JP2012082116A - Ultrafine silver particle dispersion and antibacterial surface treating agent for ceramic containing the same - Google Patents

Ultrafine silver particle dispersion and antibacterial surface treating agent for ceramic containing the same Download PDF

Info

Publication number
JP2012082116A
JP2012082116A JP2010231428A JP2010231428A JP2012082116A JP 2012082116 A JP2012082116 A JP 2012082116A JP 2010231428 A JP2010231428 A JP 2010231428A JP 2010231428 A JP2010231428 A JP 2010231428A JP 2012082116 A JP2012082116 A JP 2012082116A
Authority
JP
Japan
Prior art keywords
silver
particle dispersion
group
ultrafine particle
silver ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010231428A
Other languages
Japanese (ja)
Other versions
JP2012082116A5 (en
JP5599060B2 (en
Inventor
Shoji Akaiwa
昌治 赤岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2010231428A priority Critical patent/JP5599060B2/en
Publication of JP2012082116A publication Critical patent/JP2012082116A/en
Publication of JP2012082116A5 publication Critical patent/JP2012082116A5/en
Application granted granted Critical
Publication of JP5599060B2 publication Critical patent/JP5599060B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ultrafine silver particle dispersion excellent in dispersion stability and an antibacterial surface treating agent for the ceramic.SOLUTION: The ultrafine silver particle dispersion mainly contains water and contains a compound represented by general formula (A), wherein Rrepresents an organic residue substituted by at least one selected from the group consisting of -SOM, -COOM, -OH and NHR, M represents H, an alkali metal atom, quaternary ammonium or quaternary phosphonium, Rrepresents H, 1-6C alkyl, -COR, -COORor -SOR, and Rrepresents H, alkyl or aryl.

Description

本発明は、水を主体に含有する銀超微粒子分散液に関するものであり、特に抗菌性を付与した窯業用表面処理剤に用いる銀超微粒子分散液、および抗菌性窯業用表面処理剤に関するものである。   The present invention relates to a silver ultrafine particle dispersion mainly containing water, and particularly to a silver ultrafine particle dispersion used for a ceramic surface treatment agent imparted with antibacterial properties, and an antibacterial ceramic surface treatment agent. is there.

一次粒子径が1μm以下の銀超微粒子、特に100nm以下の銀超微粒子は、極めて高い表面エネルギーによる融点低下や、局在化表面プラズモンによる電場増強効果等の特徴を有することから、導電性材料、表面増強ラマン散乱分光、太陽電池、光輝性塗料、色材等の様々な分野での応用が期待されている一方、銀超微粒子を抗菌性金属として使用する検討も進んでいる。このような銀超微粒子の製造方法は、乾式法と湿式法に大別され、水および/または有機溶媒に分散された銀超微粒子分散液の形で使用される。   Silver ultrafine particles having a primary particle diameter of 1 μm or less, particularly silver ultrafine particles of 100 nm or less, have characteristics such as a melting point decrease due to extremely high surface energy and an electric field enhancement effect due to localized surface plasmons. While applications in various fields such as surface-enhanced Raman scattering spectroscopy, solar cells, glittering paints, and coloring materials are expected, studies on the use of silver ultrafine particles as antibacterial metals are also progressing. Such silver ultrafine particle production methods are roughly classified into a dry method and a wet method, and are used in the form of a silver ultrafine particle dispersion liquid dispersed in water and / or an organic solvent.

例えば、特開平3−34211号公報には、乾式法であるガス中蒸発法により製造された銀を含む各種金属超微粒子を高沸点溶媒中に分散した金属超微粒子分散液の製造方法が開示されており、また特開2004−273205号公報には、ガス中蒸発法により合成された銀超微粒子を原料に用い、表面をアミン化合物によって被覆した銀超微粒子を高沸点溶媒中に分散した銀超微粒子分散液の製造方法が開示されている。   For example, JP-A-3-34211 discloses a method for producing a metal ultrafine particle dispersion in which various metal ultrafine particles containing silver produced by a gas evaporation method, which is a dry method, are dispersed in a high boiling point solvent. JP-A-2004-273205 discloses silver ultrafine particles obtained by dispersing silver ultrafine particles whose surfaces are coated with an amine compound in a high-boiling solvent using silver ultrafine particles synthesized by a gas evaporation method as a raw material. A method for producing a fine particle dispersion is disclosed.

湿式法による銀超微粒子の製造方法としてはCarey Leaが1889年に発表した方法(非特許文献1、Am.J.Sci.,vol.37,pp.491,1889)が古くから知られており、また特公平1−28084号公報(特許文献1)、特開平10−66861号公報(特許文献2)、特開2003−103158号公報(特許文献3)、特開2006−328472号公報(特許文献4)、特開2008−4375号公報(特許文献5)等には、水を主体に含有する水性媒体中に、保護コロイドあるいは分散剤として作用する水溶性高分子化合物と金属イオンを含有させ、還元剤により該金属イオンを還元し金属超微粒子を製造する方法が開示されている。しかしながらこのような製造方法において製造した銀超微粒子分散液は、経時によって銀超微粒子の分散安定性が低下するという問題があった。   As a method for producing silver ultrafine particles by a wet method, a method published by Carey Lea in 1889 (Non-patent Document 1, Am. J. Sci., Vol. 37, pp. 491, 1889) has been known for a long time. Japanese Patent Publication No. 1-228084 (Patent Document 1), Japanese Patent Application Laid-Open No. 10-66861 (Patent Document 2), Japanese Patent Application Laid-Open No. 2003-103158 (Patent Document 3), Japanese Patent Application Laid-Open No. 2006-328472 (Patent Document 1). Document 4), Japanese Patent Application Laid-Open No. 2008-4375 (Patent Document 5), and the like contain a water-soluble polymer compound acting as a protective colloid or a dispersant and a metal ion in an aqueous medium mainly containing water. A method for producing metal ultrafine particles by reducing the metal ions with a reducing agent is disclosed. However, the silver ultrafine particle dispersion produced by such a production method has a problem that the dispersion stability of the silver ultrafine particles decreases with time.

銀超微粒子の分散安定性に関しては、国際公開第2005/10100号パンフレット(特許文献6)では特定の重合体を用いて銀超微粒子の表面を修飾することで樹脂中での分散性を高める方法が開示され、特開2008−120863号公報(特許文献7)および国際公開第2002/013999号パンフレット(特許文献8)においてメルカプト酸、メルカプト酸塩およびメルカプトエタノール等のメルカプト化合物を用いて銀超微粒子分散液の分散安定性を改善する方法が開示されている。また、メルカプト化合物を銀を主成分とするペーストの防錆剤として利用することが、特開2007−116137号公報(特許文献9)に開示されている。   Regarding dispersion stability of silver ultrafine particles, International Publication No. 2005/10100 pamphlet (Patent Document 6) is a method for improving the dispersibility in a resin by modifying the surface of silver ultrafine particles using a specific polymer. In Japanese Patent Application Laid-Open No. 2008-120863 (Patent Document 7) and International Publication No. 2002/013999 (Patent Document 8), silver ultrafine particles using mercapto compounds such as mercapto acid, mercapto acid salt and mercaptoethanol are disclosed. A method for improving the dispersion stability of a dispersion is disclosed. Moreover, it is disclosed by Unexamined-Japanese-Patent No. 2007-116137 (patent document 9) to utilize a mercapto compound as a rust preventive agent of the paste which has silver as a main component.

一方、窯業製品の表面には、抗菌性を付与するための抗菌剤として、抗菌性金属を含有した窯業用表面処理剤を用いることによって、オリゴジナミー効果による(菌やカビ等の繁殖を抑制させる)抗菌性を発現することが知られている。   On the other hand, on the surface of ceramic products, by using ceramic surface treatment agent containing antibacterial metal as an antibacterial agent for imparting antibacterial properties, due to the oligodynamic effect (suppresses the growth of fungi and mold) It is known to exhibit antibacterial properties.

例えば、特開平5−201747号公報には前記抗菌性金属をハイドロキシアパタイトに担持させた複合粒子や、特開平6−127975号公報にはリン酸カルシウム化合物に含有させた複合粒子、特開平7−196384号公報には酸化銀、金属銀、もしくは任意の銀化合物、および、特開2008−105920号公報(特許文献10)には金属超微粒子を用いる等の記載がされている。このような抗菌性金属は一般的には釉薬成分である、長石(珪酸)、粘土(カオリン)、珪石、ソーダ、カリ、アルミナ、石灰等の任意の組み合わせからなる窯業用表面処理剤に含有される。このような釉薬成分中に、前述した分散安定性を改良した銀超微粒子を抗菌性金属として用いたとしても、銀超微粒子が極めて低い低濃度で含有されることや、窯業用表面処理剤のpHが高い領域であることから分散液中の銀超微粒子が経時により凝集して粗大化あるいは沈降し、十分な分散安定性を得ることは極めて困難であった。   For example, JP-A-5-201747 discloses composite particles in which the antibacterial metal is supported on hydroxyapatite, JP-A-6-127975 discloses composite particles contained in a calcium phosphate compound, and JP-A-7-196384. The gazette describes that silver oxide, metallic silver, or an arbitrary silver compound, and Japanese Patent Application Laid-Open No. 2008-105920 (Patent Document 10) use ultrafine metal particles. Such antibacterial metals are generally contained in ceramic surface treatment agents composed of any combination of feldspar (silicic acid), clay (kaolin), silica, soda, potash, alumina, lime, etc., which are glaze components. The In such a glaze component, even if the above-mentioned silver ultrafine particles with improved dispersion stability are used as an antibacterial metal, the ultrafine silver particles are contained at a very low concentration, Since the pH is in a high region, it was extremely difficult to obtain sufficient dispersion stability because the ultrafine silver particles in the dispersion aggregated over time and coarsened or settled.

特公平1−28084号公報Japanese Patent Publication No. 1-228084 特開平10−66861号公報Japanese Patent Laid-Open No. 10-66861 特開2003−103158号公報JP 2003-103158 A 特開2006−328472号公報JP 2006-328472 A 特開2008−4375号公報JP 2008-4375 A 国際公開第2005/10100号パンフレットInternational Publication No. 2005/10100 Pamphlet 特開2008−120863号公報JP 2008-120863 A 国際公開第2002/013999号パンフレットInternational Publication No. 2002/013999 Pamphlet 特開2007−116137号公報JP 2007-116137 A 特開2008−105920号公報JP 2008-105920 A

本発明の目的は、水を主体に含有した銀超微粒子分散液であって、特に抗菌性を付与した窯業用表面処理剤に用いることができる分散安定性に優れた銀超微粒子分散液、および抗菌性窯業用表面処理剤を提供することにある。   An object of the present invention is a silver ultrafine particle dispersion mainly containing water, and particularly a silver ultrafine particle dispersion excellent in dispersion stability that can be used for a surface treatment agent for ceramics imparted with antibacterial properties, and The object is to provide an antibacterial ceramic surface treatment agent.

本発明の上記目的は、以下の発明によって基本的に達成された。
1.水を主体に含有し、下記一般式(A)で表される化合物を含有することを特徴とする銀超微粒子分散液。
The above object of the present invention has been basically achieved by the following invention.
1. A silver ultrafine particle dispersion containing water as a main component and a compound represented by the following general formula (A).

Figure 2012082116
Figure 2012082116

一般式(A)において、Rは−SOM、−COOM、−OHおよび−NHRから成る群から選ばれた少くなくとも1種で置換された有機残基を表し、Mは水素原子、アルカリ金属原子又は、四級アンモニウム基、四級ホスホニウム基を表し、Rは水素原子、炭素数1〜6のアルキル基、−COR、−COORまたは−SOを表わす。Rは水素原子、アルキル基又はアリール基を表す。
2.1記載の銀超微粒子分散液を含有する抗菌性窯業用表面処理剤。
In the general formula (A), R 1 represents an organic residue substituted with at least one selected from the group consisting of —SO 3 M, —COOM, —OH and —NHR 2 , and M represents a hydrogen atom. Represents an alkali metal atom, a quaternary ammonium group or a quaternary phosphonium group, and R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, —COR 3 , —COOR 3 or —SO 2 R 3 . R 3 represents a hydrogen atom, an alkyl group or an aryl group.
An antibacterial surface treatment agent for ceramics containing the silver ultrafine particle dispersion described in 2.1.

上記メルカプトテトラゾール化合物を含有した銀超微粒子分散液を用いることで、釉薬液中にて低濃度状態であっても優れた分散安定性および抗菌性を付与できる銀超微粒子分散液および抗菌性窯業用表面処理剤を提供することができる。   By using the silver ultrafine particle dispersion containing the mercaptotetrazole compound, the silver ultrafine particle dispersion and antibacterial ceramic industry can impart excellent dispersion stability and antibacterial properties even in a low concentration state in the glaze liquid. A surface treatment agent can be provided.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者は、水を主体に含有した銀超微粒子分散液の分散安定性について鋭意検討した結果、上記した特定のメルカプトテトラゾール化合物を含有させることで釉薬液中において低濃度の分散状態であっても優れた分散安定性と抗菌性を付与できる銀超微粒子分散液が得られることを見いだした。   As a result of intensive studies on the dispersion stability of the silver ultrafine particle dispersion mainly containing water, the present inventor has a low concentration dispersion state in the glaze liquid by containing the specific mercaptotetrazole compound described above. It was also found that a silver ultrafine particle dispersion capable of imparting excellent dispersion stability and antibacterial properties can be obtained.

本発明における、水を主体に含有した銀超微粒子分散液とは水性媒体の溶媒として、水が少なくとも80質量%以上であることを示し、好ましくは90質量%以上であり、特に好ましくは98質量%以上であることを意味する。水以外に含まれる溶媒としては、アルコール類、グリコール類、アセトン等の水と混和性の高い有機溶媒を例示することができる。   The silver ultrafine particle dispersion mainly containing water in the present invention indicates that water is at least 80% by mass or more, preferably 90% by mass or more, particularly preferably 98% by mass, as a solvent of an aqueous medium. It means that it is more than%. Examples of the solvent other than water include organic solvents having high miscibility with water, such as alcohols, glycols, and acetone.

本発明の銀超微粒子分散液が含有する銀超微粒子は、銀の占める割合が少なくとも50質量%以上である金属超微粒子であることが好ましく、より好ましくは銀の占める割合が70質量%以上であり、特に好ましくは90質量%以上である。銀以外に含まれる金属としては、金、銅、白金、パラジウム、ロジウム、ルテニウム、イリジウム、オスミウム、ニッケル、ビスマスを挙げることができる。銀以外の金属は銀超微粒子中に含まれていても良く、銀超微粒子と銀以外の金属の超微粒子が混合していても良い。   The silver ultrafine particles contained in the silver ultrafine particle dispersion of the present invention are preferably metal ultrafine particles in which the proportion of silver is at least 50% by mass or more, more preferably the proportion of silver is 70% by mass or more. Yes, particularly preferably 90% by mass or more. Examples of metals contained other than silver include gold, copper, platinum, palladium, rhodium, ruthenium, iridium, osmium, nickel, and bismuth. Metals other than silver may be contained in the silver ultrafine particles, or silver ultrafine particles and metal ultrafine particles other than silver may be mixed.

銀超微粒子の平均粒径は、得られる抗菌性の観点から0.1μm以下であることが好ましい。なお、銀超微粒子の平均粒径は、電子顕微鏡下での観察により求めることができる。詳細にはポリエチレンテレフタレートフィルムの上に、銀超微粒子分散液を塗布、乾燥させ、走査型電子顕微鏡にて観察し、一定面積内に存在する100個の粒子各々の投影面積に等しい円の直径を粒子径として平均し求める。   The average particle diameter of the ultrafine silver particles is preferably 0.1 μm or less from the viewpoint of the obtained antibacterial properties. The average particle diameter of the ultrafine silver particles can be determined by observation under an electron microscope. Specifically, a silver ultrafine particle dispersion is coated on a polyethylene terephthalate film, dried, and observed with a scanning electron microscope. The diameter of a circle equal to the projected area of each of 100 particles existing within a certain area is obtained. The average is obtained as the particle diameter.

銀超微粒子としては、不活性ガス中で金属を蒸発させガスとの衝突により冷却・凝縮し回収するガス中蒸発法、レーザー照射のエネルギーにより液中で蒸発・凝縮し回収するレーザーアブレーション法、水溶液中で溶液中金属イオンを還元し生成・回収する化学的還元法、有機金属化合物の熱分解による方法、金属塩化物の気相中での還元による方法、酸化物の水素中還元法等、公知の種々の方法により製造されたものを好ましく用いることができる。本発明においては、銀超微粒子分散液の作製が容易になる点より化学的還元法で作製された銀超微粒子がより好ましい。化学的還元法とは水溶性銀塩を塩基性化合物と水溶性高分子化合物の存在下で還元剤により還元する方法である。   Silver ultrafine particles include vapor evaporation in which the metal is evaporated in an inert gas and cooled / condensed and recovered by collision with the gas, laser ablation that is evaporated / condensed and recovered in the liquid by the energy of laser irradiation, and aqueous solution Known methods include chemical reduction methods that reduce, generate, and recover metal ions in solution, methods that involve pyrolysis of organometallic compounds, methods that involve reduction of metal chlorides in the gas phase, and methods for reducing oxides in hydrogen. Those produced by the various methods described above can be preferably used. In the present invention, silver ultrafine particles produced by a chemical reduction method are more preferable from the viewpoint of easy production of a silver ultrafine particle dispersion. The chemical reduction method is a method in which a water-soluble silver salt is reduced with a reducing agent in the presence of a basic compound and a water-soluble polymer compound.

化学的還元法に用いられる水溶性銀塩は、水に対する溶解度の高い硝酸銀塩、フッ化銀塩、過塩素酸銀塩が好ましく、工業用途として広く用いられている硝酸銀塩が特に好ましい。また、水を主体に含有する水性媒体中に含有せしめる水溶性銀塩の量は、該水性媒体中に水溶性銀塩、塩基性化合物、水溶性高分子化合物および還元剤等を含有せしめた混合物1kgに対して、銀イオンに換算して0.1モル以上、より好ましくは0.5モル以上であることが好ましい。なお上限は、水溶性銀塩および塩基性化合物の溶解濃度の上限に到達することから、約2.8モル以下とすることが望ましい。   The water-soluble silver salt used in the chemical reduction method is preferably a silver nitrate salt, a silver fluoride salt or a silver perchlorate salt having high solubility in water, and particularly preferably a silver nitrate salt widely used for industrial applications. The amount of the water-soluble silver salt contained in the aqueous medium mainly containing water is a mixture in which the water-soluble silver salt, basic compound, water-soluble polymer compound and reducing agent are contained in the aqueous medium. It is preferably 0.1 mol or more, more preferably 0.5 mol or more, in terms of silver ion with respect to 1 kg. In addition, since an upper limit reaches | attains the upper limit of the solution density | concentration of water-soluble silver salt and a basic compound, it is desirable to set it as about 2.8 mol or less.

本発明の銀超微粒子の製造方法において、塩基性化合物として、炭酸水素カリウム、炭酸カリウム、酢酸カリウム、リン酸三カリウム、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、水酸化バリウム、アンモニア水等を用いることができ、併用することもできる。   In the method for producing ultrafine silver particles of the present invention, as the basic compound, potassium hydrogen carbonate, potassium carbonate, potassium acetate, tripotassium phosphate, potassium hydroxide, sodium hydroxide, lithium hydroxide, barium hydroxide, aqueous ammonia, etc. Can also be used, and can also be used together.

塩基性化合物の添加量は、水溶性銀塩由来の銀イオンと当量以上で添加することが好ましい。当量未満の場合、形成される銀超微粒子の量が減少し銀超微粒子の収率が低下する場合がある。上限は特にないが塩基性化合物の添加量を増やすと、反応後に得られる銀超微粒子を含有する分散液の総量が増加し生産性が低くなるため、2当量以下とすることが望ましい。   The addition amount of the basic compound is preferably added in an amount equal to or more than the silver ion derived from the water-soluble silver salt. If the amount is less than the equivalent, the amount of silver ultrafine particles formed may be reduced and the yield of silver ultrafine particles may be reduced. Although there is no particular upper limit, increasing the addition amount of the basic compound increases the total amount of the dispersion containing the ultrafine silver particles obtained after the reaction and lowers the productivity.

水溶性高分子化合物は、反応過程で一時的に生成する酸化銀あるいは還元により形成された銀超微粒子の保護コロイドあるいは分散剤として作用し、銀超微粒子の製造に使用される公知の水溶性高分子化合物を使用すれば良く、例えばアラビアゴム、デキストラン、デキストリン等の多糖類やゼラチン等の天然高分子化合物、ポリビニルアルコールやポリビニルピロリドン、ポリアリルアミン等の合成高分子化合物を広く用いることができる。   A water-soluble polymer compound acts as a protective colloid or a dispersing agent for silver ultrafine particles formed by silver oxide or reduction produced temporarily during the reaction process, and is a known water-soluble high-molecular compound used for the production of silver ultrafine particles. Molecular compounds may be used. For example, polysaccharides such as gum arabic, dextran and dextrin, natural polymer compounds such as gelatin, and synthetic polymer compounds such as polyvinyl alcohol, polyvinyl pyrrolidone and polyallylamine can be widely used.

水溶性高分子化合物の添加量は、種類および製造する銀超微粒子の粒径により変化するが、水溶性銀塩由来の銀イオン1モルに対して1gから200gが好ましく、より好ましくは20gから100gである。   The addition amount of the water-soluble polymer compound varies depending on the kind and the particle size of the silver ultrafine particles to be produced, but is preferably 1 to 200 g, more preferably 20 to 100 g, per 1 mol of silver ions derived from the water-soluble silver salt. It is.

還元剤としては、公知の銀イオンを銀に還元することができる還元剤から溶解度の高いものを選択すれば良く、銀塩写真用の現像試薬として知られるハイドロキノン、ハイドロキノンモノスルフォネートカリウム塩、アスコルビン酸またはその塩、無電解鍍金の還元剤として知られる水素化ホウ素ナトリウム、ヒドラジン化合物、ホルマリン、ホスフィン酸またはその塩、酒石酸またはその塩、他にデキストリン、マルトース、グルコース等の多糖類や二糖類、単糖類を例示することができる。   As the reducing agent, it is sufficient to select a highly soluble reducing agent that can reduce known silver ions to silver, hydroquinone known as a developing reagent for silver salt photography, hydroquinone monosulfonate potassium salt, Ascorbic acid or its salt, sodium borohydride known as a reducing agent for electroless plating, hydrazine compound, formalin, phosphinic acid or its salt, tartaric acid or its salt, as well as polysaccharides and disaccharides such as dextrin, maltose and glucose And monosaccharides.

還元剤の添加量は、水溶性銀塩由来の銀イオンと当量以上添加することが望ましい。上限は特にないが還元剤の添加量を増やすと、得られる銀超微粒子分散液の総量が増加し生産性が低くなるため、2当量以下が好ましい。但し、多糖類や二糖類および単糖類を用いる場合には、同時に加えられる塩基性化合物により加水分解され、アルドン酸を経てグリコール酸等のオキシ酸およびギ酸等の種々の酸を種々の割合により生じ、これらが還元に寄与するため、化学量論的に論じることができない。実際にはグルコースあるいはフルクトース単位あたり少なくとも5電子から10電子の還元が可能である。従って多糖類や二糖類および単糖類を使用する場合、グルコースあるいはフルクトース単位として水溶性銀塩由来の銀イオンに対して0.1〜0.4当量とすることが好ましい。   As for the addition amount of a reducing agent, it is desirable to add more than an equivalent with the silver ion derived from water-soluble silver salt. Although there is no upper limit, if the amount of the reducing agent added is increased, the total amount of the obtained ultrafine silver particle dispersion is increased and the productivity is lowered. However, when polysaccharides, disaccharides, and monosaccharides are used, they are hydrolyzed by basic compounds added at the same time, and aldonic acid is used to produce various acids such as glycolic acid and other oxyacids and formic acid in various proportions. Because they contribute to reduction, they cannot be stoichiometrically discussed. In practice, a reduction of at least 5 to 10 electrons per glucose or fructose unit is possible. Therefore, when using polysaccharides, disaccharides, and monosaccharides, it is preferable to make it into 0.1-0.4 equivalent with respect to the silver ion derived from water-soluble silver salt as glucose or a fructose unit.

還元剤として多糖類や二糖類および単糖類を用いる場合には、塩基性化合物が加水分解に消費されるため、塩基性化合物は、水溶性銀塩由来の銀イオンに対して少なくとも当量を超えて添加することが必要であり、1.15当量以上が好ましく、1.3当量以上が特に好ましい。また、多糖類を用いる場合には多糖類は水溶性高分子化合物としての効果を兼ねることもできる。   When polysaccharides, disaccharides, and monosaccharides are used as the reducing agent, the basic compound is consumed for hydrolysis. Therefore, the basic compound exceeds at least an equivalent amount with respect to the silver ion derived from the water-soluble silver salt. It is necessary to add, 1.15 equivalent or more is preferable, and 1.3 equivalent or more is particularly preferable. Moreover, when using a polysaccharide, the polysaccharide can also serve as an effect as a water-soluble polymer compound.

次に本発明に含有する一般式(A)で示されるメルカプトテトラゾール化合物について説明する。   Next, the mercaptotetrazole compound represented by the general formula (A) contained in the present invention will be described.

Figure 2012082116
Figure 2012082116

一般式(A)において、Rは−SOM、−COOM、−OHおよび−NHRから成る群から選ばれた少くなくとも1種で置換された有機残基を表し、Mは水素原子、アルカリ金属原子(例えばリチウム、ナトリウム、カリウムなど)、四級アンモニウム基(例えばアンモニオ、テトラメチルアンモニオ、ベンジルトリメチルアンモニオ、テトラブチルアンモニオ)または四級ホスホニウム基(例えばテトラメチルホスホニオ)を表し、Rは水素原子、炭素数1〜6のアルキル基、−COR、−COORまたは−SOを表わす。Rは水素原子、アルキル基又はアリール基を表す。 In the general formula (A), R 1 represents an organic residue substituted with at least one selected from the group consisting of —SO 3 M, —COOM, —OH and —NHR 2 , and M represents a hydrogen atom. , Alkali metal atoms (eg lithium, sodium, potassium etc.), quaternary ammonium groups (eg ammonio, tetramethylammonio, benzyltrimethylammonio, tetrabutylammonio) or quaternary phosphonium groups (eg tetramethylphosphonio) R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, —COR 3 , —COOR 3 or —SO 2 R 3 . R 3 represents a hydrogen atom, an alkyl group or an aryl group.

ここで、有機残基とは、具体的には炭素数1〜10のアルキル基(例えばメチル、エチル、プロピル、ヘキシル、シクロヘキシル)、炭素数6〜14のアリール基(例えばフェニル、ナフチル)を示す。   Here, the organic residue specifically represents an alkyl group having 1 to 10 carbon atoms (for example, methyl, ethyl, propyl, hexyl, cyclohexyl), and an aryl group having 6 to 14 carbon atoms (for example, phenyl, naphthyl). .

一般式(A)のRで表される有機残基は更に置換されていても良く、置換基としては以下のものが挙げられる。 The organic residue represented by R 1 in the general formula (A) may be further substituted, and examples of the substituent include the following.

ハロゲン原子(フッ素、塩素、臭素、ヨウ素)、シアノ基、ニトロ基、アンモニオ基(例えば、トリメチルアンモニオ)、ホスホニオ基、スルホ基(塩を含む)、スルフィノ基(塩を含む)、カルボキシ基(塩を含む)、ホスホノ基(塩を含む)、ヒドロキシ基、メルカプト基、ヒドラジノ基、アルキル基(例えば、メチル、エチル、n−プロピル、イソプロピル,t−ブチル、n−オクチル、シクロペンチル、シクロへキシル)、アルケニル基(例えば、アリル、2−ブテニル、3−ペンテニル)、アルキニル基(例えば、プロパギル、3−ペンチニル)、アラルキル基(例えば、ベンジル、フェネチル)、アリール基(例えば、フェニル、ナフチル、4−メチルフェニル)、ヘテロ環基(例えば、ピリジル、フリル、イミダゾリル、ピペリジル、モルホリノ)、アルコキシ基(例えば、メトキシ、エトキシ、ブチルオキシ)、アリールオキシ基(例えば、フェノキシ、2−ナフチルオキシ)、アルキルチオ基(例えば、メチルチオ、エチルチオ)、アリールチオ基(例えば、フェニルチオ)、アミノ基(例えば、無置換のアミノ、メチルアミノ、ジメチルアミノ、エチルアミノ、アリニノ)、アシル基(例えば、アセチル、ベンゾイル、ホルミル、ピバロイル)、アルコキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル)、アリールオキシカルボニル基(例えば、フェノキシカルボニル)、カルバモイル基(例えば、無置換のカルバモイル、N,N−ジメチルカルバモイル、N−エチルカルバモイル、N−フェニルカルバモイル)、アシルオキシ基(例えば、アセトキシ、ベンゾイルオキシ)、アシルアミノ基(例えば、アセチルアミノ、ベンゾイルアミノ)、アルコキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ)、アリールオキシカルボニルアミノ基(例えば、フェノキシカルボニルアミノ)、ウレイド基(例えば、無置換のウレイド、N−メチルウレイド、N−フェニルウレイド)、アルキルスルホニルアミノ基(例えば、メチルスルホニルアミノ)、アリールスルホニルアミノ基(例えば、フェニルスルホニルアミノ)、アルキルスルホニルオキシ基(例えば、メチルスルホニルオキシ)、アリールスルホニルオキシ基(例えば、フェニルスルホニルオキシ)、アルキルスルホニル基(例えば、メシル)、アリールスルホニル基(例えば、トシル)、アルコキシスルホニル基(例えば、メトキシスルホニル)、アリールオキシスルホニル基(例えば、フェノキシスルホニル)、スルファモイル基(例えば、無置換のスルファモイル、N−メチルスルファモイル、N,N−ジメチルスルファモイル、N−フェニルスルファモイル)、アルキルスルフィニル基(例えば、メチルスルフィニル)、アリールスルフィニル基(例えば、フェニルスルフィニル)、アルコキシスルフィニル基(例えば、メトキシスルフィニル)、アリールオキシスルフィニル基(例えば、フェノキシスルフィニル)、リン酸アミド基(例えば、N,N−ジエチルリン酸アミド)などである。これらの基は更に置換されていてもよい。また、置換基が2つ以上ある時は同じであっても、異なっていてもよい。   Halogen atom (fluorine, chlorine, bromine, iodine), cyano group, nitro group, ammonio group (for example, trimethylammonio), phosphonio group, sulfo group (including salt), sulfino group (including salt), carboxy group ( Salt), phosphono group (including salt), hydroxy group, mercapto group, hydrazino group, alkyl group (eg, methyl, ethyl, n-propyl, isopropyl, t-butyl, n-octyl, cyclopentyl, cyclohexyl) ), An alkenyl group (eg, allyl, 2-butenyl, 3-pentenyl), an alkynyl group (eg, propargyl, 3-pentynyl), an aralkyl group (eg, benzyl, phenethyl), an aryl group (eg, phenyl, naphthyl, 4 -Methylphenyl), heterocyclic groups (eg pyridyl, furyl, imidazolyl, pipette Diyl, morpholino), alkoxy groups (eg methoxy, ethoxy, butyloxy), aryloxy groups (eg phenoxy, 2-naphthyloxy), alkylthio groups (eg methylthio, ethylthio), arylthio groups (eg phenylthio), amino Groups (eg unsubstituted amino, methylamino, dimethylamino, ethylamino, alinino), acyl groups (eg acetyl, benzoyl, formyl, pivaloyl), alkoxycarbonyl groups (eg methoxycarbonyl, ethoxycarbonyl), aryloxy A carbonyl group (for example, phenoxycarbonyl), a carbamoyl group (for example, unsubstituted carbamoyl, N, N-dimethylcarbamoyl, N-ethylcarbamoyl, N-phenylcarbamoyl), an acyloxy group (for example, , Acetoxy, benzoyloxy), acylamino groups (eg acetylamino, benzoylamino), alkoxycarbonylamino groups (eg methoxycarbonylamino), aryloxycarbonylamino groups (eg phenoxycarbonylamino), ureido groups (eg none Substituted ureido, N-methylureido, N-phenylureido), alkylsulfonylamino group (eg methylsulfonylamino), arylsulfonylamino group (eg phenylsulfonylamino), alkylsulfonyloxy group (eg methylsulfonyloxy) , Arylsulfonyloxy group (eg phenylsulfonyloxy), alkylsulfonyl group (eg mesyl), arylsulfonyl group (eg tosyl), alkoxysulfonyl Groups (eg methoxysulfonyl), aryloxysulfonyl groups (eg phenoxysulfonyl), sulfamoyl groups (eg unsubstituted sulfamoyl, N-methylsulfamoyl, N, N-dimethylsulfamoyl, N-phenylsulfa) Moyl), alkylsulfinyl groups (eg methylsulfinyl), arylsulfinyl groups (eg phenylsulfinyl), alkoxysulfinyl groups (eg methoxysulfinyl), aryloxysulfinyl groups (eg phenoxysulfinyl), phosphate amide groups (eg , N, N-diethylphosphoric acid amide) and the like. These groups may be further substituted. Moreover, when there are two or more substituents, they may be the same or different.

ここでRの置換基−SOM、−COOM、−OHおよび−NHRが2個以上あってもよく、その置換基は同じであっても、異なっていてもよい。 Here, there may be two or more substituents —SO 3 M, —COOM, —OH and —NHR 2 of R 1 , and the substituents may be the same or different.

一般式(A)において、Rは、水素原子、炭素数1〜6のアルキル基、−COR、−CO、または−SOを表し、Rは水素原子、炭素数1〜20のアルキル基(例えば、メチル、エチル、プロピル、ヘキシル、シクロヘキシル、ドデシル、オクタデシル)、アリール基(例えばフェニル、ナフチル)を表す。これらの基は、Rの置換基として挙げた置換基が置換していてもよい。 In General Formula (A), R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, —COR 3 , —CO 2 R 3 , or —SO 2 R 3 , and R 3 represents a hydrogen atom or a carbon number 1 to 20 alkyl groups (for example, methyl, ethyl, propyl, hexyl, cyclohexyl, dodecyl, octadecyl) and aryl groups (for example, phenyl, naphthyl) are represented. These groups may be substituted by the substituents exemplified as the substituent for R 1 .

本発明に用いられるメルカプトテトラゾール化合物の使用量は、銀超微粒子の製造に使用する水溶性銀塩中より換算した銀1モルに対して、好ましくは10g〜0.01gであり、より好ましくは5g〜0.5gである。   The amount of the mercaptotetrazole compound used in the present invention is preferably 10 g to 0.01 g, more preferably 5 g, with respect to 1 mol of silver converted from the water-soluble silver salt used in the production of silver ultrafine particles. ~ 0.5g.

以下に一般式(A)で表される化合物の具体例を示すが、本発明はこれらに限定されるものではない。   Specific examples of the compound represented by formula (A) are shown below, but the present invention is not limited thereto.

Figure 2012082116
Figure 2012082116

Figure 2012082116
Figure 2012082116

Figure 2012082116
Figure 2012082116

Figure 2012082116
Figure 2012082116

Figure 2012082116
Figure 2012082116

本発明で得られた銀超微粒子分散液は抗菌用表面処理剤の用途以外にも使用可能であり、銀超微粒子と共に含まれている塩類や過剰な水溶性高分子化合物等を、限外濾過や遠心分離等の公知の方法により減少させ、含まれている銀超微粒子の濃度を目的に応じ調整し、必要に応じ粘度調整剤やバインダー等を添加して銀超微粒子含有組成物とし、導電性材料、表面増強ラマン散乱分光、太陽電池、光輝性塗料、色材等の公知の用途に使用することもできる。また、銀超微粒子を含有する分散液より銀超微粒子を乾燥等の方法により取り出し、粉体として利用することや、有機溶媒等に再分散させ利用することもできる。   The silver ultrafine particle dispersion obtained in the present invention can be used for purposes other than antibacterial surface treatment agents. Ultrafiltration of salts and excessive water-soluble polymer compounds contained together with silver ultrafine particles can be performed. The concentration of ultrafine silver particles is adjusted according to the purpose, and a viscosity modifier or binder is added as necessary to obtain a composition containing ultrafine silver particles. It can also be used for known applications such as a conductive material, surface-enhanced Raman scattering spectroscopy, a solar cell, a glittering paint, and a coloring material. Further, the ultrafine silver particles can be taken out from the dispersion containing the ultrafine silver particles by a method such as drying and used as a powder, or can be redispersed in an organic solvent or the like.

次に本発明の抗菌性窯業用表面処理剤について説明する。窯業用表面処理剤とは一般的には釉薬成分である、長石(珪酸)、粘土(カオリン)、珪石、ソーダ、カリ、アルミナ、石灰等の任意の組み合わせからなり、このような釉薬成分はアルカリ性のものが多く、窯業用表面処理剤はpHが10以上と高い領域で用いられることとなる。本発明の抗菌性窯業用表面処理剤は上記窯業用表面処理剤に銀超微粒子分散剤を含有させたものであり、特にpHが12以上で含有された場合により分散安定性の効果が顕著になる。   Next, the surface treatment agent for antibacterial ceramics of the present invention will be described. A surface treatment agent for ceramics is generally composed of any combination of feldspar (silicic acid), clay (kaolin), silica, soda, potash, alumina, lime, etc., and such glaze components are alkaline. The surface treatment agent for ceramic industry is used in a region where the pH is as high as 10 or more. The antibacterial surface treatment agent for ceramics according to the present invention is obtained by adding a silver ultrafine particle dispersant to the above-mentioned surface treatment agent for ceramics, and the effect of dispersion stability is particularly noticeable when the pH is contained at 12 or more. Become.

本発明の抗菌性窯業用表面処理剤において含有する本発明の銀超微粒子の好ましい量は抗菌性を考慮し抗菌性窯業用表面処理剤の全量に対して0.0001〜1質量%であり、より好ましくは0.001〜0.1質量%である。   The preferable amount of the ultrafine silver particles of the present invention contained in the antibacterial ceramic surface treatment agent of the present invention is 0.0001 to 1% by mass with respect to the total amount of the antibacterial ceramic surface treatment agent in consideration of antibacterial properties, More preferably, it is 0.001-0.1 mass%.

以下、実施例により本発明を詳しく説明するが、本発明の内容は実施例に限られるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, the content of this invention is not restricted to an Example.

《実施例1》
<銀超微粒子分散液1の作製>
ビーカーに低分子量ゼラチン(分子量約1万)を16gと純水181gを加え膨潤後、50℃で溶解し、15℃まで冷却した後、グルコース6.3gを加えて溶解した。更にその液にメルカプトテトラゾール化合物A−1を1g添加し溶解後、純水78.5gに硝酸銀71.5gを溶解した液を加えて撹拌し、溶解した。この液を氷浴中にて約10℃まで冷却を行い、それに純水67.2gに水酸化カリウム32.8gを溶解した10℃の液を撹拌した状態で添加し30分間の還元反応を実施することで10質量%の銀超微粒子分散液1を得た。
Example 1
<Preparation of silver ultrafine particle dispersion 1>
16 g of low molecular weight gelatin (molecular weight of about 10,000) and 181 g of pure water were added to a beaker and swollen, dissolved at 50 ° C., cooled to 15 ° C., and then added with 6.3 g of glucose to dissolve. Further, 1 g of mercaptotetrazole compound A-1 was added to the solution and dissolved, and then a solution of 71.5 g of silver nitrate dissolved in 78.5 g of pure water was added and stirred to dissolve. This solution is cooled to about 10 ° C. in an ice bath, and a solution at 10 ° C. in which 32.8 g of potassium hydroxide is dissolved in 67.2 g of pure water is added with stirring, and a reduction reaction is performed for 30 minutes. Thus, a 10% by mass silver ultrafine particle dispersion 1 was obtained.

《実施例2》
<銀超微粒子分散液2の作製>
実施例1のメルカプトテトラゾール化合物A−1に替えてA−2を添加する以外は実施例1同様に10質量%の銀超微粒子分散液2を作製した。
Example 2
<Preparation of silver ultrafine particle dispersion 2>
A 10% by mass silver ultrafine particle dispersion 2 was prepared in the same manner as in Example 1 except that A-2 was added instead of the mercaptotetrazole compound A-1 in Example 1.

《実施例3》
<銀超微粒子分散液3の作製>
実施例1のメルカプトテトラゾール化合物A−1に替えてA−6を添加する以外は実施例1同様に10質量%の銀超微粒子分散液3を作製した。
Example 3
<Preparation of silver ultrafine particle dispersion 3>
A 10% by mass silver ultrafine particle dispersion 3 was prepared in the same manner as in Example 1 except that A-6 was added instead of the mercaptotetrazole compound A-1 in Example 1.

《実施例4》
<銀超微粒子分散液4の作製>
実施例1のメルカプトテトラゾール化合物A−1に替えてA−9を添加する以外は実施例1同様に10質量%の銀超微粒子分散液4を作製した。
Example 4
<Preparation of silver ultrafine particle dispersion 4>
A 10% by mass silver ultrafine particle dispersion 4 was prepared in the same manner as in Example 1 except that A-9 was added instead of the mercaptotetrazole compound A-1 in Example 1.

《比較例1》
<銀超微粒子分散液5の作製>
実施例1のメルカプトテトラゾール化合物を添加しない以外は実施例1同様に10質量%銀超微粒子分散液5を作製した。
<< Comparative Example 1 >>
<Preparation of silver ultrafine particle dispersion 5>
A 10% by mass silver ultrafine particle dispersion 5 was prepared in the same manner as in Example 1 except that the mercaptotetrazole compound of Example 1 was not added.

《比較例2》
<銀超微粒子分散液6の作製>
実施例1のメルカプトテトラゾール化合物A−1に替えてメルカプト酢酸を添加する以外は実施例1同様に10質量%銀超微粒子分散液6を作製した。
<< Comparative Example 2 >>
<Preparation of silver ultrafine particle dispersion 6>
A 10% by mass silver ultrafine particle dispersion 6 was prepared in the same manner as in Example 1 except that mercaptoacetic acid was added instead of the mercaptotetrazole compound A-1 in Example 1.

《比較例3》
<銀超微粒子分散液7の作製>
実施例1のメルカプトテトラゾール化合物A−1に替えて2−メチルベンゾチアゾールを添加する以外は実施例1同様に10質量%銀超微粒子分散液7を作製した。
<< Comparative Example 3 >>
<Preparation of silver ultrafine particle dispersion 7>
A 10% by mass silver ultrafine particle dispersion 7 was prepared in the same manner as in Example 1 except that 2-methylbenzothiazole was added instead of the mercaptotetrazole compound A-1 in Example 1.

《比較例4》
<銀超微粒子分散液8の作製>
実施例1のメルカプトテトラゾール化合物A−1に替えて2−メルカプトイミダゾールを添加する以外は実施例1同様に10質量%銀超微粒子分散液8を作製した。
<< Comparative Example 4 >>
<Preparation of silver ultrafine particle dispersion 8>
A 10% by mass silver ultrafine particle dispersion 8 was prepared in the same manner as in Example 1 except that 2-mercaptoimidazole was added instead of the mercaptotetrazole compound A-1 in Example 1.

<抗菌性窯業用表面処理剤の調製>
釉薬成分として、70質量部の長石、25質量部の石灰、5質量部の粘土と100質量部の水と共に混合し、pHが12となるように窯業用表面処理剤を調製した。
<Preparation of antibacterial ceramic surface treatment agent>
As a glaze component, it mixed with 70 mass parts feldspar, 25 mass parts lime, 5 mass parts clay, and 100 mass parts water, and prepared the surface treatment agent for ceramics so that pH might be set to 12.

<抗菌性の評価1>
上記作製した窯業用表面処理剤100g中に、それぞれ銀超微粒子分散液1〜8を0.02g添加した抗菌性窯業用表面処理剤を、タイル素地の表面に吹き付け塗布、乾燥した後、電気炉にて30分間加熱焼成することで抗菌性釉薬層1〜8を形成した。それぞれの釉薬層表面に黄色ブドウ糖菌の菌株1ミリリットルを滴下した後、滅菌ポリエチレンフィルムを載置して、25℃で24時間静置し、{(対照生菌数−サンプル生菌数)/対照生菌数}×100=滅菌率(%)として求めたところ、1〜8全て99%を超える抗菌率であり、銀超微粒子分散液を添加することで抗菌性は良好であった。
<Antimicrobial evaluation 1>
After applying and drying the antibacterial ceramic surface treatment agent, in which 0.02 g of each of the silver ultrafine particle dispersions 1 to 8 is added to 100 g of the prepared ceramic surface treatment agent, the electric furnace The antibacterial glaze layers 1 to 8 were formed by heating and baking for 30 minutes. After 1 ml of a strain of Staphylococcus aureus was dropped on the surface of each glaze layer, a sterilized polyethylene film was placed and allowed to stand at 25 ° C. for 24 hours, and {(control viable count−sample viable count) / control The number of viable bacteria} × 100 = sterilization rate (%) was obtained. The antibacterial rate exceeded 1% to 8%, and the antibacterial property was good by adding the silver ultrafine particle dispersion.

<分散安定性の評価1>
釉薬成分として35質量部の珪酸ソーダ2号と65質量部の水を混合しpHが12の窯業用表面処理剤を調製した。窯業用表面処理剤100g中に、それぞれ銀超微粒子分散液1〜8を0.02g添加した抗菌性窯業用表面処理剤1〜8を作製し、経時による分散安定性について評価した。評価方法としては銀超微粒子の黄色プラズモンを12時間ごとに目視で確認し、凝集沈降して色がなくなるまでの時間を最長1週間まで観察確認した。結果を表1に示す。
<Evaluation 1 of dispersion stability>
As a glaze component, 35 parts by mass of sodium silicate 2 and 65 parts by mass of water were mixed to prepare a surface treatment agent for ceramics having a pH of 12. Antibacterial ceramic surface treatment agents 1 to 8 were prepared by adding 0.02 g of silver ultrafine particle dispersions 1 to 8 to 100 g of ceramic surface treatment agent, and the dispersion stability over time was evaluated. As an evaluation method, yellow plasmons of silver ultrafine particles were visually confirmed every 12 hours, and the time until aggregation and sedimentation and the color disappeared was observed and confirmed for up to one week. The results are shown in Table 1.

<分散安定性の評価2>
銀超微粒子分散液1〜8の添加量を0.2gにした以外は分散安定性の評価1と同様にして実施した。その結果を表1に示す。
<Evaluation 2 of dispersion stability>
This was carried out in the same manner as in Evaluation 1 of dispersion stability except that the amount of addition of silver ultrafine particle dispersions 1-8 was 0.2 g. The results are shown in Table 1.

<分散安定性の評価3>
銀超微粒子分散液1〜8の添加量を1.0gにした以外は分散安定性の評価1と同様にして実施した。その結果を表1に示す。
<Evaluation 3 of dispersion stability>
It carried out like the evaluation 1 of dispersion stability except having made the addition amount of the silver ultrafine particle dispersions 1-8 into 1.0g. The results are shown in Table 1.

Figure 2012082116
Figure 2012082116

以上の結果から、本発明の銀超微粒子分散液により、釉薬中にて低濃度状態であっても優れた分散安定性と抗菌性を付与できる銀超微粒子分散液が得られることがわかる。   From the above results, it can be seen that the silver ultrafine particle dispersion of the present invention provides a silver ultrafine particle dispersion that can impart excellent dispersion stability and antibacterial properties even in a low concentration state in the glaze.

Claims (2)

水を主体に含有し、下記一般式(A)で表される化合物を含有することを特徴とする銀超微粒子分散液。
Figure 2012082116
一般式(A)において、Rは−SOM、−COOM、−OHおよび−NHRから成る群から選ばれた少くなくとも1種で置換された有機残基を表し、Mは水素原子、アルカリ金属原子又は、四級アンモニウム基、四級ホスホニウム基を表し、Rは水素原子、炭素数1〜6のアルキル基、−COR、−COORまたは−SOを表わす。Rは水素原子、アルキル基又はアリール基を表す。
A silver ultrafine particle dispersion containing water as a main component and a compound represented by the following general formula (A).
Figure 2012082116
In the general formula (A), R 1 represents an organic residue substituted with at least one selected from the group consisting of —SO 3 M, —COOM, —OH and —NHR 2 , and M represents a hydrogen atom. Represents an alkali metal atom, a quaternary ammonium group or a quaternary phosphonium group, and R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, —COR 3 , —COOR 3 or —SO 2 R 3 . R 3 represents a hydrogen atom, an alkyl group or an aryl group.
請求項1記載の銀超微粒子分散液を含有する抗菌性窯業用表面処理剤。   An antibacterial surface treatment agent for ceramics containing the silver ultrafine particle dispersion according to claim 1.
JP2010231428A 2010-10-14 2010-10-14 Antibacterial ceramic surface treatment containing ultrafine silver particle dispersion Expired - Fee Related JP5599060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010231428A JP5599060B2 (en) 2010-10-14 2010-10-14 Antibacterial ceramic surface treatment containing ultrafine silver particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010231428A JP5599060B2 (en) 2010-10-14 2010-10-14 Antibacterial ceramic surface treatment containing ultrafine silver particle dispersion

Publications (3)

Publication Number Publication Date
JP2012082116A true JP2012082116A (en) 2012-04-26
JP2012082116A5 JP2012082116A5 (en) 2013-10-31
JP5599060B2 JP5599060B2 (en) 2014-10-01

Family

ID=46241396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010231428A Expired - Fee Related JP5599060B2 (en) 2010-10-14 2010-10-14 Antibacterial ceramic surface treatment containing ultrafine silver particle dispersion

Country Status (1)

Country Link
JP (1) JP5599060B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031541A (en) * 2012-08-02 2014-02-20 Sumitomo Metal Mining Co Ltd Silver powder and method of producing the same, and silver paste
JP2018508925A (en) * 2014-12-22 2018-03-29 アグフア−ゲヴエルト Metal nanoparticle dispersion
JP2019524908A (en) * 2016-06-08 2019-09-05 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ Inkjet ink set for the production of conductive layers or patterns
CN112716822A (en) * 2021-02-03 2021-04-30 深圳市南门科技有限公司 Disinfectant for resisting new coronavirus and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222842A (en) * 1984-04-19 1985-11-07 Fuji Photo Film Co Ltd Silver halide photographic emulsion and its preparation
JPH06313936A (en) * 1993-04-30 1994-11-08 Mitsubishi Paper Mills Ltd Silver halide photographic sensitive material
JP2004151290A (en) * 2002-10-30 2004-05-27 Mitsubishi Paper Mills Ltd Method for processing planographic printing plate
JP2008105920A (en) * 2006-10-27 2008-05-08 Sumitomo Electric Ind Ltd Antibacterial ceramic product, ceramic surface treatment agent, and method for producing antibacterial ceramic product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222842A (en) * 1984-04-19 1985-11-07 Fuji Photo Film Co Ltd Silver halide photographic emulsion and its preparation
JPH06313936A (en) * 1993-04-30 1994-11-08 Mitsubishi Paper Mills Ltd Silver halide photographic sensitive material
JP2004151290A (en) * 2002-10-30 2004-05-27 Mitsubishi Paper Mills Ltd Method for processing planographic printing plate
JP2008105920A (en) * 2006-10-27 2008-05-08 Sumitomo Electric Ind Ltd Antibacterial ceramic product, ceramic surface treatment agent, and method for producing antibacterial ceramic product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014005555; 志野成樹, 赤岩昌治, 西村直哉: '銀ナノ粒子インクによる焼成不要な導電性パタン形成技術' Imaging Conference Japan論文集 Vol.2010, 20100609, P.235-236 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031541A (en) * 2012-08-02 2014-02-20 Sumitomo Metal Mining Co Ltd Silver powder and method of producing the same, and silver paste
JP2018508925A (en) * 2014-12-22 2018-03-29 アグフア−ゲヴエルト Metal nanoparticle dispersion
JP2019524908A (en) * 2016-06-08 2019-09-05 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ Inkjet ink set for the production of conductive layers or patterns
US10870773B2 (en) 2016-06-08 2020-12-22 Agfa-Gevaert Nv Inkjet ink set for preparing conductive layers or patterns
CN112716822A (en) * 2021-02-03 2021-04-30 深圳市南门科技有限公司 Disinfectant for resisting new coronavirus and preparation method thereof

Also Published As

Publication number Publication date
JP5599060B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
TWI534217B (en) Antimicrobial and antiviral composition, and method of producing the same
JP5599060B2 (en) Antibacterial ceramic surface treatment containing ultrafine silver particle dispersion
CN101077528A (en) Process for manufactruing superfine nano noble metal solution
CN103586461A (en) Nano-silver sol and preparation and purification method thereof
Slocik et al. Creation of energetic biothermite inks using ferritin liquid protein
CN108687359B (en) Preparation method of nano copper-coated aluminum composite fuel
Khashaei et al. A facile hydrothermal synthesis of high-efficient NiO nanocatalyst for preparation of 3, 4-dihydropyrimidin-2 (1 H)-ones
Dong et al. Aggregation, dissolution and cyclic regeneration of Ag nanoclusters based on pH-induced conformational changes of polyethyleneimine template in aqueous solutions
KR20180047527A (en) Surface treated silver powder and manufacturing method of the same
JP2015531432A (en) Low temperature dispersion synthesis of silver and silver products produced thereby
CN110181074B (en) Method for green preparation of high-length-diameter-ratio silver nanowires by composite soft template method
CN108568519A (en) A kind of preparation method and application of argentum nano composite material
JP6316410B2 (en) Method for dissolving chalcogen element and metal chalcogenide in harmless solvent
JP2010209407A (en) Manufacturing method of metallic fine particle
JP4653642B2 (en) Pyrithione metal salt having specific particle size distribution and coating composition
CN102528074A (en) Photoinduced copper ion metal nanocrystallization method
EP3284792B1 (en) Method for preparing ceramic ink comprising metal precursor and ceramic pigment and ceramic ink manufactured by the same
WO2014042117A1 (en) Copper pyrithione aggregate and use of same
JP5053902B2 (en) Method for producing silver ultrafine particles
WO2009051443A2 (en) Photoactive composition comprising scoria and preparation method thereof
JP2011157623A (en) Metal colloid, method for production thereof and use thereof
CN105778747B (en) A kind of water-based anti-corrosion antistatic coating and preparation method thereof
TWI392697B (en) The silver particle-containing aqueous polyurethane
JP5486049B2 (en) Method for producing tin dioxide precursor particles, and method for producing tin dioxide particles
JP2006062952A (en) Aqueous slurry of silica having excellent storage stability

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140808

R150 Certificate of patent or registration of utility model

Ref document number: 5599060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees