JP2012126328A - Air conditioner for vehicle - Google Patents

Air conditioner for vehicle Download PDF

Info

Publication number
JP2012126328A
JP2012126328A JP2010281497A JP2010281497A JP2012126328A JP 2012126328 A JP2012126328 A JP 2012126328A JP 2010281497 A JP2010281497 A JP 2010281497A JP 2010281497 A JP2010281497 A JP 2010281497A JP 2012126328 A JP2012126328 A JP 2012126328A
Authority
JP
Japan
Prior art keywords
refrigerant
air
outdoor heat
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010281497A
Other languages
Japanese (ja)
Other versions
JP5617596B2 (en
Inventor
Hiroki Yoshioka
宏起 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2010281497A priority Critical patent/JP5617596B2/en
Publication of JP2012126328A publication Critical patent/JP2012126328A/en
Application granted granted Critical
Publication of JP5617596B2 publication Critical patent/JP5617596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • B60H1/039Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from air leaving the interior of the vehicle, i.e. heat recovery

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner for a vehicle capable of maintaining heating operation, without increasing power of a compressor, even when an outdoor heat exchanger is frozen.SOLUTION: This air conditioner includes: a steam compression type refrigerating cycle 2 having the compressor 3, an indoor condenser 4, the outdoor heat exchanger 6 and an indoor evaporator 8, and capable of performing outside air heat absorbing heating operation for making a refrigerant absorb heat from the air by the outdoor heat exchanger 6 and making the refrigerant radiate heat to the air by the indoor condenser 4, inside air heat absorbing heating operation for making the refrigerant absorb the heat from the air by the indoor evaporator 8 and making the refrigerant radiate the heat to the air by the indoor condenser 4, and exhaust heat absorbing heating operation for making the refrigerant absorb the heat from the air by a ventilation heat recovery evaporator 13 and making the refrigerant radiate the heat to the air by the indoor condenser 4; and a control means 30 for switching operation to the inside air heat absorbing heating operation or the exhaust heat absorbing heating operation from the outside air heat absorbing heating operation when the outdoor heat exchanger 6 is frozen in the outside air heat absorbing heating operation.

Description

本発明は、蒸気圧縮式冷凍サイクルを有し、車室外の空気から吸熱して車室内の暖房を行う車両用空気調和装置に関する。   The present invention relates to a vehicle air conditioner that has a vapor compression refrigeration cycle and that heats heat from air outside the vehicle compartment to heat the vehicle interior.

例えば電気自動車では、駆動源からの熱を車室内の暖房にほとんど利用することができない。そのため、蒸気圧縮式冷凍サイクルを利用し、サイクル内を循環する冷媒で車室外の空気から吸熱し、その熱を車室内の暖房に利用する車両用空気調和装置が種々提案されている(例えば特許文献1、特許文献2参照)。   For example, in an electric vehicle, the heat from the drive source can hardly be used for heating the passenger compartment. Therefore, various vehicle air conditioners that use a vapor compression refrigeration cycle, absorb heat from the air outside the passenger compartment with a refrigerant circulating in the cycle, and use the heat for heating the passenger compartment (for example, patents). Reference 1 and Patent Reference 2).

しかし、車室外の空気と熱交換する室外熱交換器が凍結(着氷)する場合があり、室外熱交換器が凍結すると熱交換性能が低下するため、所望の暖房運転を維持できなくなる。そのため、特許文献1の車両用空気調和装置では、蒸気圧縮式冷凍サイクルに室内コンデンサをバイパスするホットガスバイパス路を付設し、圧縮機で圧縮された高温高圧の冷媒を室内コンデンサに流すと共にホットガスバイパス路を介して室外熱交換器にも流す。室外熱交換器には高温の冷媒が流れるために、凍結が解消される。又、室内コンデンサによって車室内に供給する空気が加熱される。これにより、室外熱交換器が凍結しても暖房運転を維持できる。   However, the outdoor heat exchanger that exchanges heat with the air outside the passenger compartment may freeze (icing), and if the outdoor heat exchanger freezes, the heat exchange performance deteriorates, and the desired heating operation cannot be maintained. For this reason, in the vehicle air conditioner disclosed in Patent Document 1, a hot gas bypass passage for bypassing the indoor condenser is attached to the vapor compression refrigeration cycle, and high-temperature and high-pressure refrigerant compressed by the compressor flows into the indoor condenser and hot gas. It also flows to the outdoor heat exchanger via the bypass. Since the high-temperature refrigerant flows through the outdoor heat exchanger, freezing is eliminated. Further, the air supplied to the vehicle interior is heated by the indoor condenser. Thereby, even if an outdoor heat exchanger freezes, heating operation can be maintained.

尚、特許文献2には、暖房運転と除湿運転とを行うことができ、除湿運転では圧縮機の回転数を制御して空調風の吹き出し温度を調整できるようになっているが、室外熱交換器が凍結しても暖房運転を維持できる技術については開示されていない。   In Patent Document 2, heating operation and dehumidifying operation can be performed, and in the dehumidifying operation, the rotation speed of the compressor can be controlled to adjust the blowing temperature of the conditioned air. There is no disclosure of a technique that can maintain heating operation even if the vessel is frozen.

特開2000−203249号公報(特許第4341093号公報)JP 2000-203249 A (Patent No. 4341093) 特開平10−287125号公報(特許第3799732号公報)JP 10-287125 A (Patent No. 3799732)

しかしながら、前記従来の車両用空気調和装置では、室外熱交換器の凍結解消運転時に、室内コンデンサと室外熱交換器に冷媒を流す必要性から、通常の暖房運転時に較べて圧縮機の回転数を上昇させる必要があり、大きな動力が必要であるという問題がある。例えば電気自動車のような圧縮機の動力を車両バッテリに依存する車両においては、航続距離が短くなり、実用的ではない。   However, in the conventional vehicle air conditioner, since the refrigerant has to flow through the indoor condenser and the outdoor heat exchanger during the freeze-free operation of the outdoor heat exchanger, the rotation speed of the compressor is reduced compared to the normal heating operation. There is a problem that it needs to be raised and requires a large amount of power. For example, in a vehicle that relies on a vehicle battery for the power of a compressor such as an electric vehicle, the cruising distance becomes short, which is not practical.

そこで、本発明は、前記した課題を解決すべくなされたものであり、室外熱交換器が凍結(着氷)した場合でも、圧縮機の動力を増大させることなく暖房運転を維持できる車両用空気調和装置を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and even when the outdoor heat exchanger freezes (is icing), the vehicle air that can maintain the heating operation without increasing the power of the compressor. It aims at providing a harmony device.

本発明は、冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された冷媒と車室内に供給される空気との間で熱交換し、空気を加熱する室内コンデンサと、冷媒と車室外の空気との間で熱交換する室外熱交換器と、冷媒と車室内に供給される空気との間で熱交換し、空気を冷却する室内エバポレータと、冷媒と車室内から車室外に排気する空気との間で熱交換する換気熱回収用エバポレータとを有し、前記室外熱交換器で冷媒に空気より吸熱させ、前記室内コンデンサで冷媒に空気へ放熱させる外気吸熱暖房運転と、前記室内エバポレータで冷媒に空気より吸熱させ、前記室内コンデンサで冷媒に空気へ放熱させる内気吸熱暖房運転と、前記換気熱回収用エバポレータで冷媒に空気より吸熱させ、前記室内コンデンサで冷媒に空気へ放熱させる排気吸熱暖房運転とを行うことができる蒸気圧縮式冷凍サイクルと、前記室外熱交換器が凍結したことを判別する凍結判別手段と、前記凍結判別手段が凍結したと判別すると、外気吸熱暖房運転から内気吸熱暖房運転又は排気吸熱暖房運転に運転を切り替える制御手段とを備えたことを特徴とする。   The present invention relates to a compressor that compresses refrigerant, an indoor condenser that heats and exchanges heat between the refrigerant compressed by the compressor and air supplied to the passenger compartment, and the refrigerant and air outside the passenger compartment. An outdoor heat exchanger that exchanges heat with the vehicle, an indoor evaporator that exchanges heat between the refrigerant and the air supplied to the vehicle interior, and cools the air; and air that is exhausted from the vehicle interior to the vehicle interior An outdoor heat absorption heating operation in which the outdoor heat exchanger causes the refrigerant to absorb heat from the air, and the indoor condenser dissipates heat to the air, and the indoor evaporator serves as the refrigerant. Heat absorption from the air, and the indoor condenser heat-absorbing and heating operation in which the refrigerant is radiated to the air by the indoor condenser, and the exhaust gas that is caused to absorb heat from the refrigerant by the ventilation heat recovery evaporator and radiated to the refrigerant by the indoor condenser. When it is determined that the vapor compression refrigeration cycle capable of performing the heating and heating operation, the freezing determining means for determining that the outdoor heat exchanger has been frozen, and the freezing determining means have been frozen, the outside air endothermic heating operation can be And a control means for switching the operation to the endothermic heating operation or the exhaust endothermic heating operation.

前記制御手段は、前記凍結判別手段が凍結したと判別すると、内気導入状態の時には内気吸熱暖房運転に、外気導入状態の時には排気吸熱暖房運転にそれぞれ切り替えるようにしても良い。   If it is determined that the freezing determination means is frozen, the control means may be switched to an inside air endothermic heating operation when the inside air is introduced and to an exhaust endothermic heating operation when the outside air is introduced.

車室内の空気を前記換気熱回収用エバポレータを通して車室外に送風する送風機を有することが好ましい。   It is preferable to have a blower that blows air in the passenger compartment to the outside of the passenger compartment through the ventilation heat recovery evaporator.

前記蒸気圧縮式冷凍サイクルは、前記室外熱交換器及び前記換気熱回収用エバポレータに供給する冷媒の圧力を調整できる圧力調整手段と、前記室外熱交換器をバイパスし、前記換気熱回収用エバポレータが配置されたドラフタ用分岐路と、前記室外熱交換器及び前記換気熱回収用エバポレータをバイパスする第1バイパス路と、冷媒を前記室外熱交換器側に流すか前記換気熱回収用エバポレータに流すか前記第1バイパス路に流すかを切り替えできる第1流路切替手段と、前記室内エバポレータに供給する冷媒の圧力を減圧する減圧手段と、前記室内エバポレータをバイパスする第2バイパス路と、冷媒を前記室内エバポレータ側に流すか前記第2バイパス路に流すかを切り替えできる第2流路切替手段とを備え、外気吸熱暖房運転では、前記圧縮機で圧縮された冷媒を前記室内コンデンサ、前記圧力調整手段、前記室外熱交換器、前記第1バイパス路を通って前記圧縮機に戻る冷媒経路とし、冷媒を前記圧力調整手段によって減圧し、前記室外熱交換器で冷媒に空気より吸熱させ、
内気吸熱暖房運転では、前記圧縮機で圧縮された冷媒を前記室内コンデンサ、前記ドラフタ用分岐路、前記減圧手段、前記室内エバポレータを通って前記圧縮機に戻る冷媒経路とし、冷媒を前記減圧手段によって減圧し、前記室内エバポレータで冷媒に空気より吸熱させ、排気吸熱暖房運転では、前記圧縮機で圧縮された冷媒を前記室内コンデンサ、前記圧力調整手段、前記換気熱回収用エバポレータを通って前記圧縮機に戻る冷媒経路とし、冷媒を前記圧力調整手段によって減圧し、前記換気熱回収用エバポレータで冷媒に空気より吸熱させることが好ましい。
The vapor compression refrigeration cycle bypasses the outdoor heat exchanger and pressure adjusting means capable of adjusting the pressure of refrigerant supplied to the outdoor heat exchanger and the ventilation heat recovery evaporator, and the ventilation heat recovery evaporator includes The arranged branch for the drafter, the first bypass for bypassing the outdoor heat exchanger and the ventilation heat recovery evaporator, and whether the refrigerant flows to the outdoor heat exchanger side or the ventilation heat recovery evaporator First flow path switching means capable of switching whether to flow to the first bypass path; pressure reducing means for reducing the pressure of the refrigerant supplied to the indoor evaporator; second bypass path for bypassing the indoor evaporator; A second flow path switching means capable of switching whether to flow to the indoor evaporator side or the second bypass path, and in the outdoor air endothermic heating operation, The refrigerant compressed by the compressor is used as a refrigerant path that returns to the compressor through the indoor condenser, the pressure adjusting means, the outdoor heat exchanger, and the first bypass passage, and the pressure is reduced by the pressure adjusting means. , Let the refrigerant absorb heat from the air in the outdoor heat exchanger,
In the inside air endothermic heating operation, the refrigerant compressed by the compressor is used as a refrigerant path that returns to the compressor through the indoor condenser, the branch for the drafter, the pressure reducing means, the indoor evaporator, and the refrigerant is supplied by the pressure reducing means. In the exhaust heat absorption and heating operation, the refrigerant is decompressed and absorbed in the refrigerant by the indoor evaporator, and the refrigerant compressed by the compressor passes through the indoor condenser, the pressure adjusting means, and the ventilation heat recovery evaporator. It is preferable that the refrigerant path is returned to the refrigerant path, the refrigerant is decompressed by the pressure adjusting means, and the refrigerant is made to absorb heat from the air by the ventilation heat recovery evaporator.

前記蒸気圧縮式冷凍サイクルは、前記室内エバポレータで冷媒に空気より吸熱させ、前記室内コンデンサと前記室外熱交換器で冷媒に空気に放熱させる冷房リヒート運転を行うことができ、冷房リヒート運転では、前記圧縮機で圧縮された冷媒を前記室内コンデンサ、前記圧力調整手段、前記室外熱交換器、前記減圧手段、前記室内エバポレータを通って前記圧縮機に戻る冷媒経路とし、冷媒を前記圧力調整手段によって減圧せずに通し、前記室外熱交換器で冷媒に空気に放熱させることが好ましい。   The vapor compression refrigeration cycle can perform a cooling reheat operation in which the refrigerant is absorbed from the air by the indoor evaporator, and the refrigerant is radiated to the air by the indoor condenser and the outdoor heat exchanger. The refrigerant compressed by the compressor is used as a refrigerant path that returns to the compressor through the indoor condenser, the pressure adjusting means, the outdoor heat exchanger, the pressure reducing means, the indoor evaporator, and the refrigerant is depressurized by the pressure adjusting means. It is preferable to let the refrigerant dissipate heat to the air with the outdoor heat exchanger.

室外熱交換器を通過した空気温度を検出する室外熱交換器通過空気温度検出手段と、前記室外熱交換器の出口側の冷媒温度を検出する冷媒温度検出手段とを有し、前記凍結判別手段は、前記室外熱交換器通過空気温度検出手段の検出した前記室外熱交換器の通過空気温度と前記冷媒温度検出手段の検出した前記室外熱交換器の冷媒出口温度との差異より凍結の有無を判別するのが好ましい。   An outdoor heat exchanger passing air temperature detecting means for detecting the temperature of the air that has passed through the outdoor heat exchanger; and a refrigerant temperature detecting means for detecting a refrigerant temperature on the outlet side of the outdoor heat exchanger; The presence or absence of freezing is determined by the difference between the passing air temperature of the outdoor heat exchanger detected by the outdoor heat exchanger passing air temperature detecting means and the refrigerant outlet temperature of the outdoor heat exchanger detected by the refrigerant temperature detecting means. It is preferable to discriminate.

室内コンデンサの他に、車室内に供給される空気を加熱する加熱手段と、フット吹出口より吹き出す空気温度を検出するフット吹出温度検出手段と、デフロスタ吹出口及びベント吹出口より吹き出す空気温度を検出するデフロスタ・ベント吹出温度検出手段とを有し、前記制御手段は、前記フット吹出温度検出手段と前記デフロスタ・ベント吹出温度検出手段の検出温度に基づいて前記加熱手段の加熱量を制御しても良い。   In addition to the indoor condenser, heating means for heating the air supplied to the passenger compartment, foot blow temperature detecting means for detecting the air temperature blown from the foot blow outlet, and air temperature blown from the defroster blow outlet and vent blow outlet are detected. A defroster / vent outlet temperature detecting means for controlling the heating amount of the heating means based on the detected temperatures of the foot outlet temperature detecting means and the defroster / vent outlet temperature detecting means. good.

室内エバポレータ及び前記室内コンデンサに供給する空気の温度と湿度を検出する吸入空気温湿度検出手段と、外気温度を検出する外気温度検出手段とを有し、前記制御手段は、前記外気温度検出手段の検出温度を窓の温度とみなして、前記吸入空気温湿度検出手段と前記外気温度検出手段より車室内の露点温度を算出し、前記室内エバポレータの除湿量が窓曇りの発生しない程度に制限されるよう前記室内エバポレータを制御しても良い。   An intake air temperature / humidity detection means for detecting the temperature and humidity of the air supplied to the indoor evaporator and the indoor condenser; and an outside air temperature detection means for detecting the outside air temperature, and the control means includes: Considering the detected temperature as the temperature of the window, the dew point temperature in the vehicle interior is calculated from the intake air temperature / humidity detecting means and the outside air temperature detecting means, and the dehumidification amount of the indoor evaporator is limited to the extent that window fogging does not occur. The indoor evaporator may be controlled as described above.

前記室外熱交換器は、複数のチューブと複数のチューブの両端側に設けられた一対のタンク部とを有し、前記各タンク部内には仕切壁をぞれぞれ設け、前記室外熱交換器内の冷媒流れ経路の内で最も下流側に位置する仕切壁は、冷媒を液溜め部にガイドでき、且つ、冷媒を小さな流通抵抗で通すよう構成されたものを使用するのが好ましい。   The outdoor heat exchanger has a plurality of tubes and a pair of tank portions provided on both ends of the plurality of tubes, and each of the tank portions is provided with a partition wall, and the outdoor heat exchanger The partition wall located on the most downstream side in the refrigerant flow path is preferably a partition wall configured to guide the refrigerant to the liquid reservoir and pass the refrigerant with a small flow resistance.

本発明によれば、室外熱交換器をエバポレータとして機能させる外気吸熱暖房運転時に室外熱交換器が凍結すると、室内エバポレータで冷媒に吸熱させる内気吸熱暖房運転、又は、換気熱回収用エバポレータで冷媒に吸熱させる排気吸熱暖房運転に切り替えて暖房運転を続行し、外気吸熱暖房運転と内気吸熱暖房運転若しくは排気吸熱暖房運転とでは吸熱作用を行わせる熱交換器を変更するだけであるため、暖房運転の続行に圧縮機の動力を増大させる必要がない。以上より、室外熱交換器が凍結(着氷)した場合でも、圧縮機の動力を増大させることなく暖房運転を維持できる。   According to the present invention, when the outdoor heat exchanger freezes during the outdoor heat absorption heating operation in which the outdoor heat exchanger functions as an evaporator, the indoor heat absorption heating operation in which the refrigerant absorbs heat by the indoor evaporator, or the ventilation heat recovery evaporator converts the refrigerant into the refrigerant. Switch to the exhaust heat absorption heating operation to absorb heat and continue the heating operation, and only change the heat exchanger that performs the heat absorption action between the outside air heat absorption heating operation and the inside air heat absorption heating operation or the exhaust heat absorption heating operation. There is no need to increase compressor power to continue. As described above, even when the outdoor heat exchanger is frozen (icing), the heating operation can be maintained without increasing the power of the compressor.

本発明の一実施形態を示し、車両用空気調和装置の構成図である。1 shows an embodiment of the present invention and is a configuration diagram of a vehicle air conditioner. FIG. 本発明の一実施形態を示し、(a)は室外熱交換器の構成図、(b)は変形例の室外熱交換器の構成図である。1 shows an embodiment of the present invention, (a) is a configuration diagram of an outdoor heat exchanger, (b) is a configuration diagram of a modified outdoor heat exchanger. 本発明の一実施形態を示し、内気吸熱暖房運転時の冷媒経路を示す図である。It is a figure which shows one Embodiment of this invention and shows the refrigerant | coolant path | route at the time of inside air endothermic heating operation. 本発明の一実施形態を示し、排気吸熱暖房運転時の冷媒経路を示す図である。It is a figure which shows one Embodiment of this invention and shows the refrigerant | coolant path | route at the time of exhaust heat absorption heating operation. 本発明の一実施形態を示し、外気吸熱暖房運転時の冷媒経路を示す図である。It is a figure which shows one Embodiment of this invention and shows the refrigerant | coolant path | route at the time of an external air endothermic heating operation. 本発明の一実施形態を示し、冷房リヒート運転時の冷媒経路を示す図である。It is a figure which shows one Embodiment of this invention and shows the refrigerant | coolant path | route at the time of a cooling reheat driving | operation. 本発明の一実施形態を示し、車両用空気調和装置の動作フローチャートである。1 is an operation flowchart of a vehicle air conditioner according to an embodiment of the present invention.

以下、本発明の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、車両用空気調和装置1は、蒸気圧縮式冷凍サイクル2を備えている。蒸気圧縮式冷凍サイクル2は、冷媒を圧縮する圧縮機3と、室内コンデンサ4と、室内コンデンサ4の下流に配置された圧力調整手段5と、圧力調整手段5の下流に配置された室外熱交換器6と、室外熱交換器6の下流に配置され、冷媒を減圧する減圧手段である温度式膨張弁7と、温度式膨張弁7の下流に配置された室内エバポレータ8と、室内エバポレータ8の下流に配置されたアキュムレータ9とを備え、これらが各冷媒配管10によって接続されている。   As shown in FIG. 1, the vehicle air conditioner 1 includes a vapor compression refrigeration cycle 2. The vapor compression refrigeration cycle 2 includes a compressor 3 that compresses refrigerant, an indoor condenser 4, a pressure adjusting means 5 that is arranged downstream of the indoor condenser 4, and an outdoor heat exchange that is arranged downstream of the pressure adjusting means 5. A temperature expansion valve 7, which is disposed downstream of the outdoor heat exchanger 6 and is a decompression means for decompressing the refrigerant, an indoor evaporator 8 disposed downstream of the temperature expansion valve 7, and an indoor evaporator 8 An accumulator 9 disposed downstream is provided, and these are connected by respective refrigerant pipes 10.

圧縮機3は、例えばベーン型であり、制御手段30からの指令によってオン・オフや回転数が制御される。   The compressor 3 is, for example, a vane type, and is turned on / off and the rotational speed is controlled by a command from the control means 30.

室内コンデンサ4は、空調ケース21内で、且つ、室内エバポレータ8の下流に配置されている。室内コンデンサ4は、圧縮機3で圧縮された高温高圧の冷媒と空調ケース21内を通過する空気(車室内に供給される空気)との間で熱交換する。室内コンデンサ4は、冷媒の放熱作用によって空気を加熱する。   The indoor condenser 4 is disposed in the air conditioning case 21 and downstream of the indoor evaporator 8. The indoor condenser 4 exchanges heat between the high-temperature and high-pressure refrigerant compressed by the compressor 3 and air passing through the air conditioning case 21 (air supplied to the vehicle interior). The indoor condenser 4 heats the air by the heat dissipation action of the refrigerant.

圧力調整手段5は、オリフィス5aと、オリフィス5aに並列接続された開閉弁5b付きのバイパス路5cとから構成されている。開閉弁5bを開位置とすることにより、冷媒を減圧させずにそのまま流すことができる。開閉弁5bを閉位置とするにより、冷媒をオリフィス5aで減圧させて流すことができる。開閉弁5bは、制御手段30によって制御される。   The pressure adjusting means 5 includes an orifice 5a and a bypass passage 5c with an on-off valve 5b connected in parallel to the orifice 5a. By setting the on-off valve 5b to the open position, the refrigerant can flow as it is without reducing the pressure. By setting the on-off valve 5b to the closed position, the refrigerant can be depressurized and flowed through the orifice 5a. The on-off valve 5b is controlled by the control means 30.

室外熱交換器6は、例えばエンジンルーム内に配置されている。室外熱交換器6は、室内コンデンサ4を通過した冷媒と車室外の空気との間で熱交換する。室外熱交換器6の内部構成は、下記に詳説する。   The outdoor heat exchanger 6 is disposed, for example, in the engine room. The outdoor heat exchanger 6 exchanges heat between the refrigerant that has passed through the indoor condenser 4 and the air outside the passenger compartment. The internal configuration of the outdoor heat exchanger 6 will be described in detail below.

温度式膨張弁7は、室内エバポレータ8の出口側に取り付けられた感温筒部(図示せず)を有し、室内エバポレータ8の出口側の冷媒過熱度(スーパーヒート)が所定値に維持されるように弁開度を自動調整する。   The temperature type expansion valve 7 has a temperature sensing cylinder (not shown) attached to the outlet side of the indoor evaporator 8, and the refrigerant superheat degree (superheat) on the outlet side of the indoor evaporator 8 is maintained at a predetermined value. Adjust the valve opening automatically.

室内エバポレータ8は、空調ケース21内で、且つ、室内コンデンサ4の上流に配置されている。室内エバポレータ8は、温度式膨張弁7で減圧された冷媒と空調ケース21内を通過する空気(車室内に供給される空気)との間で熱交換する。室内エバポレータ8は、冷媒の吸熱作用によって空気を冷却し、除湿する。   The indoor evaporator 8 is disposed in the air conditioning case 21 and upstream of the indoor condenser 4. The indoor evaporator 8 exchanges heat between the refrigerant decompressed by the temperature type expansion valve 7 and the air passing through the air conditioning case 21 (air supplied to the vehicle interior). The indoor evaporator 8 cools and dehumidifies the air by the endothermic action of the refrigerant.

アキュムレータ9は、室内エバポレータ8から送られてきた冷媒の内で余剰冷媒を一時的に溜めると共にガス冷媒のみを圧縮機3に送る。   The accumulator 9 temporarily stores surplus refrigerant among the refrigerant sent from the indoor evaporator 8 and sends only the gas refrigerant to the compressor 3.

空調ケース21には、車室外の空気を導入する外気導入口22と、車室内の空気を導入する内気導入口23が設けられている。外気導入口22と内気導入口23は、インテークドア24によって開閉される。インテークドア24は、制御手段30によって位置が可変される。空調ケース21内には、送風機25が設けられている。送風機25は、インテークドア24の位置に応じて外気や内気を空調ケース21内に吸引する。空調ケース21内には、室内コンデンサ4の下流に配置された加熱手段である加熱器26とエアミックスドア27が設けられている。エアミックスドア27は、室内コンデンサ4及び加熱器26を通過する送風とこれらをバイパスする送風との配風割合を調整する。加熱器26は、蒸気圧縮式冷凍サイクル2とは別の熱源であり、例えばPTCヒータによって構成されている。加熱器26は、制御手段30によって加熱量が制御される。   The air conditioning case 21 is provided with an outside air introduction port 22 for introducing air outside the vehicle interior and an inside air introduction port 23 for introducing air inside the vehicle interior. The outside air introduction port 22 and the inside air introduction port 23 are opened and closed by an intake door 24. The position of the intake door 24 is changed by the control means 30. A blower 25 is provided in the air conditioning case 21. The blower 25 sucks outside air or inside air into the air conditioning case 21 according to the position of the intake door 24. In the air conditioning case 21, a heater 26 and an air mix door 27 which are heating means disposed downstream of the indoor condenser 4 are provided. The air mix door 27 adjusts the air distribution ratio between the air that passes through the indoor condenser 4 and the heater 26 and the air that bypasses the air. The heater 26 is a heat source different from the vapor compression refrigeration cycle 2, and is constituted by, for example, a PTC heater. The heating amount of the heater 26 is controlled by the control means 30.

空調ケース21の加熱器26の下流には、フット吹出口28a、デフロスタ吹出口28b、ベント吹出口28cが設けられている。これら吹出口より空調風が車室内に供給される。   A foot air outlet 28a, a defroster air outlet 28b, and a vent air outlet 28c are provided downstream of the heater 26 of the air conditioning case 21. Air-conditioned air is supplied into the passenger compartment from these outlets.

また、蒸気圧縮式冷凍サイクル2は、室内コンデンサ4で圧縮された冷媒を室外熱交換器6を通さずにバイパスさせるドラフタ用分岐路11と、ドラフタ用分岐路11に配置された換気熱回収用エバポレータ13と、室外熱交換器6及び換気熱回収用エバポレータ13を共にバイパスする第1バイパス路14と、冷媒を室外熱交換器6側に流すか換気熱回収用エバポレータ13に流すか第1バイパス路14に流すかを切り替えできる第1流路切替手段12と、二箇所の逆止め弁19a,19bとを有する。第1流路切替手段12は、ドラフタ用分岐路11の上流端と冷媒配管10との接続箇所に設けられた第1三方弁12aと、第1バイパス路14の上流端と冷媒配管10との接続箇所に設けられた第2三方弁12bとから構成されている。第1三方弁12aは圧力調整手段5の下流位置に、第2三方弁12bは圧力調整手段5の上流位置にそれぞれ配置されている。   Further, the vapor compression refrigeration cycle 2 includes a draft branch 11 that bypasses the refrigerant compressed by the indoor condenser 4 without passing through the outdoor heat exchanger 6, and a ventilation heat recovery system disposed in the draft branch 11. The first bypass 14 that bypasses the evaporator 13, the outdoor heat exchanger 6 and the ventilation heat recovery evaporator 13, and the refrigerant flows to the outdoor heat exchanger 6 side or the ventilation heat recovery evaporator 13. It has the 1st flow-path switching means 12 which can switch whether it flows into the path | route 14, and two check valves 19a and 19b. The first flow path switching means 12 includes a first three-way valve 12 a provided at a connection point between the upstream end of the draft branch path 11 and the refrigerant pipe 10, and an upstream end of the first bypass path 14 and the refrigerant pipe 10. It comprises a second three-way valve 12b provided at the connection location. The first three-way valve 12 a is disposed at a downstream position of the pressure adjusting means 5, and the second three-way valve 12 b is disposed at an upstream position of the pressure adjusting means 5.

逆止め弁19aは、冷媒が内気吸熱暖房運転や外気吸熱暖房運転や冷房リヒート運転の冷媒経路で循環される時に、冷媒が換気熱回収用エバポレータ13側に逆流するのを防止する。   The check valve 19a prevents the refrigerant from flowing back to the ventilation heat recovery evaporator 13 side when the refrigerant is circulated through the refrigerant path of the inside air endothermic heating operation, the outside air endothermic heating operation, or the cooling reheat operation.

逆止め弁19bは、冷媒が内気吸熱暖房運転や排気吸熱暖房運転の冷房経路で循環される時に、冷媒が室外熱交換器6側に逆流するのを防止する。   The check valve 19b prevents the refrigerant from flowing back to the outdoor heat exchanger 6 side when the refrigerant is circulated through the cooling path of the inside air endothermic heating operation or the exhaust endothermic heating operation.

換気熱回収用エバポレータ13は、車室内と車室外を連通する排気通路(ドラフタ通路)29aに配置されている。排気通路29aには、送風機29bが配置されている。送風機29bの駆動により、車室内の空気が排気通路29aに強制的に吸引される。吸引された車室内の空気は、換気熱回収用エバポレータ13を通って車室外に排気される。送風機29bは、制御手段30によって制御される。   The evaporator 13 for recovering ventilation heat is disposed in an exhaust passage (draft passage) 29a that communicates between the vehicle interior and the exterior of the vehicle interior. A blower 29b is disposed in the exhaust passage 29a. By driving the blower 29b, the air in the passenger compartment is forcibly sucked into the exhaust passage 29a. The sucked air in the passenger compartment passes through the ventilation heat recovery evaporator 13 and is exhausted outside the passenger compartment. The blower 29b is controlled by the control means 30.

更に、蒸気圧縮式冷凍サイクル2は、冷媒を室内エバポレータ8を通さずにバイパスさせる第2バイパス路15と、第2バイパス路15の上流側端と冷媒配管10との接続箇所に設けられた第2流路切替手段である第2流路切替弁16とを有する。第2流路切替弁16は、冷媒を室内エバポレータ8に通すか第2バイパス路15に通すかを切り替える。   Furthermore, the vapor compression refrigeration cycle 2 includes a second bypass passage 15 that bypasses the refrigerant without passing through the indoor evaporator 8, and a first portion provided at a connection point between the upstream end of the second bypass passage 15 and the refrigerant pipe 10. And a second flow path switching valve 16 which is a two flow path switching means. The second flow path switching valve 16 switches whether the refrigerant is passed through the indoor evaporator 8 or the second bypass path 15.

第1三方弁12a、第2三方弁12b及び第2流路切替弁16は、制御手段30によってそれぞれ切り替えられる。具体的には、外気吸熱暖房運転では、図5に示すように、圧縮機3で圧縮された冷媒を室内コンデンサ4、圧力調整手段5、室外熱交換器6、第2バイパス路15を通って圧縮機3に戻る冷媒経路に切り替えられる。圧力調整手段5は冷媒を減圧し、室外熱交換器6はエバポレータとして機能する。内気吸熱暖房運転では、図3に示すように、圧縮機3で圧縮された冷媒を室内コンデンサ4、第1バイパス路14、温度式膨張弁7、室内エバポレータ8を通って圧縮機3に戻る冷媒経路に切り替えられる。温度式膨張弁7は冷媒を減圧する。排気吸熱暖房運転では、図4に示すように、圧縮機3で圧縮された冷媒を室内コンデンサ4、圧力調整手段5、換気熱回収用エバポレータ13、第2バイパス路15を通って圧縮機3に戻る冷媒経路に切り替えられる。圧力調整手段5は冷媒を減圧する。冷房リヒート運転では、図6に示すように、圧縮機3で圧縮された冷媒を室内コンデンサ4、圧力調整手段5、室外熱交換器6、温度式膨張弁7、室内エバポレータ8を通って圧縮機3に戻る冷媒経路に切り替えられる。圧力調整手段5は冷媒を減圧せず、室外熱交換器6はコンデンサとして機能する。   The first three-way valve 12a, the second three-way valve 12b, and the second flow path switching valve 16 are switched by the control means 30, respectively. Specifically, in the outdoor heat absorption heating operation, as shown in FIG. 5, the refrigerant compressed by the compressor 3 passes through the indoor condenser 4, the pressure adjusting means 5, the outdoor heat exchanger 6, and the second bypass passage 15. The refrigerant path is switched back to the compressor 3. The pressure adjusting means 5 depressurizes the refrigerant, and the outdoor heat exchanger 6 functions as an evaporator. In the inside air endothermic heating operation, as shown in FIG. 3, the refrigerant compressed by the compressor 3 returns to the compressor 3 through the indoor condenser 4, the first bypass 14, the temperature expansion valve 7, and the indoor evaporator 8. Switch to a route. The temperature type expansion valve 7 depressurizes the refrigerant. In the exhaust heat absorption heating operation, as shown in FIG. 4, the refrigerant compressed by the compressor 3 passes through the indoor condenser 4, the pressure adjusting means 5, the ventilation heat recovery evaporator 13, and the second bypass path 15 to the compressor 3. It is switched to the return refrigerant path. The pressure adjusting means 5 depressurizes the refrigerant. In the cooling reheat operation, as shown in FIG. 6, the refrigerant compressed by the compressor 3 passes through the indoor condenser 4, the pressure adjusting means 5, the outdoor heat exchanger 6, the temperature expansion valve 7, and the indoor evaporator 8. The refrigerant path is switched back to 3. The pressure adjusting means 5 does not depressurize the refrigerant, and the outdoor heat exchanger 6 functions as a condenser.

また、車両用空気調和装置1は、室外熱交換器6を通過した空気温度を検出する室外熱交換器通過空気温度検出手段である室外熱交換器通過空気温度検出センサS1と、室外熱交換器6の出口側の冷媒温度を検出する冷媒温度検出手段である冷媒温度検出センサS2と、室内エバポレータ8の空気吹き出し温度を検出するエバ出口空気温度検出手段であるエバ出口空気温度検出センサS3と、フット吹出口28aより吹き出す空気温度を検出するフット吹出温度検出手段であるフット吹出温度検出センサS4と、デフロスタ吹出口28b及びベント吹出口28cより吹き出す空気温度を検出するデフロスタ・ベント吹出温度検出手段であるデフトスタ・ベント吹出検出センサS5と、空調ケース21内に導入する空気(室内エバポレータ8及び室内コンデンサ4に供給する空気)の温度と湿度を検出する吸入空気温湿度検出手段である吸入空気温湿度検出センサS6と、外気温度を検出する外気温度検出手段である外気温度検出センサS7と、車室内の温度を検出する室内温度検出手段である室内温度検出センサS8とを有する。   Further, the vehicle air conditioner 1 includes an outdoor heat exchanger passage air temperature detection sensor S1 that is an outdoor heat exchanger passage air temperature detection means that detects an air temperature that has passed through the outdoor heat exchanger 6, and an outdoor heat exchanger. A refrigerant temperature detection sensor S2 which is a refrigerant temperature detection means for detecting the refrigerant temperature on the outlet side of the outlet 6, an evaporator outlet air temperature detection sensor S3 which is an evaporator outlet air temperature detection means for detecting the air blowing temperature of the indoor evaporator 8, A foot blowing temperature detection sensor S4 which is a foot blowing temperature detecting means for detecting an air temperature blown from the foot blowing outlet 28a, and a defroster / vent blowing temperature detecting means for detecting an air temperature blown from the defroster blowing outlet 28b and the vent blowing outlet 28c. A deft star / vent blowout detection sensor S5 and air introduced into the air conditioning case 21 (indoor evaporator 8 and An intake air temperature / humidity detection sensor S6 which is an intake air temperature / humidity detection means for detecting the temperature and humidity of the air) supplied to the indoor condenser 4; an outside air temperature detection sensor S7 which is an outside air temperature detection means for detecting the outside air temperature; And an indoor temperature detection sensor S8 which is an indoor temperature detection means for detecting the temperature in the passenger compartment.

制御手段30は、操作部31からの入力データ、各種センサS1〜S8の検出データ等に基づいて、圧縮機3、第1三方弁12a、第2三方弁12b、第2流路切替弁16、インテークドア24、送風機25、加熱器26、エアミックスドア27、送風機29b等を制御する。又、制御手段30は、室外熱交換器6が凍結したことを判別する凍結判別手段を兼用する。制御手段30は、室外熱交換器通過空気温度検出センサS1と冷媒温度検出センサS2を入力し、室外熱交換器6を通過した空気温度と室外熱交換器6の出口側の冷媒温度との差異が所定温度差(例えば10℃)以上となったときに凍結(着氷)と判定する。   Based on the input data from the operation unit 31, the detection data of the various sensors S1 to S8, etc., the control means 30 includes the compressor 3, the first three-way valve 12a, the second three-way valve 12b, the second flow path switching valve 16, The intake door 24, the blower 25, the heater 26, the air mix door 27, the blower 29b, etc. are controlled. The control means 30 also serves as a freezing determination means for determining that the outdoor heat exchanger 6 has been frozen. The control means 30 inputs the outdoor heat exchanger passage air temperature detection sensor S1 and the refrigerant temperature detection sensor S2, and the difference between the air temperature that has passed through the outdoor heat exchanger 6 and the refrigerant temperature on the outlet side of the outdoor heat exchanger 6 Is determined to be frozen (icing) when the temperature difference exceeds a predetermined temperature difference (for example, 10 ° C.).

操作部31は、暖房スイッチSW1、冷房スイッチSW2、室内温度設定ノブ32、空気導入選択(インテーク選択)ノブ33等を有する。室内温度設定ノブ32によって車室内の目標温度を設定する。空気導入選択ノブ33によって空調ケース21内に導入する空気(内気、外気)を選択できる。制御手段30は、暖房スイッチSW1、冷房スイッチSW2のオン操作によって、図6に示すフローチャートを実行する。このフローチャートの内容については、下記の動作箇所で説明する。又、制御手段30は、室内温度検出センサS8の検出温度が目標温度になるよう暖房運転等を制御する。
次に、室外熱交換器6の詳しい構成を説明する。室外熱交換器6は、図2(a)に示すように、間隔を置いて水平方向に配置された複数のチューブ40と、隣接するチューブ40の隙間に配置された放熱フィン41と、複数のチューブ40の両端側に配置された一対のタンク部42,43とを備えている。一方のタンク部42には、その上端側に冷媒入口44が、その下端側に冷媒出口45がそれぞれ設けられている。他方のタンク部43の外部には液溜め部46が付設されている。他方のタンク部43内と液溜め部46内は連通路47によって連通している。双方のタンク部42,43内には、仕切壁48,49がそれぞれ一箇所に設けられている。一方のタンク部42内の仕切壁48は、タンク部42内を完全に仕切っている。他方のタンク部43の仕切壁49は、室外熱交換器6内の冷媒流れ経路の内で最も下流側に位置し、連通路47を仕切らないように配置されている。つまり、仕切壁49は、室外熱交換器6がコンデンサとして機能する場合に、液冷媒を液溜め部46にガイドする機能を有するが、室外熱交換器6がエバポレータとして機能する場合に、気化冷媒を小さな通路抵抗で通す。
The operation unit 31 includes a heating switch SW1, a cooling switch SW2, a room temperature setting knob 32, an air introduction selection (intake selection) knob 33, and the like. A target temperature in the passenger compartment is set by the indoor temperature setting knob 32. Air (inside air, outside air) to be introduced into the air conditioning case 21 can be selected by the air introduction selection knob 33. The control means 30 executes the flowchart shown in FIG. 6 by turning on the heating switch SW1 and the cooling switch SW2. The contents of this flowchart will be described in the following operation location. Moreover, the control means 30 controls heating operation etc. so that the detected temperature of indoor temperature detection sensor S8 may become target temperature.
Next, a detailed configuration of the outdoor heat exchanger 6 will be described. As shown in FIG. 2A, the outdoor heat exchanger 6 includes a plurality of tubes 40 arranged in the horizontal direction at intervals, a radiating fin 41 arranged in a gap between adjacent tubes 40, and a plurality of tubes. A pair of tank portions 42 and 43 are provided on both ends of the tube 40. One tank portion 42 is provided with a refrigerant inlet 44 at its upper end side and a refrigerant outlet 45 at its lower end side. A liquid reservoir 46 is provided outside the other tank 43. The other tank portion 43 and the liquid reservoir portion 46 communicate with each other through a communication passage 47. In both tank parts 42 and 43, the partition walls 48 and 49 are each provided in one place. The partition wall 48 in one tank portion 42 completely partitions the tank portion 42. The partition wall 49 of the other tank portion 43 is located on the most downstream side in the refrigerant flow path in the outdoor heat exchanger 6 and is disposed so as not to partition the communication passage 47. That is, the partition wall 49 has a function of guiding the liquid refrigerant to the liquid reservoir 46 when the outdoor heat exchanger 6 functions as a condenser, but when the outdoor heat exchanger 6 functions as an evaporator, the vaporized refrigerant Is passed with a small passage resistance.

次に、車両用空気調和装置1の動作を説明する。図7に示すように、制御手段30は、冷房スイッチSW2がオンされ、冷房モードが選択されると(ステップST1)、制御手段30は冷房リヒート運転を実行する(ステップST2)。冷房リヒート運転では、図6に示すように、第1三方弁12a及び第2三方弁12bは冷媒が室外熱交換器6側に、第2流路切替弁16は冷媒が室内エバポレータ8側に流れるようそれぞれ切り替えられる。圧力調整手段5の開閉弁5bは、冷媒を減圧しないで通過させる開位置とされる。   Next, the operation of the vehicle air conditioner 1 will be described. As shown in FIG. 7, when the cooling switch SW2 is turned on and the cooling mode is selected (step ST1), the control means 30 executes the cooling reheat operation (step ST2). In the cooling reheat operation, as shown in FIG. 6, in the first three-way valve 12a and the second three-way valve 12b, the refrigerant flows to the outdoor heat exchanger 6 side, and in the second flow path switching valve 16, the refrigerant flows to the indoor evaporator 8 side. Each can be switched. The on-off valve 5b of the pressure adjusting means 5 is in an open position that allows the refrigerant to pass therethrough without being depressurized.

圧縮機3で圧縮された冷媒は、室内コンデンサ4、第2三方弁12b、圧力調整手段5、第1三方弁12a、室外熱交換器6、第2流路切替弁16、温度式膨張弁7、室内エバポレータ8、アキュムレータ9を通る冷媒経路を循環する。圧縮機3で圧縮された高温高圧の冷媒は、室内コンデンサ4と室外熱交換器6で空気に放熱する。放熱によって低温となり、温度式膨張弁7で低圧とされた冷媒は、室内エバポレータ8で空気より吸熱する。従って、空調ケース21内を通る送風は、室内エバポレータ8で冷却されると共にその一部若しくは全部が室内コンデンサ4で再加熱される。これにより、所望温度の冷風が作製される。   The refrigerant compressed by the compressor 3 includes the indoor condenser 4, the second three-way valve 12b, the pressure adjusting means 5, the first three-way valve 12a, the outdoor heat exchanger 6, the second flow path switching valve 16, and the temperature type expansion valve 7. The refrigerant passes through the refrigerant path passing through the indoor evaporator 8 and the accumulator 9. The high-temperature and high-pressure refrigerant compressed by the compressor 3 radiates heat to the air through the indoor condenser 4 and the outdoor heat exchanger 6. The refrigerant, which has become a low temperature due to heat radiation and has been made a low pressure by the temperature type expansion valve 7, absorbs heat from the air by the indoor evaporator 8. Therefore, the air passing through the air conditioning case 21 is cooled by the indoor evaporator 8 and part or all of the air is reheated by the indoor condenser 4. Thereby, the cold air of desired temperature is produced.

制御手段30は、暖房スイッチSW2がオンされ、暖房モードが選択されると(ステップST1)、空気導入モードが内気導入と外気導入のいずれであるかをチェックする(ステップST3)。内気導入モードであれば、制御手段30は、内気吸熱暖房運転を実行する(ステップST4)。   When the heating switch SW2 is turned on and the heating mode is selected (step ST1), the control means 30 checks whether the air introduction mode is the inside air introduction or the outside air introduction (step ST3). If it is inside air introduction mode, the control means 30 will perform inside air endothermic heating operation (step ST4).

内気吸熱暖房運転では、図3に示すように、第1三方弁12aは冷媒が第1バイパス路14側に、第2流路切替弁16は冷媒が室内エバポレータ8側に流れるようそれぞれ切り替えられる。エアミックスドア27は、例えば全開位置に切り替えられる。圧縮機3で圧縮された冷媒は、室内コンデンサ4、第1バイパス路14、第2流路切替弁16、温度式膨張弁7、室内エバポレータ8、アキュムレータ9を通る冷媒経路を循環する。圧縮機3で圧縮された高温高圧の冷媒は、室内コンデンサ4で空気に放熱する。放熱によって低温となり、温度式膨張弁7で低圧とされた冷媒は、室内エバポレータ8で空気より吸熱する。従って、空調ケース21内を通る送風は、室内エバポレータ8で冷却されると共にその全部が室内コンデンサ4で再加熱される。これにより、所望温度の温風が作製される。   In the inside air endothermic heating operation, as shown in FIG. 3, the first three-way valve 12 a is switched so that the refrigerant flows to the first bypass path 14 side, and the second flow path switching valve 16 is switched so that the refrigerant flows to the indoor evaporator 8 side. The air mix door 27 is switched to a fully open position, for example. The refrigerant compressed by the compressor 3 circulates in the refrigerant path passing through the indoor condenser 4, the first bypass path 14, the second flow path switching valve 16, the temperature expansion valve 7, the indoor evaporator 8, and the accumulator 9. The high-temperature and high-pressure refrigerant compressed by the compressor 3 radiates heat to the air by the indoor condenser 4. The refrigerant, which has become a low temperature due to heat radiation and has been made a low pressure by the temperature type expansion valve 7, absorbs heat from the air by the indoor evaporator 8. Therefore, the air blown through the air conditioning case 21 is cooled by the indoor evaporator 8 and all of the air is reheated by the indoor condenser 4. Thereby, the warm air of desired temperature is produced.

室内エバポレータ8では、空気を0度近くまで冷却するため、除湿された空気が車室内に吹き出され、窓曇りが発生しない。   In the room evaporator 8, the air is cooled to near 0 degrees, so that the dehumidified air is blown into the vehicle interior, and window fogging does not occur.

室内コンデンサ4の加熱能力が小さい場合には、加熱器26を作動させて所望温度の温風を作製する。   When the heating capacity of the indoor condenser 4 is small, the heater 26 is operated to produce hot air at a desired temperature.

また、内気吸熱暖房運転では、エバ出口空気温度検出センサS3の検出温度に基づいて室内エバポレータ8が凍結しない温度(例えば0℃〜3℃)で圧縮機3の回転数を制御し、除湿量を確保することになる。内気吸熱暖房運転では、室内エバポレータ8と室内コンデンサ4で冷凍サイクル特性が決定されるため、除湿性により圧縮機3の回転数を決めると室内コンデンサ4での加熱量が成り行きで決まって来る。加熱量を増加したい場合には加熱器26を作動させ、加熱量を減少させたい場合にはエアミックスドア27を閉位置側に変移することによって空調風の温度を制御できる。   Further, in the inside air endothermic heating operation, the rotational speed of the compressor 3 is controlled at a temperature (for example, 0 ° C. to 3 ° C.) at which the indoor evaporator 8 is not frozen based on the temperature detected by the outlet air temperature detection sensor S3, and the dehumidification amount is reduced Will be secured. In the inside air endothermic heating operation, the refrigeration cycle characteristics are determined by the indoor evaporator 8 and the indoor condenser 4, and therefore, the amount of heating in the indoor condenser 4 is determined depending on the situation when the rotational speed of the compressor 3 is determined by the dehumidifying property. When it is desired to increase the amount of heating, the heater 26 is operated, and when the amount of heating is to be decreased, the temperature of the conditioned air can be controlled by moving the air mix door 27 to the closed position side.

内気吸熱暖房運転が開始されると、一定時間毎に空気導入モードの状態がチェックされる(ステップST5)。   When the inside air endothermic heating operation is started, the state of the air introduction mode is checked at regular intervals (step ST5).

外気導入モードであれば、制御手段30は、外気吸熱暖房運転を実行する(ステップST6)。外気吸熱暖房運転では、図5に示すように、第1三方弁12a及び第2三方弁12bは冷媒が室外熱交換器6側に、第2流路切替弁16は冷媒が第2バイパス路15側に流れるようそれぞれ切り替えられる。圧力調整手段5の開閉弁5bは、閉位置に位置される。エアミックスドア27は、例えば全開位置に切り替えられる。圧縮機3で圧縮された冷媒は、室内コンデンサ4、室外熱交換器6、第2流路切替弁16、第2バイパス路15、アキュムレータ9を通る冷媒経路を循環する。圧縮機3で圧縮された高温高圧の冷媒は、室内コンデンサ4で空気に放熱する。放熱によって低温となり、圧力調整手段5のオリフィス5bの通過で低圧とされた冷媒は、室外熱交換器6で空気より吸熱する。従って、空調ケース21内を通る送風は、室内エバポレータ8で冷却されることなく通過し、室内コンデンサ4で加熱される。これにより、所望温度の温風が作製される。外気吸熱暖房運転では、室内エバポレータ8で冷媒が吸熱作用を行わず、空気が冷却されないため、内気吸熱暖房運転より大きな暖房性能が得られる。   If it is outside air introduction mode, control means 30 will perform outside air endothermic heating operation (Step ST6). In the outdoor heat absorption heating operation, as shown in FIG. 5, the first three-way valve 12 a and the second three-way valve 12 b have the refrigerant on the outdoor heat exchanger 6 side, and the second flow path switching valve 16 has the second bypass path 15. Each can be switched to flow to the side. The on-off valve 5b of the pressure adjusting means 5 is located at the closed position. The air mix door 27 is switched to a fully open position, for example. The refrigerant compressed by the compressor 3 circulates in the refrigerant path passing through the indoor condenser 4, the outdoor heat exchanger 6, the second flow path switching valve 16, the second bypass path 15, and the accumulator 9. The high-temperature and high-pressure refrigerant compressed by the compressor 3 radiates heat to the air by the indoor condenser 4. The refrigerant having a low temperature due to heat radiation and having a low pressure by passing through the orifice 5 b of the pressure adjusting means 5 absorbs heat from the air in the outdoor heat exchanger 6. Therefore, the air passing through the air conditioning case 21 passes through the indoor evaporator 8 without being cooled and is heated by the indoor condenser 4. Thereby, the warm air of desired temperature is produced. In the outdoor air endothermic heating operation, the refrigerant does not absorb heat in the indoor evaporator 8, and the air is not cooled, so that a larger heating performance than the inside air endothermic heating operation can be obtained.

外気吸熱暖房運転では、湿気が少ない車室外の空気を空調ケース21内に導入(外気循環)するので、極力窓曇りの発生を抑制できる。   In the outside air endothermic heating operation, air outside the passenger compartment with low humidity is introduced into the air conditioning case 21 (circulation of outside air), so that the occurrence of window fogging can be suppressed as much as possible.

外気吸熱暖房運転時には、所定時間毎に、室外熱交換器6が凍結(着氷)したか否かの判別を行う(ステップST7、ST8)。   During the outdoor air endothermic heating operation, it is determined whether or not the outdoor heat exchanger 6 has been frozen (iced) every predetermined time (steps ST7 and ST8).

室外熱交換器6が凍結したと判別した場合には、空気導入モードの状態がチェックされる(ステップST9)。内気導入モードであれば、室外熱交換器6の凍結が解除されていないことを条件として(ステップST10)、外気吸熱暖房運転を内気吸熱暖房運転に切り替える(ステップST4)。これにより、冷媒の吸熱が室内エバポレータ8を通過する空気に切り替えられ、暖房運転が維持される。   When it is determined that the outdoor heat exchanger 6 is frozen, the state of the air introduction mode is checked (step ST9). If it is inside air introduction mode, on the condition that freezing of the outdoor heat exchanger 6 is not released (step ST10), the outside air endothermic heating operation is switched to the inside air endothermic heating operation (step ST4). Thereby, the heat absorption of a refrigerant | coolant is switched to the air which passes the indoor evaporator 8, and heating operation is maintained.

外気導入モードであれば、外気吸熱暖房運転から排気吸熱暖房運転に切り替える(ステップST11)。   If it is outside air introduction mode, it switches from outside air endothermic heating operation to exhaust endothermic heating operation (step ST11).

排気吸熱暖房運転では、図4に示すように、第1三方弁12a及び第2三方弁12bは冷媒が換気熱回収用エバポレータ13側に、第2流路切替弁16は冷媒が換気熱回収用エバポレータ13側に流れるようそれぞれ切り替えられる。圧力調整手段5の開閉弁5bは、閉位置に位置される。エアミックスドア27は、例えば全開位置に切り替えられる。排気通路29aの送風機29bは、駆動される。圧縮機3で圧縮された冷媒は、室内コンデンサ4、圧力調整手段5、ドラフタ用分岐路11(換気熱回収用エバポレータ13)、第2流路切替弁16、第2バイパス路15、アキュムレータ9を通る冷媒経路を循環する。圧縮機3で圧縮された高温高圧の冷媒は、室内コンデンサ4で空気に放熱する。放熱によって低温となり、圧力調整手段5のオリフィス5aの通過で低圧とされた冷媒は、換気熱回収用エバポレータ13で空気より吸熱する。従って、空調ケース21内を通る送風は、室内エバポレータ8で冷却されることなく通過し、その全部が室内コンデンサ4で加熱される。これにより、所望温度の温風が作製される。   In the exhaust heat absorption heating operation, as shown in FIG. 4, the first three-way valve 12a and the second three-way valve 12b have a refrigerant on the ventilation heat recovery evaporator 13 side, and the second flow path switching valve 16 has a refrigerant for ventilation heat recovery. Each is switched to flow to the evaporator 13 side. The on-off valve 5b of the pressure adjusting means 5 is located at the closed position. The air mix door 27 is switched to a fully open position, for example. The blower 29b in the exhaust passage 29a is driven. The refrigerant compressed by the compressor 3 passes through the indoor condenser 4, the pressure adjusting means 5, the draft branch 11 (ventilator for heat recovery 13), the second flow switching valve 16, the second bypass 15, and the accumulator 9. Circulates through the refrigerant path through. The high-temperature and high-pressure refrigerant compressed by the compressor 3 radiates heat to the air by the indoor condenser 4. The refrigerant that has become a low temperature due to heat dissipation and has become a low pressure by passing through the orifice 5 a of the pressure adjusting means 5 absorbs heat from the air by the ventilation heat recovery evaporator 13. Accordingly, the air passing through the air conditioning case 21 passes through the indoor evaporator 8 without being cooled, and all of it is heated by the indoor condenser 4. Thereby, the warm air of desired temperature is produced.

室内コンデンサ4の加熱能力が小さい場合には、加熱器26を作動させて所望温度の温風を作製する。   When the heating capacity of the indoor condenser 4 is small, the heater 26 is operated to produce hot air at a desired temperature.

排気吸熱暖房運転では、湿気が少ない車室外の空気を空調ケース21内に導入(外気循環)するので、極力窓曇りの発生を抑制できる。又、車室内の空気は、排気通路29aより強制的に車室外に排気されるので、車室内に所定の空気流れが形成されると共に排気通路29a以外からの車体空気漏洩がなくなるため、窓曇りの発生が確実に抑制される。このような理由から、内気導入率を50%程度にまで上げて換気負荷の低減を図るようにしても窓曇りを抑制できる。つまり、窓曇りを防止しつつ換気負荷の低減による省動力を図ることができる。   In the exhaust heat absorption heating operation, air outside the passenger compartment with low humidity is introduced into the air conditioning case 21 (circulation of the outside air), so that the occurrence of window fogging can be suppressed as much as possible. Further, since the air in the passenger compartment is forcibly exhausted from the exhaust passage 29a to the outside of the passenger compartment, a predetermined air flow is formed in the passenger compartment and no air leakage from the vehicle body from other than the exhaust passage 29a occurs. Is reliably suppressed. For these reasons, window fogging can be suppressed even if the inside air introduction rate is increased to about 50% to reduce the ventilation load. That is, it is possible to save power by reducing the ventilation load while preventing window fogging.

内気吸熱暖房運転中又は排気吸熱暖房運転中は、所定時間毎に室外熱交換器6の凍結が解消(解氷)したか否かの判別を行う(ステップST10、ST12)。室外熱交換器6の凍結が解消した(室外熱交換器6が凍結していない)と判別した場合には(ステップST10)、ユーザの選択した空気導入モードで応じて外気吸熱暖房運転若しくは内気吸熱暖房運転に戻される(ステップST3、ST6、ST4)。尚、室外熱交換器6の凍結が解消した(室外熱交換器6が凍結していない)と判別した場合に、外気吸熱暖房運転に戻すタイミングについては種々のタイミングが考えられる。   During the inside air endothermic heating operation or the exhaust endothermic heating operation, it is determined whether or not the freezing of the outdoor heat exchanger 6 has been resolved (thawed) every predetermined time (steps ST10 and ST12). If it is determined that the outdoor heat exchanger 6 has been frozen (the outdoor heat exchanger 6 is not frozen) (step ST10), the outdoor air endothermic heating operation or the inside air endotherm is selected according to the air introduction mode selected by the user. Returning to the heating operation (steps ST3, ST6, ST4). In addition, when it determines with the freezing of the outdoor heat exchanger 6 having been eliminated (the outdoor heat exchanger 6 is not frozen), various timings can be considered about the timing which returns to an outdoor air endothermic heating operation.

以上説明したように、室外熱交換器6をエバポレータとして機能させる外気吸熱暖房運転時に室外熱交換器6が凍結すると、室内エバポレータ8で冷媒に吸熱させる内気吸熱暖房運転、又は、換気熱回収用エバポレータ13で冷媒に吸熱させる排気吸熱暖房運転に切り替えて暖房運転を続行し、外気吸熱暖房運転と内気吸熱暖房運転若しくは排気吸熱暖房運転とでは吸熱作用を行わせる熱交換器を変更するだけであるため、暖房運転の続行に圧縮機3の動力を増大させる必要がない。以上より、室外熱交換器6が凍結(着氷)した場合でも、圧縮機3の動力を増大させることなく暖房運転を維持できる。   As described above, when the outdoor heat exchanger 6 freezes during the outdoor heat absorption heating operation in which the outdoor heat exchanger 6 functions as an evaporator, the indoor heat absorption heating operation in which the refrigerant is absorbed by the refrigerant in the indoor evaporator 8 or the evaporator for recovering ventilation heat. 13 is switched to the exhaust heat absorption heating operation in which the refrigerant absorbs heat, and the heating operation is continued, and only the heat exchanger that performs the heat absorption action is changed between the outside air heat absorption heating operation and the inside air heat absorption heating operation or the exhaust heat absorption heating operation. There is no need to increase the power of the compressor 3 to continue the heating operation. As described above, even when the outdoor heat exchanger 6 is frozen (icing), the heating operation can be maintained without increasing the power of the compressor 3.

このように室外熱交換器6が凍結しても暖房運転を維持できるため、室外熱交換器6としては特別なもの(例えば凍結し難い構造、結露が極力滞留しない構造)を使用する必要がなく汎用性のあるものを使用すれば良い。   As described above, since the heating operation can be maintained even when the outdoor heat exchanger 6 is frozen, it is not necessary to use a special one as the outdoor heat exchanger 6 (for example, a structure that hardly freezes or a structure in which condensation does not stay as much as possible). A versatile one can be used.

室外熱交換器6は室外の空気より吸熱するが、室内エバポレータ8や換気熱回収用エバポレータ13は室外の空気よりも高温である室内の空気より吸熱するため、省動力とコストダウンにもなる。   Although the outdoor heat exchanger 6 absorbs heat from the outdoor air, the indoor evaporator 8 and the ventilation heat recovery evaporator 13 absorb heat from the indoor air that is hotter than the outdoor air, thus saving power and reducing costs.

制御手段30は、室外熱交換器6が凍結したと判別すると、内気導入状態の時には内気吸熱暖房運転に、外気導入状態の時には排気吸熱暖房運転にそれぞれ切り替える。従って、現在の空気導入状態を維持しつつ暖房運転を続行できるため、ユーザには違和感を与えないで済む。   When it is determined that the outdoor heat exchanger 6 is frozen, the control means 30 switches to the inside air heat absorption heating operation when the inside air is introduced and to the exhaust heat absorption heating operation when the outside air is introduced. Accordingly, since the heating operation can be continued while maintaining the current air introduction state, the user does not feel uncomfortable.

排気吸熱暖房運転では、車室外の空気を空調ケース21内(室内エバポレータ8及び室内コンデンサ4)に導入し、車室内の空気を排気通路29aより強制排気する。従って、湿気が少ない車室外の空気を車室内に導入されるため、極力窓曇りの発生を抑制できる。又、車室内の空気は、排気通路29aより強制的に車室外に排気されるため、車室内に所定の空気流れが形成されると共に排気通路29a以外からの車体空気漏洩がなくなり、窓曇りの発生が確実に抑制される。このような理由から、内気導入率を50%程度にまで上げて換気負荷の低減を図るようにしても窓曇りを抑制できる。つまり、窓曇りを防止しつつ換気負荷の低減による省動力を図ることができる。   In the exhaust endothermic heating operation, the air outside the passenger compartment is introduced into the air conditioning case 21 (the indoor evaporator 8 and the indoor condenser 4), and the air inside the passenger compartment is forcibly exhausted from the exhaust passage 29a. Therefore, since air outside the passenger compartment with low humidity is introduced into the passenger compartment, occurrence of window fogging can be suppressed as much as possible. Further, since the air in the passenger compartment is forcibly exhausted outside the passenger compartment through the exhaust passage 29a, a predetermined air flow is formed in the passenger compartment, and there is no leakage of vehicle body air from other than the exhaust passage 29a. Generation is reliably suppressed. For these reasons, window fogging can be suppressed even if the inside air introduction rate is increased to about 50% to reduce the ventilation load. That is, it is possible to save power by reducing the ventilation load while preventing window fogging.

内気吸熱暖房運転では、車室内の空気を空調ケース21内(室内エバポレータ8及び室内コンデンサ4)に導入し、内気循環するので、車室内の熱損失がほとんどなく、熱効率の良い暖房を行うことができる。   In the inside air endothermic heating operation, the air in the passenger compartment is introduced into the air conditioning case 21 (the indoor evaporator 8 and the indoor condenser 4) and circulates in the inside air, so that there is almost no heat loss in the passenger compartment and heat efficient heating can be performed. it can.

蒸気圧縮式冷凍サイクル2は、圧縮機3と室内コンデンサ4と室外熱交換器6と温度式膨張弁7と室内エバポレータ8から成る通常の冷凍サイクルに対し、室外熱交換器6に供給する冷媒の圧力を調整できる圧力調整手段5と、室外熱交換器6をバイパスし、換気熱回収用エバポレータ13が配置されたドラフタ用分岐路11と、室外熱交換器6及び換気熱回収用エバポレータ13の双方をバイパスするする第1バイパス路14と、冷媒を室外熱交換器6側に流すか換気熱回収用エバポレータ13に流すか第1バイパス路14に流すかを切り替えできる第1三方弁12a及び第2三方弁12bと、室内エバポレータ8をバイパスする第2バイパス路15と、冷媒を室内エバポレータ8側に流すか第2バイパス路15に流すかを切り替えできる第2流路切替弁16とを付設したので、比較的簡単な冷凍サイクル構成で、しかも、比較的簡単な冷媒経路の切替えによって、3種類の暖房運転(外気吸熱暖房運転、内気吸熱暖房運転、排気吸熱暖房運転)と1種類の冷房運転(冷房リヒート運転)を行うことができる。   The vapor compression refrigeration cycle 2 is a refrigerant that is supplied to the outdoor heat exchanger 6 with respect to a normal refrigeration cycle including the compressor 3, the indoor condenser 4, the outdoor heat exchanger 6, the temperature expansion valve 7, and the indoor evaporator 8. Both the pressure adjusting means 5 capable of adjusting pressure, the outdoor heat exchanger 6 bypassing the drafting branch 11 where the ventilation heat recovery evaporator 13 is disposed, the outdoor heat exchanger 6 and the ventilation heat recovery evaporator 13. The first three-way valve 14a and the second one can be switched between the first bypass passage 14 for bypassing the refrigerant, the refrigerant flowing to the outdoor heat exchanger 6 side, the ventilation heat recovery evaporator 13 or the first bypass passage 14. It is possible to switch between the three-way valve 12b, the second bypass passage 15 that bypasses the indoor evaporator 8, and whether the refrigerant flows to the indoor evaporator 8 side or the second bypass passage 15. Since the two-channel switching valve 16 is attached, three types of heating operation (outside air endothermic heating operation, inside air endothermic heating operation, exhaust gas) can be performed with a relatively simple refrigeration cycle configuration and a relatively simple refrigerant path switching. Endothermic heating operation) and one type of cooling operation (cooling reheat operation) can be performed.

凍結判別手段である制御手段30は、室外熱交換器6の空気吹き出し温度と室外熱交換器6の冷媒出口温度の差異より凍結の有無を判別するので、比較的単純な比較によって確実に室外熱交換器6の凍結の有無を判別できる。   Since the control means 30 which is a freezing judgment means judges the presence or absence of freezing from the difference between the air blowing temperature of the outdoor heat exchanger 6 and the refrigerant outlet temperature of the outdoor heat exchanger 6, the outdoor heat is surely determined by a relatively simple comparison. Whether or not the exchanger 6 is frozen can be determined.

室内コンデンサ4の他に、車室内に供給される空気を加熱する加熱器26を有する。そして、制御手段30は、フット吹出温度検出センサS4とデフロスタ・ベント吹出温度検出センサS5の検出温度に基づいて加熱器26の加熱量を制御する。従って、フット吹出口28aとベント吹出口28cの空気温度に温度差を付ける場合(バイレベルモード)においても、加熱器26の加熱量を調整でき、所望の空調風を吹き出させることができる。   In addition to the indoor condenser 4, it has a heater 26 for heating the air supplied to the vehicle interior. And the control means 30 controls the heating amount of the heater 26 based on the detected temperature of the foot blowing temperature detection sensor S4 and the defroster / vent blowing temperature detection sensor S5. Accordingly, even when a temperature difference is provided between the air temperatures of the foot outlet 28a and the vent outlet 28c (bi-level mode), the heating amount of the heater 26 can be adjusted and desired conditioned air can be blown out.

この実施形態では、加熱器26を設置したが、外気吸熱暖房運転、内気吸熱暖房運転及び排気吸熱暖房運転のそれぞれにおいて、室内コンデンサ4のみで十分な暖房性能が得られる場合には、加熱器26を設置する必要はない。   In this embodiment, the heater 26 is installed. However, in the case of each of the outdoor air endothermic heating operation, the inside air endothermic heating operation, and the exhaust endothermic heating operation, when the heating performance is sufficient only by the indoor condenser 4, the heater 26 is provided. There is no need to install.

空調ケース21内(室内エバポレータ8及び室内コンデンサ4)に供給する空気の温度と湿度を検出する吸入空気温湿度検出センサS6と、外気温度を検出する外気温度検出センサS7とを有し、制御手段30は、外気温度検出手段S7の検出温度を窓の温度とみなして、吸入空気温湿度検出センサS6と外気温度検出センサS7より車室内の露点温度を算出し、室内エバポレータ8の除湿量が窓曇りの発生しない程度に制限されるよう室内エバポレータ8を制御するようにしても良い。これにより、窓曇りの発生を防止しつつ圧縮機3の動力を低く運転することができる。露点温度は、制御手段30の内蔵メモリにデータマップを記憶し、外気温度検出センサS7の温度と相対湿度から算出する。   A control means having an intake air temperature / humidity detection sensor S6 for detecting the temperature and humidity of the air supplied to the air conditioning case 21 (the indoor evaporator 8 and the indoor condenser 4), and an outside air temperature detection sensor S7 for detecting the outside air temperature; 30 considers the detected temperature of the outside air temperature detecting means S7 as the temperature of the window, calculates the dew point temperature in the vehicle interior from the intake air temperature / humidity detection sensor S6 and the outside air temperature detection sensor S7, You may make it control the indoor evaporator 8 so that it may be restrict | limited to the grade which cloudiness does not generate | occur | produce. Thereby, the power of the compressor 3 can be operated low while preventing the occurrence of window fogging. The dew point temperature is calculated from the temperature and relative humidity of the outside air temperature detection sensor S7 by storing a data map in the built-in memory of the control means 30.

室外熱交換器6は、複数のチューブ40と複数のチューブ40の両端側に設けられた一対のタンク部42,43とを有し、各タンク部42,43内には一箇所に仕切壁48,49をぞれぞれ設け、室外熱交換器6内の冷媒流れ経路の内で最も下流側に位置する仕切壁49は、冷媒を液溜め部46にガイドでき、且つ、冷媒を小さな流通抵抗で通すよう構成されている。   The outdoor heat exchanger 6 includes a plurality of tubes 40 and a pair of tank portions 42 and 43 provided on both ends of the plurality of tubes 40, and a partition wall 48 is provided at one location in each tank portion 42 and 43. 49, respectively, and the partition wall 49 located on the most downstream side in the refrigerant flow path in the outdoor heat exchanger 6 can guide the refrigerant to the liquid reservoir 46, and the refrigerant has a small flow resistance. It is configured to pass through.

従って、室外熱交換器6がコンデンサとして機能する場合には、冷媒入口44より一方のタンク部42内に流入した冷媒は、仕切壁48より上方側のタンク部42より各チューブ40内を流れて他方のタンク部43内に流入する。他方のタンク部43内に流入した冷媒は、仕切壁49でガイドされて連通路47を介して液溜め部46に入り込む。液溜め部46よりオーバーフローした液冷媒は、連通路47より他方のタンク部43の下方側に入り込み、チューブ40内を流れて液冷媒が冷媒出口45より流出し、温度式膨張弁7に送られる。   Therefore, when the outdoor heat exchanger 6 functions as a condenser, the refrigerant that has flowed into the one tank portion 42 from the refrigerant inlet 44 flows through the tubes 40 from the tank portion 42 above the partition wall 48. It flows into the other tank part 43. The refrigerant flowing into the other tank portion 43 is guided by the partition wall 49 and enters the liquid reservoir portion 46 through the communication passage 47. The liquid refrigerant overflowed from the liquid reservoir 46 enters the lower side of the other tank 43 through the communication passage 47, flows through the tube 40, flows out of the refrigerant outlet 45, and is sent to the temperature type expansion valve 7. .

室外熱交換器6がエバポレータとして機能する場合には、冷媒入口44より一方のタンク部42内に流入した冷媒は、仕切壁48より上方側のタンク部42より各チューブ40内を流れて他方のタンク部43内に流入する。他方のタンク部43内に流入した気化冷媒は、仕切壁49を避けて連通路47を迂回するようにしてタンク部43の下方側に入り込む。タンク部43の下方側に流れ込んだ冷媒は、チューブ40内を流れて一方のタンク部42の冷媒出口45より流出される。他方のタンク部43内で仕切壁49の位置を通過する際には、仕切壁49によって連通路47が仕切られていないため、小さな通路抵抗で通過する。これにより、室外熱交換器6内を流れる冷媒の圧力損失を小さく抑えることができ、冷媒の蒸発温度が低下することに起因する吸熱性能の低下を防止できる。   When the outdoor heat exchanger 6 functions as an evaporator, the refrigerant that has flowed into the one tank portion 42 from the refrigerant inlet 44 flows into each tube 40 from the tank portion 42 above the partition wall 48, and the other It flows into the tank part 43. The vaporized refrigerant that has flowed into the other tank portion 43 enters the lower side of the tank portion 43 so as to avoid the partition wall 49 and bypass the communication passage 47. The refrigerant flowing into the lower side of the tank part 43 flows through the tube 40 and flows out from the refrigerant outlet 45 of one tank part 42. When passing through the position of the partition wall 49 in the other tank portion 43, the communication passage 47 is not partitioned by the partition wall 49, and therefore passes with a small passage resistance. Thereby, the pressure loss of the refrigerant flowing in the outdoor heat exchanger 6 can be suppressed to a small value, and the decrease in the heat absorption performance due to the decrease in the evaporation temperature of the refrigerant can be prevented.

この実施形態では、圧力調整手段は、オリフィス5aと、オリフィス5aに並列接続された開閉弁5b付きのバイパス路5cとから構成したが、冷媒通路を開放する開放状態と冷媒通路を狭くする絞り状態とに選択的に切り替えできるものであれば良い。例えば、開度調整できる電磁弁にて構成しても良い。   In this embodiment, the pressure adjusting means is composed of the orifice 5a and the bypass passage 5c with the on-off valve 5b connected in parallel to the orifice 5a. However, the pressure adjusting means is in the open state in which the refrigerant passage is opened and the throttle state in which the refrigerant passage is narrowed. As long as it can be selectively switched between. For example, you may comprise with the solenoid valve which can adjust an opening degree.

この実施形態では、室外熱交換器6は、その一対のタンク部42,43内の各一箇所に仕切壁48,49が設けられているが、仕切壁48,49を二箇所以上に設けたものであっても良い。この場合には、室外熱交換器6内の冷媒流れ経路の内で最も下流側に位置する仕切壁49について、連通路47を仕切らないように配置する。   In this embodiment, the outdoor heat exchanger 6 is provided with the partition walls 48 and 49 at one place in each of the pair of tank portions 42 and 43, but the partition walls 48 and 49 are provided at two or more places. It may be a thing. In this case, the communication wall 47 is arranged so as not to partition the partition wall 49 located on the most downstream side in the refrigerant flow path in the outdoor heat exchanger 6.

(変形例の室外熱交換器の構造)
次に、変形例に係る室外熱交換器6Aを示す。図2(b)に示すように、変形例に係る室外熱交換器6Aは、前記実施形態のものと比較して、その他方のタンク部43Aが大きな容積に形成され、他方のタンク部43Aの下方側が液溜め部を兼用するよう構成されている。他方のタンク部43A内には、乾燥剤入りのフィルタ50が内蔵されている。タンク部43A内で、且つ、フィルタ50の外周側は、仕切壁49Aによって上下方向に仕切られている。タンク部43Aの上方側に流入した冷媒は、フィルタ50内を通ってのみタンク部43Aの下方側に流れ込む。仕切壁49Aの内径(換言すれば、フィルタ50の外径)は、気化冷媒を小さな通路抵抗で通すことができる寸法に設定されている。仕切壁49Aは、室外熱交換器6Aがコンデンサとして機能する場合に、冷媒をフィルタ50内にガイドする機能を有するが、室外熱交換器6Aがエバポレータとして機能する場合に、冷媒を小さな通路抵抗で通す。
(Structure of modified outdoor heat exchanger)
Next, an outdoor heat exchanger 6A according to a modification will be shown. As shown in FIG. 2 (b), the outdoor heat exchanger 6A according to the modified example has a tank portion 43A on the other side having a larger volume than that of the above embodiment, and the other tank portion 43A has a larger volume. The lower side is configured to also serve as a liquid reservoir. A filter 50 containing a desiccant is built in the other tank portion 43A. The outer peripheral side of the filter 50 in the tank portion 43A is partitioned in the vertical direction by a partition wall 49A. The refrigerant flowing into the upper side of the tank part 43A flows into the lower side of the tank part 43A only through the filter 50. The inner diameter of the partition wall 49A (in other words, the outer diameter of the filter 50) is set to a dimension that allows the vaporized refrigerant to pass through with a small passage resistance. The partition wall 49A has a function of guiding the refrigerant into the filter 50 when the outdoor heat exchanger 6A functions as a condenser. However, when the outdoor heat exchanger 6A functions as an evaporator, the partition wall 49A has a small passage resistance. Pass through.

従って、この変形例に係る室外熱交換器6Aにあっても、前記室外熱交換器6と同様に、室外熱交換器6Aがコンデンサとして機能する場合には、他方のタンク部43A内に流入した冷媒は、仕切壁49Aでガイドされてフィルタ50を介して他方のタンク部43Aの下方側(液溜め部に相当)に入り込む。室外熱交換器6がエバポレータとして機能する場合には、他方のタンク部43A内で仕切壁49Aの位置を通過する際には、小さな通路抵抗で通過する。これにより、室外熱交換器6A内を流れる冷媒の圧力損失を小さく抑えることができ、冷媒の蒸発温度が低下することに起因する吸熱性能の低下を防止できる。   Therefore, even in the outdoor heat exchanger 6A according to this modification, like the outdoor heat exchanger 6, when the outdoor heat exchanger 6A functions as a condenser, it flows into the other tank portion 43A. The refrigerant is guided by the partition wall 49A and enters the lower side (corresponding to the liquid reservoir) of the other tank portion 43A through the filter 50. When the outdoor heat exchanger 6 functions as an evaporator, when the outdoor heat exchanger 6 passes through the position of the partition wall 49A in the other tank portion 43A, it passes with a small passage resistance. Thereby, the pressure loss of the refrigerant flowing in the outdoor heat exchanger 6A can be suppressed to be small, and the decrease in the heat absorption performance due to the decrease in the evaporation temperature of the refrigerant can be prevented.

(変形例)
この実施形態では、外気吸熱暖房運転時に室外熱交換器6が凍結したと判別すると、内気導入状態の時には内気吸熱暖房運転に、外気導入状態の時には排気吸熱暖房運転にそれぞれ切り替えるよう構成したが、導入空気状態以外の要素によっていずれに切り替えるようにしても良いし、ユーザの選択によって切り替えるようにしても良い。
(Modification)
In this embodiment, when the outdoor heat exchanger 6 is determined to be frozen during the outdoor air endothermic heating operation, it is configured to switch to the inside air endothermic heating operation when the inside air is introduced, and to the exhaust endothermic heating operation when the outside air is introduced. It may be switched according to any element other than the introduced air state, or may be switched according to the user's selection.

この実施形態では、第1流路切替手段12は、第1三方弁12aと第2三方弁12bから構成されているが、単一の四方弁にて構成しても良い。   In this embodiment, the first flow path switching means 12 is composed of the first three-way valve 12a and the second three-way valve 12b, but may be composed of a single four-way valve.

(暖房運転の切り替えタイミングの変形例)
前記実施形態では、室外熱交換器6をエバポレータとして機能させる外気吸熱暖房運転時に室外熱交換器6が凍結すると、室内エバポレータ8で冷媒に吸熱させる内気吸熱暖房運転、又は、換気熱回収用エバポレータ13で冷媒に吸熱させる排気吸熱暖房運転に切り替えたが、次のような場合にも暖房運転の切替えを行うようにしても良い。
(Modification of switching timing of heating operation)
In the above embodiment, when the outdoor heat exchanger 6 freezes during the outdoor heat absorption heating operation in which the outdoor heat exchanger 6 functions as an evaporator, the indoor heat absorption heating operation in which the refrigerant is absorbed by the indoor evaporator 8 or the evaporator 13 for recovering ventilation heat. However, in the following cases, the heating operation may be switched.

つまり、窓晴らしをしたい場合、雨天等で快適性向上のために除湿したい場合にも、外気吸熱暖房運転から内気吸熱暖房運転や排気吸熱暖房運転に切り替えるようにしても良い。   That is, when it is desired to clear the window or to dehumidify in the rain to improve comfort, the outdoor air endothermic heating operation may be switched to the inside air endothermic heating operation or the exhaust endothermic heating operation.

1 車両用空気調和装置
2 蒸気圧縮式冷凍サイクル
3 圧縮機
4 室内コンデンサ
5 圧力調整手段
6 室外熱交換機
7 温度式膨張弁(減圧手段)
8 室内エバポレータ
11 ドラフタ用分岐路
12 第1流路切替手段
14 第1バイパス路
15 第2バイパス路
16 第2流路切替弁(第2流路切替手段)
26 加熱器(加熱手段)
28a フット吹出口
28b デフロスタ吹出口
28c ベント吹出口
30 制御手段
40 チューブ
42,43 タンク部
43A タンク部の下方側(液溜め部)
46 液溜め部
48,49,49A 仕切壁
S1 室外熱交換器通過空気温度検出手段(室外熱交換器通過空気温度検出センサ)
S2 冷媒温度検出手段(冷媒温度検出センサ)
S4 フット吹出温度検出手段(フット吹出温度検出センサ)
S5 デフロスタ・ベント吹出温度検出手段(デフロスタ・ベント吹出温度検出センサ)
S6 吸入空気温湿度検出手段(吸入空気温湿度検出センサ)
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Vapor compression refrigeration cycle 3 Compressor 4 Indoor condenser 5 Pressure adjustment means 6 Outdoor heat exchanger 7 Temperature type expansion valve (pressure reduction means)
DESCRIPTION OF SYMBOLS 8 Indoor evaporator 11 Draft branch path 12 1st flow path switching means 14 1st bypass path 15 2nd bypass path 16 2nd flow path switching valve (2nd flow path switching means)
26 Heater (heating means)
28a Foot outlet 28b Defroster outlet 28c Vent outlet 30 Control means 40 Tube 42, 43 Tank part 43A Lower side of tank part (liquid reservoir part)
46 Liquid reservoir 48, 49, 49A Partition wall S1 Outdoor heat exchanger passage air temperature detection means (outdoor heat exchanger passage air temperature detection sensor)
S2 Refrigerant temperature detection means (refrigerant temperature detection sensor)
S4 Foot blowing temperature detection means (foot blowing temperature detection sensor)
S5 Defroster / vent outlet temperature detection means (defroster / vent outlet temperature sensor)
S6 Intake air temperature / humidity detection means (intake air temperature / humidity detection sensor)

Claims (9)

冷媒を圧縮する圧縮機(3)と、
前記圧縮機(3)で圧縮された冷媒と車室内に供給される空気との間で熱交換し、空気を加熱する室内コンデンサ(4)と、
冷媒と車室外の空気との間で熱交換する室外熱交換器(6)と、
冷媒と車室内に供給される空気との間で熱交換し、空気を冷却する室内エバポレータ(8)と、
冷媒と車室内から車室外に排気する空気との間で熱交換する換気熱回収用エバポレータ(13)とを有し、
前記室外熱交換器(6)で冷媒に空気より吸熱させ、前記室内コンデンサ(4)で冷媒に空気へ放熱させる外気吸熱暖房運転と、前記室内エバポレータ(8)で冷媒に空気より吸熱させ、前記室内コンデンサ(4)で冷媒に空気へ放熱させる内気吸熱暖房運転と、前記換気熱回収用エバポレータ(13)で冷媒に空気より吸熱させ、前記室内コンデンサ(4)で冷媒に空気へ放熱させる排気吸熱暖房運転とを行うことができる蒸気圧縮式冷凍サイクル(2)と、
前記室外熱交換器(6)が凍結したことを判別する凍結判別手段(30)と、
前記凍結判別手段(30)が凍結したと判別すると、外気吸熱暖房運転から内気吸熱暖房運転又は排気吸熱暖房運転に運転を切り替える制御手段(30)とを備えたことを特徴とする車両用空気調和装置(1)。
A compressor (3) for compressing the refrigerant;
An indoor condenser (4) for exchanging heat between the refrigerant compressed by the compressor (3) and the air supplied to the passenger compartment to heat the air;
An outdoor heat exchanger (6) for exchanging heat between the refrigerant and the air outside the vehicle compartment;
An indoor evaporator (8) for exchanging heat between the refrigerant and the air supplied to the passenger compartment and cooling the air;
A ventilation heat recovery evaporator (13) for exchanging heat between the refrigerant and the air exhausted from the passenger compartment to the outside of the passenger compartment,
The outdoor heat exchanger (6) causes the refrigerant to absorb heat from the air, the indoor condenser (4) causes the refrigerant to radiate heat to the air, the indoor evaporator (8) causes the refrigerant to absorb heat from the air, An indoor heat absorption heating operation in which the refrigerant is radiated to the air by the indoor condenser (4), and an exhaust heat absorption that is made to absorb heat from the air by the ventilation heat recovery evaporator (13) and is radiated to the air by the indoor condenser (4). A vapor compression refrigeration cycle (2) capable of performing heating operation;
Freezing determination means (30) for determining that the outdoor heat exchanger (6) is frozen;
When it is determined that the freezing determination means (30) is frozen, the vehicle air conditioning is provided with a control means (30) for switching the operation from the outside air endothermic heating operation to the inside air endothermic heating operation or the exhaust endothermic heating operation. Device (1).
請求項1記載の車両用空気調和装置(1)であって、
前記制御手段(30)は、前記凍結判別手段(30)が凍結したと判別すると、内気導入状態の時には内気吸熱暖房運転に、外気導入状態の時には排気吸熱暖房運転にそれぞれ切り替えることを特徴とする車両用空気調和装置(1)。
The vehicle air conditioner (1) according to claim 1,
When it is determined that the freezing determination means (30) is frozen, the control means (30) switches to an inside air endothermic heating operation when the inside air is introduced and to an exhaust endothermic heating operation when the outside air is introduced. Vehicle air conditioner (1).
請求項1又は請求項2に記載の車両用空気調和装置(1)であって、
車室内の空気を前記換気熱回収用エバポレータ(13)を通して車室外に送風する送風機(29b)を有することを特徴とする車両用空気調和装置(1)。
The vehicle air conditioner (1) according to claim 1 or 2,
A vehicle air conditioner (1) having a blower (29b) that blows air inside the passenger compartment to the outside of the passenger compartment through the evaporator (13) for recovering ventilation heat.
請求項1〜請求項3のいずれかに記載の車両用空気調和装置(1)であって、
前記蒸気圧縮式冷凍サイクル(2)は、前記室外熱交換器(6)及び前記換気熱回収用エバポレータ(13)に供給する冷媒の圧力を調整できる圧力調整手段(5)と、前記室外熱交換器(6)をバイパスし、前記換気熱回収用エバポレータ(13)が配置された分岐ドラフタ用分岐路(11)と、前記室外熱交換器(6)及び前記換気熱回収用エバポレータ(13)をバイパスする第1バイパス路(14)と、冷媒を前記室外熱交換器(6)側に流すか前記換気熱回収用エバポレータ(13)に流すか前記第1バイパス路(14)に流すかを切り替えできる第1流路切替手段(12)と、前記室内エバポレータ(8)に供給する冷媒の圧力を減圧する減圧手段(7)と、前記室内エバポレータ(8)をバイパスする第2バイパス路(15)と、冷媒を前記室内エバポレータ(8)側に流すか前記第2バイパス路(15)に流すかを切り替えできる第2流路切替手段(16)とを備え、
外気吸熱暖房運転では、前記圧縮機(3)で圧縮された冷媒を前記室内コンデンサ(4)、前記圧力調整手段(5)、前記室外熱交換器(6)、前記第1バイパス路(15)を通って前記圧縮機(3)に戻る冷媒経路とし、冷媒を前記圧力調整手段(5)によって減圧し、前記室外熱交換器(6)で冷媒に空気より吸熱させ、
内気吸熱暖房運転では、前記圧縮機(3)で圧縮された冷媒を前記室内コンデンサ(4)、前記ドラフタ用分岐路(11)、前記減圧手段(7)、前記室内エバポレータ(8)を通って前記圧縮機(3)に戻る冷媒経路とし、冷媒を前記減圧手段(3)によって減圧し、前記室内エバポレータ(8)で冷媒に空気より吸熱させ、
排気吸熱暖房運転では、前記圧縮機(3)で圧縮された冷媒を前記室内コンデンサ(4)、前記圧力調整手段(5)、前記換気熱回収用エバポレータ(13)を通って前記圧縮機(3)に戻る冷媒経路とし、冷媒を前記圧力調整手段(5)によって減圧し、前記換気熱回収用エバポレータ(13)で冷媒に空気より吸熱させることを特徴とする車両用空気調和装置(1)。
The vehicle air conditioner (1) according to any one of claims 1 to 3,
The vapor compression refrigeration cycle (2) includes pressure adjusting means (5) capable of adjusting the pressure of refrigerant supplied to the outdoor heat exchanger (6) and the ventilation heat recovery evaporator (13), and the outdoor heat exchange. A branch drafter branch passage (11) in which the ventilator heat recovery evaporator (13) is disposed, the outdoor heat exchanger (6), and the ventilating heat recovery evaporator (13). Switching between bypassing the first bypass path (14) and whether the refrigerant flows to the outdoor heat exchanger (6) side, the ventilation heat recovery evaporator (13) or the first bypass path (14) A first flow path switching means (12) capable of reducing pressure of the refrigerant supplied to the indoor evaporator (8), and a second bypass path (15) bypassing the indoor evaporator (8). Includes the indoor evaporator (8) or flow to the side the second bypass passage and the second flow path switching means for switching whether flow (15) (16) of the refrigerant,
In the outdoor heat absorption heating operation, the refrigerant compressed by the compressor (3) is converted into the indoor condenser (4), the pressure adjusting means (5), the outdoor heat exchanger (6), and the first bypass path (15). A refrigerant path that passes back to the compressor (3), decompresses the refrigerant by the pressure adjusting means (5), causes the refrigerant to absorb heat from the air in the outdoor heat exchanger (6),
In the inside air endothermic heating operation, the refrigerant compressed by the compressor (3) passes through the indoor condenser (4), the branch for branch (11), the pressure reducing means (7), and the indoor evaporator (8). The refrigerant path returns to the compressor (3), the refrigerant is decompressed by the decompression means (3), and the indoor evaporator (8) causes the refrigerant to absorb heat from the air,
In the exhaust heat absorption heating operation, the refrigerant compressed by the compressor (3) passes through the indoor condenser (4), the pressure adjusting means (5), the ventilation heat recovery evaporator (13), and the compressor (3 The vehicle air conditioner (1) is characterized in that the refrigerant is depressurized by the pressure adjusting means (5), and the ventilation heat recovery evaporator (13) causes the refrigerant to absorb heat from the air.
請求項4記載の車両用空気調和装置(1)であって、
前記蒸気圧縮式冷凍サイクル(2)は、前記室内エバポレータ(8)で冷媒に空気より吸熱させ、前記室内コンデンサ(4)と前記室外熱交換器(6)で冷媒に空気に放熱させる冷房リヒート運転を行うことができ、
冷房リヒート運転では、前記圧縮機(3)で圧縮された冷媒を前記室内コンデンサ(4)、前記圧力調整手段(5)、前記室外熱交換器(6)、前記減圧手段(7)、前記室内エバポレータ(8)を通って前記圧縮機(3)に戻る冷媒経路とし、冷媒を前記圧力調整手段(5)によって減圧せずに通し、前記室外熱交換器(6)で冷媒に空気に放熱させることを特徴とする車両用空気調和装置(1)。
A vehicle air conditioner (1) according to claim 4,
The vapor compression refrigeration cycle (2) has a cooling reheat operation in which the indoor evaporator (8) causes the refrigerant to absorb heat from the air, and the indoor condenser (4) and the outdoor heat exchanger (6) release heat to the refrigerant. Can do
In the cooling reheat operation, the refrigerant compressed by the compressor (3) is converted into the indoor condenser (4), the pressure adjusting means (5), the outdoor heat exchanger (6), the pressure reducing means (7), the indoor A refrigerant path is returned to the compressor (3) through the evaporator (8), and the refrigerant is passed through the pressure adjusting means (5) without being depressurized, and is radiated to the refrigerant by the outdoor heat exchanger (6). The vehicle air conditioner (1) characterized by the above-mentioned.
請求項1〜請求項5のいずれかに記載の車両用空気調和装置であって、
前記室外熱交換器(6)を通過した空気温度を検出する室外熱交換器通過空気温度検出手段(S1)と、前記室外熱交換器(6)の出口側の冷媒温度を検出する冷媒温度検出手段(S2)とを有し、
前記凍結判別手段(30)は、前記室外熱交換器通過空気温度検出手段(S1)の検出した前記室外熱交換器(6)の通過空気温度と前記冷媒温度検出手段(S2)の検出した前記室外熱交換器(6)の冷媒出口温度との差異より凍結の有無を判別することを特徴とする車両用空気調和装置(1)。
The vehicle air conditioner according to any one of claims 1 to 5,
The outdoor heat exchanger passing air temperature detection means (S1) for detecting the temperature of the air that has passed through the outdoor heat exchanger (6), and the refrigerant temperature detection for detecting the refrigerant temperature on the outlet side of the outdoor heat exchanger (6). Means (S2),
The freezing determination means (30) is configured to detect the passage air temperature of the outdoor heat exchanger (6) detected by the outdoor heat exchanger passage air temperature detection means (S1) and the refrigerant temperature detection means (S2). The vehicle air conditioner (1), wherein the presence or absence of freezing is determined from the difference from the refrigerant outlet temperature of the outdoor heat exchanger (6).
請求項1〜請求項6のいずれかに記載の車両用空気調和装置(1)であって、
前記室内コンデンサ(4)の他に、車室内に供給される空気を加熱する加熱手段(26)と、
フット吹出口(28a)より吹き出す空気温度を検出するフット吹出温度検出手段(S4)と、
デフロスタ吹出口(28b)及びベント吹出口(28c)より吹き出す空気温度を検出するデフロスタ・ベント吹出温度検出手段(S5)とを有し、
前記制御手段(30)は、前記フット吹出温度検出手段(S4)と前記デフロスタ・ベント吹出温度検出手段(S5)の検出温度に基づいて前記加熱手段(26)の加熱量を制御することを特徴とする車両用空気調和装置(1)。
The vehicle air conditioner (1) according to any one of claims 1 to 6,
In addition to the indoor condenser (4), heating means (26) for heating the air supplied to the vehicle interior;
Foot blowing temperature detecting means (S4) for detecting the temperature of air blown from the foot blowing outlet (28a);
Defroster vent outlet temperature detecting means (S5) for detecting the air temperature blown out from the defroster outlet (28b) and the vent outlet (28c);
The control means (30) controls the heating amount of the heating means (26) based on the detected temperatures of the foot blowing temperature detecting means (S4) and the defroster / vent blowing temperature detecting means (S5). A vehicle air conditioner (1).
請求項1〜請求項7のいずれかに記載の車両用空気調和装置(1)であって、
前記室内エバポレータ(8)及び前記室内コンデンサ(4)に供給する空気の温度と湿度を検出する吸入空気温湿度検出手段(S6)と、
外気温度を検出する外気温度検出手段(S7)とを有し、
前記制御手段(30)は、前記外気温度検出手段(S7)の検出温度を窓の温度とみなして、前記吸入空気温湿度検出手段(S6)と前記外気温度検出手段(S7)より車室内の露点温度を算出し、前記室内エバポレータ(8)の除湿量が窓曇りの発生しない程度に抑えた範囲で前記室内エバポレータ(8)を制御することを特徴とする車両用空気調和装置(1)。
A vehicle air conditioner (1) according to any one of claims 1 to 7,
Intake air temperature / humidity detection means (S6) for detecting the temperature and humidity of the air supplied to the indoor evaporator (8) and the indoor condenser (4);
Outside temperature detecting means (S7) for detecting outside temperature,
The control means (30) regards the detected temperature of the outside air temperature detecting means (S7) as the temperature of the window, and detects the temperature inside the vehicle compartment from the intake air temperature / humidity detecting means (S6) and the outside air temperature detecting means (S7). A vehicle air conditioner (1) characterized in that a dew point temperature is calculated and the indoor evaporator (8) is controlled in a range in which a dehumidification amount of the indoor evaporator (8) is suppressed to such an extent that window fogging does not occur.
請求項1〜請求項8のいずれかに記載の車両用空気調和装置(1)であって、
前記室外熱交換器(6),(6A)は、複数のチューブ(40)と複数のチューブ(40)の両端側に設けられた一対のタンク部(42),(43),(43A)とを有し、前記タンク部(42),(43),(43A)内には仕切壁(48),(49),(49A)を設け、
前記室外熱交換器(6),(6A)内の冷媒流れ経路の内で最も下流側に位置する仕切壁(49),(49A)は、冷媒を液溜め部(46),(43A)にガイドでき、且つ、冷媒を小さな流通抵抗で通すよう構成されたことを特徴とする車両用空気調和装置(1)。
A vehicle air conditioner (1) according to any one of claims 1 to 8,
The outdoor heat exchangers (6), (6A) include a plurality of tubes (40) and a pair of tank portions (42), (43), (43A) provided on both ends of the tubes (40). Partition walls (48), (49), (49A) are provided in the tank portions (42), (43), (43A),
The partition walls (49) and (49A) located on the most downstream side in the refrigerant flow paths in the outdoor heat exchangers (6) and (6A) are arranged so that the refrigerant enters the liquid reservoirs (46) and (43A). A vehicle air conditioner (1) characterized by being capable of guiding and allowing a refrigerant to pass therethrough with a small flow resistance.
JP2010281497A 2010-12-17 2010-12-17 Air conditioner for vehicles Active JP5617596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010281497A JP5617596B2 (en) 2010-12-17 2010-12-17 Air conditioner for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010281497A JP5617596B2 (en) 2010-12-17 2010-12-17 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2012126328A true JP2012126328A (en) 2012-07-05
JP5617596B2 JP5617596B2 (en) 2014-11-05

Family

ID=46643870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010281497A Active JP5617596B2 (en) 2010-12-17 2010-12-17 Air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP5617596B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150049007A (en) * 2013-10-29 2015-05-08 현대자동차주식회사 Vehicle air-conditioning apparatus using ventilation heat recovery
JP2018100031A (en) * 2016-12-21 2018-06-28 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioning device
WO2019188651A1 (en) * 2018-03-28 2019-10-03 株式会社石川エナジーリサーチ Air temperature regulation system for vehicle
WO2020066719A1 (en) * 2018-09-27 2020-04-02 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155245A (en) * 1991-12-02 1993-06-22 Honda Motor Co Ltd Automotive air-conditioner
JPH05185825A (en) * 1992-01-13 1993-07-27 Nippondenso Co Ltd Car air conditioner
JPH05310037A (en) * 1992-05-08 1993-11-22 Mitsubishi Heavy Ind Ltd Automotive air-conditioner
JPH0661524U (en) * 1993-02-15 1994-08-30 株式会社日本クライメイトシステムズ Vehicle air conditioner
JPH07132729A (en) * 1993-11-11 1995-05-23 Zexel Corp Air conditioner
JPH07172154A (en) * 1993-12-20 1995-07-11 Nippondenso Co Ltd Air conditioning device for automobile
JPH07195935A (en) * 1994-01-10 1995-08-01 Nippondenso Co Ltd Air conditioning device for vehicle
JPH07266860A (en) * 1994-02-14 1995-10-17 Calsonic Corp Heat pump type air conditioner for vehicle
JPH11254956A (en) * 1998-03-09 1999-09-21 Zexel:Kk Vehicular air-conditioning device
US6138466A (en) * 1998-11-12 2000-10-31 Daimlerchrysler Corporation System for cooling electric vehicle batteries
JP2001097026A (en) * 1999-09-28 2001-04-10 Calsonic Kansei Corp Heat pump type air conditioner for automobile
JP2001138735A (en) * 1992-05-25 2001-05-22 Nissan Motor Co Ltd Heat pump type air conditioner for vehicle
JP2003063236A (en) * 2001-08-27 2003-03-05 Denso Corp Air conditioner for vehicle
JP2004353936A (en) * 2003-05-28 2004-12-16 Denso Corp Heat exchanger and liquid receiver-integrated condenser
JP2007024470A (en) * 2005-07-21 2007-02-01 Denso Corp Heating cycle device, controller therefor, and control method therefor
JP2009113610A (en) * 2007-11-06 2009-05-28 Honda Motor Co Ltd Air conditioning system for vehicle
JP2009234387A (en) * 2008-03-26 2009-10-15 Calsonic Kansei Corp Air conditioner

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155245A (en) * 1991-12-02 1993-06-22 Honda Motor Co Ltd Automotive air-conditioner
JPH05185825A (en) * 1992-01-13 1993-07-27 Nippondenso Co Ltd Car air conditioner
JPH05310037A (en) * 1992-05-08 1993-11-22 Mitsubishi Heavy Ind Ltd Automotive air-conditioner
JP2001138735A (en) * 1992-05-25 2001-05-22 Nissan Motor Co Ltd Heat pump type air conditioner for vehicle
JPH0661524U (en) * 1993-02-15 1994-08-30 株式会社日本クライメイトシステムズ Vehicle air conditioner
JPH07132729A (en) * 1993-11-11 1995-05-23 Zexel Corp Air conditioner
JPH07172154A (en) * 1993-12-20 1995-07-11 Nippondenso Co Ltd Air conditioning device for automobile
JPH07195935A (en) * 1994-01-10 1995-08-01 Nippondenso Co Ltd Air conditioning device for vehicle
JPH07266860A (en) * 1994-02-14 1995-10-17 Calsonic Corp Heat pump type air conditioner for vehicle
JPH11254956A (en) * 1998-03-09 1999-09-21 Zexel:Kk Vehicular air-conditioning device
US6138466A (en) * 1998-11-12 2000-10-31 Daimlerchrysler Corporation System for cooling electric vehicle batteries
JP2001097026A (en) * 1999-09-28 2001-04-10 Calsonic Kansei Corp Heat pump type air conditioner for automobile
JP2003063236A (en) * 2001-08-27 2003-03-05 Denso Corp Air conditioner for vehicle
JP2004353936A (en) * 2003-05-28 2004-12-16 Denso Corp Heat exchanger and liquid receiver-integrated condenser
JP2007024470A (en) * 2005-07-21 2007-02-01 Denso Corp Heating cycle device, controller therefor, and control method therefor
JP2009113610A (en) * 2007-11-06 2009-05-28 Honda Motor Co Ltd Air conditioning system for vehicle
JP2009234387A (en) * 2008-03-26 2009-10-15 Calsonic Kansei Corp Air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150049007A (en) * 2013-10-29 2015-05-08 현대자동차주식회사 Vehicle air-conditioning apparatus using ventilation heat recovery
KR102019517B1 (en) 2013-10-29 2019-09-09 현대자동차주식회사 Vehicle air-conditioning apparatus using ventilation heat recovery
JP2018100031A (en) * 2016-12-21 2018-06-28 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioning device
WO2018116962A1 (en) * 2016-12-21 2018-06-28 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioning device for vehicle
WO2019188651A1 (en) * 2018-03-28 2019-10-03 株式会社石川エナジーリサーチ Air temperature regulation system for vehicle
JPWO2019188651A1 (en) * 2018-03-28 2020-04-30 株式会社石川エナジーリサーチ Air conditioning system for vehicles
WO2020066719A1 (en) * 2018-09-27 2020-04-02 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP2020050155A (en) * 2018-09-27 2020-04-02 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle

Also Published As

Publication number Publication date
JP5617596B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5468982B2 (en) Air conditioner for vehicles
JP6855281B2 (en) Vehicle air conditioner
JP6323489B2 (en) Heat pump system
JP3966044B2 (en) Air conditioner
JP6189098B2 (en) Heat pump air conditioning system for vehicles
KR101443645B1 (en) Air conditoner for electric vehicle
CN105764727A (en) Heat pump system
CN106608157B (en) Air conditioning system and air conditioning control method
JP6415943B2 (en) Heat pump air conditioning system for vehicles
CN112424006B (en) Air conditioner for vehicle
JPH07232547A (en) Air conditioner for vehicle
US11828507B2 (en) Air conditioning system and control method therefor
JP5617596B2 (en) Air conditioner for vehicles
JP2013180628A (en) Vehicle air conditioning device
JP2020138637A (en) Air conditioning system
JP5510374B2 (en) Heat exchange system
US20210260955A1 (en) Heat pump system
JP4274886B2 (en) Heat pump air conditioner
JP5142032B2 (en) Air conditioner for vehicles
JP2014019179A (en) Air conditioner for vehicle
JP5668455B2 (en) Air conditioner for vehicles
KR20210097370A (en) Combined valve unit and heat pump system for vehicle
CN215892609U (en) Cold and hot air conditioning system and single cold air conditioning system
WO2023017763A1 (en) Vehicle air conditioning system and vehicle air conditioning method
CN110940106B (en) Air conditioning system and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5617596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250