122128A (en) Vapor deposition material for forming thin film, and thin film sheet and laminated sheet provided with the thin film
CN102162085A (en) Vapor deposition material for forming thin film, thin film sheet material and laminated sheet material provided with the thin film
JP2011214135A (en) Vapor deposition material for forming thin film, thin film sheet having the thin film, and laminated sheet
CN102191463B (en) Film formation vapour deposition material, the thin-film sheet possessing this film and laminate
CN102191461A (en) Vapor phase deposition material for forming film, film sheet with the film, and laminated sheet
CN102433532B (en) Thin film formation vapour deposition material, the thin-film sheet possessing this thin film and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708