JP2012102029A - Therapeutic agent for acetaminophen liver damage - Google Patents

Therapeutic agent for acetaminophen liver damage Download PDF

Info

Publication number
JP2012102029A
JP2012102029A JP2010250367A JP2010250367A JP2012102029A JP 2012102029 A JP2012102029 A JP 2012102029A JP 2010250367 A JP2010250367 A JP 2010250367A JP 2010250367 A JP2010250367 A JP 2010250367A JP 2012102029 A JP2012102029 A JP 2012102029A
Authority
JP
Japan
Prior art keywords
apap
ozagrel
administration
liver
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010250367A
Other languages
Japanese (ja)
Inventor
Yoichi Ishizuka
洋一 石塚
Yoshiro Tomishima
喜朗 富島
Mitsuru Irikura
充 入倉
Tetsuyoshi Irie
徹美 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kissei Pharmaceutical Co Ltd
Kumamoto University NUC
Original Assignee
Kissei Pharmaceutical Co Ltd
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kissei Pharmaceutical Co Ltd, Kumamoto University NUC filed Critical Kissei Pharmaceutical Co Ltd
Priority to JP2010250367A priority Critical patent/JP2012102029A/en
Publication of JP2012102029A publication Critical patent/JP2012102029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel pharmaceutical composition for treating or preventing acetaminophen liver damage.SOLUTION: The pharmaceutical composition for treating or preventing acetaminophen liver damage includes (E)-3-[p-(1H-imidazole-1-ylmethyl)phenyl]-2-propenoate (ozagrel) or its pharmacologically acceptable salt as an active ingredient. The ozagrel or its pharmacologically acceptable salt displays remarkable suppression effect on liver tissue damage such as suppression in increase of liver alanine aminotransferase (ALT) and increase of the total liver glutathione level when it is administrated before/after administrating acetaminophen.

Description

本発明は、アセトアミノフェン肝傷害の治療又は予防のための医薬組成物に関するものである。   The present invention relates to a pharmaceutical composition for the treatment or prevention of acetaminophen liver injury.

さらに詳しく述べれば、本発明は、式:
で表される(E)-3-[p-(1H-イミダゾール-1-イルメチル)フェニル]-2-プロペン酸 〔一般名:オザグレル(Ozagrel)〕又はその薬理学的に許容される塩を有効成分として含有する、アセトアミノフェン肝傷害の治療又は予防のための医薬組成物に関するものである。
More specifically, the present invention provides the formula:
(E) -3- [p- (1H-imidazol-1-ylmethyl) phenyl] -2-propenoic acid [generic name: Ozagrel] or a pharmacologically acceptable salt thereof is effective The present invention relates to a pharmaceutical composition for treating or preventing acetaminophen liver injury, which is contained as a component.

アセトアミノフェン(以下、「APAP」と称することがある)は、アニリン系の非ステロイド性消炎鎮痛剤(NSAIDs)で、適正な使用量では安全で有効な解熱鎮痛薬であるが、小児の誤飲及び自殺企図のような過量投与等により中毒性肝傷害を惹起することが知られている。投与されたAPAPは、肝臓において約50%がグルクロン酸抱合され、約30%が硫酸抱合され、5〜10%がチトクロームP450(CYP)2E1により、N-アセチル-p-ベンゾキノンイミン(NAPQI)へと代謝され、さらにグルタチオン抱合されて尿中へと排泄される。NAPQIが何らかの原因により肝細胞内で多量に生成され蓄積すると肝傷害が惹起される。例えば、硫酸抱合能やグルタチオン合成能が低下している高齢者や、CYP2E1を誘導する薬物の服用や慢性の飲酒によりグルタチオン濃度が低下している人では、肝傷害が発症しやすく、重篤化する危険性も指摘されている(例えば、非特許文献1)。   Acetaminophen (hereinafter sometimes referred to as “APAP”) is an aniline-based non-steroidal anti-inflammatory analgesic (NSAIDs), which is a safe and effective antipyretic analgesic when used in an appropriate amount. It is known to cause toxic liver injury by overdose such as drinking and suicide attempts. APAP administered was about 50% glucuronidated, about 30% sulfated and 5-10% cytochrome P450 (CYP) 2E1 to N-acetyl-p-benzoquinoneimine (NAPQI) in the liver And is further conjugated with glutathione and excreted in the urine. When NAPQI is produced and accumulated in large amounts in hepatocytes for some reason, liver injury is caused. For example, in elderly people who have reduced ability to sulphate or synthesize glutathione, or who have lower glutathione levels due to taking CYP2E1-inducing drugs or chronic drinking, liver damage is likely to develop and become severe. There is also a point of danger (eg, Non-Patent Document 1).

薬物性肝傷害は、被疑薬を速やかに中止することが治療の原則であり、軽度の肝障害は自然に改善する。しかしながら、トランスアミナーゼ上昇や黄疸が遷延する場合には薬物療法を要する。APAP服用による肝傷害には、APAPの服用後10時間以内であれば肝グルタチオンを補填する目的で前駆体であるN-アセチルシステイン(NAC)の点滴静注が有効であるが、日本では静注薬が市販されていないため、内服液又は吸入液を、初回140 mg/kg、以後4時間ごとに70 mg/kgを17回、計18回、経口又は経鼻胃管による投与する方法が用いられている(非特許文献1又は2参照)。従って、APAP服用後、更に時間が経過して運ばれた患者などでは必ずしも十分な効果が得られない場合もあり、より使いやすい新規治療薬の早期開発が望まれている。   For drug-induced liver injury, the principle of treatment is to discontinue the suspected drug promptly, and mild liver injury improves spontaneously. However, if transaminase elevation or jaundice persists, drug therapy is required. For liver injury due to APAP, intravenous infusion of N-acetylcysteine (NAC), a precursor, is effective for the purpose of supplementing liver glutathione within 10 hours after APAP. Since the drug is not marketed, oral or inhalation solution is initially administered at 140 mg / kg, then 70 mg / kg every 4 hours 17 times, total 18 times, orally or via nasogastric tube (See Non-Patent Document 1 or 2). Therefore, there are cases where sufficient effects may not always be obtained in patients who have been transported after elapse of APAP, and early development of new therapeutic agents that are easier to use is desired.

オザグレル又はその薬理学的に許容される塩はトロンボキサン(TX)合成酵素阻害作用を有し、オザグレル塩酸塩水和物として気管支喘息治療剤、オザグレルナトリウムとしてクモ膜下出血術後の脳血管攣縮及びこれに伴う脳虚血症状の改善、脳血栓症(急性期)に伴う運動障害の改善のための治療薬として用いられている。その他に、角膜疾患(特許文献1参照)、アンギオテンシン変換酵素阻害薬による空咳(特許文献2参照)等においてオザグレルの有効性が報告されている。   Ozagrel or a pharmacologically acceptable salt thereof has thromboxane (TX) synthase inhibitory action, and bronchial asthma treatment agent as ozagrel hydrochloride hydrate, cerebral vasospasm after subarachnoid hemorrhage as ozagrel sodium and this It is used as a therapeutic agent for improving cerebral ischemic symptoms associated with cerebral ischemia and motor disorders associated with cerebral thrombosis (acute stage). In addition, the effectiveness of ozagrel has been reported in corneal diseases (see Patent Document 1), dry cough caused by an angiotensin converting enzyme inhibitor (see Patent Document 2), and the like.

実験的な肝傷害モデルにおいて、オザグレルの効果が報告されている。具体的には、肝薬物代謝酵素により生じるフリーラジカルが肝細胞の変性壊死等を引き起こすとされている四塩化炭素誘発肝傷害モデルにおいて、オザグレルがトランスアミナーゼGOT(AST)及びGPT(ALT)の上昇抑制及び病理組織学的な改善を示すことが報告されている(非特許文献3参照)。bacterial lipopolysaccharide(LPS)及び抗basic liver protein(BLP)抗体誘発肝障害モデルにおいて、オザグレルがGOT(AST)及びGPT(ALT)の上昇抑制を示すことが報告されている(非特許文献4参照)。しかしながら、これらの肝障害モデルとAPAP肝傷害は、肝障害を引き起こす原因薬物や毒性代謝物がAPAP肝障害のものと明らかに異なっている。また、肝虚血−再灌流障害モデルにおいて、オザグレルはGPT(ALT)の上昇抑制及び肝組織血流の改善を示し、生存率が向上することが報告されている(非特許文献5参照)。
しかしながら、上記のいずれの文献にも、オザグレルがAPAP肝傷害の治療又は予防に有用であることについては記載も示唆もない。
The effect of ozagrel has been reported in an experimental liver injury model. Specifically, ozagrel inhibits transaminase GOT (AST) and GPT (ALT) elevation in a model of carbon tetrachloride-induced liver injury in which free radicals produced by liver drug-metabolizing enzymes are thought to cause hepatocyte degeneration. And it has been reported that histopathological improvement is shown (refer nonpatent literature 3). It has been reported that ozagrel exhibits inhibition of elevation of GOT (AST) and GPT (ALT) in bacterial lipopolysaccharide (LPS) and anti-basic liver protein (BLP) antibody-induced liver injury models (see Non-Patent Document 4). However, these liver injury models and APAP liver injury are clearly different from those of APAP liver injury in the causative drugs and toxic metabolites that cause liver injury. In addition, in the liver ischemia-reperfusion injury model, ozagrel has been reported to show an increase suppression of GPT (ALT) and an improvement in hepatic tissue blood flow, and the survival rate is improved (see Non-Patent Document 5).
However, none of the above references describes or suggests that ozagrel is useful for the treatment or prevention of APAP liver injury.

国際公開2007/023877号パンフレットInternational Publication No. 2007/023877 Pamphlet 国際公開97/22362号パンフレットWO 97/22362 pamphlet 厚生労働省 平成20年4月、重篤副作用疾患別対応マニュアル 薬物性肝傷害 p.31−32Ministry of Health, Labor and Welfare April 2008, Manual for Response to Severe Side Effects Disease Drug-induced liver injury p. 31-32 今日の治療指針2003年版、医学書院出版、p.365Today's Treatment Guidelines 2003, Medical School Publishing, p. 365 永井博弌ほか5名、Prostaglandins、1989年、38巻、4号 p.439−446Hiroi Nagai and five others, Prostaglandins, 1989, 38, 4 p. 439-446 永井博弌ほか5名、Japan. J. Pharmacol.、1989年、51巻、p.191−197Hiroi Nagai and five others, Japan. J. Pharmacol., 1989, 51, p. 191-197 J Iidaほか11名、Transplant. Proc.、1999年、31巻、p.1061−1062J Iida and 11 others, Transplant. Proc., 1999, 31, p. 1061-1062

本発明の課題は、新規なAPAP肝傷害の治療又は予防のための医薬組成物を提供することである。   An object of the present invention is to provide a novel pharmaceutical composition for treating or preventing APAP liver injury.

本発明者らは上記課題を解決すべく鋭意研究を行った結果、APAP投与前又は投与後に、オザグレル塩酸塩を投与することにより、驚くべきことに、肝トランスアミナーゼの上昇抑制、肝グルタチオン量の増加、肝組織傷害の顕著な抑制等を示すことを初めて見出し、オザグレル又はその薬理学的に許容される塩を含有する医薬組成物が、APAP肝障害の治療又は予防のために極めて有効であるという知見を得、本発明をなすに至った。   As a result of intensive studies to solve the above problems, the present inventors surprisingly suppressed the increase of liver transaminase and increased the amount of liver glutathione by administering ozagrel hydrochloride before or after APAP administration. For the first time, it has been found to show significant suppression of liver tissue injury, and the pharmaceutical composition containing ozagrel or a pharmacologically acceptable salt thereof is extremely effective for the treatment or prevention of APAP liver injury Knowledge was acquired and it came to make this invention.

即ち、本発明は、 That is, the present invention

〔1〕オザグレル又はその薬理学的に許容される塩を有効成分として含有する、アセトアミノフェン肝傷害の治療又は予防のための医薬組成物; [1] A pharmaceutical composition for treating or preventing acetaminophen liver injury, comprising ozagrel or a pharmacologically acceptable salt thereof as an active ingredient;

〔2〕オザグレル塩酸塩を有効成分として含有する、前記〔1〕記載の医薬組成物; [2] The pharmaceutical composition according to the above [1], comprising ozagrel hydrochloride as an active ingredient;

〔3〕剤型が注射剤である前記〔1〕又は〔2〕記載の医薬組成物;等に関するものである。 [3] The pharmaceutical composition according to the above [1] or [2], wherein the dosage form is an injection;

本発明において、「アセトアミノフェン肝傷害」とは、アセトアミノフェンの投与により惹起される薬物性肝障害をいい、例えば、アラニントランスアミナーゼ(ALT)の上昇や肝細胞組織の変性や壊死などの肝臓傷害及びそれらに起因する諸症状(黄疸、全身倦怠感等)が挙げられる。   In the present invention, “acetaminophen liver injury” refers to drug-induced liver injury caused by administration of acetaminophen, for example, liver such as elevation of alanine transaminase (ALT), degeneration of hepatocyte tissue, or necrosis. Injuries and various symptoms resulting from them (jaundice, general malaise, etc.) can be mentioned.

本発明において、APAP肝傷害の予防としては、APAP肝傷害の発現や重篤化のリスクが高い人(例えば、高齢者、CYP2E1を誘導する薬物を継続投与している患者、慢性の飲酒者等)に、予め又はAPAPと同時に投与することによりAPAP肝傷害の発現や重篤化を予防すること等が挙げられる。APAP肝傷害の治療としては、APAP肝傷害が発現している患者に事後的に投与することによりAPAP肝傷害の症状を改善し、又は重篤化を抑制すること等が挙げられる。   In the present invention, the prevention of APAP liver injury includes a person who has a high risk of developing or serious APAP liver injury (for example, an elderly person, a patient who continuously administers a drug that induces CYP2E1, a chronic drinker, etc. ) To prevent the onset or seriousness of APAP liver injury by administering in advance or simultaneously with APAP. Examples of the treatment of APAP liver injury include improving the symptoms of APAP liver injury or suppressing its severity by subsequent administration to a patient who has developed APAP liver injury.

本発明の医薬組成物の有効成分であるオザグレル又はその薬理学的に許容される塩は、公知の方法(例えば、特許第1395666号公報)、又はそれらに準じた方法により容易に製造することができ、市販のものを購入(例えば、APAC Pharmaceutical, LLC)することもできる。   Ozagrel or a pharmacologically acceptable salt thereof, which is an active ingredient of the pharmaceutical composition of the present invention, can be easily produced by a known method (for example, Japanese Patent No. 1395666) or a method analogous thereto. Commercially available products (for example, APAC Pharmaceutical, LLC) can also be purchased.

本発明の医薬組成物の有効成分であるオザグレルは薬理学的に許容される塩とすることができる。このような塩としては、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸などの鉱酸との酸付加塩、ギ酸、酢酸、メタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、プロピオン酸、クエン酸、コハク酸、酒石酸、フマル酸、酪酸、シュウ酸、マロン酸、マレイン酸、乳酸、リンゴ酸、炭酸、安息香酸、グルタミン酸、アスパラギン酸等の有機酸との酸付加塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、亜鉛塩、リチウム塩、アルミニウム塩等の無機塩基との塩、N−メチル−D−グルカミン、N,N’−ジベンジルエチレンジアミン、2−アミノエタノール、トリス(ヒドロキシメチル)アミノメタン、アルギニン、リジン、ピペラジン、コリン、ジエチルアミン、4−フェニル−シクロヘキシルアミン等の有機塩基との付加塩等を挙げることができ、塩酸塩又はナトリウム塩が好ましい。   Ozagrel which is an active ingredient of the pharmaceutical composition of the present invention can be made into a pharmacologically acceptable salt. Such salts include acid addition salts with mineral acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, methanesulfonic acid, benzenesulfonic acid, p-toluene. Acid addition with organic acids such as sulfonic acid, propionic acid, citric acid, succinic acid, tartaric acid, fumaric acid, butyric acid, oxalic acid, malonic acid, maleic acid, lactic acid, malic acid, carbonic acid, benzoic acid, glutamic acid, aspartic acid Salts, sodium salts, potassium salts, calcium salts, magnesium salts, zinc salts, salts with inorganic bases such as lithium salts, aluminum salts, N-methyl-D-glucamine, N, N′-dibenzylethylenediamine, 2-amino Ethanol, tris (hydroxymethyl) aminomethane, arginine, lysine, piperazine, choline, diethylamine, 4-phenyl-cyclohexyla An addition salt with an organic base such as min can be mentioned, and hydrochloride or sodium salt is preferred.

本発明において、薬理学的に許容される塩には、水又はエタノール等の薬理学的に許容される溶媒との溶媒和物も含まれ、例えば、オザグレル塩酸塩の1水和物が挙げられる。   In the present invention, the pharmacologically acceptable salt includes a solvate with a pharmacologically acceptable solvent such as water or ethanol, for example, monohydrate of ozagrel hydrochloride. .

本発明の医薬組成物を実際の予防又は治療に用いる場合、その有効成分であるオザグレル又はその薬理学的に許容される塩の投与量は、患者の年齢、性別、体重、疾患及び治療の程度等により適宜決定されるが、例えば、成人1日当たり経口投与の場合概ね100〜800 mg、より好ましくは、200〜400 mgの範囲で、一回又は数回に分けて投与することができ、非経口投与の場合概ね10〜160 mg、より好ましくは、20〜80 mgの範囲で、一回又は数回に分けて、あるいは持続的に投与することができる。   When the pharmaceutical composition of the present invention is used for actual prevention or treatment, the dose of ozagrel or a pharmacologically acceptable salt thereof, which is an active ingredient thereof, depends on the age, sex, weight, disease and degree of treatment of the patient. For example, in the case of oral administration per day for an adult, it can be administered in a single dose or divided into several doses in the range of generally about 100 to 800 mg, more preferably 200 to 400 mg. In the case of oral administration, it can be administered in a dose of about 10 to 160 mg, more preferably 20 to 80 mg, once or divided into several doses or continuously.

本発明の医薬組成物を実際の予防又は治療に用いる場合、用法に応じ、経口的又は非経口的に種々の剤型のものが使用され、例えば、散剤、細粒剤、顆粒剤、錠剤、カプセル剤、ドライシロップ剤、注射剤等が挙げられる。患者の状態により経口投与が困難な時は注射剤の使用(持続静注等)が好ましい。   When the pharmaceutical composition of the present invention is used for actual prevention or treatment, various dosage forms are used orally or parenterally depending on the usage, such as powders, fine granules, granules, tablets, Capsules, dry syrups, injections and the like can be mentioned. When oral administration is difficult depending on the patient's condition, the use of injections (continuous intravenous injection, etc.) is preferred.

本発明の医薬組成物は、その剤形に応じ薬剤学的に公知の手法に従い、適当な賦形剤、崩壊剤、結合剤、滑沢剤などの医薬品添加物と適宜混合することにより製剤化することができる。   The pharmaceutical composition of the present invention is formulated by mixing with appropriate excipients, disintegrants, binders, lubricants and other pharmaceutical additives according to pharmacologically known methods according to the dosage form. can do.

例えば、錠剤は、市販品を入手するか、有効成分に、適当な賦形剤、崩壊剤、結合剤、滑沢剤などを加え、常法に従い打錠して錠剤とし、さらに必要に応じ、適宜コーティングを施し、フィルムコート錠、糖衣錠、腸溶性皮錠などにすることもできる。例えば、散剤は、有効成分に必要に応じ、適当な賦形剤、滑沢剤などを加え、よく混和して散剤とすることもできる。例えば、カプセル剤は、有効成分に、適当な賦形剤、滑沢剤などを加え、よく混和した後、又は常法に従い顆粒又は細粒とした後、適当なカプセルに充填してカプセル剤とすることもできる。さらに、このような経口投与製剤の場合は予防又は治療方法に応じて、速放性もしくは徐放性製剤とすることもできる。
例えば、注射剤は、市販品を入手するか、有効成分に、適当な希釈剤などを加え、必要に応じて、防腐剤、等張化剤、緩衝剤、乳化剤、分散剤、安定化、溶解補助剤などの医薬品添加剤を添加して、注射剤とすることもできる。さらにこのような注射剤の場合、治療の利便性に応じてアンプル製剤、バイアル製剤、プレフィルドシリンジ製剤などとすることもできる。
For example, a tablet is a commercially available product, or an appropriate excipient, a disintegrant, a binder, a lubricant, etc. are added to the active ingredient, and tableted into a tablet according to a conventional method, and if necessary, A film-coated tablet, a sugar-coated tablet, an enteric-coated skin tablet, etc. can also be applied by appropriately coating. For example, the powder can be added to the active ingredient as necessary by adding an appropriate excipient, lubricant, etc., and mixed well to form a powder. For example, a capsule is prepared by adding an appropriate excipient, lubricant, etc. to an active ingredient and mixing well, or after granulating or finely granulating it according to a conventional method, filling it into an appropriate capsule and You can also Furthermore, in the case of such an orally administered preparation, an immediate release or sustained release preparation can be prepared depending on the prevention or treatment method.
For example, for injections, obtain commercially available products, or add appropriate diluents to the active ingredients, and if necessary, preservatives, isotonic agents, buffers, emulsifiers, dispersants, stabilization, dissolution Pharmaceutical additives such as adjuvants can be added to make an injection. Further, in the case of such injections, ampoule preparations, vial preparations, prefilled syringe preparations and the like can be used depending on the convenience of treatment.

本発明の医薬組成物は、ALT上昇抑制、肝グルタチオン量の増加、肝細胞傷害の顕著な抑制効果等を示すことが見出された。従って、本発明は、アセトアミノフェン肝傷害の治療又は予防として有用である医薬組成物を提供することができる。   It has been found that the pharmaceutical composition of the present invention exhibits ALT elevation suppression, hepatic glutathione level increase, and remarkable suppression effect on hepatocyte damage. Therefore, the present invention can provide a pharmaceutical composition useful as a treatment or prevention of acetaminophen liver injury.

本発明の内容を以下の実施例でさらに詳細に説明するが、本発明はその内容に限定されるものではない。   The contents of the present invention will be described in more detail in the following examples, but the present invention is not limited to the contents.

本明細書の実施例において、オザグレル塩酸塩としてはオザグレル塩酸塩1水和物を用いた。なお、記載した量は、オザグレル塩酸塩として換算した量を記載した。   In the examples of the present specification, ozagrel hydrochloride monohydrate was used as ozagrel hydrochloride. In addition, the described quantity described the quantity converted as ozagrel hydrochloride.

実施例1
APAP肝傷害におけるオザグレル塩酸塩(30分後投与)のALT上昇抑制効果
(1)APAP誘発肝傷害モデルの作製
C57BL/6Njcl雄性マウス(Specific pathogen free(SPF)グレード、8-10週齢、日本クレア株式会社)を実験に使用した。APAP(550 mg/kg)をリン酸緩衝生理食塩水(PBS)に約60 ℃で加温溶解した後、マウス体重50 g あたり1 mLの薬液量で腹腔内投与した。APAPを投与しない群を無処置群とした。
(2)アラニントランスアミナーゼ(ALT)の測定
肝傷害の血液生化学マーカーとして、APAP投与後24時間までの血清ALT活性の経時的変化及びそれに対するオザグレル塩酸塩の効果を検討した。
上記モデルにおいて、APAP投与30分後にオザグレル塩酸塩(200 mg/kg)の生理食塩水(Saline)溶液(オザグレル投与群)又はSaline(対照群)を、マウス体重50 gあたり0.6 mLの薬液量で腹腔内投与した。
APAP投与1、2、4、8及び24時間後に、マウスをエーテル吸入麻酔下、速やかに開腹して腹部大動脈より採血し、血清中ALT活性を、トランスアミナーゼC II-テストワコー(和光純薬工業株式会社)を用いて測定した。本測定における反応液の吸光度測定は分光光度計(V-530, JASCO Corporation)にて行い、標準品より得られた検量線より、ALT活性を算出した。
(3)結果
図1に示すように、無処置群と比較して、対照群では8及び24時間後において有意なALT活性の上昇が見られた。一方、オザグレル投与群ではいずれの時間経過後においてもALT活性の上昇は見られなかった。すなわち、オザグレル塩酸塩のAPAP肝傷害における顕著なALT上昇抑制効果が確認された。
Example 1
Ozagrel hydrochloride (administered 30 minutes later) suppresses ALT elevation in APAP liver injury (1) Preparation of APAP-induced liver injury model
C57BL / 6Njcl male mice (Specific pathogen free (SPF) grade, 8-10 weeks old, CLEA Japan, Inc.) were used in the experiment. APAP (550 mg / kg) was dissolved in phosphate buffered saline (PBS) by heating at about 60 ° C., and then intraperitoneally administered in a volume of 1 mL per 50 g of mouse body weight. The group not administered with APAP was defined as an untreated group.
(2) Measurement of alanine transaminase (ALT) As a blood biochemical marker of liver injury, the time course of serum ALT activity up to 24 hours after APAP administration and the effect of ozagrel hydrochloride on it were examined.
In the above model, 30 minutes after APAP administration, ozagrel hydrochloride (200 mg / kg) in saline (Saline) solution (Ozagrel administration group) or Saline (control group) at a drug volume of 0.6 mL per 50 g mouse body weight. It was administered intraperitoneally.
1, 2, 4, 8 and 24 hours after APAP administration, the mice were rapidly opened under ether inhalation anesthesia and blood was collected from the abdominal aorta, and serum ALT activity was measured by transaminase C II-Test Wako (Wako Pure Chemical Industries, Ltd.). Company). The absorbance of the reaction solution in this measurement was measured with a spectrophotometer (V-530, JASCO Corporation), and the ALT activity was calculated from a calibration curve obtained from a standard product.
(3) Results As shown in FIG. 1, a significant increase in ALT activity was observed after 8 and 24 hours in the control group compared to the untreated group. On the other hand, no increase in ALT activity was observed after any time in the ozagrel administration group. That is, it was confirmed that ozagrel hydrochloride has a remarkable inhibitory effect on ALT elevation in APAP liver injury.

実施例2
APAP肝傷害におけるオザグレル塩酸塩(30分後投与)のGSH増加効果
(1)グルタチオン(GSH)の測定
APAPの毒性代謝物であるNAPQIの抱合・解毒のために消費された肝組織中の総GSH量の経時変化及びそれに対するオザグレル塩酸塩の効果を検討した。
実施例1と同様に作製したAPAP誘発肝傷害モデルマウスに、APAP投与30分後にオザグレル塩酸塩(200 mg/kg)の生理食塩水(Saline)溶液(オザグレル投与群)又はSaline(対照群)を、マウス体重50 gあたり0.6 mLの薬液量で腹腔内投与した。APAP投与0.5、1、2、4及び8時間後に、マウスをエーテル吸入麻酔下、速やかに開腹して肝臓を摘出した。その一部をGSH測定用とし、Polytron PT 1600(EKINEMATICA Inc.)で5%メタリン酸水溶液にてホモジナイズした後に遠心分離し、その上清を測定サンプルとした。GSHはBIOXYTECH GSH/GSSG-412(OXIS International inc.)を用いて測定した。本測定における反応液の吸光度測定は分光光度計(V-530, JASCO Corporation)にて行い、GSH濃度を求め、肝臓組織の湿重量1 mg当たりの総GSH量として算出した。
(2)結果
図2に示すように、対照群では、無処置群と比較して、APAP投与後30分からGSHの顕著な低下が見られ、その後8時間まで有意な低下が認められた。すなわち、APAP肝傷害の特徴であるGSHの枯渇が確認された。一方、オザグレル投与群でも、無処置群と比較すると、1〜8時間後までGSHの有意な低下が見られたが、対照群と比較すると、2〜8時間後のGSHは有意に高値を示した。すなわち、オザグレル塩酸塩のAPAP肝傷害における顕著なGSH増加効果が確認された。
Example 2
GSH increase effect of ozagrel hydrochloride (administered 30 minutes later) in APAP liver injury (1) Measurement of glutathione (GSH)
The time course of total GSH in liver tissue consumed for conjugation and detoxification of NAPQI, a toxic metabolite of APAP, and the effect of ozagrel hydrochloride on it were investigated.
To APAP-induced liver injury model mice prepared in the same manner as in Example 1, 30 minutes after APAP administration, ozagrel hydrochloride (200 mg / kg) physiological saline (Saline) solution (ozagrel administration group) or Saline (control group) The solution was intraperitoneally administered at a volume of 0.6 mL per 50 g of mouse body weight. At 0.5, 1, 2, 4, and 8 hours after administration of APAP, the mouse was rapidly laparotomized under ether inhalation anesthesia and the liver was removed. A part of the sample was used for GSH measurement, homogenized with Polytron PT 1600 (EKINEMATICA Inc.) in a 5% aqueous metaphosphoric acid solution, centrifuged, and the supernatant was used as a measurement sample. GSH was measured using BIOXYTECH GSH / GSSG-412 (OXIS International inc.). The absorbance of the reaction solution in this measurement was measured with a spectrophotometer (V-530, JASCO Corporation), the GSH concentration was determined, and the total GSH amount per 1 mg of wet weight of liver tissue was calculated.
(2) Results As shown in FIG. 2, in the control group, a significant decrease in GSH was observed from 30 minutes after APAP administration, and a significant decrease was observed up to 8 hours thereafter, compared with the untreated group. That is, the depletion of GSH, which is a feature of APAP liver injury, was confirmed. On the other hand, in the ozagrel administration group, GSH significantly decreased until 1 to 8 hours compared to the untreated group, but GSH after 2 to 8 hours showed a significantly high value compared to the control group. It was. That is, it was confirmed that ozagrel hydrochloride significantly increased GSH in APAP liver injury.

実施例3
APAP肝傷害におけるオザグレル塩酸塩(30分後投与)の肝細胞傷害抑制効果
(1)肝臓の病理組織学的評価
APAP誘発肝傷害モデルマウスの病理組織学的評価により、肝細胞傷害に対するオザグレル塩酸塩の効果を検討した。
実施例1と同様に作製したAPAP誘発肝傷害モデルマウスに、APAP投与30分後にオザグレル塩酸塩(200 mg/kg)の生理食塩水(Saline)溶液(オザグレル投与群)又はSaline(対照群)を、マウス体重50 gあたり0.6 mLの薬液量で腹腔内投与した。APAP投与8及び24時間後に、マウスをエーテル吸入麻酔下、速やかに開腹して肝臓を摘出し、その一部を10%中性緩衝ホルマリン溶液で固定し、病理組織標本を作製した。定法により固定組織をパラフィン包埋し、マイクロトームにより約3 μmの簿切標本を作製した後、Hematoxylin-Eosin (HE)染色により病理解析を行った。
(2)結果
対照群ではAPAP肝傷害に特徴的な小葉中心性の肝細胞の壊死(矢印)が全例において散見された(図3)。一方、オザグレル投与群ではグリコーゲン貯蔵が低下しているような所見は見られたが、対照群で見られたような肝細胞の壊死は全く確認されなかった(図4)。
HE染色した各病理標本(各群2例)について、肝細胞傷害の程度を評価した(表1)。表中の記号「−」は異常なし、「±」はごく軽度の変化、「++」は中程度の変化、「+++」は重度の変化をそれぞれ示す。
APAP肝傷害における肝細胞組織の傷害や壊死は、CYP2E1が肝小葉の中心静脈周囲の肝細胞に高濃度で含まれており、更に肝小葉の中心静脈周囲では酸素分圧が低くグルタチオン濃度も低いことから、特徴的に、NAPQIが蓄積しやすい肝小葉の中心静脈周囲を中心に発現する。オザグレル塩酸塩は、APAP肝傷害に特徴的な肝組織傷害を顕著に抑制することが確認された。
Example 3
Inhibitory effect of ozagrel hydrochloride (administered 30 minutes later) on APAP liver injury (1) Histopathological evaluation of the liver
The effect of ozagrel hydrochloride on hepatocellular injury was examined by histopathological evaluation of APAP-induced liver injury model mice.
To APAP-induced liver injury model mice prepared in the same manner as in Example 1, 30 minutes after APAP administration, ozagrel hydrochloride (200 mg / kg) physiological saline (Saline) solution (ozagrel administration group) or Saline (control group) The solution was intraperitoneally administered at a volume of 0.6 mL per 50 g of mouse body weight. At 8 and 24 hours after APAP administration, the mice were rapidly laparotomized under ether inhalation anesthesia and the liver was excised, and a part thereof was fixed with 10% neutral buffered formalin solution to prepare a pathological tissue specimen. The fixed tissue was embedded in paraffin by a conventional method, and about 3 μm book-cut specimens were prepared by a microtome, and then pathological analysis was performed by Hematoxylin-Eosin (HE) staining.
(2) Results In the control group, necrosis (arrow) of centrilobular hepatocytes characteristic of APAP liver injury was observed in all cases (FIG. 3). On the other hand, in the ozagrel-administered group, a finding that glycogen storage was decreased was observed, but hepatocyte necrosis as seen in the control group was not confirmed at all (FIG. 4).
The degree of hepatocellular injury was evaluated for each HE-stained pathological specimen (2 cases in each group) (Table 1). The symbol “-” in the table indicates no abnormality, “±” indicates a very slight change, “++” indicates a moderate change, and “++” indicates a severe change.
In APAP liver injury, hepatic tissue injury and necrosis include CYP2E1 in high concentrations in hepatocytes around the central vein of hepatic lobule, and low oxygen partial pressure and low glutathione concentration around the central vein of hepatic lobule Therefore, characteristically, NAPQI is expressed mainly around the central vein of the hepatic lobule where it tends to accumulate. Ozagrel hydrochloride was confirmed to remarkably suppress liver tissue injury characteristic of APAP liver injury.

実施例4
APAP肝傷害におけるオザグレル塩酸塩(30分〜3時間後投与)のALT上昇抑制効果
(1)ALTの測定
オザグレル塩酸塩及びN−アセチルシステイン(NAC)のAPAP肝傷害の治療効果に及ぼす投与タイミングの影響を比較検討した。
実施例1と同様に作製したAPAP誘発肝傷害モデルマウスに、APAP投与0.5、1、2及び3時間後にオザグレル塩酸塩(200 mg/kg)のSaline溶液(オザグレル投与群)、NAC(600 mg/kg)のSaline溶液(NAC投与群)又はSaline(0.5時間のみ、対照群)を、マウス体重50 gあたり0.6 mLの薬液量で腹腔内投与した。APAP投与24時間後に、実施例1と同様の方法によりALT活性を測定した。
(2)結果
図5に示すように、オザグレル投与群及びNAC投与群の両群において、30分〜2時間後の投与で、対照群と比較して顕著なALT上昇抑制効果が見られた。オザグレル投与群は、NAC投与群と比べ、より強いALT上昇抑制作用を示した。なお、3時間後の投与ではいずれの群においても、ALT上昇抑制効果は得られなかった。
Example 4
ALT elevation inhibitory effect of ozagrel hydrochloride (administered 30 minutes to 3 hours later) in APAP liver injury (1) Measurement of ALT The timing of administration on the therapeutic effect of ozagrel hydrochloride and N-acetylcysteine (NAC) on APAP liver injury The effects were compared.
APAP-induced hepatic injury model mice prepared in the same manner as in Example 1 were treated with a solution of osagrel hydrochloride (200 mg / kg) in Saline (ozagrel administration group), NAC (600 mg / kg) 0.5, 1, 2 and 3 hours after APAP administration. kg) of Saline solution (NAC administration group) or Saline (0.5 hours only, control group) was intraperitoneally administered at a drug volume of 0.6 mL per mouse body weight of 50 g. ALT activity was measured by the same method as in Example 1 24 hours after administration of APAP.
(2) Results As shown in FIG. 5, in both the ozagrel-administered group and the NAC-administered group, a significant ALT increase inhibitory effect was observed in the administration after 30 minutes to 2 hours compared to the control group. The ozagrel administration group showed a stronger inhibitory effect on ALT elevation than the NAC administration group. In addition, in the administration after 3 hours, the ALT elevation inhibitory effect was not obtained in any group.

実施例5
(1)APAP肝傷害における生存率の比較
Crlj:CD1(ICR)雄性マウス(SPFグレード、7-8週齢、日本チャールズ・リバー株式会社)を使用し、実施例1と同様の方法によりAPAP(330 mg/kg)を投与し、APAP誘発肝傷害モデルを作製した。APAP投与30分後にオザグレル塩酸塩(200 mg/kg)のSaline溶液(オザグレル投与群)、NAC(600 mg/kg)のSaline溶液(NAC投与群)又はSaline(対照群)を、マウス体重50 gあたり0.6 mLの薬液量で腹腔内投与した。APAP投与72時間後まで観察を行った。
(2)結果
図6に示すように、対照群では12時間以内に全例死亡した。NAC投与群では40時間以上経過後に死亡例が観察された。一方、オザグレル投与群では、72時間経過後の生存率は100%であった。
Example 5
(1) Comparison of survival rate in APAP liver injury
APAP (330 mg / kg) was administered in the same manner as in Example 1 using Crlj: CD1 (ICR) male mice (SPF grade, 7-8 weeks old, Charles River Japan, Inc.) and induced APAP A liver injury model was prepared. 30 minutes after APAP administration, Saline solution of ozagrel hydrochloride (200 mg / kg) (ozagrel administration group), NAC (600 mg / kg) of Saline solution (NAC administration group) or Saline (control group), mouse weight 50 g The solution was intraperitoneally administered at a volume of 0.6 mL per solution. Observations were made up to 72 hours after APAP administration.
(2) Results As shown in FIG. 6, all cases died within 12 hours in the control group. In the NAC group, deaths were observed after 40 hours. On the other hand, in the ozagrel administration group, the survival rate after 72 hours was 100%.

実施例6
肝組織中トロンボキサン(TX)産生に対する影響
(1)TXB2, 2, 3-Dinorの測定
肝組織中におけるTXA2の産生を調べる目的で、TXA2の安定代謝物であるTXB2, 2, 3-Dinorの肝組織中濃度を測定した。
実施例1と同様に作製したAPAP誘発肝傷害モデルマウスに、APAP投与30分後にオザグレル塩酸塩(200 mg/kg)のSaline溶液(オザグレル投与群)又はSaline(対照群)を、マウス体重50 gあたり0.6 mLの薬液量で腹腔内投与した。
APAP投与3時間後に、マウスをエーテル吸入麻酔下、速やかに開腹して肝臓を摘出した。肝臓の一部をTXB2, 2, 3-Dinorの測定用とし、5倍量の抽出緩衝液(15% (v/v) メタノール及び1% (w/v) インドメタシン(Sigma)の 0.1M PBS溶液, pH 7.5)中にて、Polytron PT 1600(EKINEMATICA Inc.)でホモジナイズした後に遠心分離しその上清を測定サンプルとした。TXB2, 2, 3-Dinor, EIA Kit(Cayman chemical)を用いて、測定サンプル中のTXB2, 2, 3-Dinor濃度を測定した。反応液の吸光度測定はプレートリーダー(V-530, JASCO Corporation)を用いて行い、標準品より得られた検量線より、肝臓組織の湿重量1 mg当たりのTXB2, 2, 3-Dinor量として算出した。
(2)結果
その結果、TXB2, 2, 3-Dinor濃度は、無処置群、対照群及びオザグレル投与群でそれぞれ32.6±0.789、27.5±14.3及び29.1±6.42(pg/mg組織重量)であり、すべての群において有意差は見られなかった。
Example 6
In order to investigate the production of TXA 2 in hepatic tissue effect on thromboxane (TX) Production (1) TXB 2, 2, of 3-Dinor measuring liver tissue, TXB 2, 2 is stable metabolite of TXA 2, The concentration of 3-Dinor in liver tissue was measured.
To APAP-induced liver injury model mice prepared in the same manner as in Example 1, 30 minutes after administration of APAP, Saline solution (ozagrel administration group) or Saline (control group) of ozagrel hydrochloride (200 mg / kg) was added to a mouse weight of 50 g. The solution was intraperitoneally administered at a volume of 0.6 mL per solution.
Three hours after administration of APAP, the mouse was rapidly opened under ether inhalation anesthesia, and the liver was removed. A portion of the liver and TXB 2, 2, for the determination of 3-Dinor, 0.1M PBS for 5 volumes of extraction buffer (15% (v / v) methanol and 1% (w / v) indomethacin (Sigma) Solution, pH 7.5), and homogenized with Polytron PT 1600 (EKINEMATICA Inc.) and then centrifuged, and the supernatant was used as a measurement sample. The TXB 2 , 2, 3-Dinor, EIA Kit (Cayman chemical) was used to measure the TXB 2 , 2, 3-Dinor concentration in the measurement sample. The absorbance of the reaction solution was measured using a plate reader (V-530, JASCO Corporation). From the calibration curve obtained from the standard product, the amount of TXB 2 , 2, 3-Dinor per 1 mg wet weight of liver tissue was measured. Calculated.
(2) Results As a result, TXB 2 , 2, 3-Dinor concentrations were 32.6 ± 0.789, 27.5 ± 14.3 and 29.1 ± 6.42 (pg / mg tissue weight) in the untreated group, the control group and the ozagrel administration group, respectively. There was no significant difference in all groups.

実施例7
ヒト及びマウスCYP2E1活性に対する影響
(1)CYP2E1活性測定
ヒトCYP2E1とウサギNADPH-P450レダクターゼを発現する昆虫細胞から調製されたミクロソームで構成されるVivid(登録商標)CYP2E1 Blue Screening Kit(Invitrogen)を用いて、オザグレル塩酸塩のヒトCYP2E1阻害活性の有無を調べた。
また、C57BL/6Njcl雄性マウス肝臓より採取したミクロソームを用い、John W. Allisらの方法(Analytical Biochemistry 219巻 p.49-52 (1994))に記載の方法に準じて、CYP2E1に特異性の高い基質であるp-ニトロフェノール(PNP)からp-ニトロカテコール(PNC)の生成量を求めることにより、マウスCYP2E1活性に対するオザグレル塩酸塩添加(0.001-1mg/mL)の影響を調べた。なお、PNP及びPNCの濃度は、Sigma-Aldrichより購入した標準品を基準に吸光度をUltrospec 3300 (GE Healthcare UK Ltd.)を用いて測定し、PNC産生量 (nmol/mg/mg protein)として算出した。
(2)結果
ヒト及びマウスいずれにおいても0.001-1 mg/mLのオザグレル塩酸塩はCYP2E1に対する有意な阻害作用は示さなかった。
Example 7
Effect on human and mouse CYP2E1 activity (1) Measurement of CYP2E1 activity Using Vivid (registered trademark) CYP2E1 Blue Screening Kit (Invitrogen) composed of microsomes prepared from insect cells expressing human CYP2E1 and rabbit NADPH-P450 reductase The presence or absence of human CYP2E1 inhibitory activity of ozagrel hydrochloride was examined.
In addition, using microsomes collected from C57BL / 6Njcl male mouse liver, CYP2E1 has high specificity according to the method described in the method of John W. Allis et al. (Analytical Biochemistry 219, p. 49-52 (1994)). By determining the amount of p-nitrocatechol (PNC) produced from the substrate p-nitrophenol (PNP), the effect of ozagrel hydrochloride addition (0.001-1 mg / mL) on mouse CYP2E1 activity was examined. The PNP and PNC concentrations were measured using the Ultratrospec 3300 (GE Healthcare UK Ltd.) based on a standard product purchased from Sigma-Aldrich, and calculated as PNC production (nmol / mg / mg protein). did.
(2) Results In both human and mouse, 0.001-1 mg / mL ozagrel hydrochloride showed no significant inhibitory action on CYP2E1.

実施例8
APAP肝傷害におけるオザグレル塩酸塩(前投与)のGSH増加効果
(1)GSHの測定
実施例1記載のAPAP誘発肝傷害モデルマウスにおいて、APAP投与30分前又はAPAP投与30分後にオザグレル塩酸塩(200 mg/kg)のSaline溶液(それぞれオザグレル前投与群及びオザグレル後投与群)又はSaline(それぞれ前投与対照群及び後投与対照群)を、マウス体重50 g あたり0.6 mLの薬液量で腹腔内投与した。
APAP投与1時間後に、マウスをエーテル吸入麻酔下、速やかに開腹して肝臓を摘出し、実施例2記載の方法と同様に総GSHの測定を行った。
(2)結果
図7に示すように、APAP投与により、全ての投与群において、無処置群に比較してGSHの顕著な低下(P<0.01)が見られたが、オザグレル前投与群では、前投与対照群及びオザグレル後投与群の両群に比較して、それぞれP<0.01及びP<0.05で有意にGSH量が多かった。
Example 8
Effect of Ozagrel hydrochloride (pre-administration) on GSH increase in APAP liver injury (1) Measurement of GSH In the APAP-induced liver injury model mouse described in Example 1, ozagrel hydrochloride (200) was administered 30 minutes before or 30 minutes after APAP administration. mg / kg) Saline solution (pre-administration group and post-ozagrel administration group, respectively) or Saline (pre-administration control group and post-administration control group, respectively) was administered intraperitoneally at a drug volume of 0.6 mL per 50 g of mouse body weight. .
One hour after APAP administration, the mouse was rapidly opened under ether inhalation anesthesia and the liver was removed, and the total GSH was measured in the same manner as described in Example 2.
(2) Results As shown in FIG. 7, the APAP administration showed a significant decrease in GSH (P <0.01) in all administration groups compared to the untreated group, but in the pre-ozagrel administration group, Compared to both the pre-administration control group and the post-ozagrel administration group, the amount of GSH was significantly higher at P <0.01 and P <0.05, respectively.

実施例9
NAPQI誘発in vitro肝細胞傷害抑制効果
(1)使用細胞
ラット肝上皮細胞 RLC-16(RIKEN BioResource Center)をMinimum essential medium(MEM)培地(Sigma)に加え、次いで、10%ウシ胎仔血清(FBS)(Biowest)、100 IU/mL ペニシリン(Invitrogen)、100 μg/mL ストレプトマイシン(Invitrogen)及び0.1 mM non-Essential Amino Acids Solution(Invitrogen)を加え培養を行い、3〜4日に1 回継代培養を行った。
(2)細胞生存率測定
RLC-16細胞を1×104 cells/well で96 well plate に播き、細胞を生着させるため24時間培養した後、培養液を除去した。0.25mM NAPQI(Sigma-Aldrich)のジメチルスルホキシド溶液を、各濃度(1、10、100μM)のオザグレル塩酸塩のPBS溶液、1mM NACのPBS溶液又はPBS(対照群)を含有した培地にそれぞれ添加した。24時間培養後、cell counting kit(DOJINDO)にてWST-1 assay を行い、4 時間後に450 nm における吸光度をマイクロプレートリーダー(Immuno mini NJ-2300, Nalge Nunc International K.K)にて測定し、検量線をもとに生細胞数を求め、NAPQI非添加細胞における値を100として、各群の生存率(%)を求めた。
(3)結果
図8に示すように、NAPQI(0.25 mM)の暴露により、顕著な細胞生存率の低下が見られた。これに対しオザグレル塩酸塩(100 μM)又はNAC(1 mM)の添加により、対照群と比較し細胞生存率は有意に高値を示した。
Example 9
NAPQI-induced in vitro hepatocyte injury inhibitory effect (1) Cells used
Rat liver epithelial cells RLC-16 (RIKEN BioResource Center) is added to Minimum essential medium (MEM) medium (Sigma), then 10% fetal bovine serum (FBS) (Biowest), 100 IU / mL penicillin (Invitrogen), 100 μg / mL streptomycin (Invitrogen) and 0.1 mM non-Essential Amino Acids Solution (Invitrogen) were added and cultured, and subcultured once every 3 to 4 days.
(2) Cell viability measurement
RLC-16 cells were seeded on a 96-well plate at 1 × 10 4 cells / well, cultured for 24 hours to allow the cells to engraft, and then the culture solution was removed. A dimethylsulfoxide solution of 0.25 mM NAPQI (Sigma-Aldrich) was added to each medium (1, 10, 100 μM) of ozagrel hydrochloride PBS solution, 1 mM NAC PBS solution or PBS (control group). . After 24 hours of culture, the WST-1 assay was performed using a cell counting kit (DOJINDO). After 4 hours, the absorbance at 450 nm was measured with a microplate reader (Immuno mini NJ-2300, Nalge Nunc International KK). Based on the above, the number of viable cells was determined, and the survival rate (%) of each group was determined with the value of NAPQI-free cells as 100.
(3) Results As shown in FIG. 8, a significant decrease in cell viability was observed by exposure to NAPQI (0.25 mM). In contrast, the addition of ozagrel hydrochloride (100 μM) or NAC (1 mM) showed a significantly higher cell viability than the control group.

なお、本明細書中の各実験結果の統計処理は、GraphPad Prism ver.3.00(GraphPad Software)を用いて行った。各群の有意差検定は、実験結果に対し、多重比較検定により群間比較を行った。すなわち、Bartlett 検定により分散の均一性を検定し、分散が均一であった場合には一元配置分散分析(one-way ANOVA)を行い、不均一であった場合にはKruskal-Walis 検定を行い、これらで有意差が認められた場合に限り、Tukey's Multiple Comparison Testにより、群間の有意差検定を行った。なお、生存曲線の解析はKaplan-Meier methodにより行い、log-rank testにより各群間の有意差検定を行った。以上の検定により危険率が5%未満のときに有意であると判定した。   In addition, the statistical process of each experimental result in this specification was performed using GraphPad Prism ver.3.00 (GraphPad Software). The significant difference test of each group compared between groups by the multiple comparison test with respect to the experimental result. In other words, the Bartlett test is used to test the homogeneity of the variance. If the variance is uniform, one-way analysis of variance (one-way ANOVA) is performed. If the variance is not uniform, the Kruskal-Walis test is performed. Only when a significant difference was observed in these, a significant difference test between groups was performed by Tukey's Multiple Comparison Test. Survival curves were analyzed by the Kaplan-Meier method, and a significant difference test was performed between groups by log-rank test. Based on the above test, it was determined to be significant when the risk rate was less than 5%.

以上の通り、オザグレル塩酸塩は、APAP肝傷害に対して、ALT上昇抑制、肝GSH増加(低下抑制)、肝組織傷害の抑制等の極めて優れた治療効果を示した。また、APAP投与前の投与タイミングでも有効性を発揮し、既存薬であるNACと比較して、種々の投与タイミングでより優れたALT上昇抑制効果を示すなど、投与タイミングの許容度がより広い薬剤である可能性が示唆された。   As described above, ozagrel hydrochloride exhibited extremely excellent therapeutic effects on APAP liver injury such as suppression of ALT elevation, increase in liver GSH (inhibition of decrease), and suppression of liver tissue injury. In addition, it is effective at administration timing before APAP administration, and has a wider tolerance in administration timing, such as better ALT elevation suppression effect at various administration timing compared to NAC which is an existing drug It was suggested that

本発明の医薬組成物はAPAP肝傷害の治療又は予防に有用である。 The pharmaceutical composition of the present invention is useful for the treatment or prevention of APAP liver injury.

図1は、APAP誘発肝傷害モデルマウスにおけるALT活性の経時変化を示すグラフである。縦軸は、血清ALT活性(IU/L)を、横軸は、APAP投与後の経過時間(時間)をそれぞれ示す。図の左から、0(無処置群)、及び対照群(黒色)及びオザグレル投与群(白色)の各1、2、4、8、24時間後の平均値及び標準誤差(各群4-12例)を示す。図中、「**」は無処置群と比較してP<0.01で有意差があることを表す。FIG. 1 is a graph showing the time course of ALT activity in APAP-induced liver injury model mice. The vertical axis represents serum ALT activity (IU / L), and the horizontal axis represents elapsed time (hours) after APAP administration. From the left of the figure, 0 (no treatment group), 1, 2, 4, 8, and 24 hours after the mean value and standard error of each of the control group (black) and the ozagrel-treated group (white) (4-12 for each group) Example). In the figure, “**” indicates that there is a significant difference at P <0.01 compared to the untreated group.

図2は、APAP誘発肝傷害モデルマウスにおける肝組織中総GSH量の経時変化を示すグラフである。縦軸は、肝臓中総GSH量(nmol/mg組織重量)を、横軸は、APAP投与後の経過時間(時間)をそれぞれ示す。図の左から、0(無処置群)、及び対照群(黒色)及びオザグレル投与群(白色)の各0.5、1、2、4、8時間後の平均値及び標準誤差(各群4〜6例)を示す。図中、「*」、「**」は対照群と比較してそれぞれP<0.05、P<0.01で有意差があること;「†」は無処置群と比較してP<0.01で有意差があることをそれぞれ表す。FIG. 2 is a graph showing changes over time in the total amount of GSH in liver tissue in APAP-induced liver injury model mice. The vertical axis represents the total amount of GSH in the liver (nmol / mg tissue weight), and the horizontal axis represents the elapsed time (hours) after APAP administration. From the left of the figure, mean values and standard errors after 0.5, 1, 2, 4, and 8 hours of 0 (no treatment group), control group (black), and ozagrel administration group (white) (each group 4-6) Example). In the figure, “*” and “**” are significant differences at P <0.05 and P <0.01 compared to the control group, respectively, “†” are significant differences at P <0.01 compared to the untreated group Represent that there is.

図3は、APAP投与8時間後の肝組織のHE染色の結果(対照群)の一例を示す。図中の矢印は小葉中心性の肝細胞の壊死が認められる部分を示す。FIG. 3 shows an example of the result of HE staining of liver tissue 8 hours after APAP administration (control group). The arrow in the figure indicates a portion where centrilobular hepatocyte necrosis is observed.

図4は、APAP投与8時間後の肝組織のHE染色の結果(オザグレル投与群)の一例を示す。FIG. 4 shows an example of the result of HE staining of liver tissue 8 hours after APAP administration (Ozagrel administration group).

図5は、APAP投与24時間後のALT活性における薬物の投与タイミングの影響を示すグラフである。縦軸は、ALT活性(IU/L)を示し、横軸は、オザグレル塩酸塩又はNACを投与したAPAP投与後の経過時間(時間)を示す。図の左から、無処置群(横縞)、対照群(黒色)、及びオザグレル投与群(白色)及びNAC投与群(灰色)の各0.5、1、2、3時間後投与における平均値及び標準誤差(各群3〜6例)を示す。FIG. 5 is a graph showing the influence of drug administration timing on ALT activity 24 hours after APAP administration. The vertical axis represents ALT activity (IU / L), and the horizontal axis represents the elapsed time (hours) after administration of APAP administered with ozagrel hydrochloride or NAC. From the left of the figure, mean values and standard errors in the non-treated group (horizontal stripes), the control group (black), the ozagrel-treated group (white), and the NAC-treated group (grey) after 0.5, 1, 2, and 3 hours (3 to 6 cases in each group) are shown.

図6は、APAP誘発肝傷害モデルマウスにおける生存率の推移を示すグラフである。縦軸は、生存率(%)(各群5〜11例)を示し、横軸は、APAP投与後の経過時間(時間)を示す。グラフは、×印がオザグレル投与群、●印がNAC投与群、■印が対照群をそれぞれ示す。図中、「***」は対照群と比較してP<0.001で有意差があることを表す。FIG. 6 is a graph showing the transition of survival rate in APAP-induced liver injury model mice. The vertical axis shows the survival rate (%) (5 to 11 cases in each group), and the horizontal axis shows the elapsed time (hours) after APAP administration. In the graph, the x mark indicates the ozagrel administration group, the ● mark indicates the NAC administration group, and the ■ mark indicates the control group. In the figure, “***” indicates that there is a significant difference at P <0.001 compared to the control group.

図7は、APAP誘発肝傷害モデルマウスにおけるAPAP投与1時間後の肝組織中総GSH量を示すグラフである。縦軸は、肝臓中総GSH量(nmol/mg組織重量)を、横軸は、投与群をそれぞれ示す。図の左から、無処置群(横縞)、後投与対照群(黒色)、オザグレル後投与群(白色)、前投与対照群(斜線)及びオザグレル前投与群(灰色)の平均値及び標準誤差(各群3〜4例)を示す。FIG. 7 is a graph showing the total amount of GSH in liver tissue 1 hour after administration of APAP in APAP-induced liver injury model mice. The vertical axis represents the total amount of GSH in the liver (nmol / mg tissue weight), and the horizontal axis represents the administration group. From the left of the figure, the mean value and standard error of the untreated group (horizontal stripes), the post-administration control group (black), the post-ozagrel administration group (white), the pre-administration control group (hatched line), and the pre-ozagrel administration group (gray) 3-4 cases in each group) are shown.

図8は、in vitro NAPQI誘発肝細胞傷害における細胞生存率を示すグラフである。縦軸は、細胞生存率(%)を、横軸は、群をそれぞれ示す。図の左から、対照群(黒色)、オザグレル塩酸塩1、10及び100μM(網かけ)、並びにNAC投与群(灰色)の平均値及び標準偏差(各群4〜9例)を示す。図中、「***」は対照群と比較してP<0.001で有意差があることを表す。FIG. 8 is a graph showing cell viability in in vitro NAPQI-induced hepatocyte injury. The vertical axis represents the cell viability (%), and the horizontal axis represents the group. From the left of the figure, mean values and standard deviations (4 to 9 cases for each group) of the control group (black), ozagrel hydrochloride 1, 10 and 100 μM (shaded), and the NAC administration group (grey) are shown. In the figure, “***” indicates that there is a significant difference at P <0.001 compared to the control group.

Claims (3)

オザグレル又はその薬理学的に許容される塩を有効成分として含有する、アセトアミノフェン肝傷害の治療又は予防のための医薬組成物。 A pharmaceutical composition for treating or preventing acetaminophen liver injury comprising ozagrel or a pharmacologically acceptable salt thereof as an active ingredient. オザグレル塩酸塩を有効成分として含有する、請求項1記載の医薬組成物。 The pharmaceutical composition according to claim 1, comprising ozagrel hydrochloride as an active ingredient. 剤型が注射剤である請求項1又は2記載の医薬組成物。
The pharmaceutical composition according to claim 1 or 2, wherein the dosage form is an injection.
JP2010250367A 2010-11-09 2010-11-09 Therapeutic agent for acetaminophen liver damage Pending JP2012102029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010250367A JP2012102029A (en) 2010-11-09 2010-11-09 Therapeutic agent for acetaminophen liver damage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010250367A JP2012102029A (en) 2010-11-09 2010-11-09 Therapeutic agent for acetaminophen liver damage

Publications (1)

Publication Number Publication Date
JP2012102029A true JP2012102029A (en) 2012-05-31

Family

ID=46392885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010250367A Pending JP2012102029A (en) 2010-11-09 2010-11-09 Therapeutic agent for acetaminophen liver damage

Country Status (1)

Country Link
JP (1) JP2012102029A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997416B1 (en) * 2015-03-23 2016-09-28 キッセイ薬品工業株式会社 A treatment for dry eye associated with Sjogren's syndrome

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997416B1 (en) * 2015-03-23 2016-09-28 キッセイ薬品工業株式会社 A treatment for dry eye associated with Sjogren's syndrome
WO2016152821A1 (en) * 2015-03-23 2016-09-29 キッセイ薬品工業株式会社 Therapeutic agent for dry eye associated with sjogren's syndrome

Similar Documents

Publication Publication Date Title
Luo et al. 4-PBA prevents pressure overload-induced myocardial hypertrophy and interstitial fibrosis by attenuating endoplasmic reticulum stress
JP2020196750A (en) Cenicriviroc combination therapy for treatment of fibrosis
JP6894837B2 (en) Compositions, Kits and Methods for Inducing Acquired Cell Resistance Using Stress Protein Inducers
US20170080045A1 (en) Novel-anti-infective strategy against influenza virus and s. aureus coinfections
KR20170095894A (en) Treatment of diseases associated with hepatic stellate cell activation using ammonia-lowering therapies
CN110430876A (en) Pharmaceutical composition for combination treatment
US9572801B2 (en) Tetrahydronaphthyridinyl propionic acid derivatives and uses thereof
EP4385571A2 (en) Uses of a lysyl oxidase-like 2 inhibitor related applications
TWI759267B (en) Ado-resistant cysteamine analogs and uses thereof
KR101881074B1 (en) New acetaminophen compound composition without side effect to liver
Shulga et al. Mitoneet mediates TNFα-induced necroptosis promoted by exposure to fructose and ethanol
Xu et al. Regulation of pericyte metabolic reprogramming restricts the AKI to CKD transition
US20230129866A1 (en) Methods of treating respiratory disease with deupirfenidone
TWI606826B (en) Use of iguratimod or a salt thereof
KR20220150348A (en) PLD for use in combination in the treatment of coronavirus
JP2012102029A (en) Therapeutic agent for acetaminophen liver damage
WO2020006199A2 (en) Methods and agents for modulating inflammation
US9636343B2 (en) Composition for preventing and treating acetaminophen inducing hepatotoxicity containing TNP(N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine) as an effective ingredient
Song et al. Lycopene Alleviates Endoplasmic Reticulum Stress in Steatohepatitis through Inhibition of the ASK1–JNK Signaling Pathway
JP6157214B2 (en) Antipyretic analgesic composition
TW202102229A (en) Methods of diagnosis and treatment of liver diseases using obeticholic acid
TWI552748B (en) The use of a compound for the removal of hepatotoxicity against Acetaminophen (APAP)
TW201924721A (en) Composition comprising PI3 kinase inhibitor and BCL-2 inhibitor
TWI666013B (en) Use of compound for removing hepatotoxicity of Acetaminophen (APAP) medicine
US20240100069A1 (en) Methods and Compositions for Treating Amyotrophic Lateral Sclerosis