JP2012127434A - Dog clutch tooth with asymmetrical right and left tooth flanks - Google Patents

Dog clutch tooth with asymmetrical right and left tooth flanks Download PDF

Info

Publication number
JP2012127434A
JP2012127434A JP2010280218A JP2010280218A JP2012127434A JP 2012127434 A JP2012127434 A JP 2012127434A JP 2010280218 A JP2010280218 A JP 2010280218A JP 2010280218 A JP2010280218 A JP 2010280218A JP 2012127434 A JP2012127434 A JP 2012127434A
Authority
JP
Japan
Prior art keywords
tooth
dog clutch
teeth
gear
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010280218A
Other languages
Japanese (ja)
Other versions
JP5634847B2 (en
Inventor
Mitsushige Ooka
三茂 大岡
Tomoyoshi Okada
智義 岡田
Shinya Yamazaki
伸也 山崎
Original Assignee
O-Oka Corp
大岡技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by O-Oka Corp, 大岡技研株式会社 filed Critical O-Oka Corp
Priority to JP2010280218A priority Critical patent/JP5634847B2/en
Publication of JP2012127434A publication Critical patent/JP2012127434A/en
Application granted granted Critical
Publication of JP5634847B2 publication Critical patent/JP5634847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a transmission gear reducing gaps between a sleeve tooth fitted in and right and left dog clutch teeth by changing the reverse taper angle of right and left tooth flanks of the dog clutch teeth and preventing the sleeve tooth from slipping-off from a clutch teeth train.SOLUTION: In the transmission gear, the right and left tooth flanks of the dog clutch teeth are formed asymmetrical, and the taper angle of one tooth flank is larger than that of the other.

Description

この発明は、主として自動車変速機用の歯車に関し、ドッグクラッチ歯の左右の歯面を非対称に形成した変速機用歯車に関する。詳しくは、ドッグクラッチ歯先端のチャンファ部から歯根元にかけて歯厚が順次減少するように左右の歯面に逆テーパを施し、かつ、左右の逆テーパ傾斜角度を変えることによって、嵌入する相手側のスリーブ歯がクラッチ歯列からギヤ抜けを起こすことのないようにした変速機用歯車に関するものである。 The present invention relates to a gear for an automobile transmission, and more particularly to a transmission gear in which left and right tooth surfaces of dog clutch teeth are formed asymmetrically. Specifically, by applying reverse taper to the left and right tooth surfaces so that the tooth thickness gradually decreases from the chamfer part at the dog clutch tooth tip to the root of the tooth, and by changing the left and right reverse taper inclination angles, The present invention relates to a transmission gear in which sleeve teeth do not cause gear disengagement from a clutch tooth row.
スリーブ歯がクラッチ歯列からギヤ抜けしないように、通常ドッグクラッチ歯の左右歯面に同じ傾斜角度の逆テーパを施す。この逆テーパ角度の設定について図8を参照しながら説明する。同図(a)、(b)の上段にスリーブ歯S、下段にクラッチ歯Cを示し、そして、クラッチ歯Cにおけるドッグクラッチ歯2、2の先端を結ぶ仮想線を二点鎖線Aで、歯元を結ぶ線を実線Bで示す。ここで、ドッグクラッチ歯2における左右歯面22、22の逆テーパの傾斜角度は、夫々傾斜角度X、Xであり、一方、スリーブ歯Sにおける左右歯面の逆テーパの傾斜角度も同様に夫々傾斜角度X、Xである。同図(a)では、下段のドッグクラッチ歯2及びスリーブ歯Sにおける左右歯面の逆テーパ角度Xは小さく、通常3〜4度に設定されている。同図(b)では、下段のドッグクラッチ歯2及びスリーブ歯Sにおける左右歯面の逆テーパ角度Yは大きく、6〜7度に設定されている。同図(a)、(b)ともに、スリーブ歯Sの先端はクラッチ歯Cの歯先端を結ぶ二点鎖線Aより上方へ引っ込んだ位置にある。次に、クラッチ歯Cにスリーブ歯Sが嵌入した状態を図9に示し、スリーブ歯Sはクラッチ歯Cの歯先端を結ぶ二点鎖線Aを越えて、ドッグクラッチ歯2、2の間に位置する。同図(a)では左右の逆テーパ角度Xが小さい場合の噛合い状態を示し、同図(b)では左右の逆テーパ角度Yが大きい場合の噛合い状態を示す。ここで、左右のドッグクラッチ歯2、2間の隙間を最小歯すきGと称し、スリーブ歯の出っ張った箇所の歯厚を最大歯厚Lとし、最小歯すきGの寸法は最大歯厚Lの寸法より大きく設定され、同図(a)、(b)においてこれらの寸法値は夫々一定であることを前提とする。同図(a)の左右の逆テーパ角度Xが小さい場合、スリーブ歯Sとクラッチ歯Cとの間隙G1も小さいが、上段のスリーブ歯Sと下段のクラッチ歯Cの加工精度、或いは車の走行状況によっては、スリーブ歯Sがクラッチ歯Cの歯列からギヤ抜けする。そこで、ギヤ抜けを防止するために、同図(b)に示すように左右歯面の逆テーパ角度Yを拡大した。この場合、スリーブ歯Sとクラッチ歯Cとの間隙G2も大きくなり、クラッチ歯Cにスリーブ歯Sが嵌入した位置で、隣同士のドッグクラッチ歯2、2間の左右に夫々間隙G2、間隙G2が形成される。ギヤ抜けの防止を目的としてドッグクラッチ歯の左右歯面とも逆テーパ角度を大きくしたが、それに伴って総間隙も間隙G2+間隙G2のように増大し、ギヤ抜けが生じる結果となった。 In order to prevent the sleeve teeth from coming out of the clutch tooth row, the left and right tooth surfaces of the dog clutch teeth are usually reverse-tapered with the same inclination angle. The setting of the reverse taper angle will be described with reference to FIG. In the same figure, sleeve teeth S are shown in the upper stage and clutch teeth C are shown in the lower stage, and the phantom line connecting the tips of the dog clutch teeth 2 and 2 in the clutch teeth C is indicated by a two-dot chain line A. A line connecting the elements is indicated by a solid line B. Here, the inclination angles of the reverse taper of the left and right tooth surfaces 22 and 22 in the dog clutch tooth 2 are the inclination angles X and X, respectively, while the inclination angle of the reverse taper of the left and right tooth surfaces of the sleeve tooth S is also the same. The inclination angles are X and X. In FIG. 5A, the reverse taper angle X of the left and right tooth surfaces of the lower dog clutch teeth 2 and sleeve teeth S is small and is usually set to 3 to 4 degrees. In FIG. 5B, the reverse taper angle Y of the left and right tooth surfaces of the lower dog clutch teeth 2 and sleeve teeth S is large and is set to 6 to 7 degrees. In both FIGS. 5A and 5B, the tip of the sleeve tooth S is in a position retracted upward from a two-dot chain line A connecting the tip of the clutch tooth C. Next, FIG. 9 shows a state in which the sleeve teeth S are inserted into the clutch teeth C, and the sleeve teeth S are positioned between the dog clutch teeth 2 and 2 beyond the two-dot chain line A connecting the tooth tips of the clutch teeth C. To do. FIG. 4A shows the meshing state when the left and right reverse taper angle X is small, and FIG. 4B shows the meshing state when the left and right reverse taper angle Y is large. Here, the gap between the left and right dog clutch teeth 2 and 2 is referred to as the minimum tooth gap G, the tooth thickness of the protruding portion of the sleeve teeth is the maximum tooth thickness L, and the dimension of the minimum tooth gap G is the maximum tooth thickness L. It is assumed that these dimensions are set larger than the dimensions, and that these dimension values are constant in FIGS. When the left and right reverse taper angles X in FIG. 5A are small, the gap G1 between the sleeve teeth S and the clutch teeth C is also small, but the machining accuracy of the upper sleeve teeth S and the lower clutch teeth C or the traveling of the vehicle Depending on the situation, the sleeve teeth S are disengaged from the teeth of the clutch teeth C. Therefore, in order to prevent gear disengagement, the reverse taper angle Y of the left and right tooth surfaces was expanded as shown in FIG. In this case, the gap G2 between the sleeve teeth S and the clutch teeth C is also increased, and at the position where the sleeve teeth S are inserted into the clutch teeth C, the gap G2 and the gap G2 are respectively provided between the dog clutch teeth 2 and 2 adjacent to each other. Is formed. The reverse taper angle was increased on both the left and right tooth surfaces of the dog clutch teeth for the purpose of preventing gear slippage, but the total gap also increased as gap G2 + gap G2, resulting in gear slippage.
他に、ギヤ抜けを防止する手段として、スリーブ歯Sとクラッチ歯Cとの噛合い面圧を高める減少歯設定の考え方がある。この考えは、クラッチ歯Cのリング状歯列において180度対向部位における夫々数枚の歯厚を正規歯とし、一方、その他の部位における減速側の歯厚を減少させる。しかしながら、この歯車では、リング状歯列の歯厚が均等ではないので各歯形間の肉厚バランスが崩れ、鍛造成形の際に鍛造肉流が偏って歯列における各歯の歯溝精度が悪くなるという問題が残る。 In addition, as a means for preventing gear disengagement, there is a concept of setting a reduction tooth that increases the meshing surface pressure between the sleeve tooth S and the clutch tooth C. This idea is that, in the ring-shaped dentition of the clutch tooth C, several tooth thicknesses at the 180-degree facing portions are used as normal teeth, while the reduction-side tooth thicknesses at the other portions are reduced. However, in this gear, since the tooth thickness of the ring-shaped tooth row is not uniform, the thickness balance between each tooth profile is lost, and the forging meat flow is biased during forging, and the tooth gap accuracy of each tooth in the tooth row is poor. The problem remains.
ところで、ギヤ抜けを防止するために、逆テーパを設けたドッグギヤの製造方法について以下のような特許の提案がなされている。即ち、金型の寿命を延ばすことができ、また部品の共通化が図れてコストダウンにつながる変速装置用ギヤの製造方法であって、その要旨は、外周にギヤ部を有し内周に嵌合孔が形成された1種類の外部材と、ドッグギヤを有するドッグ付きと、ドッグギヤの無いドッグなしの2種類の内部材を、別々に加工形成し、前記外部材の嵌合孔内に、前記2種類の内部材のうちの何れかを組み付け、溶接により一体化することである(特許文献1参照)。他に、次のような提案があり、ドッグギヤ歯の歯元応力は歯先にかかる荷重と歯丈によって決まる。従って、従来の歯形形状は、歯の外径先端に荷重がかかる。そのため、歯元応力を下げたい場合、歯丈を下げることにより応力を低減することが可能であるが、これはドッグギヤ歯の外径を下げることになり、シンクロスリーブの噛合ガタを増加させることから変速機の操作性或いはギヤ抜け等の副作用を生じる問題がある。そこで、変速機の同期噛合機構におけるドッグギヤ歯において、その歯の高さ範囲内で歯先の左右両側に切欠凹部を形成し、作用する歯丈の高さを前記切欠凹部の高さ分だけ低くするものである(特許文献2)。同様に、ドッグギヤ歯のギヤ抜けを防止するために以下のような提案がなされている。即ち、変速歯車の一側面にドッグ歯を円周方向に間隔をあけて備えた変速機のドッグクラッチ付ギヤにおいて、前記ドッグクラッチ付ギヤを鍛造、鋳造もしくは焼結により一体成形し、前記各ドッグ歯を、それらの背面側にスリットを設けて前記変速歯車から分離したことを特徴とする変速機のドッグクラッチ付ギヤである(特許文献3)。 By the way, in order to prevent the gear from coming off, the following patents have been proposed for a method of manufacturing a dog gear provided with a reverse taper. That is, it is a method for manufacturing a gear for a transmission that can extend the life of a mold and reduce the cost by using common parts. One type of outer member in which a joint hole is formed, and two types of inner members with a dog having a dog gear and without a dog without a dog gear are separately processed and formed in the fitting hole of the outer member, One of the two types of inner members is assembled and integrated by welding (see Patent Document 1). In addition, there are the following proposals, and the root stress of the dog gear tooth is determined by the load applied to the tooth tip and the tooth height. Therefore, in the conventional tooth profile, a load is applied to the tip of the outer diameter of the tooth. Therefore, if you want to reduce the root stress, it is possible to reduce the stress by lowering the tooth height, but this will reduce the outer diameter of the dog gear teeth and increase the backlash of the synchro sleeve. There are problems that cause side effects such as operability of the transmission or gear disengagement. Therefore, in the dog gear teeth in the synchronous meshing mechanism of the transmission, notch recesses are formed on both the left and right sides of the tooth tip within the height range of the teeth, and the height of the acting tooth height is lowered by the height of the notch recesses. (Patent Document 2). Similarly, the following proposals have been made in order to prevent the dog gear teeth from falling out. That is, in a gear with a dog clutch of a transmission having dog teeth circumferentially spaced on one side of the transmission gear, the dog clutch gear is integrally formed by forging, casting or sintering, A gear with a dog clutch of a transmission is characterized in that teeth are separated from the transmission gear by providing slits on the back side thereof (Patent Document 3).
特開2004―60707号公報Japanese Patent Laid-Open No. 2004-60707 特開平10−205550号公報Japanese Patent Laid-Open No. 10-205550 特開平08―312675号公報Japanese Patent Application Laid-Open No. 08-31675
以上の通りであって、特許文献に代表されるように、従来のドッグギヤには次のような問題点がある。 As described above, as represented by patent literature, the conventional dog gear has the following problems.
スリーブ歯がクラッチ歯列からギヤ抜けするのを防止するため、通常クラッチ歯の左右歯面に逆テーパが施されているが、その傾斜角度Xが3〜4度と小さい場合スリーブ歯Sとクラッチ歯Cと間に間隙が形成されるのでギヤ抜けが起こる。クラッチ歯の逆テーパの傾斜角度Yを6〜7度と大きくすると、さらに間隙が拡大されてギヤ抜けが起こり易い。或いは、傾斜角度が小さくても大きくても、アクセルを緩めた瞬間にクラッチ歯Sの減速側の噛合い面圧が減少するためにギヤ抜けが生じる。 In order to prevent the sleeve teeth from slipping out of the clutch teeth row, the left and right tooth surfaces of the clutch teeth are usually reversely tapered, but when the inclination angle X is as small as 3 to 4 degrees, the sleeve teeth S and the clutch Since a gap is formed between the teeth C, gear loss occurs. When the inclination angle Y of the reverse taper of the clutch teeth is increased to 6 to 7 degrees, the gap is further expanded, and the gear is easily lost. Or, even if the inclination angle is small or large, the gear disengagement occurs because the meshing surface pressure on the deceleration side of the clutch tooth S decreases at the moment when the accelerator is loosened.
そこで、本出願発明は以上のような課題に着目してなされたもので、ドッグクラッチ歯の左右の歯面を非対称に形成する。詳しくは、ドッグクラッチ歯の左右歯面の逆テーパ角度を変えることによって、嵌入したスリーブ歯と左右ドッグクラッチ歯との間の間隙を減少させ、クラッチ歯列からスリーブ歯がギヤ抜けするのを防ぐようにした変速機用歯車を提供することを目的とする。このようなドッグクラッチ歯の左右歯面の逆テーパ角度を変える他に、左右歯面の形状を非対称にすることによってギヤ抜けを防止する変速機用歯車を提供することを目的とする。 Accordingly, the present invention has been made paying attention to the above problems, and the left and right tooth surfaces of the dog clutch teeth are formed asymmetrically. Specifically, by changing the reverse taper angle of the left and right tooth surfaces of the dog clutch teeth, the gap between the inserted sleeve teeth and the left and right dog clutch teeth is reduced, and the sleeve teeth are prevented from slipping out of the clutch teeth row. An object of the present invention is to provide a transmission gear. In addition to changing the reverse taper angles of the left and right tooth surfaces of the dog clutch teeth, it is an object of the present invention to provide a transmission gear that prevents gear disengagement by making the left and right tooth surfaces asymmetrical.
近年では、鍛造技術の進歩によって様々な形状の歯車を鍛造によって成形することが可能となってきた。そこで、本出願発明者等は、ドッグクラッチ歯の左右の歯面を、特に鍛造によって非対称に形成することに着目し、歯車を試作したところギヤ抜けの防止に優れるという知見を得た。本出願発明の変速機用歯車はかかる知見を基に具現化したもので、ドッグクラッチ歯の左右歯面を非対称に形成し、一方の歯面のテーパ角度を他方のそれより大きくすることを特徴とする変速機用歯車である。 In recent years, it has become possible to form gears of various shapes by forging due to the advancement of forging technology. Accordingly, the inventors of the present application have noticed that the left and right tooth surfaces of the dog clutch teeth are formed asymmetrically, particularly by forging, and have obtained knowledge that when a gear is prototyped, it is excellent in preventing gear slippage. The gear for the transmission of the present invention is embodied on the basis of such knowledge, and the left and right tooth surfaces of the dog clutch teeth are formed asymmetrically, and the taper angle of one tooth surface is larger than that of the other. The transmission gear.
ドッグクラッチ歯の左右歯面の逆テーパ角度を変えることによって、嵌入したスリーブ歯と左右ドッグクラッチ歯との間の間隙を減少させ、クラッチ歯列からスリーブ歯がギヤ抜けするのを防ぐことができる。或いは、ドッグクラッチ歯の減速側歯面の逆テーパ角度を大きくすることによってドッグクラッチ歯の減速側歯面とスリーブ歯との噛合い接触面圧を増大させ、クラッチ歯列からスリーブ歯がギヤ抜けすることを防止する。この他、ドッグクラッチ歯における左右歯面の形状を非対称にすることによってもギヤ抜けを防止することができる。 By changing the reverse taper angle of the left and right tooth surfaces of the dog clutch teeth, the gap between the inserted sleeve teeth and the left and right dog clutch teeth can be reduced and the sleeve teeth can be prevented from coming out of the clutch teeth row. . Alternatively, by increasing the reverse taper angle of the deceleration side tooth surface of the dog clutch tooth, the mesh contact surface pressure between the deceleration side tooth surface of the dog clutch tooth and the sleeve tooth is increased, and the sleeve tooth is disengaged from the clutch tooth row. To prevent. In addition, gear disengagement can be prevented by making the left and right tooth surfaces of the dog clutch teeth asymmetrical.
本出願発明の実施例1を示すもので、変速機用歯車の製造過程を示す工程図である。FIG. 7 is a process diagram illustrating a manufacturing process of a transmission gear according to the first embodiment of the present invention. 同上、ドッグクラッチ歯の製造に係る好ましい実施形態を示す説明図である。It is explanatory drawing which shows preferable embodiment which concerns on manufacture of a dog clutch tooth same as the above. 同上、外周にヘリカル歯と内側にドッグクラッチ歯を有する変速機用歯車の一例を示す斜視図である。It is a perspective view which shows an example of the gearwheel for transmission which has a helical tooth | gear on the outer periphery and dog clutch tooth | gear on the inner side same as the above. 同上、逆テーパ付きドッグクラッチ歯の詳細図である。It is a detail drawing of the dog clutch tooth with a reverse taper same as the above. 同上、逆テーパ付きドッグクラッチ歯の作用説明図である。It is an operation explanatory drawing of a dog clutch tooth with a reverse taper same as the above. 実施例2の逆テーパ付きドッグクラッチ歯の作用説明図である。It is action | operation explanatory drawing of the dog clutch tooth with a reverse taper of Example 2. FIG. 実施例3のドッグクラッチ歯の断面図である。It is sectional drawing of the dog clutch tooth | gear of Example 3. 従来例による逆テーパ付きドッグクラッチ歯の作用説明図である。It is operation | movement explanatory drawing of the dog clutch tooth with a reverse taper by a prior art example. 同上、逆テーパ付きドッグクラッチ歯の作用説明図である。It is an operation explanatory drawing of a dog clutch tooth with a reverse taper same as the above.
本出願発明の実施の形態を、添付図面に例示した本出願発明の実施例に基づいて以下に具体的に説明する。 Embodiments of the present invention will be specifically described below based on examples of the present invention illustrated in the accompanying drawings.
本実施例について、図1〜図5を参照しながら説明する。図1は、本実施例における変速機用歯車の製造過程を示す工程図である。図2は、ドッグクラッチ歯の製造に係る好ましい実施形態を示す説明図である。図3は、外周にヘリカル歯と内側にドッグクラッチ歯を有する変速機用歯車の一例を示す斜視図である。図4は、逆テーパ付きドッグクラッチ歯の詳細図である。図5は、逆テーパ付きドッグクラッチ歯の作用説明図である。 The present embodiment will be described with reference to FIGS. FIG. 1 is a process diagram showing a manufacturing process of a transmission gear in the present embodiment. Drawing 2 is an explanatory view showing a desirable embodiment concerning manufacture of a dog clutch tooth. FIG. 3 is a perspective view showing an example of a transmission gear having helical teeth on the outer periphery and dog clutch teeth on the inner side. FIG. 4 is a detailed view of a dog clutch tooth with a reverse taper. FIG. 5 is an explanatory diagram of the operation of a dog clutch tooth with a reverse taper.
本出願人は、内側のドッグクラッチ歯の歯根元が軸方向に対して外周のヘリカル歯の歯端面より沈んだ複合の歯車ブロック(以下沈みヘリカルモノブロック)を既に開発している。本実施例の変速機用歯車の製造プロセスを、この沈みヘリカルモノブロックを例にして図1の工程図に基づき説明する。先ず、工程(1)に示すように、変速機用歯車に適した円柱素材を所定の軸長に例えばビレットシャーによって切断した素材W1を得る。この場合、素材の材質として変速機用歯車に適した鋼材、例えば、SC鋼、SCR鋼、SCM鋼、SNC鋼、SNCM鋼等を使用することができる。次に、工程(2)に示すように、素材W1を例えば1150℃に加熱して熱間鍛造を施すことによって下側に出っ張った凸部W21を有する円盤状の素材W2を得る。次に、工程(3)に示すように、素材W2上段の大径部D1の部位に熱間鍛造を施して軸方向に対して捩じれた荒ヘリカル歯10が荒形成され、同時に下段の小径部D2の部位にコーン50を形成するとともに外周の荒ヘリカル歯10と内周のコーン50との間に同心円上に荒沈み溝40が形成される。その他、コーン50の内周に断面円形に凹んだ内径部W31が形成され、外歯の荒ヘリカル歯10の形成によって上面外周に円板状にはみ出し鍔状のバリW32を有する素材W3が得られる。ここで、外歯はヘリカル歯の他にスパー歯でもよく、以降の説明でも同様である。次に、工程(4)に示すように、同じく熱間鍛造によってコーン50の外周に凹んだ沈み溝4を仕上げ形成し、同時にこの底面に歯根元が立設する荒ドッグクラッチ歯20がストレート状に形成された素材W4を得る。次に、工程(5)に示すように、素材W4の上面のバリW32を旋削し除去するとともに、内径部W31の中バリを打ち抜いて荒軸孔30が貫通した素材W5を得る。次に工程(6)において、素材W5に焼きならしの熱処理、ショットブラスト処理及び潤滑剤を塗布するボンデライト処理を施して素材W6を得る。次いで工程(7)において、外周の荒ヘリカル歯10は冷間しごき成形によって歯面の傾斜がストレートに仕上げ形成される。一方、内周の荒ドッグクラッチ歯20はコイニング或いはサイジング処理を施すことによって歯面がストレートに形成され、かつ、歯先にチャンファが形成された素材W7を得る。次の工程(8)において、外側の荒ヘリカル歯に冷間しごき成形によって歯面にクラウニングが施され、かつ、歯端面の稜線部にR面取りが施されてヘリカル歯1が完成する。最後に工程(9)において、工程(7)でストレートに成形された荒ドッグクラッチ歯に、チャンファから歯根元に向かって細くなるように冷間しごき成形が施されて逆テーパ状のドッグクラッチ歯2が完成する。この時、ドッグクラッチ歯は左右歯面の傾斜角度が異なるように逆テーパ状に形成される。これらの逆テーパは、左右同時に形成され、その際、元のストレートの荒ドッグクラッチ歯からの逆テーパ角度が大きくなるにつれ、その分加工変形量が増えるので、金型の寿命が短かくなり、或いは歯形の精度が悪くなるので金型材質の改良などに注意を要する。以上の工程をまとめると、工程(2)、(3)、(4)及び(5)は熱間鍛造であり、工程(7)、(8)及び(9)は冷間しごき及び冷間コイニング成形による冷間鍛造である。なお、前述した工程(4)の歯形成の詳細については以下に説明する。 The present applicant has already developed a composite gear block (hereinafter referred to as a sinking helical monoblock) in which the root of the inner dog clutch tooth is sunk from the end face of the outer helical tooth in the axial direction. The manufacturing process of the transmission gear of the present embodiment will be described based on the process diagram of FIG. 1 by taking the sinking helical monoblock as an example. First, as shown in step (1), a material W1 is obtained by cutting a cylindrical material suitable for a transmission gear into a predetermined axial length by, for example, a billet shear. In this case, a steel material suitable for a transmission gear, for example, SC steel, SCR steel, SCM steel, SNC steel, SNCM steel, or the like can be used as the material of the material. Next, as shown in step (2), the material W1 is heated to 1150 ° C., for example, and subjected to hot forging to obtain a disk-shaped material W2 having a protruding portion W21 protruding downward. Next, as shown in step (3), hot forging is applied to the portion of the large diameter portion D1 in the upper stage of the material W2 to roughly form the rough helical tooth 10 twisted in the axial direction, and at the same time, the lower diameter portion of the lower stage. A cone 50 is formed at the site D2, and a rough sink groove 40 is formed concentrically between the outer rough helical tooth 10 and the inner cone 50. In addition, an inner diameter portion W31 having a circular cross section is formed on the inner periphery of the cone 50, and a raw material W3 having a disc-shaped protruding burr-shaped burr W32 is obtained on the outer periphery of the upper surface by the formation of the outer helical helical teeth 10. . Here, the external teeth may be spur teeth in addition to helical teeth, and the same applies to the following description. Next, as shown in step (4), the rough dog clutch teeth 20 having the roots erected on the bottom surface are formed straight by forming the recessed grooves 4 that are recessed in the outer periphery of the cone 50 by hot forging. The material W4 formed in the above is obtained. Next, as shown in step (5), the burr W32 on the upper surface of the material W4 is turned and removed, and the medium burr is punched out to obtain the material W5 through which the rough shaft hole 30 passes. Next, in step (6), the material W5 is subjected to normalizing heat treatment, shot blasting treatment, and bonderite treatment for applying a lubricant to obtain the material W6. Next, in the step (7), the rough helical teeth 10 on the outer periphery are formed by cold ironing so that the inclination of the tooth surface is straight. On the other hand, the rough dog-clutch teeth 20 on the inner periphery are subjected to coining or sizing treatment to obtain a material W7 having a tooth surface formed straight and a chamfer formed on the tooth tip. In the next step (8), the outer rough helical teeth are subjected to crowning by cold ironing, and the chamfering is applied to the ridge line portion of the tooth end surface to complete the helical tooth 1. Finally, in step (9), the rough dog clutch teeth formed straight in step (7) are cold ironed so as to become narrower from the chamfer toward the root of the teeth, so that the dog clutch teeth have a reverse taper shape. 2 is completed. At this time, the dog clutch teeth are formed in a reverse taper shape so that the inclination angles of the left and right tooth surfaces are different. These reverse tapers are formed on the left and right at the same time, and as the reverse taper angle from the original straight rough dog clutch teeth increases, the amount of deformation increases accordingly, so the life of the mold is shortened, Or, since the accuracy of the tooth profile is deteriorated, attention should be paid to improving the mold material. In summary, the steps (2), (3), (4) and (5) are hot forging, and the steps (7), (8) and (9) are cold ironing and cold coining. Cold forging by forming. The details of the tooth formation in step (4) described above will be described below.
図2では、素材W3から素材W4へ熱間鍛造により荒ドッグクラッチ歯20を成形する工程(4)を示す。右半分の図(a)、(b)、(c)に示すように、ダイQ2に荒ドッグクラッチ歯20を形成する歯型T2を備え、上パンチP1を下降させて素材W3が圧潰され、小径部D2に荒ドッグクラッチ歯20が成形され、左図(c)の素材W4を得る。荒ヘリカル歯10がストレ−トの場合はダイQ1の外へ抜き出すことができるが、捩じれたヘリカル10の歯の部分はダイQ1に対して相対的な回転を必要とするため真上へ抜き出すことができない。ここで、ダイQ1と内側のダイQ2の下方にエジェクタP5を出没可能に備え、この外周に上記のヘリカルの歯型T1とリードを同じくするヘリカルガイドT3を有する。本実施例では、ダイQ1の下方からエジェクタP5を回転させ、かつ、スクリュー運動をさせながら昇降するようにし、成形された荒ヘリカル歯10を強制的に回転させると効率良く取り出すことができる。この工程(4)において、荒コーン50の外周に対応する部分に、ドッグクラッチ歯形成用歯型T2を有したダイに対して相対的に押し込むといった熱間鍛造手段によって荒ドッグクラッチ歯20を形成することができるとともに、沈み溝4が同心円上に凹んで形成される。かつ、軸方向に平行な荒ドッグクラッチ歯20の歯根元24は沈み溝4の底面に形成され、荒ドッグクラッチ歯20の歯根元24は沈み溝4の底面に対して直立する。この荒ドッグクラッチ歯20を荒成形する過程で、沈み溝4の深さ及びこの溝の開き角度42の最適な組合せによって粗ヘリカル10における歯端面の欠肉を無くすことができる。この場合、沈み溝4の深さを前述した工程(3)における粗沈み溝40の深さより大きくし、かつ、沈み溝4の溝開き角度42を工程(3)における角度より小さくすることによって、熱間鍛造の際にファイバフローが荒ヘリカル歯10の歯端面まで流れ、歯端面の欠肉を無くすことができる。以上の通り、工程(3)における荒ヘリカル歯10の形成、及び工程(4)における荒ドッグクラッチ歯20を形成する過程で、金型において沈み溝の深さと溝の開き角度との最適なバランスを設定することによって、熱間鍛造の際のファイバフローの発生を改善し欠肉のない沈みヘリカルモノブロックの複合歯車を得ることができた。以上のようにして本工程(4)では、荒ドッグクラッチ歯20の左右歯面がストレートに成形される。あと、工程(9)において、荒ドッグクラッチ歯に冷間しごき成形が施されることよってチャンファから歯根元に向かって細くなる逆テーパ状のドッグクラッチ歯2が完成する。この時、ドッグクラッチ歯は左右歯面の傾斜角度が異なり、例えば、左側の傾斜角度は3〜4度であり、右側のそれは6〜7度或いはそれ以上に形成される。これらの歯面の逆テーパ角度に対応する左右の歯面の角度が異なる金型を使用し、冷間しごき成形を施すことによって、左右歯面の傾斜角度が異なるドッグクラッチ歯を形成する。 FIG. 2 shows a step (4) of forming the rough dog clutch teeth 20 from the material W3 to the material W4 by hot forging. As shown in the right half of the drawings (a), (b), and (c), the die Q2 is provided with a tooth mold T2 that forms the rough dog clutch teeth 20, the upper punch P1 is lowered, and the material W3 is crushed, The rough dog clutch teeth 20 are formed in the small diameter part D2, and the material W4 in the left figure (c) is obtained. If the rough helical tooth 10 is straight, it can be extracted out of the die Q1, but the tooth portion of the twisted helical 10 needs to be rotated relative to the die Q1 so that it is extracted directly above. I can't. Here, an ejector P5 is provided below the die Q1 and the inner die Q2 so as to be able to appear and retract, and a helical guide T3 having the same lead as the helical tooth mold T1 is provided on the outer periphery thereof. In this embodiment, the ejector P5 is rotated from below the die Q1 and moved up and down while moving the screw, so that the formed rough helical tooth 10 can be forcibly rotated to be taken out efficiently. In this step (4), the rough dog clutch teeth 20 are formed in the portion corresponding to the outer periphery of the rough cone 50 by hot forging means such as pushing relatively to the die having the dog clutch tooth forming tooth mold T2. In addition, the sink groove 4 is formed concentrically so as to be recessed. The root 24 of the rough dog clutch tooth 20 parallel to the axial direction is formed on the bottom surface of the sinking groove 4, and the root 24 of the rough dog clutch tooth 20 stands upright with respect to the bottom surface of the sinking groove 4. In the process of rough forming the rough dog clutch tooth 20, the lack of the tooth end face in the rough helical 10 can be eliminated by an optimal combination of the depth of the sinking groove 4 and the opening angle 42 of the groove. In this case, by making the depth of the sunk groove 4 larger than the depth of the rough sunk groove 40 in the step (3) described above and making the groove opening angle 42 of the sunk groove 4 smaller than the angle in the step (3), During the hot forging, the fiber flow flows to the tooth end face of the rough helical tooth 10 and the lack of the tooth end face can be eliminated. As described above, in the process of forming the rough helical tooth 10 in the step (3) and the rough dog clutch tooth 20 in the step (4), the optimum balance between the depth of the sinking groove and the opening angle of the groove in the mold. By setting this, it was possible to improve the occurrence of fiber flow during hot forging and to obtain a composite gear of a sinking helical monoblock with no underfill. As described above, in the present step (4), the left and right tooth surfaces of the rough dog clutch teeth 20 are formed straight. Thereafter, in step (9), the rough dog clutch teeth are subjected to cold ironing to complete the reverse taper-shaped dog clutch teeth 2 that narrow from the chamfer toward the root of the teeth. At this time, the dog clutch teeth have different inclination angles of the left and right tooth surfaces, for example, the left inclination angle is 3 to 4 degrees, and the right inclination angle is 6 to 7 degrees or more. Dog clutch teeth with different inclination angles of the left and right tooth surfaces are formed by performing cold ironing using molds having different left and right tooth surface angles corresponding to the reverse taper angles of these tooth surfaces.
工程(8)及び(9)において、最終仕上げ加工を施された変速機用歯車Wの詳細形状を図3に示す。図では変速機用歯車Wを斜視図として示し、外周のヘリカル歯1が軸方向に対して捩じれて形成され、この内周に軸方向に対して逆テーパの歯を有するドッグクラッチ歯2が形成される。これらの歯の間には窪んだ沈み溝4が同心円上に形成され、ドッグクラッチ歯2の歯根元24は沈み溝4の底面まで形成される。ドッグクラッチ歯2の内周側には円錐台状のコーン5が同軸上に突設され、この内周は上下に軸孔3が貫通する。ヘリカル歯1と同心円上に配設された内側のドッグクラッチ歯2は軸方向に対してヘリカル歯1の歯端面14より沈んで形成される。以上のように、外周のヘリカル歯1と沈み溝4と内側のドッグクラッチ歯2及びこの内周側のコーン5が夫々同軸上に熱間鍛造及び冷間鍛造によって一体成形されるとともに、コーン5はドッグクラッチ歯2のチャンファ23より上方に突設され、かつ、沈み溝4はヘリカル歯1とドッグクラッチ歯2との間にヘリカル歯1の歯端面より沈むように同心円上に設けられる。ドッグクラッチ歯2における歯車の各部位の名称を以下の通り定義する。ドッグクラッチ歯2は、歯筋方向に歯先面21、その左右に歯面22、22、先端が尖ったチャンファ23、沈み溝4の面上の歯根元24、フランジ8の外周面に位置する歯元底25及び歯底面26、歯厚27から構成される。 FIG. 3 shows the detailed shape of the transmission gear W that has been subjected to final finishing in steps (8) and (9). In the figure, the transmission gear W is shown as a perspective view, the outer helical tooth 1 is formed by being twisted in the axial direction, and the dog clutch tooth 2 having a taper reverse in the axial direction is formed on the inner circumference. Is done. A recessed sink groove 4 is formed concentrically between these teeth, and the root 24 of the dog clutch tooth 2 is formed up to the bottom surface of the sink groove 4. A frustoconical cone 5 protrudes coaxially on the inner peripheral side of the dog clutch tooth 2, and the shaft hole 3 penetrates the inner periphery vertically. The inner dog clutch tooth 2 disposed concentrically with the helical tooth 1 is formed by sinking from the tooth end face 14 of the helical tooth 1 in the axial direction. As described above, the outer peripheral helical tooth 1, the sinking groove 4, the inner dog clutch tooth 2 and the inner peripheral cone 5 are integrally formed on the same axis by hot forging and cold forging, and the cone 5 Projecting above the chamfer 23 of the dog clutch tooth 2, and the sink groove 4 is provided concentrically between the helical tooth 1 and the dog clutch tooth 2 so as to sink from the tooth end surface of the helical tooth 1. The name of each part of the gear in the dog clutch tooth 2 is defined as follows. The dog clutch tooth 2 is located on the tooth tip surface 21 in the tooth trace direction, the tooth surfaces 22 and 22 on the left and right sides thereof, the chamfer 23 having a sharp tip, the root 24 on the surface of the sinking groove 4, and the outer peripheral surface of the flange 8. It consists of a tooth root 25, a tooth bottom 26, and a tooth thickness 27.
本実施例によるドッグクラッチ歯は以上のようにして形成され、歯形状の詳細について図4を参照しながら説明する。ドッグクラッチ歯2は、正面歯筋方向に歯先面、その左右に歯面22、22、先端が尖ったチャンファ23、歯根元24から構成される。歯先面は三つの部位から構成され、中央の歯先面21‘及びその左右の歯先面21、21からなる。左右の歯面22、22は、チャンファ23から歯根元24にかけて歯厚27が順次減少するように逆テーパ状に傾斜して形成される。ここで、加速側である左歯面22の傾斜角度Xは、減速側である右歯面22の傾斜角度Yより小さい。例えば、加速側の傾斜角度Xを3〜4度とし、減速側の傾斜角度Yを6〜7度とする。場合によっては、左右の歯面が非対称に形成されるなら、加速側の左歯面の傾斜角度が0度であってもよい 。 The dog clutch teeth according to the present embodiment are formed as described above, and the details of the tooth shape will be described with reference to FIG. The dog clutch tooth 2 includes a tooth tip surface in the front tooth trace direction, tooth surfaces 22 and 22 on the left and right sides thereof, a chamfer 23 having a sharp tip, and a tooth root 24. The tooth tip surface is composed of three parts, and consists of a central tooth tip surface 21 ′ and left and right tooth tip surfaces 21, 21. The left and right tooth surfaces 22, 22 are formed to be inclined in a reverse taper shape so that the tooth thickness 27 decreases sequentially from the chamfer 23 to the root 24. Here, the inclination angle X of the left tooth surface 22 on the acceleration side is smaller than the inclination angle Y of the right tooth surface 22 on the deceleration side. For example, the inclination angle X on the acceleration side is 3 to 4 degrees, and the inclination angle Y on the deceleration side is 6 to 7 degrees. In some cases, if the left and right tooth surfaces are formed asymmetrically, the inclination angle of the left tooth surface on the acceleration side may be 0 degrees.
ドッグクラッチ歯の構成を以上の通りとし、以下に左右の逆テーパの傾斜角度を変えたドッグクラッチ歯の作用について述べる。下方のクラッチ歯Cに上方のスリーブ歯Sが噛合った状態を図5に示し、スリーブ歯Sはクラッチ歯Cの歯先端を結ぶ二点鎖線Aを越えて左右のドッグクラッチ歯2、2の間に嵌入した状態にある。ここで、相手側のスリーブ歯Sの左右の歯面も同様に、加速側の傾斜角度Xは3〜4度であり、減速側の傾斜角度Yは6〜7度である。そして、左右のドッグクラッチ歯2、2間の隙間を最小歯すきGと称し、スリーブ歯の出っ張った箇所の歯厚を最大歯厚Lとし、最小歯すきGの寸法は最大歯厚Lの寸法より大きく設定する。この場合、隣同士のドッグクラッチ歯2、2間とスリーブ歯Sとの左右間隙は夫々間隙G1、間隙G3であり、ただし間隙G1は間隙G3より小さく、左右の総間隙は間隙G1+間隙G3となる。ところで、従来の左右の逆テーパ角度Yが大きい場合は、左右歯溝の総間隙は間隙G2+間隙G2である。従って、本実施例の左右非対称のドッグクラッチ歯の総間隙は、従来の総間隙より減少化されギヤ抜けが生じ難くなる。即ち、クラッチ歯側又はスリーブ歯側の夫々左右両側歯面の逆テーパ角度を大きくするよりも、クラッチ歯側又はスリーブ歯側の夫々片側のみの逆テーパ角度を大きくすることによって総間隙を小さくすることができ、このことがギヤ抜け防止するのに効果があった。 The structure of the dog clutch tooth is as described above, and the operation of the dog clutch tooth with the left and right reverse taper inclination angles changed will be described below. FIG. 5 shows a state in which the upper sleeve teeth S are engaged with the lower clutch teeth C. The sleeve teeth S cross the two-dot chain line A connecting the tooth tips of the clutch teeth C and the left and right dog clutch teeth 2, 2. It is in a state inserted in between. Here, similarly, the left and right tooth surfaces of the mating sleeve tooth S have an acceleration-side inclination angle X of 3 to 4 degrees and a deceleration-side inclination angle Y of 6 to 7 degrees. The gap between the left and right dog clutch teeth 2 and 2 is referred to as the minimum tooth gap G. The tooth thickness at the protruding portion of the sleeve teeth is the maximum tooth thickness L, and the minimum tooth gap G is the dimension of the maximum tooth thickness L. Set larger. In this case, the left and right gaps between the adjacent dog clutch teeth 2 and 2 and the sleeve teeth S are the gap G1 and the gap G3, respectively. However, the gap G1 is smaller than the gap G3, and the total left and right gaps are the gap G1 + the gap G3. Become. By the way, when the conventional left and right reverse taper angle Y is large, the total gap between the left and right tooth spaces is the gap G2 + the gap G2. Therefore, the total clearance of the left and right asymmetric dog clutch teeth of this embodiment is reduced compared to the conventional total clearance, and gear disengagement is less likely to occur. That is, the total gap is reduced by increasing the reverse taper angle of only one side of the clutch tooth side or the sleeve tooth side, rather than increasing the reverse taper angle of the left and right tooth surfaces of the clutch tooth side or the sleeve tooth side, respectively. This was effective in preventing gear loss.
本実施例2の実施例1との差異は、スリーブ歯の左右歯面の逆テーパ角度を同じにしたところにある。ドッグクラッチ歯の形状は実施例1で説明した図4と同じである。 The difference of Example 2 from Example 1 is that the reverse taper angles of the left and right tooth surfaces of the sleeve teeth are made the same. The shape of the dog clutch teeth is the same as in FIG. 4 described in the first embodiment.
本実施例のドッグクラッチ歯における逆テーパ歯面の作用について、図6を参照しながら説明する。ドッグクラッチ歯における左歯面の傾斜角度Xは右歯面の傾斜角度Yより小さく、一方、スリーブ歯の左右の歯面の傾斜角度はドッグクラッチ歯における左歯面の傾斜角度と同じであり、夫々傾斜角度X、Xである。本図では左右のドッグクラッチ歯2、2の間にスリーブ歯Sが嵌入した後、アクセルを離して減速する瞬間を示し、スリーブ歯Sの左歯面が矢印Dの左方向にシフトして左ドッグクラッチ歯2の右歯面22に接触している。ドッグクラッチ歯2における、加速側である左歯面の傾斜角度Xは、例えば、傾斜角度Xは3〜4度であり、減速側である右歯面の傾斜角度Yは6〜7度である。本来、アクセルを緩めて駆動が抜ける減速時、或いはエンジンブレーキが掛かった時は、スリーブ歯Sとドッグクラッチ歯2との噛合い接触圧力は減少するのでギヤ抜けが起こり易くなる。そこで、ドッグクラッチ歯2とスリーブ歯Sとは位置Pにおいて線接触状態にして、位置Pにおける面圧力を高める。その結果、クラッチ歯とスリーブ歯との間の総間隙は減少していないが、スリーブ歯Sとドッグクラッチ歯2との間の接触抵抗が増大するので、スリーブ歯Sはドッグクラッチ歯2、2の間からギヤ抜けが生じ難くなる。一方、アクセルを踏んだ加速の状態では、スリーブ歯Sの右歯面が矢印Dの右方向にシフトして右ドッグクラッチ歯2の加速側の右左歯面22に接触する。この状態ではドッグクラッチ歯2の加速側は右歯面22の傾斜角度が例えば3度なので歯元寄りの歯厚が大きく、かつ、スリーブ歯Sの歯面の傾斜角度も同じく例えば3度であり、双方が面同士で接触するので面接触圧力が小さくなってドッグクラッチ歯2の強度に余裕を持たせることができる。 The effect | action of the reverse taper tooth surface in the dog clutch tooth | gear of a present Example is demonstrated referring FIG. The inclination angle X of the left tooth surface of the dog clutch tooth is smaller than the inclination angle Y of the right tooth surface, while the inclination angle of the left and right tooth surfaces of the sleeve tooth is the same as the inclination angle of the left tooth surface of the dog clutch tooth, The inclination angles are X and X, respectively. This figure shows a moment when the sleeve teeth S are inserted between the left and right dog clutch teeth 2 and 2 and then decelerate by releasing the accelerator. The left tooth surface of the sleeve teeth S is shifted to the left in the direction of the arrow D and left It contacts the right tooth surface 22 of the dog clutch tooth 2. In the dog clutch tooth 2, the inclination angle X of the left tooth surface on the acceleration side is, for example, 3 to 4 degrees, and the inclination angle Y of the right tooth surface on the deceleration side is 6 to 7 degrees. . Originally, at the time of deceleration where the accelerator is released by releasing the accelerator, or when the engine brake is applied, the meshing contact pressure between the sleeve tooth S and the dog clutch tooth 2 is reduced, so that gear disengagement easily occurs. Therefore, the dog clutch teeth 2 and the sleeve teeth S are brought into a line contact state at the position P to increase the surface pressure at the position P. As a result, the total gap between the clutch teeth and the sleeve teeth is not reduced, but the contact resistance between the sleeve teeth S and the dog clutch teeth 2 is increased, so that the sleeve teeth S are the dog clutch teeth 2, 2 It is difficult for gears to slip out of the space. On the other hand, in the acceleration state where the accelerator is stepped on, the right tooth surface of the sleeve tooth S shifts in the right direction of the arrow D and contacts the right left tooth surface 22 on the acceleration side of the right dog clutch tooth 2. In this state, on the acceleration side of the dog clutch tooth 2, the inclination angle of the right tooth surface 22 is, for example, 3 degrees, so that the tooth thickness near the tooth root is large, and the inclination angle of the tooth surface of the sleeve tooth S is also, for example, 3 degrees. Since both the surfaces are in contact with each other, the surface contact pressure is reduced, so that the dog clutch teeth 2 have sufficient strength.
本実施例3の実施例1又は2との差異は、減速側の歯面に凹みを設けたところにある。なお、スリーブ歯の左右歯面の逆テーパ角度は夫々傾斜角度X、Xである。 The difference of the third embodiment from the first or second embodiment is that a recess is provided in the tooth surface on the deceleration side. Note that the reverse taper angles of the left and right tooth surfaces of the sleeve teeth are the inclination angles X and X, respectively.
本実施例3のドッグクラッチ歯の断面形状を図7に示し、本図7を参照しながら説明する。ドッグクラッチ歯2は、左右に歯面22、22、先端が尖ったチャンファ23、歯根元24から構成される。左歯面22は傾斜角度が0に形成され、一方、右歯面22歯面も傾斜角度が0に形成され、この面に窪んだ凹み221を設け、この歯面が減速側である。本実施例においても実施例1と同様に、ドッグクラッチ歯2、2の間にスリーブ歯Sが嵌入した時、総間隙は減少するのでギヤ抜けが生じ難い。一方、接触圧の点からは、ドッグクラッチ歯の減速側では、凹み221の分だけ接触面が減るので面接触圧力が高くなる。即ち、スリーブ歯Sとドッグクラッチ歯2との間の接触抵抗が大きくなるので、スリーブ歯Sは左右のドッグクラッチ歯2、2の間からギヤ抜けし難くなる。 The cross-sectional shape of the dog clutch teeth of the third embodiment is shown in FIG. 7, and will be described with reference to FIG. The dog clutch tooth 2 includes tooth surfaces 22 and 22 on the left and right, a chamfer 23 with a sharp tip, and a root 24. The left tooth surface 22 is formed with an inclination angle of 0, while the right tooth surface 22 is also formed with an inclination angle of 0, and a concave 221 is provided on this surface, and this tooth surface is the deceleration side. Also in the present embodiment, as in the first embodiment, when the sleeve teeth S are inserted between the dog clutch teeth 2 and 2, the total gap is reduced, so that gear disengagement hardly occurs. On the other hand, from the point of contact pressure, on the deceleration side of the dog clutch teeth, the contact surface is reduced by the amount of the recess 221, so that the surface contact pressure increases. That is, since the contact resistance between the sleeve teeth S and the dog clutch teeth 2 is increased, it is difficult for the sleeve teeth S to come out of the gear between the left and right dog clutch teeth 2, 2.
A 二点鎖線
B 実線
G 最小歯すき
G1、G2、G3 間隙
C クラッチ歯
P 位置
S スリーブ歯
L 最大歯厚
X、Y 傾斜角度
W 変速機用歯車
W1、W2、W3、W4、W5、W6、W7、W8 素材
W21 凸部、W31 内径部、W32 端面バリ、W33 中バリ
1 ヘリカル歯、10 荒ヘリカル歯
2 ドッグクラッチ歯、20 荒ドッグクラッチ歯
21、21‘ 歯先面
22 歯面、221 凹み
23 チャンファ、24 歯根元、25 歯元底
26 歯底面
3、3‘ 軸孔、30 荒軸孔
4 沈み溝、40 荒沈み溝
5、5‘ コーン、50 荒コーン
62 欠け溝、63 窓溝
8 フランジ
A Two-dot chain line B Solid line G Minimum tooth gap G1, G2, G3 Gap C Clutch tooth P Position S Sleeve tooth L Maximum tooth thickness X, Y Inclination angle W Transmission gears W1, W2, W3, W4, W5, W6, W7, W8 Material W21 Convex part, W31 Inner diameter part, W32 End face burr, W33 Middle burr 1 Helical tooth, 10 Rough helical tooth 2 Dog clutch tooth, 20 Rough dog clutch tooth 21, 21 'Tooth face 22 Tooth face, 221 Dent 23 Chamfer, 24 Tooth root, 25 Tooth base 26 Tooth bottom surface 3, 3 'shaft hole, 30 Rough shaft hole 4 Sink groove, 40 Rough groove 5, 5' cone, 50 Rough cone 62 Chip groove, 63 Window groove 8 Flange

Claims (1)

  1. ドッグクラッチ歯の左右歯面を非対称に形成し、
    一方の歯面のテーパ角度を他方のそれより大きくすることを特徴とする変速機用歯車。
    The left and right tooth surfaces of the dog clutch teeth are formed asymmetrically,
    A gear for transmission, wherein a taper angle of one tooth surface is larger than that of the other.
JP2010280218A 2010-12-16 2010-12-16 Dog clutch teeth with asymmetric left and right tooth surfaces Active JP5634847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010280218A JP5634847B2 (en) 2010-12-16 2010-12-16 Dog clutch teeth with asymmetric left and right tooth surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010280218A JP5634847B2 (en) 2010-12-16 2010-12-16 Dog clutch teeth with asymmetric left and right tooth surfaces

Publications (2)

Publication Number Publication Date
JP2012127434A true JP2012127434A (en) 2012-07-05
JP5634847B2 JP5634847B2 (en) 2014-12-03

Family

ID=46644699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280218A Active JP5634847B2 (en) 2010-12-16 2010-12-16 Dog clutch teeth with asymmetric left and right tooth surfaces

Country Status (1)

Country Link
JP (1) JP5634847B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068937A1 (en) * 2015-10-23 2017-04-27 株式会社ジャパーナ Winding device
CN106812799A (en) * 2015-11-27 2017-06-09 重庆康田齿轮有限公司 Main transformer speed synchronizer axle sleeve
JP2018069435A (en) * 2016-11-04 2018-05-10 株式会社ジェイテクト Gear machining device and gear machining method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124972A (en) 1994-03-18 2000-09-26 Canon Kabushiki Kaisha Zoom lens having an image stabilizing function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE845903C (en) * 1950-05-09 1952-08-07 Fiat Spa Speed ​​change gear for motor vehicles
JPS616054U (en) * 1984-04-21 1986-01-14
JPS6421227A (en) * 1987-01-21 1989-01-24 Ford Motor Co Synchronous clutch for multi-speed transmission for automobile
JPH07190093A (en) * 1993-12-27 1995-07-28 Mazda Motor Corp Claw device for mechanical reduction gear
JP2001512810A (en) * 1997-08-08 2001-08-28 ダイムラークライスラー・アクチエンゲゼルシヤフト Meshing teeth of the selector sleeve of the gear clutch that connects the gear to its shaft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE845903C (en) * 1950-05-09 1952-08-07 Fiat Spa Speed ​​change gear for motor vehicles
JPS616054U (en) * 1984-04-21 1986-01-14
JPS6421227A (en) * 1987-01-21 1989-01-24 Ford Motor Co Synchronous clutch for multi-speed transmission for automobile
JPH07190093A (en) * 1993-12-27 1995-07-28 Mazda Motor Corp Claw device for mechanical reduction gear
JP2001512810A (en) * 1997-08-08 2001-08-28 ダイムラークライスラー・アクチエンゲゼルシヤフト Meshing teeth of the selector sleeve of the gear clutch that connects the gear to its shaft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068937A1 (en) * 2015-10-23 2017-04-27 株式会社ジャパーナ Winding device
CN106812799A (en) * 2015-11-27 2017-06-09 重庆康田齿轮有限公司 Main transformer speed synchronizer axle sleeve
JP2018069435A (en) * 2016-11-04 2018-05-10 株式会社ジェイテクト Gear machining device and gear machining method

Also Published As

Publication number Publication date
JP5634847B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP3155682U (en) Gear for transmission
JP5634847B2 (en) Dog clutch teeth with asymmetric left and right tooth surfaces
JP4907846B2 (en) Gear, gear manufacturing method and apparatus
US9364886B2 (en) Method using powder metallurgy to manufacture a dog ring gear
JP5093003B2 (en) Spline shaft and method for manufacturing spline shaft
JP2009156449A (en) Integrally molded gear with gear and spline shaft
JP5657502B2 (en) Transmission gear provided with a convex portion having a stopper function near the dog clutch teeth
JP5134360B2 (en) Integrated molded internal gear
JP5701180B2 (en) Synchronous clutch gear for double cone sync
US20120211320A1 (en) Synchronizer sleeve for a transmission and method of making
JP2005007480A (en) Method and device for manufacturing bevel gear
JP5995629B2 (en) Gear with flange
WO2019112026A1 (en) Transmission belt and continuously variable transmission, method for designing element, and method for producing element
KR200458880Y1 (en) Forging shape for the lower part spline of one way clutch inner race in 6-speed automatic transmission
JP2017141953A (en) Method of manufacturing double cone synchronizer ring
JP5134361B2 (en) 2-stage helical gear
JP2015078747A (en) Clutch gear with stopper
JP5753477B2 (en) Dog clutch teeth with a stable fit
JP5276626B2 (en) Multi-cone sync clutch gear
JPH08132169A (en) Forming method of metal formed part having tooth shaped projecting line with tooth lacked region
JP5701177B2 (en) Internal spline gear with special missing teeth
JP2011202676A (en) Gear including wave-like groove near dedendum
JPH0759341B2 (en) Manufacturing method of integrated synchro clutch gear for synchro mechanism of transmission
JP6783304B2 (en) Internal gears with internal teeth and crown teeth, how to manufacture the internal gears, and shift type transmissions with the internal gears.
AT508280B1 (en) calibration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141015

R150 Certificate of patent or registration of utility model

Ref document number: 5634847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250