JP2012081642A - Fine powder removing apparatus - Google Patents

Fine powder removing apparatus Download PDF

Info

Publication number
JP2012081642A
JP2012081642A JP2010229275A JP2010229275A JP2012081642A JP 2012081642 A JP2012081642 A JP 2012081642A JP 2010229275 A JP2010229275 A JP 2010229275A JP 2010229275 A JP2010229275 A JP 2010229275A JP 2012081642 A JP2012081642 A JP 2012081642A
Authority
JP
Japan
Prior art keywords
filter
inner cylinder
fine powder
air
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010229275A
Other languages
Japanese (ja)
Other versions
JP5736142B2 (en
Inventor
Kazuhiro Baba
和弘 馬場
Takeshi Tanezawa
岳志 種澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawata Manufacturing Co Ltd
Original Assignee
Kawata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawata Manufacturing Co Ltd filed Critical Kawata Manufacturing Co Ltd
Priority to JP2010229275A priority Critical patent/JP5736142B2/en
Priority to CN201110315508.7A priority patent/CN102441529B/en
Priority to TW100136925A priority patent/TWI566844B/en
Publication of JP2012081642A publication Critical patent/JP2012081642A/en
Application granted granted Critical
Publication of JP5736142B2 publication Critical patent/JP5736142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fine powder removing apparatus which can freely design the shape of the apparatus and lengthen the retention time of an air-fuel mixture on a filter face.SOLUTION: The fine powder removing apparatus includes: an inner cylinder 10; and an outer cylinder 20. At least a part of an overlapping part with the sidewall of the outer cylinder 20 in the axial direction of the central axis 11 of the inner cylinder 10 of the sidewall of the inner cylinder 10 is made to be a porous filter 30, and an inlet pipe 60 for making an air-fuel mixture 3 of air 1 and pellets 2 flow into the inner cylinder 10 is provided, and an outlet pipe 70 for making the air 1 passing through filter holes 31 with the fine powder 4 included in the air-fuel mixture 3 flowed into the inner cylinder 10 flow out to the outside of the outer cylinder 20 is provided. The filter holes 31 are formed into long holes in which the length direction is a direction intersecting at right angles to the central axis 11 of the inner cylinder 10.

Description

本発明は、粉粒体から微粉を除去する微粉除去装置に関する。   The present invention relates to a fine powder removing apparatus for removing fine powder from a granular material.

粉粒体から微粉を除去する機構の一例が特許文献1、2に開示されている。この機構は、円筒形のケーシングの上方に供給管を設け、ケーシングの下方に吸引管を設け、ケーシング内に側壁が網状となった円筒形のフィルタを設ける。プラスチック樹脂のペレット(粉粒体の一例)の入った材料タンクにホースや配管で供給管を接続し、吸引ブロアにホースや配管で吸引管を接続する。供給管からペレットと空気(粉粒体の輸送気体の一例)との混合気を流入させてフィルタの内壁に沿って旋回させながら下降させ、この螺旋流で生じる遠心力の作用により、ペレットに付着している粉(微粉の一例)とペレットとをフィルタの側壁の内外に分離し、粉を含んだ空気は吸引管から排出し、粉が除去されたペレットはフィルタ下端の開口から落下する。   An example of a mechanism for removing fine powder from a granular material is disclosed in Patent Documents 1 and 2. In this mechanism, a supply pipe is provided above a cylindrical casing, a suction pipe is provided below the casing, and a cylindrical filter having a net-like side wall is provided in the casing. A supply pipe is connected to a material tank containing plastic resin pellets (an example of a granular material) with a hose or pipe, and a suction pipe is connected to the suction blower with a hose or pipe. A mixture of pellets and air (an example of particulate transport gas) flows from the supply pipe and descends while swirling along the inner wall of the filter, and adheres to the pellets due to the centrifugal force generated by this spiral flow. The powder (an example of fine powder) and pellets are separated into the inside and outside of the side wall of the filter, the air containing the powder is discharged from the suction pipe, and the pellet from which the powder has been removed falls from the opening at the lower end of the filter.

特許文献2は、吸引管である空気吸引口は、供給管である粉粒体吸込口よりも口径を大きくし、かつ、ケーシングの円心からの距離が該ケーシングの円心から粉粒体吸込口の設置位置までの距離よりも大きくなるように設けることで、フィルタの内壁に沿って流れる混合気の流れを螺旋状とし、混合気のフィルタ面での滞留時間を長くすること、フィルタには、フィルタの内壁に沿って螺旋状に流れる混合気の流れ(制御されていない「自由流れ」である。)に沿って長孔状のフィルタ孔を配列することで、繊維状、棒状の物体も粉粒体から分離することを提案する。   In Patent Document 2, the air suction port that is a suction pipe has a larger diameter than the powder body suction port that is a supply pipe, and the distance from the center of the casing is the distance between the center of the casing and the powder body suction port. By providing it so that it is larger than the distance to the installation position, the flow of the air-fuel mixture flowing along the inner wall of the filter is spiraled, and the residence time of the air-fuel mixture on the filter surface is increased. By arranging the elongated filter holes along the flow of the air-fuel mixture that flows spirally along the inner wall (which is an uncontrolled “free flow”), the fibrous and rod-like objects can also be powdered. Suggest separation from the body.

特開2007−50354号公報JP 2007-50354 A 特開2009−273969号公報JP 2009-273969 A

上記のように粉粒体から微粉を除去する場合、混合気のフィルタ面での滞留時間を長くできると微粉の除去効率が上がる。しかし特許文献2に開示された技術では、装置の形状が制約されるという問題がある。   When the fine powder is removed from the granular material as described above, the removal efficiency of the fine powder increases if the residence time of the air-fuel mixture on the filter surface can be increased. However, the technique disclosed in Patent Document 2 has a problem that the shape of the apparatus is restricted.

本発明の目的は、装置の形状を自由に設計でき、しかも混合気のフィルタ面での滞留時間を長くできる微粉除去装置を提供することにある。   An object of the present invention is to provide a fine powder removing device that can freely design the shape of the device and can increase the residence time of the air-fuel mixture on the filter surface.

上記目的を達成するため本発明は、第1の発明として、内筒および該内筒の外側に配置する外筒を備え、前記内筒の側壁のうち、前記内筒の中心軸の軸方向において前記外筒の側壁と重なる部分の少なくとも一部分を多孔のフィルタとし、前記内筒内に粉粒体の輸送気体と前記粉粒体との混合気を流入させる流入口を設けるとともに、前記内筒内に流入した前記混合気に含まれる微粉とともに前記フィルタ孔を通過する前記輸送気体を前記外筒外に流出させる流出口を設ける微粉除去装置において、前記フィルタに、前記フィルタの内壁に沿って螺旋状に流れる前記混合気の自由流れを、該自由流れ方向よりも前記内筒の中心軸と直角の方向に近い方向から前記内筒の中心軸と直角の方向までの1方向に案内するガイドを設けたことを特徴とする微粉除去装置を提供するものである。   In order to achieve the above object, the present invention includes, as a first invention, an inner cylinder and an outer cylinder disposed outside the inner cylinder, the axial direction of the central axis of the inner cylinder among the side walls of the inner cylinder At least a part of a portion that overlaps the side wall of the outer cylinder is a porous filter, and an inflow port is provided in the inner cylinder to allow a mixture of the transport gas of the granular material and the granular material to flow in. In the fine powder removing apparatus, wherein the fine gas contained in the air-fuel mixture that has flowed into the air-fuel mixture is provided with an outflow port through which the transport gas passing through the filter hole flows out of the outer cylinder, the spiral is formed along the inner wall of the filter. A guide is provided for guiding the free flow of the air-fuel mixture flowing in one direction from a direction closer to a direction perpendicular to the central axis of the inner cylinder to a direction perpendicular to the central axis of the inner cylinder than the free flow direction. With the characteristics There is provided a that fines removal apparatus.

第2の発明として、第1の発明において、前記ガイドは、前記フィルタの内壁に沿って螺旋状に流れる前記混合気の自由流れを、前記内筒の中心軸と直角の方向に案内することを特徴とする微粉除去装置を提供するものである。   As a second invention, in the first invention, the guide guides the free flow of the air-fuel mixture flowing spirally along the inner wall of the filter in a direction perpendicular to the central axis of the inner cylinder. A fine powder removing device is provided.

第3の発明として、内筒および該内筒の外側に配置する外筒を備え、前記内筒の側壁のうち、前記内筒の中心軸の軸方向において前記外筒の側壁と重なる部分の少なくとも一部分を多孔のフィルタとし、前記内筒内に粉粒体の輸送気体と前記粉粒体との混合気を流入させる流入口を設けるとともに、前記内筒内に流入した前記混合気に含まれる微粉とともに前記フィルタ孔を通過する前記輸送気体を前記外筒外に流出させる流出口を設ける微粉除去装置において、前記フィルタ孔は、長さ方向が前記内筒の中心軸と直角の方向である長孔に形成したことを特徴とする微粉除去装置を提供するものである。   As a third invention, an inner cylinder and an outer cylinder disposed outside the inner cylinder are provided, and at least a portion of the side wall of the inner cylinder that overlaps the side wall of the outer cylinder in the axial direction of the central axis of the inner cylinder. A part of the filter is a porous filter, and an inflow port is provided in the inner cylinder for injecting a mixture of the particulate transport gas and the granules, and the fine powder contained in the mixture flowing into the inner cylinder In addition, in the fine powder removing device provided with an outflow port for allowing the transport gas passing through the filter hole to flow out of the outer cylinder, the filter hole is a long hole whose length direction is a direction perpendicular to the central axis of the inner cylinder It is an object of the present invention to provide a fine powder removing device characterized in that it is formed in the above.

第4の発明として、第1ないし第3の発明のいずれか1つの発明において、前記フィルタは、前記内筒の中心軸が鉛直線のときに、鉛直下方に向かって窄まり形状に形成することを特徴とする微粉除去装置を提供するものである。   As a fourth invention, in any one of the first to third inventions, when the central axis of the inner cylinder is a vertical line, the filter is formed in a constricted shape downward vertically. The fine powder removal apparatus characterized by these is provided.

第1の発明によれば、フィルタにガイドを設け、そのガイドによって、フィルタの内壁に沿って螺旋状に流れる混合気の自由流れを、該自由流れ方向よりも内筒の中心軸と直角の方向に近い方向から内筒の中心軸と直角の方向までの1方向に案内することで、フィルタ内での混合気の流れをいわゆるリード角の小さい螺旋状とすることができる。よって、装置の形状を自由に設計でき、しかも混合気のフィルタ面での滞留時間を長くできる微粉除去装置を提供することができる。   According to the first invention, the filter is provided with a guide, and the guide allows the free flow of the air-fuel mixture flowing spirally along the inner wall of the filter to a direction perpendicular to the central axis of the inner cylinder rather than the free flow direction. By guiding in one direction from a direction close to 1 to a direction perpendicular to the central axis of the inner cylinder, the flow of the air-fuel mixture in the filter can be a spiral with a small lead angle. Therefore, it is possible to provide a fine powder removing device that can freely design the shape of the device and can increase the residence time of the air-fuel mixture on the filter surface.

第2の発明によれば、フィルタにガイドを設け、そのガイドによって、フィルタの内壁に沿って螺旋状に流れる混合気の自由流れを、内筒の中心軸と直角の方向に案内することで、フィルタ内での混合気の流れをリード角のより小さい螺旋状とすることができる。よって、混合気のフィルタ面での滞留時間をさらに長くできる。   According to the second invention, the guide is provided in the filter, and by the guide, the free flow of the air-fuel mixture flowing spirally along the inner wall of the filter is guided in the direction perpendicular to the central axis of the inner cylinder, The flow of the air-fuel mixture in the filter can be spiral with a smaller lead angle. Therefore, the residence time of the air-fuel mixture on the filter surface can be further increased.

第3の発明によれば、フィルタ孔は、長さ方向が内筒の中心軸と直角の方向である長孔に形成したことで、フィルタの内壁に沿って螺旋状に流れる混合気には遠心力が働いているため、混合気中の粉粒体がフィルタ内ではフィルタ孔の長さ方向の辺に沿って移動し、フィルタの内壁に沿って螺旋状に流れる混合気の自由流れがフィルタ孔の長さ方向に案内される。こうしてフィルタ孔が、フィルタの内壁に沿って螺旋状に流れる混合気の自由流れを、内筒の中心軸と直角の方向に案内するガイドとして機能し、フィルタ内での混合気の流れをリード角の小さい螺旋状とすることができ、しかもフィルタ内での混合気の流れをリード角をより小さい螺旋状とすることができるため、混合気のフィルタ面での滞留時間をさらに長くできる。よって、装置の形状を自由に設計でき、しかも混合気のフィルタ面での滞留時間を長くできる微粉除去装置を提供することができる。   According to the third invention, the filter hole is formed in a long hole whose length direction is a direction perpendicular to the central axis of the inner cylinder, so that the air-fuel mixture flowing spirally along the inner wall of the filter is centrifuged. Because the force is working, the granular material in the mixture moves along the length side of the filter hole in the filter, and the free flow of the mixture flowing spirally along the inner wall of the filter It is guided in the length direction. Thus, the filter hole functions as a guide for guiding the free flow of the air-fuel mixture flowing spirally along the inner wall of the filter in the direction perpendicular to the central axis of the inner cylinder, and the flow of the air-fuel mixture in the filter is controlled by the lead angle. Furthermore, since the flow of the air-fuel mixture in the filter can be a spiral with a smaller lead angle, the residence time of the air-fuel mixture on the filter surface can be further increased. Therefore, it is possible to provide a fine powder removing device that can freely design the shape of the device and can increase the residence time of the air-fuel mixture on the filter surface.

第4の発明によれば、フィルタは、内筒の中心軸が鉛直線のときに、鉛直下方に向かって窄まり形状に形成することで、フィルタに設けるガイドとして、長さ方向がフィルタの内壁に沿って螺旋状に流れる混合気の自由流れ方向よりも内筒の中心軸と直角の方向に近い方向から内筒の中心軸と直角の方向までの1方向である長孔に形成したフィルタ孔、または内筒の中心軸と直角の方向である長孔に形成したフィルタ孔を採用したとき、フィルタ孔の長さ方向の下辺が上辺よりも内筒の中心軸に近くなり、粉粒体がフィルタ孔の下辺に当たる確実性が増し、フィルタ孔によるガイド機能を効果的に発揮できる。   According to the fourth invention, when the central axis of the inner cylinder is a vertical line, the filter is formed so as to be narrowed vertically downward so that the length direction serves as a guide provided in the filter. A filter hole formed in a long hole that is one direction from a direction closer to a direction perpendicular to the central axis of the inner cylinder to a direction perpendicular to the central axis of the inner cylinder than the free flow direction of the air-fuel mixture flowing spirally along When a filter hole formed in a long hole that is perpendicular to the central axis of the inner cylinder is adopted, the lower side of the filter hole in the length direction is closer to the central axis of the inner cylinder than the upper side, and the granular material is The certainty of hitting the lower side of the filter hole is increased, and the guide function by the filter hole can be effectively exhibited.

本発明の実施例1の微粉除去装置の全体構成を示す図である。It is a figure which shows the whole structure of the fine powder removal apparatus of Example 1 of this invention. 実施例1の微粉除去装置の外観を示す図であり、(A)は正面図、(B)は平面図、(C)は側面図である。It is a figure which shows the external appearance of the fine powder removal apparatus of Example 1, (A) is a front view, (B) is a top view, (C) is a side view. 実施例1の微粉除去装置のフィルタを示す断面側面図である。It is a cross-sectional side view which shows the filter of the fine powder removal apparatus of Example 1. 実施例1の微粉除去装置のフィルタ孔の形状を示す図である。It is a figure which shows the shape of the filter hole of the fine powder removal apparatus of Example 1. FIG. 実施例1の微粉除去装置の使用例を示す図である。It is a figure which shows the usage example of the fine powder removal apparatus of Example 1. FIG. 実施例1の微粉除去装置内での空気の流れを示す側面図である。It is a side view which shows the flow of the air in the fine powder removal apparatus of Example 1. FIG. 実施例1の微粉除去装置内での空気の流れを示す平面図であり、(A)は流入口部での空気の流れを示す平面図、(B)は分離部での空気の流れを示す平面図、(C)は流出口部での空気の流れを示す平面図である。It is a top view which shows the flow of the air in the fine powder removal apparatus of Example 1, (A) is a top view which shows the flow of the air in an inflow port part, (B) shows the flow of the air in a isolation | separation part. A top view and (C) are top views which show the flow of the air in an outflow part. 実施例1の微粉除去装置のフィルタ孔(ガイド)の個々の作用を示す図である。It is a figure which shows each effect | action of the filter hole (guide) of the fine powder removal apparatus of Example 1. FIG. 実施例1の微粉除去装置のフィルタ孔(ガイド)の作用を示す図である。It is a figure which shows the effect | action of the filter hole (guide) of the fine powder removal apparatus of Example 1. FIG. 実施例1の微粉除去装置のガイドの変形例を示す図であり、(A)はフィルタの平面図、(B)はフィルタの断面側面図である。It is a figure which shows the modification of the guide of the fine powder removal apparatus of Example 1, (A) is a top view of a filter, (B) is a cross-sectional side view of a filter. 実施例1の微粉除去装置のガイドの他の変形例を示すフィルタの断面側面図でる。It is a cross-sectional side view of the filter which shows the other modification of the guide of the fine powder removal apparatus of Example 1. 実施例1の微粉除去装置と比較する参考例の微粉除去装置の全体構成を示す図である。It is a figure which shows the whole structure of the fine powder removal apparatus of the reference example compared with the fine powder removal apparatus of Example 1. FIG. 参考例の微粉除去装置のフィルタを示す断面側面図である。It is a cross-sectional side view which shows the filter of the fine powder removal apparatus of a reference example. 本発明の実施例2の微粉除去装置の全体構成を示す図である。It is a figure which shows the whole structure of the fine powder removal apparatus of Example 2 of this invention. 実施例2の微粉除去装置の外観を示す図であり、(A)は正面図、(B)は平面図、(C)は側面図である。It is a figure which shows the external appearance of the fine powder removal apparatus of Example 2, (A) is a front view, (B) is a top view, (C) is a side view. 実施例2の微粉除去装置の第2の流入口への空気供給手段を示す図である。It is a figure which shows the air supply means to the 2nd inflow port of the fine powder removal apparatus of Example 2. FIG. 実施例2の微粉除去装置内での空気の流れを示す側面図である。It is a side view which shows the flow of the air in the fine powder removal apparatus of Example 2. 実施例2の微粉除去装置内での空気の流れを示す平面図であり、(A)は流入口部での空気の流れを示す平面図、(B)は分離部での空気の流れを示す平面図、(C)は流出口部での空気の流れを示す平面図である。It is a top view which shows the flow of the air in the fine powder removal apparatus of Example 2, (A) is a top view which shows the flow of the air in an inflow port part, (B) shows the flow of the air in a isolation | separation part. A top view and (C) are top views which show the flow of the air in an outflow part. 本発明の実施例3の微粉除去装置の全体構成を示す図である。It is a figure which shows the whole structure of the fine powder removal apparatus of Example 3 of this invention. 実施例3の微粉除去装置の外観を示す図であり、(A)は正面図、(B)は平面図、(C)は側面図である。It is a figure which shows the external appearance of the fine powder removal apparatus of Example 3, (A) is a front view, (B) is a top view, (C) is a side view. 実施例3の微粉除去装置のフィルタを示す断面側面図である。It is a cross-sectional side view which shows the filter of the fine powder removal apparatus of Example 3. 実施例3の微粉除去装置内での空気の流れを示す側面図である。It is a side view which shows the flow of the air in the fine powder removal apparatus of Example 3. 実施例3の微粉除去装置内での空気の流れを示す平面図であり、(A)は分離部での空気の流れを示す平面図、(B)は流出口部での空気の流れを示す平面図、(C)は流入口部での空気の流れを示す平面図である。It is a top view which shows the flow of the air in the fine powder removal apparatus of Example 3, (A) is a top view which shows the flow of the air in a separation part, (B) shows the flow of the air in an outflow part. A top view and (C) are top views which show the flow of the air in an inflow port part. 実施例3の微粉除去装置と比較する参考例の微粉除去装置の全体構成を示す図である。It is a figure which shows the whole structure of the fine powder removal apparatus of the reference example compared with the fine powder removal apparatus of Example 3. FIG.

以下、本発明(第1ないし第4の発明)を実施するための形態を図面に示す実施例に基づいて説明する。   EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention (1st thru | or 4th invention) is demonstrated based on the Example shown on drawing.

図1ないし図13を参照して実施例1の微粉除去装置を説明する。図1は実施例1の微粉除去装置の全体構成を示す図、図2は実施例1の微粉除去装置の外観を示す図であり、(A)は正面図、(B)は平面図、(C)は側面図、図3は実施例1の微粉除去装置のフィルタを示す断面側面図、図4は実施例1の微粉除去装置のフィルタ孔の形状を示す図、図5は実施例1の微粉除去装置の使用例を示す図、図6は実施例1の微粉除去装置内での空気の流れを示す側面図、図7は実施例1の微粉除去装置内での空気の流れを示す平面図であり、(A)は流入口部での空気の流れを示す平面図、(B)は分離部での空気の流れを示す平面図、(C)は流出口部での空気の流れを示す平面図、図8は実施例1の微粉除去装置のフィルタ孔(ガイド)の個々の作用を示す図、図9は実施例1の微粉除去装置のフィルタ孔(ガイド)の作用を示す図、図10は実施例1の微粉除去装置のガイドの変形例を示す図であり、(A)はフィルタの平面図、(B)はフィルタの断面側面図、図11は実施例1の微粉除去装置のガイドの他の変形例を示すフィルタの断面側面図、図12は実施例1の微粉除去装置と比較する参考例の微粉除去装置の全体構成を示す図、図13は参考例の微粉除去装置のフィルタを示す断面側面図である。   The fine powder removing apparatus according to the first embodiment will be described with reference to FIGS. FIG. 1 is a diagram showing the overall configuration of the fine powder removing apparatus of Example 1, FIG. 2 is a diagram showing the appearance of the fine powder removing apparatus of Example 1, (A) is a front view, (B) is a plan view, C) is a side view, FIG. 3 is a cross-sectional side view showing the filter of the fine powder removing device of Example 1, FIG. 4 is a diagram showing the shape of the filter hole of the fine powder removing device of Example 1, and FIG. The figure which shows the usage example of a fine powder removal apparatus, FIG. 6 is a side view which shows the flow of the air in the fine powder removal apparatus of Example 1, FIG. 7 is the plane which shows the flow of the air in the fine powder removal apparatus of Example 1. (A) is a plan view showing the flow of air at the inlet portion, (B) is a plan view showing the flow of air at the separation portion, and (C) is a flow of air at the outlet portion. FIG. 8 is a diagram showing individual actions of filter holes (guides) of the fine powder removing apparatus of the first embodiment, and FIG. 9 is a filter of the fine powder removing apparatus of the first embodiment. FIG. 10 is a diagram showing a modification of the guide of the fine powder removing apparatus of Example 1, FIG. 10A is a plan view of the filter, and FIG. 10B is a sectional side view of the filter. 11 is a cross-sectional side view of a filter showing another modified example of the guide of the fine powder removing apparatus of Example 1, and FIG. 12 is a diagram showing the entire configuration of the fine powder removing apparatus of the reference example compared with the fine powder removing apparatus of Example 1. FIG. 13 is a cross-sectional side view showing a filter of a fine powder removing apparatus of a reference example.

図1、図2に示すように、本実施例の微粉除去装置は、フィルタ30を含む内筒10と、内筒10の外側に同軸で配置する外筒20と、微粉除去装置設置用の台板40と、上蓋50などにより構成している。   As shown in FIG. 1 and FIG. 2, the fine powder removing apparatus of the present embodiment includes an inner cylinder 10 including a filter 30, an outer cylinder 20 arranged coaxially on the outer side of the inner cylinder 10, and a stand for installing the fine powder removing apparatus. The plate 40 and the upper lid 50 are used.

図3に示すように、フィルタ30は、内筒10の側壁のうち、内筒10の中心軸11の軸方向において外筒20の側壁と重なる部分の少なくとも一部分を構成するとともに、内筒10内に流入させる混合気3(図5ないし図7参照)中のプラスチック樹脂のペレット2(粉粒体の一例)から微粉4を内筒10の側壁の外側に分離するためのもので、内筒10の中心軸11が鉛直線のときに、鉛直下方に向かって窄まり形状となる円錐台形に形成し、その側壁(側面)の略全体に、混合気3中の空気1と微粉4のみを通過させる(ペレット2は通過させない)多数のフィルタ孔31を千鳥状などに配列して設ける。このフィルタ30の側壁はパンチングメタルにより構成している。   As shown in FIG. 3, the filter 30 constitutes at least a part of a portion of the side wall of the inner cylinder 10 that overlaps the side wall of the outer cylinder 20 in the axial direction of the central axis 11 of the inner cylinder 10. For separating the fine powder 4 from the plastic resin pellet 2 (an example of a granular material) in the air-fuel mixture 3 (see FIG. 5 to FIG. 7) flowing into the outside of the side wall of the inner cylinder 10. When the central axis 11 is a vertical line, it is formed into a truncated cone shape that is narrowed vertically downward, and only the air 1 and fine powder 4 in the air-fuel mixture 3 pass through substantially the entire side wall (side surface). A large number of filter holes 31 (not allowing the pellet 2 to pass through) are arranged in a staggered manner. The side walls of the filter 30 are made of punching metal.

図4に示すように、各フィルタ孔31は、フィルタ30の内壁(フィルタ面)に沿って螺旋状に流れる混合気3の自由流れ5(図12参照)を、内筒10の中心軸11と直角の方向(内筒10の中心軸11が鉛直線のときは水平方向)に案内するため、長さ方向が内筒10の中心軸11と直角の方向である長孔に形成している。   As shown in FIG. 4, each filter hole 31 causes the free flow 5 (see FIG. 12) of the air-fuel mixture 3 that flows spirally along the inner wall (filter surface) of the filter 30 to the central axis 11 of the inner cylinder 10. In order to guide in a right-angle direction (horizontal direction when the central axis 11 of the inner cylinder 10 is a vertical line), it is formed in a long hole whose length direction is a direction perpendicular to the central axis 11 of the inner cylinder 10.

また、各フィルタ孔31は、フィルタ30に設けるガイドであって、フィルタ30の内壁に沿って螺旋状に流れる混合気3の自由流れ5を、その自由流れ方向よりも内筒10の中心軸11と直角の方向に近い方向から内筒10の中心軸11と直角の方向までの角度領域θの1方向に案内するガイドとして、フィルタ30の内壁に沿って螺旋状に流れる混合気3の自由流れ5を、内筒10の中心軸11と直角の方向に案内するように、長さ方向が内筒10の中心軸11と直角の方向である長孔に形成している。
各フィルタ孔31は、直線状でも曲線状であってもよい(彎曲していてもよい)。
フィルタ30が複数枚の板材からなり、ある板材Aに混合気3の旋回方向に隣接する板材Bと板材Aとが、板材Bの内壁と板材Aの外壁とにおいて一部重なるものであってもよい。
フィルタ30の側壁は1枚の板材(パンチングメタル)を曲げ、その端同士を接合させて筒状としても、複数枚の板材(パンチンメタル)をつなぎ合わせて筒状としてもよい。この場合、混合気3の旋回方向上流側の端部が内側、下流側の端部が外側になるよう1枚の板材の両端または複数枚の板材のうち、隣接する2枚の板材の接合端部を重ね合わせることが好ましい。
Further, each filter hole 31 is a guide provided in the filter 30, and the free flow 5 of the air-fuel mixture 3 that flows spirally along the inner wall of the filter 30 causes the central axis 11 of the inner cylinder 10 to move more than the free flow direction. Free flow of the air-fuel mixture 3 flowing in a spiral manner along the inner wall of the filter 30 as a guide for guiding in one direction of an angle region θ from a direction close to a direction perpendicular to the center axis 11 to the direction perpendicular to the central axis 11 of the inner cylinder 10. 5 is formed in a long hole whose length direction is a direction perpendicular to the central axis 11 of the inner cylinder 10 so as to be guided in a direction perpendicular to the central axis 11 of the inner cylinder 10.
Each filter hole 31 may be linear or curved (may be curved).
Even if the filter 30 is composed of a plurality of plate materials, and the plate material B and the plate material A adjacent to a certain plate material A in the swirl direction of the air-fuel mixture 3 partially overlap the inner wall of the plate material B and the outer wall of the plate material A. Good.
The side wall of the filter 30 may be formed into a cylindrical shape by bending one plate material (punching metal) and joining ends thereof, or by connecting a plurality of plate materials (pantin metal). In this case, the end of the air-fuel mixture 3 in the swirl direction upstream is the inside and the downstream end is the outside. It is preferable to overlap the parts.

図1、図2に戻って、内筒10は、フィルタ30と、フィルタ30の上部開口径と略同径な円筒形に形成する上筒部12と、フィルタ30の下部開口径と略同径な円筒形に形成する下筒部13との、3ピース構造を有しており、上下筒部12、13を繋ぐように、これらの間にフィルタ30を配置している。上下筒部12、13は、その側壁がフィルタ30の側壁を含む円錐面内に配置されるような円錐台形であってもよい。外筒20は、略同径な円筒形の上筒部21と下筒部22との2ピース構造を有している。これら同軸配置の内筒10と外筒20は、台板40から直角に立ち上げられ、内筒10の上部(上筒部12)が外筒20の上部開口(上筒部21の上部開口)から上方に突出し、この内筒10の上部開口(上筒部12の上部開口)が上蓋50により閉じられ、外筒20の上部開口はそこを貫通している内筒10の上部とそこの側壁から外筒20の上側に張り出して設けられたフランジ12aにより閉じられている。   Returning to FIGS. 1 and 2, the inner cylinder 10 includes a filter 30, an upper cylinder portion 12 formed in a cylindrical shape that is substantially the same diameter as the upper opening diameter of the filter 30, and a lower opening diameter that is substantially the same as the lower opening diameter of the filter 30. It has a three-piece structure with a lower cylindrical portion 13 formed in a cylindrical shape, and a filter 30 is disposed between them so as to connect the upper and lower cylindrical portions 12 and 13. The upper and lower cylindrical portions 12 and 13 may have a truncated cone shape whose side walls are arranged in a conical surface including the side wall of the filter 30. The outer cylinder 20 has a two-piece structure of a cylindrical upper cylinder part 21 and a lower cylinder part 22 having substantially the same diameter. The coaxially arranged inner cylinder 10 and outer cylinder 20 are raised at a right angle from the base plate 40, and the upper part of the inner cylinder 10 (upper cylinder part 12) is the upper opening of the outer cylinder 20 (upper opening of the upper cylinder part 21). The upper opening of the inner cylinder 10 (upper opening of the upper cylinder portion 12) is closed by the upper lid 50, and the upper opening of the outer cylinder 20 is the upper part of the inner cylinder 10 passing through the upper cylinder and the side wall thereof. Is closed by a flange 12a provided so as to protrude from the outer cylinder 20 to the upper side.

外筒20の上部開口から上方に突出した内筒10の上部の側壁には、そこから混合気3を接線方向に内筒10内に流入させるための流入口である流入管60を設けている。この流入管60は直管であって、流入管60における入口61は円形に形成され、出口62は矩形に形成され、この出口62が内筒10の上部の側壁に沿って開口されている(図7A参照)。   On the side wall of the upper part of the inner cylinder 10 protruding upward from the upper opening of the outer cylinder 20, an inflow pipe 60 is provided as an inlet for allowing the air-fuel mixture 3 to flow into the inner cylinder 10 in the tangential direction therefrom. . The inflow pipe 60 is a straight pipe, the inlet 61 in the inflow pipe 60 is formed in a circular shape, the outlet 62 is formed in a rectangular shape, and the outlet 62 is opened along the upper side wall of the inner cylinder 10 ( (See FIG. 7A).

外筒20の側壁のうち、内筒10の中心軸11の軸方向において内筒10のフィルタ30よりも下部(下筒部13)の側壁と重なっている外筒20の下部(下筒部22)の側壁には、そこから微粉4混じりの空気1(各フィルタ孔31を通過し内筒10内から内筒10の側壁(フィルタ30の側壁と下筒部13の側壁)と外筒20の側壁(上筒部21の側壁と下筒部22の側壁)との間の環状空間20Aに流入した微粉4混じりの空気1)を接線方向に外筒20外に流出させるための流出口である流出管70を設けている。この流出管70は直管であって、流出管70における入口71と出口72はともに円形に形成されている。流出管70は、内筒10の側壁(フィルタ30の側壁と下筒部13の側壁)と外筒20の側壁(上筒部21の側壁と下筒部22の側壁)との間の環状空間20Aであって、内筒10の下部(下筒部13)の側壁と外筒20の下部(下筒部22)の側壁との間の環状空間20A下部に入り込んだ入口71を形成するように、内筒10の下部(下筒部13)の側壁と外筒20の下部(下筒部22)の側壁との間の環状空間20A下部に入り込んだ管側壁73を有している(図7C参照)。
本実施例では流出管70と外筒20の側壁(環状空間20Aの外壁)との間、流出管70と台板40(外筒20の底面:環状空間20Aの底面)との間に、それぞれ、隙間があるが、これらは無い方が好ましい。流出管70の入口71の開口形状として円形のものを示したが、円形でも矩形でもよい。流出管70の入口71としては、矩形であり、外筒20の側壁との間、台板40との間に、それぞれ、隙間の無いものが好ましい。
Of the side wall of the outer cylinder 20, the lower part (lower cylinder part 22) of the outer cylinder 20 that overlaps the side wall of the lower part (lower cylinder part 13) than the filter 30 of the inner cylinder 10 in the axial direction of the central axis 11 of the inner cylinder 10. ) From the inside of the inner cylinder 10 through the inner side of the inner cylinder 10 (the side walls of the filter 30 and the side of the lower cylinder part 13) and the outer cylinder 20 It is an outlet for causing the fine powder 4 mixed air 1 that has flowed into the annular space 20A between the side wall (the side wall of the upper cylinder part 21 and the side wall of the lower cylinder part 22) to flow out of the outer cylinder 20 in the tangential direction. An outflow pipe 70 is provided. The outflow pipe 70 is a straight pipe, and both the inlet 71 and the outlet 72 of the outflow pipe 70 are formed in a circular shape. Outflow pipe 70 is an annular space between the side wall of inner cylinder 10 (the side wall of filter 30 and the side wall of lower cylinder part 13) and the side wall of outer cylinder 20 (the side wall of upper cylinder part 21 and the side wall of lower cylinder part 22). 20A, so as to form an inlet 71 that enters the lower part of the annular space 20A between the side wall of the lower part of the inner cylinder 10 (lower cylinder part 13) and the side wall of the lower part of the outer cylinder 20 (lower cylinder part 22). A tube side wall 73 that enters the lower part of the annular space 20A between the side wall of the lower part (lower cylinder part 13) of the inner cylinder 10 and the side wall of the lower part (lower cylinder part 22) of the outer cylinder 20 (FIG. 7C). reference).
In this embodiment, between the outflow pipe 70 and the side wall of the outer cylinder 20 (outer wall of the annular space 20A), between the outflow pipe 70 and the base plate 40 (the bottom surface of the outer cylinder 20: the bottom surface of the annular space 20A), respectively. Although there are gaps, it is preferable that these are not present. Although the circular opening shape of the inlet 71 of the outflow pipe 70 is shown, it may be circular or rectangular. The inlet 71 of the outflow pipe 70 is rectangular and preferably has no gap between the side wall of the outer cylinder 20 and the base plate 40.

台板40の中央部には内筒10の下部開口(下筒部13の下部開口)と略同径な円形の貫通孔41が設けられ、内筒10は台板40の貫通孔41の縁から立ち上げられ、内筒10の下部開口が台板40の下面側に開放されて微粉4が除去されたペレット2の排出口13aになっている。外筒20は台板40の上面外側部から立ち上げられ、外筒20の下部開口は台板40で閉じられている。   A circular through hole 41 having substantially the same diameter as the lower opening of the inner cylinder 10 (lower opening of the lower cylinder part 13) is provided at the center of the base plate 40, and the inner cylinder 10 is the edge of the through hole 41 of the base plate 40. The lower opening of the inner cylinder 10 is opened to the lower surface side of the base plate 40 to form a discharge port 13a for the pellet 2 from which the fine powder 4 has been removed. The outer cylinder 20 is raised from the outer side of the upper surface of the base plate 40, and the lower opening of the outer cylinder 20 is closed by the base plate 40.

内筒10は下端に排出口13aを開口し、上部の側壁に流入管60を接続した柱状空間10Aを形成し、外筒20は流入管60より下部の柱状空間20Aの周囲に、下部の側壁に流出管70を接続した環状空間20Aを形成する。これら柱状空間20Aと環状空間20Aの境目にある内筒10の側壁であるフィルタ30の側壁と下筒部13の側壁のうち、フィルタ30の側壁はそこに設けた多数のフィルタ孔31によって柱状空間10Aと環状空間20Aとを連通接続し、下筒部13の側壁は柱状空間10Aと環状空間20Aとの間での通気を遮断している。   The inner cylinder 10 has a discharge opening 13a at the lower end and forms a columnar space 10A in which the inflow pipe 60 is connected to the upper side wall, and the outer cylinder 20 has a lower side wall around the columnar space 20A below the inflow pipe 60. An annular space 20A in which the outflow pipe 70 is connected to is formed. Of the side walls of the filter 30 and the lower cylinder portion 13 which are the side walls of the inner cylinder 10 at the boundary between the columnar space 20A and the annular space 20A, the side wall of the filter 30 is columnar space by a number of filter holes 31 provided therein. 10A and the annular space 20A are connected in communication, and the side wall of the lower cylindrical portion 13 blocks ventilation between the columnar space 10A and the annular space 20A.

次に、本実施例の微粉除去装置の組み立てについて説明する。   Next, assembly of the fine powder removing device of the present embodiment will be described.

図1、図2に示すように、内筒10の下筒部13と外筒20の下筒部22とは台板40に一体に設けられている。本実施例の微粉除去装置を組み立てるときは、内筒10の下筒部13の側壁上端に設けたフランジ13bの上に、フィルタ30の側壁下端に設けたフランジ30aを重ね合わせ、内筒10の下筒部13の上にフィルタ30を載置する。   As shown in FIGS. 1 and 2, the lower cylinder portion 13 of the inner cylinder 10 and the lower cylinder portion 22 of the outer cylinder 20 are integrally provided on the base plate 40. When assembling the fine powder removing device of the present embodiment, the flange 30a provided at the lower end of the side wall of the filter 30 is overlaid on the flange 13b provided at the upper end of the side wall of the lower cylinder portion 13 of the inner cylinder 10, and The filter 30 is placed on the lower cylinder portion 13.

また、外筒20の下筒部22の側壁上端に設けたフランジ22aの上にリング状の下パッキン80を介して外筒20の上筒部21を載置し、その外筒20の上筒部21の上にリング状の上パッキン81を介してリング状のフランジ82を重ね合わせ、フランジ82、22a間に上下パッキン81、80を介して外筒20の上筒部21を挟む。   Further, the upper cylinder portion 21 of the outer cylinder 20 is placed on the flange 22a provided at the upper end of the side wall of the lower cylinder portion 22 of the outer cylinder 20 via the ring-shaped lower packing 80, and the upper cylinder of the outer cylinder 20 is placed. A ring-shaped flange 82 is superposed on the portion 21 via a ring-shaped upper packing 81, and the upper tube portion 21 of the outer cylinder 20 is sandwiched between the flanges 82, 22a via upper and lower packings 81, 80.

内筒10の上筒部12の側壁下端近傍から外側に張り出して設けた上記フランジ12aをフランジ82の上に重ね合わせ、内筒10の上筒部12の側壁下端をフィルタ30の上部開口に内嵌する。このとき、フィルタ30は内筒10の上筒部12のフランジ12aと内筒10の下円筒部13との間に挟まれる。また、外筒20の上筒部21は内筒10の上筒部12のフランジ12aと外筒20の下筒部22との間に挟まれ、外筒20の上部開口(上筒部21の上部開口)が内筒10の上筒部12のフランジ12aで閉じられる。   The flange 12 a provided to project outward from the vicinity of the lower end of the side wall of the upper cylinder portion 12 of the inner cylinder 10 is overlaid on the flange 82, and the lower end of the side wall of the upper cylinder portion 12 of the inner cylinder 10 is placed inside the upper opening of the filter 30. Fit. At this time, the filter 30 is sandwiched between the flange 12 a of the upper cylinder portion 12 of the inner cylinder 10 and the lower cylinder portion 13 of the inner cylinder 10. Further, the upper cylinder portion 21 of the outer cylinder 20 is sandwiched between the flange 12a of the upper cylinder portion 12 of the inner cylinder 10 and the lower cylinder portion 22 of the outer cylinder 20, and the upper opening of the outer cylinder 20 (the upper cylinder portion 21). The upper opening) is closed by the flange 12a of the upper cylinder portion 12 of the inner cylinder 10.

両端部に雄ネジを有する複数のボルト83をフランジ82を貫通させてフランジ12a、22a間に通し付け、フランジ12aの上面から上方に突出する各ボルト83の上端にナット84を螺着し、フランジ22aの下面から下方に突出する各ボルト83の下端にナット84を螺着し、内筒10の下筒部13と外筒20の下筒部22に対して内筒10の上筒部12を締め付ける。このとき、過大な締め付けにより外筒20の上筒部21、フィルタ30などに変形や割れが生じるのを防止するため、各ボルト83にはフランジ12a、22a間に挟み込む筒状のスペーサ85が外嵌されている。   A plurality of bolts 83 having male threads at both ends are passed through the flange 82 and passed between the flanges 12a and 22a, and nuts 84 are screwed onto the upper ends of the bolts 83 protruding upward from the upper surface of the flange 12a. A nut 84 is screwed to the lower end of each bolt 83 projecting downward from the lower surface of 22a, and the upper tube portion 12 of the inner tube 10 is connected to the lower tube portion 13 of the inner tube 10 and the lower tube portion 22 of the outer tube 20. tighten. At this time, in order to prevent the upper cylinder portion 21 of the outer cylinder 20 and the filter 30 from being deformed or cracked due to excessive tightening, each bolt 83 is provided with a cylindrical spacer 85 sandwiched between the flanges 12a and 22a. It is fitted.

内筒10の上筒部12の側壁上端に設けたフランジ12bの上に上蓋50の外側部を載置し、その上蓋50の外側部の上にリング状の押え板86を重ね合わせ、クランプバンド87などにより上蓋50をフランジ12bに固定し、内筒10の上部開口(上筒部12の上部開口)を上蓋50で閉じて、完成する。   An outer portion of the upper lid 50 is placed on the flange 12b provided at the upper end of the side wall of the upper cylinder portion 12 of the inner cylinder 10, and a ring-shaped presser plate 86 is overlaid on the outer portion of the upper lid 50, thereby clamping the clamp band. The upper lid 50 is fixed to the flange 12b by 87 or the like, and the upper opening of the inner cylinder 10 (the upper opening of the upper cylinder portion 12) is closed by the upper lid 50 to complete.

これにより、内筒10の上筒部12を取り外すことでフィルタ交換が行える。また、微粉除去装置を洗浄するときなどに、内筒10の下筒部13と外筒20の下筒部22と台板40の一体部品と、フィルタ30と、内筒10の上筒部12と、外筒20の上筒部21とに分解できる。   Thereby, filter replacement | exchange can be performed by removing the upper cylinder part 12 of the inner cylinder 10. FIG. Moreover, when washing | cleaning a fine powder removal apparatus, the lower cylinder part 13 of the inner cylinder 10, the lower cylinder part 22 of the outer cylinder 20, the integral part of the baseplate 40, the filter 30, and the upper cylinder part 12 of the inner cylinder 10 And the upper cylinder portion 21 of the outer cylinder 20.

次に、本実施例の微粉除去装置の材質について説明する。   Next, the material of the fine powder removing apparatus of this embodiment will be described.

フィルタ30を含む内筒10、外筒20、台板40、上蓋50などの材質は、一般構造用鋼板やステンレス鋼板などの金属を使用することができる。このとき、外筒20の上筒部21と上蓋50にはアクリル、ポリカーボネイト、ガラスなどの透明材質を使用することが好ましい。   Materials such as the inner cylinder 10, the outer cylinder 20, the base plate 40, and the upper lid 50 including the filter 30 may be metals such as general structural steel plates and stainless steel plates. At this time, it is preferable to use a transparent material such as acrylic, polycarbonate, or glass for the upper cylinder portion 21 and the upper lid 50 of the outer cylinder 20.

これにより、微粉除去装置の外側方から外筒20の上筒部21を透して、環状空間20Aで螺旋状に流れる微粉4混じりの空気1の流れ8を目視確認できる。また、微粉除去装置の上方から上蓋50を透して、柱状空間10Aで螺旋状に流れる混合気3の流れ6、特に、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6を目視確認できる。このように、微粉除去装置の外部から外筒20の上筒部21および上蓋50を透して、微粉除去装置の内部全体を見通すことができ、微粉除去装置の処理状況を確認できる。   Thereby, the flow 8 of the air 1 mixed with the fine powder 4 flowing spirally in the annular space 20 </ b> A through the outer cylinder 20 from the outside of the fine powder removing device can be visually confirmed. Further, the flow 6 of the air-fuel mixture 3 flowing spirally in the columnar space 10 </ b> A through the upper lid 50 from above the fine powder removing device, particularly the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30. It can be confirmed visually. Thus, the entire inside of the fine powder removing device can be seen through the upper cylinder portion 21 and the upper lid 50 of the outer cylinder 20 from the outside of the fine powder removing device, and the processing status of the fine powder removing device can be confirmed.

次に、本実施例の微粉除去装置の使用について説明する。   Next, the use of the fine powder removing apparatus of this embodiment will be described.

図5に示すように、本実施例の微粉除去装置は、プラスチック樹脂成形の原料となるプラスチック樹脂ペレット(チップの場合もある)2を成形機90へ供給する前に、そのペレット2に含まれるプラスチック樹脂の微粉4を除去するために、成形機90の原料供給ホッパ91の上部に台板40を介して鉛直に設置(斜めに設置する場合もある)して使用する。このとき、流入管60にはペレット2の貯槽92にホースや配管を介して接続し、流出管70には空気1に運動エネルギーを与えたり圧力を高めたりする流体機器であるブロア93の吸込口にホースや配管を介して接続する。流出管70とブロア93の間には集塵装置94を設ける。   As shown in FIG. 5, the fine powder removing apparatus of the present embodiment is included in the pellet 2 before supplying the plastic resin pellet (which may be a chip) 2 as a raw material for plastic resin molding to the molding machine 90. In order to remove the fine powder 4 of the plastic resin, it is used by being installed vertically (may be installed obliquely) on the upper part of the raw material supply hopper 91 of the molding machine 90 via the base plate 40. At this time, the inlet pipe 60 is connected to the storage tank 92 of the pellet 2 via a hose or a pipe, and the outlet pipe 70 is a suction port of a blower 93 which is a fluid device that gives kinetic energy to the air 1 or increases the pressure. Connect to the hose or pipe. A dust collector 94 is provided between the outflow pipe 70 and the blower 93.

次に、本実施例の微粉除去装置の作用について説明する。   Next, the operation of the fine powder removing apparatus of this embodiment will be described.

まず、図12、図13に示す参考例の微粉除去装置は、フィルタ300の側壁に設けるフィルタ孔310の形状以外、本実施例の微粉除去装置と同一構造にしてある。図12、図13において本実施例の微粉除去装置と同一構造には同一符号を付してある。図12、図13に示すように、参考例の微粉除去装置のフィルタ300の側壁に設けたフィルタ孔310は円形のもので、本実施例の微粉除去装置のフィルタ孔31のようなガイド機能は持っていないものである。   First, the fine powder removing apparatus of the reference example shown in FIGS. 12 and 13 has the same structure as the fine powder removing apparatus of the present embodiment except for the shape of the filter hole 310 provided on the side wall of the filter 300. 12 and 13, the same reference numerals are given to the same structures as those of the fine powder removing apparatus of the present embodiment. As shown in FIGS. 12 and 13, the filter hole 310 provided in the side wall of the filter 300 of the fine powder removing apparatus of the reference example is circular, and the guide function like the filter hole 31 of the fine powder removing apparatus of the present embodiment is I don't have it.

図6、図7に示す本実施例の微粉除去装置と図12、図13に示す参考例の微粉除去装置は、両方ともに、流出管70に接続したブロア93を駆動すると、吸引式の配管輸送が開始される。この吸引式の配管輸送により空気1とペレット2との混合気3(微粉4を含んでいる)が、流入管60を通り、内筒10の上筒部12内(柱状空間10Aの上部)にそこの側壁から接線方向に流入し、内筒10の上筒部12の内壁に沿って旋回しながら下降して本実施例ではフィルタ30(柱状空間10Aの上下中間部)に入り、参考例ではフィルタ300(柱状空間10Aの上下中間部)に入り、それぞれのフィルタ30、300の内壁に沿って旋回しながら下降する。このとき、参考例のフィルタ300の側壁に設けたフィルタ孔310は円形のもので、本実施例のフィルタ30に設けたフィルタ孔31のようなガイド機能は持っていないため、参考例における内筒10の内壁に沿って流れる混合気3の流れは案内(制御)されない自由流れ5となる。すなわち、本実施例におけるフィルタ孔31が案内する対象の混合気3の自由流れ5となり、本実施例における内筒10の内壁に沿って流れる混合気3の流れはフィルタ孔31により案内(制御)された制御流れ6となる。フィルタ孔31の案内作用(混合気3の自由流れ5から制御流れ6への変換)については後述する。   Both the fine powder removing apparatus of the present embodiment shown in FIGS. 6 and 7 and the fine powder removing apparatus of the reference example shown in FIGS. 12 and 13 are driven by the suction type pipe transport when the blower 93 connected to the outflow pipe 70 is driven. Is started. By this suction-type piping transportation, the air-fuel mixture 3 (including fine powder 4) of air 1 and pellets 2 passes through the inflow pipe 60 and into the upper cylinder portion 12 of the inner cylinder 10 (upper part of the columnar space 10A). It flows in the tangential direction from the side wall there, descends while turning along the inner wall of the upper cylinder part 12 of the inner cylinder 10, and enters the filter 30 (the upper and lower middle part of the columnar space 10A) in this embodiment. It enters the filter 300 (upper and lower middle portions of the columnar space 10A) and descends while turning along the inner walls of the respective filters 30 and 300. At this time, the filter hole 310 provided in the side wall of the filter 300 of the reference example is circular and does not have a guide function like the filter hole 31 provided in the filter 30 of the present embodiment. The flow of the air-fuel mixture 3 flowing along the inner wall 10 becomes a free flow 5 that is not guided (controlled). That is, the free flow 5 of the air-fuel mixture 3 to be guided by the filter hole 31 in the present embodiment is obtained, and the flow of the air-fuel mixture 3 flowing along the inner wall of the inner cylinder 10 in the present embodiment is guided (controlled) by the filter hole 31. The control flow 6 is obtained. The guide action of the filter hole 31 (conversion from the free flow 5 of the air-fuel mixture 3 to the control flow 6) will be described later.

混合気3は、フィルタ30、300の内壁に沿って螺旋状に流れる間に、その螺旋流6、5で生じる遠心力の作用で、混合気10中のペレット2と微粉4がフィルタ30、300の側壁の内外側に分離される。フィルタ孔31、310よりも大きいペレット2はフィルタ孔31、310を通り抜けることなくフィルタ30、300の側壁の内側に止まり、フィルタ孔31、310よりも小さい微粉4はフィルタ孔31、310を通り抜けフィルタ30、300の側壁の外側に分離する。このとき、フィルタ孔31、310でフィルタ30、300の側壁の内側から外側に向かって通り抜ける空気1の流れ7があるので、ペレット2と微粉4とを容易に分離できる。   While the air-fuel mixture 3 flows spirally along the inner walls of the filters 30 and 300, the pellet 2 and the fine powder 4 in the air-fuel mixture 10 are filtered by the action of centrifugal force generated in the spiral flows 6 and 5. It is separated into the inside and outside of the side wall. The pellet 2 larger than the filter holes 31 and 310 does not pass through the filter holes 31 and 310 but remains inside the side walls of the filters 30 and 300, and the fine powder 4 smaller than the filter holes 31 and 310 passes through the filter holes 31 and 310 and is filtered. Separated outside the 30 and 300 side walls. At this time, since there is a flow 7 of air 1 that passes from the inside to the outside of the side walls of the filters 30 and 300 through the filter holes 31 and 310, the pellet 2 and the fine powder 4 can be easily separated.

フィルタ30、300の側壁の外側、すなわち、環状空間20Aに分離した微粉4は、そこで螺旋状に流れる空気1の流れ8により、旋回しながら下降して環状空間20A下部に達し、流出管70を通り、外筒20の下筒部22の側壁から接線方向に流出する。すなわち、外筒20外に流出する。外筒20外に流出した空気1に含まれる微粉4は集塵装置94により回収され、ブロア93の吐出口からはクリーンな空気1が大気中に放出される。   The fine powder 4 separated to the outside of the side walls of the filters 30 and 300, that is, the annular space 20A, descends while swirling by the flow 8 of the air 1 flowing spirally there, and reaches the lower portion of the annular space 20A. As a result, it flows out in a tangential direction from the side wall of the lower cylinder portion 22 of the outer cylinder 20. That is, it flows out of the outer cylinder 20. The fine powder 4 contained in the air 1 flowing out of the outer cylinder 20 is collected by the dust collector 94, and clean air 1 is released from the discharge port of the blower 93 into the atmosphere.

フィルタ30、300の内壁に沿って旋回しながら下降する間に、微粉4が除去されたペレット2は、内筒10の下筒部13(柱状空間10Aの下部)に入り、内筒10の下筒部13の内壁に沿って旋回しながら下降して内筒10の下筒部13の下部開口である排出口13aに達し、そこから成形機90の原料供給ホッパ91に排出される。勿論、フィルタ30、300の内壁に沿って旋回しながら下降する間には、フィルタ孔31、310を通り抜ける塵やプラスチック樹脂の小片なども微粉4とともに異物として除去されている。   While descending while swirling along the inner walls of the filters 30 and 300, the pellet 2 from which the fine powder 4 has been removed enters the lower cylinder portion 13 (lower part of the columnar space 10A) of the inner cylinder 10 and below the inner cylinder 10 It descends while turning along the inner wall of the cylinder part 13, reaches a discharge port 13 a which is a lower opening of the lower cylinder part 13 of the inner cylinder 10, and is discharged from there to a raw material supply hopper 91 of the molding machine 90. Of course, dust and small pieces of plastic resin passing through the filter holes 31 and 310 are also removed as foreign matter together with the fine powder 4 while descending while turning along the inner walls of the filters 30 and 300.

こうして、本実施例の微粉除去装置と参考例の微粉除去装置は、両方ともに、ペレット2を連続的に処理し、そのペレット2から微粉4などの異物を除去できる。   Thus, both the fine powder removing apparatus of the present embodiment and the fine powder removing apparatus of the reference example can continuously process the pellet 2 and remove foreign matters such as the fine powder 4 from the pellet 2.

次に、本実施例におけるフィルタ孔31の作用について説明する。   Next, the operation of the filter hole 31 in this embodiment will be described.

図8、図9に示すように、フィルタ30の側壁に設けたフィルタ孔31は、長さ方向が内筒10の中心軸11と直角の方向である長孔である。一方、フィルタ30の内壁に沿って螺旋状に流れる混合気3には遠心力が働いている。このため、フィルタ孔31は、混合気3中のペレット2をフィルタ孔31の長さ方向の上下辺31a,31bに沿って移動させ、フィルタ30の内壁に沿って螺旋状に流れる混合気3の自由流れ5を、フィルタ孔31の長さ方向である内筒10の中心軸11と直角の方向に案内し、図6、図12からも明らかなように、フィルタ30内での混合気3の自由流れ5をそれよりもリード角の小さい螺旋状の制御流れ6に変換する。これにより、混合気3のフィルタ面での滞留時間が自由流れ6のものよりも長くなり、微粉4の除去効率を上げることができる。   As shown in FIGS. 8 and 9, the filter hole 31 provided in the side wall of the filter 30 is a long hole whose length direction is a direction perpendicular to the central axis 11 of the inner cylinder 10. On the other hand, centrifugal force is acting on the air-fuel mixture 3 that flows spirally along the inner wall of the filter 30. For this reason, the filter hole 31 moves the pellet 2 in the air-fuel mixture 3 along the upper and lower sides 31 a and 31 b in the length direction of the filter hole 31, and the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30. The free flow 5 is guided in a direction perpendicular to the central axis 11 of the inner cylinder 10 which is the length direction of the filter hole 31, and as is clear from FIGS. 6 and 12, the mixture 3 in the filter 30 is guided. The free flow 5 is converted into a spiral control flow 6 having a smaller lead angle. Thereby, the residence time of the air-fuel mixture 3 on the filter surface becomes longer than that of the free flow 6, and the removal efficiency of the fine powder 4 can be increased.

ここで、フィルタ30の側壁に設けるフィルタ孔31は、長さ方向がフィルタ30の内壁に沿って螺旋状に流れる混合気3の自由流れ5の流れ方向より僅かでも内筒10の中心軸11と直角の方向に近い方向の長孔であれば、フィルタ30内での混合気3の自由流れ5をそれよりもリード角の小さい制御流れ6に変換し、混合気3のフィルタ面での滞留時間を自由流れ5のものよりも長くできるが、フィルタ30の側壁に設けるフィルタ孔31は、長さ方向が内筒10の中心軸11と直角の方向である長孔であるため、フィルタ30内での混合気3の自由流れ5をリード角のより小さい制御流れ6に変換でき、混合気3のフィルタ面での滞留時間を自由流れ6のものよりもさらに長くできる。   Here, the filter hole 31 provided in the side wall of the filter 30 has a length direction slightly different from that of the central axis 11 of the inner cylinder 10 than the flow direction of the free flow 5 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30. If the hole is in a direction close to a right angle direction, the free flow 5 of the air-fuel mixture 3 in the filter 30 is converted to a control flow 6 having a smaller lead angle, and the residence time of the air-fuel mixture 3 on the filter surface is changed. However, the filter hole 31 provided in the side wall of the filter 30 is a long hole whose length direction is a direction perpendicular to the central axis 11 of the inner cylinder 10. The free flow 5 of the air-fuel mixture 3 can be converted into a control flow 6 having a smaller lead angle, and the residence time of the air-fuel mixture 3 on the filter surface can be made longer than that of the free flow 6.

また、図8に示すように、フィルタ30の側壁は、内筒10の中心軸11が鉛直線のときに、鉛直下方に向かって窄まり形状となる円錐台形に形成しており、このフィルタ30の側壁に設けたフィルタ孔31では、長さ方向の下辺31bが上辺31aよりも内筒10の中心軸11に寸法dだけ近くなり、ペレット2がフィルタ孔31の下辺31bに当たる確実性が増し、フィルタ孔31によるガイド機能を効果的に発揮できる。   As shown in FIG. 8, the side wall of the filter 30 is formed in a truncated cone shape that narrows downward vertically when the central axis 11 of the inner cylinder 10 is a vertical line. In the filter hole 31 provided in the side wall, the lower side 31b in the length direction is closer to the center axis 11 of the inner cylinder 10 than the upper side 31a by the dimension d, and the certainty that the pellet 2 hits the lower side 31b of the filter hole 31 is increased. The guide function by the filter hole 31 can be exhibited effectively.

本実施例の微粉除去装置のガイドの変形例を説明する。図10に示すように、フィルタ孔31に代えて、フィルタの内壁に、長さ方向が内筒10の中心軸11と直角の方向である多数の突起物32を千鳥状などに配列して設けても、フィルタ孔31と同様に、フィルタ30に設けるガイドであって、フィルタ30の内壁に沿って螺旋状に流れる混合気3の自由流れ5を、その自由流れ方向よりも内筒10の中心軸11と直角の方向に近い方向から内筒10の中心軸11と直角の方向までの角度領域θの1方向に案内するガイドとして利用することができる。突起物32には金属やプラスチック樹脂の線材からなる棒体、板材からなる板体(羽根)などを使用できる。突起物32を設けるフィルタには、参考例の微粉除去装置のように側壁に円形のフィルタ孔310を設けたフィルタ300、側壁が金属網で構成されたフィルタなどの周知のフィルタを使用できる。このとき突起物32はフィルタの側面の開口率が著しく低下しないように、フィルタ孔31よりも十分に広い間隔でフィルタの内壁に配列する。
また、本実施例の微粉除去装置のガイドの他の変形例を説明する。図11に示すように、長さ方向が内筒10の中心軸11と直角の方向(内筒10中心軸11が鉛直線のときは水平方向)である第1の長孔(第1のフィルタ孔)501が形成される領域500Aと、その領域500Aよりも内筒10の中心軸11の軸方向下部(内筒10中心軸11が鉛直線のときは鉛直方向下部)において、混合気3の自由流れ5よりも内筒10の中心軸11と直角の方向に近い方向から内筒10の中心軸11と直角の方向未満までの1方向に案内する第2の長孔(第2のフィルタ孔)502が形成される領域500Bとが側壁に形成されているフィルタ500を設け、第1の長孔501と第2の長孔502をガイドとしてフィルタ500に設けている。このフィルタ500をフィルタ孔(ガイド)31を設けたフィルタ30、突起物(ガイド)32を設けたフィルタ300に代えて使用する。
ここで、フィルタ500の領域500Bに形成する第2の長孔502は、内筒10の中心軸11の軸方向上部から下部に向けて、第2の長孔502の長さ方向の、内筒10の中心軸11の直角の方向からの傾斜角度が次第に大きくすることが好ましい。この場合、各第2の長孔502の傾斜角度は、内筒10の中心軸11の軸方向上部から下部に向けて、連続的に大きくしても、エリア単位(図のイ〜へ)で大きくしてもよい。また、フィルタ500において、第1の長孔501は、あってもなくてもよい。
なお、フィルタに設けるガイドとして、フィルタの側壁を貫通するフィルタ孔31、501と502、フィルタの内壁から突出する突起物32を用いる他、フィルタの内壁に、長さ方向が内筒10の中心軸11と直角方向、または、混合気3の自由流れ5よりも内筒10の中心軸11と直角の方向に近い方向から内筒10の中心軸11と直角の方向未満までの1方向である溝を用いてもよい。
ここで、ガイドが設けられた微粉除去装置における自由流れとは、ガイドがフィルタの側壁を貫通する孔の場合、フィルタ孔を、ガイドである孔における最小径(上辺31aと下辺31bの間隔、図8参照)を直径とする丸孔とすること以外は、フィルタの側壁の開口率を含めて同じ構成、条件からなる微粉除去装置の作動時における混合気の流れであり、ガイドがフィルタの側壁を貫通する孔以外の場合、ガイドを設けないこと以外は、同じ構成、条件からなる微粉除去装置の作動時における混合気の流れである。
A modification of the guide of the fine powder removing apparatus of the present embodiment will be described. As shown in FIG. 10, in place of the filter hole 31, a large number of protrusions 32 whose length direction is perpendicular to the central axis 11 of the inner cylinder 10 are arranged in a staggered manner on the inner wall of the filter. However, similar to the filter hole 31, the guide is provided in the filter 30, and the free flow 5 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 is more centered on the inner cylinder 10 than in the free flow direction. It can be used as a guide for guiding in one direction of an angle region θ from a direction close to a direction perpendicular to the axis 11 to a direction perpendicular to the central axis 11 of the inner cylinder 10. The protrusion 32 can be a rod made of a metal or plastic resin wire, a plate (blade) made of a plate, or the like. As the filter provided with the protrusions 32, a known filter such as a filter 300 provided with a circular filter hole 310 on the side wall as in the fine powder removing apparatus of the reference example, or a filter whose side wall is formed of a metal net can be used. At this time, the protrusions 32 are arranged on the inner wall of the filter at intervals sufficiently wider than the filter holes 31 so that the aperture ratio on the side surface of the filter is not significantly reduced.
Another modification of the guide of the fine powder removing apparatus of the present embodiment will be described. As shown in FIG. 11, the first long hole (first filter) whose length direction is a direction perpendicular to the central axis 11 of the inner cylinder 10 (horizontal direction when the central axis 11 of the inner cylinder 10 is a vertical line). Hole) 501 is formed in a region 500A, and in the axially lower portion of the central axis 11 of the inner cylinder 10 than the region 500A (the lower portion in the vertical direction when the central axis 11 of the inner cylinder 10 is a vertical line) A second long hole (second filter hole) that guides in one direction from a direction closer to a direction perpendicular to the central axis 11 of the inner cylinder 10 than the free flow 5 to less than a direction perpendicular to the central axis 11 of the inner cylinder 10. ) A region 500B where the region 502B is formed is provided on the side wall, and the filter 500 is provided with the first long hole 501 and the second long hole 502 as a guide. This filter 500 is used in place of the filter 30 provided with the filter hole (guide) 31 and the filter 300 provided with the protrusion (guide) 32.
Here, the second long hole 502 formed in the region 500 </ b> B of the filter 500 is an inner cylinder in the length direction of the second long hole 502 from the upper part to the lower part of the central axis 11 of the inner cylinder 10. It is preferable that the inclination angle from the direction perpendicular to the central axis 11 of the ten is gradually increased. In this case, even if the inclination angle of each second long hole 502 is continuously increased from the upper part to the lower part in the axial direction of the central axis 11 of the inner cylinder 10, it is in area units (from A to F in the figure). You may enlarge it. In the filter 500, the first long hole 501 may or may not be provided.
In addition, as a guide provided in the filter, filter holes 31, 501 and 502 that penetrate the side wall of the filter, and a protrusion 32 that protrudes from the inner wall of the filter are used, and the length direction of the inner cylinder 10 is the central axis of the inner cylinder 10. A groove that is in a direction perpendicular to 11 or a direction closer to a direction perpendicular to the central axis 11 of the inner cylinder 10 than the free flow 5 of the air-fuel mixture 3 to a direction less than a direction perpendicular to the central axis 11 of the inner cylinder 10. May be used.
Here, the free flow in the fine powder removing device provided with the guide means that when the guide is a hole penetrating the side wall of the filter, the filter hole is defined as a minimum diameter (a distance between the upper side 31 a and the lower side 31 b, 8) is a flow of the air-fuel mixture at the time of operation of the fine powder removing device having the same configuration and conditions including the opening ratio of the side wall of the filter except that the hole is a round hole having a diameter. In the case of a hole other than a through-hole, the flow of the air-fuel mixture during operation of the fine powder removing device having the same configuration and conditions except that no guide is provided.

ところで、フィルタ30の側壁が内筒10の中心軸11の軸方向において流出管70と重なる位置にまで延びていると、フィルタ30の側壁のうち、内筒10の中心軸11の軸方向において流出管70と重なっている部分にあるフィルタ孔31を通り抜ける空気1によって、環状空間20Aで螺旋状に流れている空気1の流れ8が弱くなり、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6も弱くなり、微粉4の除去効率が低下するが、本実施例の微粉除去装置では、図1、図6、図7Cに示すように、内筒10の側壁のうち、内筒10の中心軸11の軸方向において少なくとも流出管70と重なる部分には、通気遮断のため無孔の通気止め部(下筒部13の側壁)を設けているため、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6が強いものになり、微粉4の除去効率を上げることができる。   By the way, when the side wall of the filter 30 extends to a position overlapping the outflow pipe 70 in the axial direction of the central axis 11 of the inner cylinder 10, outflow in the axial direction of the central axis 11 of the inner cylinder 10 out of the side walls of the filter 30. The air 1 passing through the filter hole 31 in the portion overlapping with the pipe 70 weakens the flow 8 of the air 1 flowing spirally in the annular space 20 </ b> A, and the air-fuel mixture flowing spirally along the inner wall of the filter 30. 3 is also weakened, and the removal efficiency of the fine powder 4 is reduced. However, in the fine powder removal apparatus of the present embodiment, as shown in FIGS. In the axial direction of the central shaft 11, at least a portion that overlaps the outflow pipe 70 is provided with a non-porous ventilation stopper (side wall of the lower cylinder portion 13) for blocking ventilation, and therefore along the inner wall of the filter 30. Spiral flow Mixture becomes 3 things flow 6 is strong, it is possible to increase the removal efficiency of fine powder 4.

また、流出管70の入口71が流入管60の出口62と同様に内筒10の側壁に沿って開口されていると、環状空間20Aで螺旋状に流れている空気1の流れ8の旋回方向と逆向きの空気1の吸い込みが少なからずあるため、環状空間20Aで螺旋状に流れている空気1の流れ8が弱くなり、ひいてはフィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6も弱くなり、微粉4の除去効率が低下するが、本実施例の微粉除去装置では、図1、図6、図7Cに示すように、流出管70は内筒10の側壁と外筒20の側壁との間の環状空間20Aに入り込んだ管側壁73を有しているため、環状空間20Aで螺旋状に流れている空気1の流れ8が強いものとなり、ひいてはフィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6も強いものとなり、微粉4の除去効率を上げることができる。   Further, when the inlet 71 of the outflow pipe 70 is opened along the side wall of the inner cylinder 10 like the outlet 62 of the inflow pipe 60, the swirling direction of the flow 8 of the air 1 flowing spirally in the annular space 20A Therefore, the flow 8 of the air 1 flowing spirally in the annular space 20 </ b> A becomes weak, and consequently the flow of the mixture 3 flowing spirally along the inner wall of the filter 30. 6 becomes weaker and the removal efficiency of the fine powder 4 is lowered. However, in the fine powder removing apparatus of the present embodiment, as shown in FIGS. 1, 6, and 7C, the outflow pipe 70 is connected to the side wall of the inner cylinder 10 and the outer cylinder 20. Since the pipe side wall 73 that has entered the annular space 20A is formed between the side wall and the side wall of the annular space 20A, the flow 8 of the air 1 that flows spirally in the annular space 20A becomes strong, and thus along the inner wall of the filter 30. The flow 6 of the air-fuel mixture 3 that flows spirally is also strong. Become things, can raise the removal efficiency of fine powder 4.

以上、本実施例によれば、次のような効果を奏する。   As mentioned above, according to the present Example, there exist the following effects.

フィルタ30、300にガイド31、32を設け、そのガイド31、32によって、フィルタ30、300の内壁に沿って螺旋状に流れる混合気の自由流れ5を、該自由流れ5方向よりも内筒10の中心軸11と直角の方向に近い方向から内筒10の中心軸11と直角の方向までの1方向に案内することで、フィルタ30、300内での混合気3の自由流れをリード角の小さい螺旋状とすることができる。よって、装置の形状を自由に設計でき、しかも混合気3のフィルタ面での滞留時間を長くできる。   The guides 31 and 32 are provided in the filters 30 and 300, and the guides 31 and 32 allow the free flow 5 of the air-fuel mixture flowing spirally along the inner walls of the filters 30 and 300 to move the inner cylinder 10 more than the direction of the free flow 5. The free flow of the air-fuel mixture 3 in the filters 30 and 300 is guided to one direction from the direction perpendicular to the central axis 11 to the direction perpendicular to the central axis 11 of the inner cylinder 10. It can be a small spiral. Therefore, the shape of the apparatus can be designed freely, and the residence time of the air-fuel mixture 3 on the filter surface can be lengthened.

フィルタ30、300にガイド31、32を設け、そのガイド31、32によって、フィルタ30、300の内壁に沿って螺旋状に流れる混合気3の自由流れ5を、内筒10の中心軸11と直角の方向に案内することで、フィルタ30、300内での混合気3の自由流れ5をリード角のより小さい螺旋状とすることができる。よって、混合気3のフィルタ面での滞留時間をさらに長くできる。   The filters 30 and 300 are provided with guides 31 and 32, and the guides 31 and 32 allow the free flow 5 of the air-fuel mixture 3 flowing spirally along the inner walls of the filters 30 and 300 to be perpendicular to the central axis 11 of the inner cylinder 10. The free flow 5 of the air-fuel mixture 3 in the filters 30 and 300 can be formed in a spiral shape with a smaller lead angle. Therefore, the residence time of the air-fuel mixture 3 on the filter surface can be further increased.

フィルタ孔31は、長さ方向が内筒10の中心軸11と直角の方向である長孔に形成したことで、フィルタ30の内壁に沿って螺旋状に流れる混合気の自由流れ5がフィルタ孔30の長さ方向に案内され、フィルタ孔31が、フィルタ30の内壁に沿って螺旋状に流れる混合気3の自由流れ5を、内筒10の中心軸11と直角の方向に案内するガイドとして機能し、フィルタ30内での混合気3の自由流れ5をリード角の小さい螺旋状とすることができ、混合気3のフィルタ面での滞留時間を長くでき、しかもフィルタ30内での混合気3の自由流れ5をリード角のより小さい螺旋状とすることができるため、混合気3のフィルタ面での滞留時間をさらに長くできる。よって、装置の形状を自由に設計でき、しかも混合気3のフィルタ面での滞留時間を長くできる。   The filter hole 31 is formed in a long hole whose length direction is a direction perpendicular to the central axis 11 of the inner cylinder 10, so that the free flow 5 of the air-fuel mixture flowing spirally along the inner wall of the filter 30 is filtered. As a guide for guiding the free flow 5 of the air-fuel mixture 3 that is guided in the length direction of 30 and flows spirally along the inner wall of the filter 30 in a direction perpendicular to the central axis 11 of the inner cylinder 10. The free flow 5 of the air-fuel mixture 3 in the filter 30 can be formed into a spiral with a small lead angle, the residence time of the air-fuel mixture 3 on the filter surface can be increased, and the air-fuel mixture in the filter 30 can be increased. Since the free flow 5 of 3 can be made into a spiral with a smaller lead angle, the residence time of the air-fuel mixture 3 on the filter surface can be further increased. Therefore, the shape of the apparatus can be designed freely, and the residence time of the air-fuel mixture 3 on the filter surface can be lengthened.

フィルタ30は、内筒10の中心軸11が鉛直線のときに、鉛直下方に向かって窄まり形状に形成することで、フィルタ30に設けるガイドとして、長さ方向がフィルタ30の内壁に沿って螺旋状に流れる混合気3の自由流れ5方向よりも内筒10の中心軸11と直角の方向に近い方向から内筒10の中心軸11と直角の方向までの1方向である長孔に形成したフィルタ孔31、または内筒10の中心軸11と直角の方向である長孔に形成したフィルタ孔31を採用したとき、フィルタ孔31の長さ方向の下辺31bが上辺31aよりも内筒10の中心軸11に近くなり、ペレット2がフィルタ孔31の下辺31bに当たる確実性が増し、フィルタ孔31によるガイド機能を効果的に発揮できる。   When the center axis 11 of the inner cylinder 10 is a vertical line, the filter 30 is formed in a shape that narrows vertically downward, so that the length direction is along the inner wall of the filter 30 as a guide provided in the filter 30. It is formed in a long hole that is one direction from a direction closer to a direction perpendicular to the central axis 11 of the inner cylinder 10 to a direction perpendicular to the central axis 11 of the inner cylinder 10 than the direction of the free flow 5 of the air-fuel mixture 3 flowing in a spiral shape. When the filter hole 31 formed in the filter hole 31 or the long hole formed in the direction perpendicular to the central axis 11 of the inner cylinder 10 is employed, the lower side 31b in the length direction of the filter hole 31 is more than the upper side 31a. Thus, the certainty that the pellet 2 hits the lower side 31b of the filter hole 31 is increased, and the guide function by the filter hole 31 can be effectively exhibited.

内筒10の側壁のうち、内筒10の中心軸11の軸方向において少なくとも流出管70と重なる部分に、通気遮断のため無孔の通気止め部(内筒10の下筒部13の側壁)を設けることで、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れが強いものとなり、微粉4の除去効率を上げることができる。   Of the side wall of the inner cylinder 10, at least a portion overlapping the outflow pipe 70 in the axial direction of the central axis 11 of the inner cylinder 10 is a non-perforated ventilation stopper (side wall of the lower cylinder part 13 of the inner cylinder 10). By providing this, the flow of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 becomes strong, and the removal efficiency of the fine powder 4 can be increased.

流出管70は、内筒10の側壁と外筒20の側壁との間の環状空間20Aに入り込んだ入口71を形成するように、環状空間20Aに入り込んだ管側壁73を有することで、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れが強いものとなり、微粉4の除去効率を上げることができる。   The outflow pipe 70 has a pipe side wall 73 that enters the annular space 20A so as to form an inlet 71 that enters the annular space 20A between the side wall of the inner cylinder 10 and the side wall of the outer cylinder 20. The flow of the air-fuel mixture 3 flowing spirally along the inner wall becomes strong, and the removal efficiency of the fine powder 4 can be increased.

図14ないし図18を参照して実施例2の微粉除去装置を説明する。図14は実施例2の微粉除去装置の全体構成を示す図、図15は実施例2の微粉除去装置の外観を示す図であり、(A)は正面図、(B)は平面図、(C)は側面図、図16は実施例2の微粉除去装置の第2の流入口への空気供給手段を示す図、図17は実施例2の微粉除去装置内での空気の流れを示す側面図、図18は実施例2の微粉除去装置内での空気の流れを示す平面図であり、(A)は流入口部での空気の流れを示す平面図、(B)は分離部での空気の流れを示す平面図、(C)は流出口部での空気の流れを示す平面図である。   The fine powder removing apparatus according to the second embodiment will be described with reference to FIGS. FIG. 14 is a diagram showing the overall configuration of the fine powder removing apparatus of Example 2, FIG. 15 is a diagram showing the appearance of the fine powder removing apparatus of Example 2, (A) is a front view, (B) is a plan view, C) is a side view, FIG. 16 is a view showing air supply means to the second inlet of the fine powder removing apparatus of the second embodiment, and FIG. 17 is a side view showing the air flow in the fine powder removing apparatus of the second embodiment. FIG. 18 and FIG. 18 are plan views showing the air flow in the fine powder removing apparatus of Example 2, (A) is a plan view showing the air flow at the inlet, and (B) is the separation part. The top view which shows the flow of air, (C) is a top view which shows the flow of the air in an outflow port part.

本実施例の微粉除去装置は、実施例1の微粉除去装置に中心筒100とフィルタカバー110と第2の流入管(第2の流入口)120を付加したものであり、実施例1の微粉除去装置の全ての構成を有している。   The fine powder removing apparatus of the present embodiment is obtained by adding a center tube 100, a filter cover 110, and a second inflow pipe (second inlet) 120 to the fine powder removing apparatus of the first embodiment. It has all the configuration of the removal device.

図14、図17、図18A、図18Bに示すように、中心筒100は、その上端を上蓋50の内面に着脱自在に固定し、上蓋50の内面から内筒10の内側に同軸で挿入配置したもので、内筒10の上筒部12と並行する円筒部101と、フィルタ30の側壁と並行する円錐台部102と、円錐台部102側の閉鎖端部103とを有し、閉鎖端部103はフィルタ30の上部開口と下部開口との間に配置されており、閉鎖端部103より上部の柱状空間10Aを環状空間10Bに形成している。流入管60を通り、内筒10の上筒部12の側壁から接線方向に流入した混合気3は、内筒10の上筒部12の内壁に沿って旋回しながら下降してフィルタ30に入り、フィルタ30の内壁に沿って旋回しながら下降するが、そのときの旋回内径を中心筒100の側壁によって規制し、混合気3がフィルタ30の内壁に沿って螺旋状に流れやすくしている。   As shown in FIGS. 14, 17, 18 </ b> A, and 18 </ b> B, the center cylinder 100 is detachably fixed at the upper end to the inner surface of the upper lid 50, and is coaxially inserted from the inner surface of the upper lid 50 into the inner cylinder 10. A cylindrical portion 101 parallel to the upper cylindrical portion 12 of the inner cylinder 10, a truncated cone portion 102 parallel to the side wall of the filter 30, and a closed end portion 103 on the truncated cone portion 102 side. The portion 103 is disposed between the upper opening and the lower opening of the filter 30, and forms a columnar space 10 </ b> A above the closed end 103 in the annular space 10 </ b> B. The air-fuel mixture 3 flowing in the tangential direction from the side wall of the upper cylinder part 12 of the inner cylinder 10 through the inflow pipe 60 descends while turning along the inner wall of the upper cylinder part 12 of the inner cylinder 10 and enters the filter 30. , While descending while swirling along the inner wall of the filter 30, the swirling inner diameter at that time is regulated by the side wall of the central cylinder 100, so that the air-fuel mixture 3 easily flows spirally along the inner wall of the filter 30.

図14、図17、図18Bに示すように、フィルタカバー110は、フィルタ孔31でフィルタ30の側壁の内側から外側に向かって通り抜ける空気1の量を抑える通気抑制手段として、外筒20の側壁とフィルタ30の側壁との間に設けるものである。フィルタカバー110は筒状であって、上部開口に設けたフランジ111をフランジ12aとフランジ82との間に挟み込むことで、内筒10と同軸で外筒20の側壁とフィルタ30の側壁との間に配置されており、少なくともフィルタ30の側壁の上部を覆っている。そして、フィルタカバー110の側壁の長さ(フィルタ30の側壁を覆う面積)、直径(フィルタカバー110の側壁とフィルタ30の側壁との間隔)、形状(孔の有無、開口率の多少)によって、フィルタ孔31でフィルタ30の側壁の内側から外側に向かって通り抜ける空気1の量を最適化し、フィルタ30内に必要な空気1の量を確保し、混合気3がフィルタ30の内壁に沿って螺旋状に流れる間に、その流れ6の速度を落とさないようにしている。すなわち、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6で生じる遠心力を小さくしないようにし、微粉4の除去効率の低下を防止している。   As shown in FIGS. 14, 17, and 18 </ b> B, the filter cover 110 is a side wall of the outer cylinder 20 that serves as an air flow suppressing unit that suppresses the amount of air 1 that passes through the filter hole 31 from the inner side to the outer side of the filter 30. And between the side walls of the filter 30. The filter cover 110 has a cylindrical shape, and a flange 111 provided in the upper opening is sandwiched between the flange 12 a and the flange 82, so that it is coaxial with the inner cylinder 10 and between the side wall of the outer cylinder 20 and the side wall of the filter 30. And covers at least the upper part of the side wall of the filter 30. The length of the side wall of the filter cover 110 (the area covering the side wall of the filter 30), the diameter (the distance between the side wall of the filter cover 110 and the side wall of the filter 30), and the shape (the presence or absence of holes, the degree of opening ratio) The amount of air 1 passing through the filter hole 31 from the inside to the outside of the filter 30 is optimized, the necessary amount of air 1 is secured in the filter 30, and the air-fuel mixture 3 spirals along the inner wall of the filter 30. The velocity of the flow 6 is not reduced during the flow. That is, the centrifugal force generated in the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 is not reduced, and the reduction in the removal efficiency of the fine powder 4 is prevented.

ところで、本実施例において流出管70は、内筒10の中心軸11から流入管60の中心までの半径で内筒10の中心軸11を中心に回転させたときに、内筒10の中心軸11の軸方向に見て流入管60と重なることがなく、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6と、内筒10の側壁(フィルタ30の側壁と下筒部13の側壁)と外筒20の側壁(上筒部21の側壁と下筒部22の側壁)との間で螺旋状に流れる微粉4混じりの空気1の流れ8とは、同方向に旋回するが、流出管70を重なるように設けることで、両流れ6、8の旋回方向を逆にすることができる。ここで、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6とは旋回方向が逆であって、内筒10の側壁(フィルタ30の側壁と下筒部13の側壁)と外筒20の側壁(上筒部21の側壁と下筒部22の側壁)との間で螺旋状に流れる微粉4混じりの空気1の流れ8は、フィルタ孔31でフィルタ30の側壁の内側から外側に向かって通り抜ける空気1の量を抑えるエアカーテンになるため、フィルタカバー110に代わる通気抑制手段として利用できる。   By the way, in this embodiment, when the outflow pipe 70 is rotated around the central axis 11 of the inner cylinder 10 with a radius from the central axis 11 of the inner cylinder 10 to the center of the inflow pipe 60, the central axis of the inner cylinder 10 is obtained. 11 flows in a spiral manner along the inner wall of the filter 30 and does not overlap the inflow pipe 60 as viewed in the axial direction, and the side wall of the inner cylinder 10 (the side wall of the filter 30 and the lower cylinder part 13). ) And the flow 8 of air 1 mixed with fine powder 4 spirally flowing between the side wall of the outer cylinder 20 and the side wall of the outer cylinder 20 (the side wall of the upper cylinder part 21 and the side wall of the lower cylinder part 22). By providing the outflow pipes 70 so as to overlap, the swirling directions of both flows 6 and 8 can be reversed. Here, the swirl direction is opposite to the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30, and the side wall of the inner cylinder 10 (the side wall of the filter 30 and the side wall of the lower cylinder portion 13) and the outer The flow 8 of air 1 mixed with fine powder 4 spirally flowing between the side wall of the cylinder 20 (the side wall of the upper cylinder part 21 and the side wall of the lower cylinder part 22) is outside from the inside of the side wall of the filter 30 through the filter hole 31. Since the air curtain suppresses the amount of air 1 passing through the filter cover 110, the air curtain can be used as an air flow suppressing means instead of the filter cover 110.

図14、図15に示すように、第2の流入管120は、内筒10の側壁から旋回気流発生用の気体を流入させ、その気体によって、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6と旋回方向が同じ旋回気流9(図17、図18C参照)を形成するもので、流入管60から流入させる空気1(粉粒体の輸送気体)の一部1aを内筒10の下筒部13の側壁から接線方向に流入させる。この第2の流入管120は直管であって、外筒20の下筒部22の側壁を貫通し、第2の流入管120における入口121は円形に形成され、外筒20の下部外側に開口されている。第2の流入管120における出口122は矩形に形成され、この出口122が内筒10の下筒部13の側壁に沿って開口されている。なお、内筒10の中心軸11の軸方向における第2の流入管120の位置は、流入管60よりも下部であればよい。   As shown in FIGS. 14 and 15, the second inflow pipe 120 allows the gas for generating the swirl airflow to flow from the side wall of the inner cylinder 10, and the gas flows spirally along the inner wall of the filter 30 by the gas. Forms a swirling airflow 9 (see FIGS. 17 and 18C) having the same swirling direction as the flow 6 of the air 3, and a part 1a of air 1 (powder transport gas) flowing in from the inflow pipe 60 10 from the side wall of the lower cylinder portion 13 in a tangential direction. The second inflow pipe 120 is a straight pipe and penetrates the side wall of the lower cylinder portion 22 of the outer cylinder 20, and the inlet 121 in the second inflow pipe 120 is formed in a circular shape, It is open. The outlet 122 in the second inflow pipe 120 is formed in a rectangular shape, and the outlet 122 is opened along the side wall of the lower cylinder portion 13 of the inner cylinder 10. The position of the second inflow pipe 120 in the axial direction of the central axis 11 of the inner cylinder 10 only needs to be lower than the inflow pipe 60.

図16に示すように、貯槽92と流入管60を接続している輸送配管123の途中にY字管124を設け、そのY字管124によって輸送配管123から分岐した分岐配管126を第2の流入管120に接続することで、ペレット2の配管輸送用の空気1の一部1aを第2の流入管120から流入させるように構成している。分岐配管126にはエアフィルタ(空気1aのみを通す)127と流量調整弁128とを設けている。   As shown in FIG. 16, a Y-shaped pipe 124 is provided in the middle of the transport pipe 123 connecting the storage tank 92 and the inflow pipe 60, and the branch pipe 126 branched from the transport pipe 123 by the Y-shaped pipe 124 is connected to the second pipe 126. By connecting to the inflow pipe 120, a part 1 a of the air 1 for transporting the pipes of the pellet 2 is configured to flow from the second inflow pipe 120. The branch pipe 126 is provided with an air filter (passing only air 1a) 127 and a flow rate adjusting valve 128.

流量調整弁128は、流入管60から流入させる空気1の流量よりも第2の流入管120から流入させる空気1aの流量を少なくするものであるが、Y字管124のY字の角度125によって貯槽92の接続ポートから流入管60の接続ポートと第2の流入管120の接続ポートへの流量を変えることができるので、Y字管124も流入管60から流入させる空気1の流量よりも第2の流入管120から流入させる空気1aの流量を少なくする流量調整手段として使用することができる。   The flow rate adjusting valve 128 reduces the flow rate of the air 1 a flowing in from the second inflow tube 120 than the flow rate of the air 1 flowing in from the inflow tube 60, but depends on the Y-shaped angle 125 of the Y-shaped tube 124. Since the flow rate from the connection port of the storage tank 92 to the connection port of the inflow pipe 60 and the connection port of the second inflow pipe 120 can be changed, the Y-shaped pipe 124 also has a first flow rate higher than the flow rate of the air 1 flowing from the inflow pipe 60. It can be used as a flow rate adjusting means for reducing the flow rate of the air 1a flowing in from the two inflow pipes 120.

図17、図18Cに示すように、空気1aは、第2の流入管120を通して、内筒10の下筒部13内にそこの側壁から接線方向に流入し、内筒10の下筒部13の内壁に沿って旋回しながらフィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6と旋回方向が同じ旋回気流9を形成する。この旋回気流9はフィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6を巻き込み、その混合気3の流れ6を旋回流に近付けてリード角の小さい螺旋状とするため、混合気3のフィルタ面での滞留時間が長くなり、微粉4の除去効率を上げることができる。また、内筒10の側壁のうち、内筒10の中心軸11の軸方向において第2の流入管120と重なっている部分は、内筒10の下筒部13の側壁によって通気遮断のため無孔の通気止め部となっており、第2の流入管120から流入させた空気1aが柱状空間10A下部の外壁(内筒10の下筒部13の側壁)からその周囲にある環状空間20A下部に漏れることがなく、柱状空間10A下部(内筒10の下筒部13内)に強い旋回気流9を形成できるため、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6はよりリード角の小さい螺旋状となる。   As shown in FIGS. 17 and 18C, the air 1a flows through the second inflow pipe 120 into the lower cylinder portion 13 of the inner cylinder 10 in the tangential direction from the side wall thereof, and the lower cylinder portion 13 of the inner cylinder 10 is obtained. A swirl airflow 9 having the same swirl direction as the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 while swirling along the inner wall of the filter 30 is formed. The swirling airflow 9 entrains the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 and brings the airflow 6 of the air-fuel mixture 3 close to the swirling flow into a spiral with a small lead angle. The residence time on the filter surface 3 becomes longer, and the removal efficiency of the fine powder 4 can be increased. Further, a portion of the side wall of the inner cylinder 10 that overlaps the second inflow pipe 120 in the axial direction of the central axis 11 of the inner cylinder 10 is not blocked by the side wall of the lower cylinder portion 13 of the inner cylinder 10 to block ventilation. The lower portion of the annular space 20A, which is a ventilation stopper for the hole, is located around the outer wall of the columnar space 10A (the side wall of the lower tube portion 13 of the inner cylinder 10). The strong swirling airflow 9 can be formed in the lower part of the columnar space 10A (inside the lower cylinder portion 13) of the columnar space 10A, so that the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 is more A spiral with a small lead angle.

本実施例では第2の流入管120には空気1(粉粒体の輸送気体)の一部1aを供給したが、旋回気流発生用のブロアからペレット2の配管輸送とは別の配管系によって旋回気流発生用の空気を圧送供給してもよい。旋回気流発生用の気体として窒素ガスや炭酸ガスなどの空気以外の気体を供給してもよい。第2の流入管120は旋回気流発生用の気体をフィルタ30の側壁から接線方向に流入させるものでもよい。   In this embodiment, a part 1a of air 1 (powder particle transport gas) is supplied to the second inflow pipe 120. However, by a pipe system different from the pipe transport of the pellet 2 from the blower for generating the swirling airflow. Air for generating a swirling airflow may be supplied by pressure. A gas other than air, such as nitrogen gas or carbon dioxide gas, may be supplied as the gas for generating the swirling airflow. The second inflow pipe 120 may be configured to allow a gas for generating a swirling airflow to flow in a tangential direction from the side wall of the filter 30.

図19ないし図24を参照して実施例3の微粉除去装置を説明する。図19は実施例3の微粉除去装置の全体構成を示す図、図20は実施例3の微粉除去装置の外観を示す図であり、(A)は正面図、(B)は平面図、(C)は側面図、図21は実施例3の微粉除去装置のフィルタを示す断面側面図、図22は実施例3の微粉除去装置内での空気の流れを示す側面図、図23は実施例3の微粉除去装置内での空気の流れを示す平面図であり、(A)は分離部での空気の流れを示す平面図、(B)は流出口部での空気の流れを示す平面図、(C)は流入口部での空気の流れを示す平面図、図24は実施例3の微粉除去装置と比較する参考例の微粉除去装置の全体構成を示す図である。   With reference to FIG. 19 thru | or 24, the fine powder removal apparatus of Example 3 is demonstrated. FIG. 19 is a diagram showing the overall configuration of the fine powder removing device of Example 3, FIG. 20 is a diagram showing the appearance of the fine powder removing device of Example 3, (A) is a front view, (B) is a plan view, C) is a side view, FIG. 21 is a cross-sectional side view showing the filter of the fine powder removing apparatus of Example 3, FIG. 22 is a side view showing the flow of air in the fine powder removing apparatus of Example 3, and FIG. It is a top view which shows the flow of the air in 3 fine powder removal apparatuses, (A) is a top view which shows the flow of the air in a isolation | separation part, (B) is a top view which shows the flow of the air in an outflow part (C) is a top view which shows the flow of the air in an inflow port part, FIG. 24: is a figure which shows the whole structure of the fine powder removal apparatus of the reference example compared with the fine powder removal apparatus of Example 3. FIG.

図19、図20に示すように、本実施例の微粉除去装置は、フィルタ130を含む内筒140と、内筒140の外側に同軸で配置する外筒150と、微粉除去装置設置用の台板160と、上蓋170などにより構成している。   As shown in FIG. 19 and FIG. 20, the fine powder removing apparatus of the present embodiment includes an inner cylinder 140 including a filter 130, an outer cylinder 150 arranged coaxially on the outer side of the inner cylinder 140, and a base for installing the fine powder removing apparatus. A plate 160, an upper lid 170, and the like are included.

図21に示すように、フィルタ130は、実施例1、2のフィルタ30と同じ構造・機能を有する。内筒140の側壁のうち、内筒140の中心軸141の軸方向において外筒150の側壁と重なる部分の少なくとも一部分を構成するとともに、内筒140内に流入させる混合気3(図22、図23参照)中のプラスチック樹脂のペレット2(粉粒体の一例)から微粉4を内筒140の側壁の外側に分離するためのもので、内筒140の中心軸141が鉛直線のときに、鉛直下方に向かって窄まり形状となる円錐台形に形成し、その側壁(側面)の略全体に、混合気3中の空気1と微粉4のみを通過させる(ペレット2は通過させない)多数のフィルタ孔131を千鳥状などに配列して設ける。このフィルタ130の側壁はパンチングメタルにより構成している。   As shown in FIG. 21, the filter 130 has the same structure and function as the filter 30 of the first and second embodiments. Of the side wall of the inner cylinder 140, at least a part of a portion overlapping with the side wall of the outer cylinder 150 in the axial direction of the central axis 141 of the inner cylinder 140 is configured, and the air-fuel mixture 3 that flows into the inner cylinder 140 (FIG. 22, FIG. 23) to separate the fine powder 4 from the plastic resin pellet 2 (an example of a granular material) in the outside of the side wall of the inner cylinder 140, and when the central axis 141 of the inner cylinder 140 is a vertical line, A large number of filters that are formed in a truncated cone shape that narrows downward in the vertical direction and allow only the air 1 and fine powder 4 in the air-fuel mixture 3 to pass through substantially the entire side wall (side surfaces) (the pellet 2 does not pass). The holes 131 are arranged in a staggered pattern. The side wall of the filter 130 is made of punching metal.

各フィルタ孔131は、実施例1、2のフィルタ孔31と同じ構造・機能を有する。フィルタ130の内壁(フィルタ面)に沿って螺旋状に流れる混合気3の自由流れ5A(図24参照)を、内筒140の中心軸141と直角の方向(内筒140の中心軸141が鉛直線のときは水平方向)に案内するため、長さ方向が内筒140の中心軸141と直角の方向である長孔に形成している。また、各フィルタ孔131は、フィルタ130に設けるガイドであって、フィルタ130の内壁に沿って螺旋状に流れる混合気3の自由流れ5Aを、その自由流れ方向よりも内筒140の中心軸141と直角の方向に近い方向から内筒10の中心軸11と直角の方向までの角度領域θの1方向に案内するガイドとして、フィルタ130の内壁に沿って螺旋状に流れる混合気3の自由流れ5Aを、内筒10の中心軸11と直角の方向に案内するように、長さ方向が内筒10の中心軸11と直角の方向である長孔に形成している。   Each filter hole 131 has the same structure and function as the filter hole 31 of the first and second embodiments. A free flow 5A of the air-fuel mixture 3 flowing spirally along the inner wall (filter surface) of the filter 130 (see FIG. 24) is perpendicular to the central axis 141 of the inner cylinder 140 (the central axis 141 of the inner cylinder 140 is vertical). In the case of a line, it is formed in a long hole whose length direction is a direction perpendicular to the central axis 141 of the inner cylinder 140. Each filter hole 131 is a guide provided in the filter 130, and the free flow 5A of the air-fuel mixture 3 that flows spirally along the inner wall of the filter 130 causes the central axis 141 of the inner cylinder 140 to flow more than the free flow direction. Free flow of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 130 as a guide for guiding in one direction of the angle region θ from the direction near the direction perpendicular to the center axis 11 to the direction perpendicular to the central axis 11 of the inner cylinder 10. 5A is formed in a long hole whose length direction is a direction perpendicular to the central axis 11 of the inner cylinder 10 so as to be guided in a direction perpendicular to the central axis 11 of the inner cylinder 10.

図19、図20に戻って、内筒140は、その中心軸141が鉛直線のときに、鉛直下方に向かって窄まり形状となる大きな円錐台形を上部・中部・下部の3つの部分で構成したもので、上部をフィルタ130により構成し、中部と下部をそれぞれ円錐台形の中筒部142と下筒部143により構成している。外筒150は、略同径な円筒形の上筒部151と下筒部152との2ピース構造を有し、下筒部152は底板152aを有する。これら同軸配置の内筒140と外筒150のうち、内筒140が台板160から直角に立ち上げられ、外筒150は、内筒140のフィルタ130と中筒部142との周囲に配置され、内筒140の下筒部152を底板152aの中央部から下方に突出し、略同じ高さ位置に揃えられている内筒140の上部開口(フィルタ130の上部開口)と外筒150の上部開口(上筒部151の上部開口)が上蓋170で閉じられている。   Referring back to FIGS. 19 and 20, the inner cylinder 140 has a large truncated cone shape that is narrowed downward in the vertical direction when the central axis 141 is a vertical line, and is composed of three parts: an upper part, a middle part, and a lower part. Thus, the upper part is constituted by the filter 130, and the middle part and the lower part are constituted by the frustoconical middle cylinder part 142 and the lower cylinder part 143, respectively. The outer cylinder 150 has a two-piece structure of a cylindrical upper cylinder part 151 and a lower cylinder part 152 having substantially the same diameter, and the lower cylinder part 152 has a bottom plate 152a. Among the coaxially arranged inner cylinder 140 and outer cylinder 150, the inner cylinder 140 is raised from the base plate 160 at a right angle, and the outer cylinder 150 is arranged around the filter 130 and the middle cylinder portion 142 of the inner cylinder 140. The lower cylinder part 152 of the inner cylinder 140 protrudes downward from the center part of the bottom plate 152a, and the upper opening of the inner cylinder 140 (upper opening of the filter 130) and the upper opening of the outer cylinder 150 are aligned at substantially the same height position. (Upper opening of the upper cylinder portion 151) is closed by the upper lid 170.

外筒150の底板152aから下方に突出した内筒140の下部(下筒部143)の側壁には、そこから混合気3を接線方向に内筒140内に流入させるための流入口である流入管180を設けている。この流入管180は直管であって、流入管180における入口181は円形に形成され、出口182は円形(矩形の場合もある)に形成され、この出口182が内筒140の下部の側壁に沿って開口されている(図23C参照)。   An inflow that is an inlet for allowing the air-fuel mixture 3 to flow into the inner cylinder 140 in a tangential direction from the side wall of the lower part (lower cylinder part 143) of the inner cylinder 140 protruding downward from the bottom plate 152a of the outer cylinder 150. A tube 180 is provided. The inflow pipe 180 is a straight pipe, and the inlet 181 in the inflow pipe 180 is formed in a circular shape, the outlet 182 is formed in a circular shape (which may be rectangular), and the outlet 182 is formed on the lower side wall of the inner cylinder 140. It is opened along (see FIG. 23C).

また、外筒150の側壁のうち、内筒140の中心軸141の軸方向において内筒140のフィルタ130よりも下部の内筒140の中部(中筒部142)の側壁と重なっている外筒150の下部(下筒部152)の側壁には、そこから微粉4混じりの空気1(各フィルタ孔131を通過し内筒140内から内筒140の側壁(フィルタ130の側壁と中筒部142の側壁)と外筒20の側壁(上筒部151の側壁と下筒部152の側壁)との間の環状空間150Aに流入した微粉4混じりの空気1)を接線方向に外筒150外に流出させるための流出口である流出管190を設けている。この流出管190は直管であって、流出管190における入口191と出口192はともに円形に形成されている。流出管190は、内筒140の側壁(フィルタ30の側壁と中筒部142の側壁)と外筒150の側壁(上筒部151の側壁と下筒部152の側壁)との間の環状空間150Aであって、内筒140の中部(中筒部142)の側壁と外筒150の下部(下筒部152)の側壁との間の環状空間150A下部に入り込んだ入口191を形成するように、内筒140の中部(中筒部142)の側壁と外筒150の下部(下筒部152)の側壁との間の環状空間150A下部に入り込んだ管側壁193を有している(図23B参照)。
本実施例では流出管190と外筒150の側壁(環状空間150Aの外壁)との間、流出管190と底板152a(外筒150の底面:環状空間20Aの底面)との間に、それぞれ、隙間があるが、これらは無い方が好ましい。流出管190の入口191の開口形状として円形のものを示したが、円形でも矩形でもよい。流出管190の入口191としては、矩形であり、外筒150の側壁との間、底板152aとの間に、それぞれ、隙間の無いものが好ましい。
Further, of the side walls of the outer cylinder 150, the outer cylinder that overlaps the side wall of the middle part (middle cylinder part 142) of the inner cylinder 140 below the filter 130 of the inner cylinder 140 in the axial direction of the central axis 141 of the inner cylinder 140. On the side wall of the lower part (lower cylinder part 152) of 150, air 1 mixed with fine powder 4 (from each inner hole 140 through the filter holes 131 and from the inside of the inner cylinder 140 (the side wall of the filter 130 and the middle cylinder part 142). Of the fine powder 4 flowing into the annular space 150A between the side wall of the outer cylinder 20 and the side wall of the outer cylinder 20 (the side wall of the upper cylinder part 151 and the side wall of the lower cylinder part 152). An outflow pipe 190 is provided as an outflow outlet for the outflow. The outflow pipe 190 is a straight pipe, and both the inlet 191 and the outlet 192 in the outflow pipe 190 are formed in a circular shape. Outflow pipe 190 is an annular space between the side wall of inner cylinder 140 (the side wall of filter 30 and the side wall of middle cylinder part 142) and the side wall of outer cylinder 150 (the side wall of upper cylinder part 151 and the side wall of lower cylinder part 152). 150A, an inlet 191 is formed that enters the lower portion of the annular space 150A between the side wall of the middle part (middle cylinder part 142) of the inner cylinder 140 and the side wall of the lower part (lower cylinder part 152) of the outer cylinder 150. In addition, it has a tube side wall 193 that enters the lower portion of the annular space 150A between the middle wall (the middle tube portion 142) of the inner tube 140 and the lower wall (the lower tube portion 152) of the outer tube 150 (FIG. 23B). reference).
In this embodiment, between the outflow pipe 190 and the side wall of the outer cylinder 150 (outer wall of the annular space 150A), between the outflow pipe 190 and the bottom plate 152a (the bottom surface of the outer cylinder 150: the bottom surface of the annular space 20A), respectively. Although there are gaps, it is preferable that these are not present. Although the circular opening shape of the inlet 191 of the outflow pipe 190 is shown, it may be circular or rectangular. The inlet 191 of the outflow pipe 190 is rectangular and preferably has no gap between the side wall of the outer cylinder 150 and the bottom plate 152a.

台板160の中央部には内筒140の下部開口(下筒部143の下部開口)と略同径な円形の貫通孔161が設けられ、内筒140は台板160の貫通孔161の縁から立ち上げられ、内筒140の下部開口が台板160の下面側に開放されて微粉4が除去されたペレット2の排出口143aになっている。   A circular through hole 161 having substantially the same diameter as the lower opening of the inner cylinder 140 (lower opening of the lower cylinder part 143) is provided at the center of the base plate 160. The inner cylinder 140 is an edge of the through hole 161 of the base plate 160. The lower opening of the inner cylinder 140 is opened to the lower surface side of the base plate 160 to form a discharge port 143a for the pellet 2 from which the fine powder 4 has been removed.

内筒140は下端に排出口143aを開口し、下部の側壁に流入管180を接続した漏斗状空間140Aを形成し、外筒150は流入管180より上部の漏斗状空間140Aの周囲に、下部の側壁に流出管190を接続した環状空間150Aを形成する。これら漏斗状空間140Aと環状空間150Aの境目にある内筒140の側壁であるフィルタ130の側壁と中筒部142の側壁のうち、フィルタ130の側壁はそこに設けた多数のフィルタ孔131によって漏斗状空間140Aと環状空間150Aとを連通接続し、中筒部142の側壁は漏斗状空間140Aと環状空間150Aとの間での通気を遮断している。   The inner cylinder 140 has a discharge port 143a at the lower end and a funnel-shaped space 140A connected to the inflow pipe 180 on the lower side wall, and the outer cylinder 150 is formed around the funnel-shaped space 140A above the inflow pipe 180. An annular space 150A in which the outflow pipe 190 is connected to the side wall is formed. Of the side wall of the filter 130 and the side wall of the middle cylinder portion 142 which are the side walls of the inner cylinder 140 at the boundary between the funnel-shaped space 140A and the annular space 150A, the side wall of the filter 130 is funneled by a number of filter holes 131 provided therein. 140A and the annular space 150A are connected in communication, and the side wall of the middle cylindrical portion 142 blocks ventilation between the funnel-shaped space 140A and the annular space 150A.

次に、本実施例の微粉除去装置の組み立てについて説明する。   Next, assembly of the fine powder removing device of the present embodiment will be described.

図19、図20に示すように、内筒140の中筒部142と下筒部143と外筒150の下筒部152とは台板160に一体に設けられている。本実施例の微粉除去装置を組み立てるときは、内筒140の中筒部142の側壁上端に設けたフランジ142aの上に、フィルタ130の側壁下端に設けたフランジ130aを重ね合わせ、内筒140の中筒部142の上にフィルタ130を載置する。   As shown in FIGS. 19 and 20, the middle cylinder part 142, the lower cylinder part 143, and the lower cylinder part 152 of the outer cylinder 150 are integrally provided on the base plate 160. When assembling the fine powder removing device of the present embodiment, the flange 130a provided at the lower end of the side wall of the filter 130 is overlaid on the flange 142a provided at the upper end of the side wall of the middle cylindrical portion 142 of the inner cylinder 140. The filter 130 is placed on the middle tube portion 142.

また、外筒150の下筒部152の側壁上端に設けたフランジ152bの上にリング状の下パッキン200を介して外筒150の上筒部151を載置し、その外筒150の上筒部151の上にリング状の上パッキン201を被せ、内筒140と外筒150の上に上蓋170を載置する。このときフィルタ130は上蓋170と内筒140の中筒部142との間に挟まれる。また、外筒150の上筒部151は上下パッキン201、200を介して上蓋170と外筒150の下筒部152との間に挟まれる。内筒140の上部開口(フィルタ130の上部開口)と外筒150の上部開口(上筒部151の上部開口)が上蓋170で一体的に閉じられる。   Further, the upper cylinder portion 151 of the outer cylinder 150 is placed on the flange 152b provided at the upper end of the side wall of the lower cylinder portion 152 of the outer cylinder 150 via the ring-shaped lower packing 200, and the upper cylinder of the outer cylinder 150 is placed. A ring-shaped upper packing 201 is placed on the portion 151, and the upper lid 170 is placed on the inner cylinder 140 and the outer cylinder 150. At this time, the filter 130 is sandwiched between the upper lid 170 and the middle cylinder portion 142 of the inner cylinder 140. Further, the upper cylinder portion 151 of the outer cylinder 150 is sandwiched between the upper lid 170 and the lower cylinder portion 152 of the outer cylinder 150 via the upper and lower packings 201 and 200. The upper opening of the inner cylinder 140 (upper opening of the filter 130) and the upper opening of the outer cylinder 150 (upper opening of the upper cylinder portion 151) are integrally closed by the upper lid 170.

両端部に雄ネジを有する複数のボルト202を上蓋170とフランジ152b間に通し付け、上蓋170の上面から上方に突出する各ボルト202の上端にナット203を螺着し、フランジ152bの下面から下方に突出する各ボルト202の下端にナット203を螺着し、上蓋170により内筒140の中筒部13に対してフィルタ130を、外筒150の下筒部152に対して上筒部130を締め付けて、完成する。このとき、過大な締め付けにより上蓋170、内筒140のフィルタ130、外筒150の上筒部151などに変形や割れが生じるのを防止するため、各ボルト202には上蓋170とフランジ152b間に挟み込む筒状のスペーサ204が外嵌されている。   A plurality of bolts 202 having male screws at both ends are passed between the upper lid 170 and the flange 152b, and nuts 203 are screwed onto the upper ends of the bolts 202 protruding upward from the upper surface of the upper lid 170, and downward from the lower surface of the flange 152b. A nut 203 is screwed onto the lower end of each bolt 202 projecting to the top, and a filter 130 is attached to the middle cylinder part 13 of the inner cylinder 140 by an upper lid 170, and an upper cylinder part 130 is attached to the lower cylinder part 152 of the outer cylinder 150. Tighten to complete. At this time, in order to prevent the upper lid 170, the filter 130 of the inner cylinder 140, the upper cylinder portion 151 of the outer cylinder 150 from being deformed or cracked due to excessive tightening, each bolt 202 has a gap between the upper lid 170 and the flange 152b. A cylindrical spacer 204 to be sandwiched is externally fitted.

これにより、上蓋170を取り外すことでフィルタ交換が行える。また、微粉除去装置を洗浄するときなどに、内筒140の中筒部142と下筒部143と外筒150の下筒部152と台板160の一体部品と、フィルタ130と、外筒150の上筒部151と、上蓋170とに分解できる。   Thereby, the filter can be replaced by removing the upper lid 170. Further, when cleaning the fine powder removing device, etc., an integral part of the inner tube portion 142, the lower tube portion 143, the outer tube 150, the lower tube portion 152 and the base plate 160 of the inner tube 140, the filter 130, and the outer tube 150 Can be disassembled into an upper cylinder portion 151 and an upper lid 170.

次に、本実施例の微粉除去装置の材質について説明する。   Next, the material of the fine powder removing apparatus of this embodiment will be described.

フィルタ130を含む内筒140、外筒150、台板160、上蓋170などの材質は、一般構造用鋼板やステンレス鋼板などの金属を使用することができる。このとき、外筒150の上筒部151にアクリル、ポリカーボネイト、ガラスなどの透明材質を使用することが好ましい。上蓋170にも透明材質を使用するとさらに好ましい。   Materials such as the inner cylinder 140, the outer cylinder 150, the base plate 160, and the upper lid 170 including the filter 130 may be metals such as general structural steel plates and stainless steel plates. At this time, it is preferable to use a transparent material such as acrylic, polycarbonate, or glass for the upper tube portion 151 of the outer tube 150. It is more preferable to use a transparent material for the upper lid 170 as well.

これにより、微粉除去装置の外側方から外筒150の上筒部151を透して、環状空間150Aで螺旋状に流れる微粉4混じりの空気1の流れ8Aを目視確認できる。また、微粉除去装置の上方から上蓋170を透して、漏斗状空間140Aで螺旋状に流れる混合気3の流れ6A、特に、フィルタ130内での混合気3の流れ6Aを目視確認できる。このように、微粉除去装置の外部から外筒150の上筒部151および上蓋170を透して、微粉除去装置の内部全体を見通すことができ、微粉除去装置の処理状況を確認できる。   Thereby, the flow 8A of the air 1 mixed with the fine powder 4 flowing spirally in the annular space 150A through the outer cylinder 150 from the outside of the fine powder removing device can be visually confirmed. Further, the flow 6A of the air-fuel mixture 3 flowing spirally in the funnel-shaped space 140A through the upper lid 170 from above the fine powder removing device, in particular, the flow 6A of the air-fuel mixture 3 in the filter 130 can be visually confirmed. In this way, the entire inside of the fine powder removing device can be seen through the upper cylinder portion 151 and the upper lid 170 of the outer cylinder 150 from the outside of the fine powder removing device, and the processing status of the fine powder removing device can be confirmed.

次に、本実施例の微粉除去装置の使用について説明する。   Next, the use of the fine powder removing apparatus of this embodiment will be described.

本実施例の微粉除去装置は、実施例1、2の微粉除去装置に代えて成形機90に設置し、流入管180をペレット2の貯槽92にホースや配管を介して接続し、流出管190を空気1に運動エネルギーを与えたり圧力を高めたりする流体機器であるブロア93の吸込口にホースや配管を介して接続し、バッチ処理で、ある単位のペレット2毎に処理し、そのペレット2から微粉4などの異物を除去する。本実施例の微粉除去装置を成形機90に設置するときは原料供給ホッパ91は取り外し、その接続口に台板160を介して鉛直に設置(斜めに設置する場合もある)して使用する。流出管190とブロア93の間には集塵装置94を設ける。   The fine powder removing apparatus of the present embodiment is installed in the molding machine 90 instead of the fine powder removing apparatus of the first and second embodiments, and the inflow pipe 180 is connected to the storage tank 92 of the pellet 2 via a hose or a pipe. Is connected to the suction port of the blower 93, which is a fluid device that gives kinetic energy to the air 1 or increases the pressure, through a hose or pipe, and is processed for each pellet 2 in a unit by batch processing. Foreign matter such as fine powder 4 is removed from When the fine powder removing device of this embodiment is installed in the molding machine 90, the raw material supply hopper 91 is removed, and the connecting port is vertically installed through the base plate 160 (may be installed obliquely). A dust collector 94 is provided between the outflow pipe 190 and the blower 93.

次に、本実施例の微粉除去装置の作用について説明する。   Next, the operation of the fine powder removing apparatus of this embodiment will be described.

まず、図24に示す参考例の微粉除去装置はフィルタ400の側壁に設けるフィルタ孔410の形状以外、本実施例の微粉除去装置と同一構造にしてある。図24において本実施例の微粉除去装置と同一構造には同一符号を付してある。図24に示すように、参考例の微粉除去装置のフィルタ400の側壁に設けたフィルタ孔410は円形のもので、本実施例の微粉除去装置のフィルタ孔131のようなガイド機能は持っていないものである。   First, the fine powder removing apparatus of the reference example shown in FIG. 24 has the same structure as the fine powder removing apparatus of the present embodiment except for the shape of the filter hole 410 provided on the side wall of the filter 400. In FIG. 24, the same reference numerals are given to the same structures as those of the fine powder removing apparatus of the present embodiment. As shown in FIG. 24, the filter hole 410 provided in the side wall of the filter 400 of the fine powder removing apparatus of the reference example is circular and does not have a guide function like the filter hole 131 of the fine powder removing apparatus of the present embodiment. Is.

図22、図23に示す本実施例の微粉除去装置と図24に示す参考例の微粉除去装置は、両方ともに、流出管190に接続したブロア93を駆動すると、吸引式の配管輸送が開始される。この吸引式の配管輸送により空気1とペレット2との混合気3(微粉4を含んでいる)は、流入管180を通り、内筒140の下筒部143内(漏斗状空間140Aの下部)にそこの側壁から接線方向に流入し、内筒140の下筒部143の内壁に沿って旋回しながら上昇して中筒部142に入り、中筒部142の内壁に沿って旋回しながら上昇して本実施例ではフィルタ130(漏斗状空間140Aの上部)に入り、参考例ではフィルタ400(漏斗状空間140Aの上部)に入り、それぞれのフィルタ130、400の内壁に沿って旋回しながら上昇し、上蓋170に達する。このとき、参考例のフィルタ400の側壁に設けたフィルタ孔410は円形のもので、本実施例のフィルタ130に設けたフィルタ孔131のようなガイド機能は持っていないため、参考例における内筒140の内壁に沿って流れる混合気3の流れは案内(制御)されない自由流れ5Aとなる。すなわち、本実施例におけるフィルタ孔131が案内する対象の混合気3の自由流れ5Aとなり、本実施例における内筒140の内壁に沿って流れる混合気3の流れはフィルタ孔131により案内(制御)された制御流れ6Aとなる。フィルタ孔131の案内作用(混合気3の自由流れ5Aから制御流れ6Aへの変換)については後述する。   Both the fine powder removing apparatus of the present embodiment shown in FIGS. 22 and 23 and the fine powder removing apparatus of the reference example shown in FIG. 24 start suction pipe transportation when the blower 93 connected to the outflow pipe 190 is driven. The By this suction-type piping transport, the air-fuel mixture 3 (including fine powder 4) of air 1 and pellets 2 passes through the inflow pipe 180 and in the lower cylinder portion 143 of the inner cylinder 140 (lower part of the funnel-shaped space 140A). Flows into the tangential direction from the side wall there, rises while turning along the inner wall of the lower cylinder part 143 of the inner cylinder 140, enters the middle cylinder part 142, and rises while turning along the inner wall of the middle cylinder part 142 In this embodiment, the filter 130 (upper part of the funnel-shaped space 140A) is entered. In the reference example, the filter 400 (upper part of the funnel-shaped space 140A) is entered, and the filter 130 and 400 are swung along the inner walls. And reaches the upper lid 170. At this time, the filter hole 410 provided in the side wall of the filter 400 of the reference example is circular and does not have a guide function like the filter hole 131 provided in the filter 130 of the present embodiment. The flow of the air-fuel mixture 3 flowing along the inner wall 140 becomes a free flow 5A that is not guided (controlled). That is, the free flow 5A of the air-fuel mixture 3 to be guided by the filter hole 131 in the present embodiment becomes a flow, and the flow of the air-fuel mixture 3 flowing along the inner wall of the inner cylinder 140 in the present embodiment is guided (controlled) by the filter hole 131. Control flow 6A. The guide action of the filter hole 131 (conversion from the free flow 5A of the air-fuel mixture 3 to the control flow 6A) will be described later.

1単位の混合気3は、ブロア93の駆動を停止するまで、フィルタ130、400の内壁に沿って旋回しながらフィルタ130、400内で滞留する。その間に、フィルタ130、400の内壁に沿って螺旋状に流れる混合気3の流れ6A、5Aで生じる遠心力の作用で、混合気3中のペレット2と微粉4とがフィルタ130、400の側壁の内外側に分離される。フィルタ孔131、410よりも大きいペレット2はフィルタ孔131、410を通り抜けることなくフィルタ130、400の側壁の内側に止まり、フィルタ孔131、410よりも小さい微粉4はフィルタ孔131、410を通り抜けフィルタ130、400の側壁の外側に分離する。このとき、フィルタ孔131、410でフィルタ130、400の側壁の内側から外側に向かって通り抜ける空気1の流れ7Aがあるので、ペレット2と微粉4とを容易に分離できる。   One unit of the air-fuel mixture 3 stays in the filters 130 and 400 while swirling along the inner walls of the filters 130 and 400 until the drive of the blower 93 is stopped. In the meantime, the pellet 2 and the fine powder 4 in the mixture 3 are separated from the side walls of the filters 130 and 400 by the action of the centrifugal force generated in the flows 6A and 5A of the mixture 3 flowing spirally along the inner walls of the filters 130 and 400. It is separated inside and outside. The pellet 2 larger than the filter holes 131 and 410 does not pass through the filter holes 131 and 410 but stops inside the side walls of the filters 130 and 400, and the fine powder 4 smaller than the filter holes 131 and 410 passes through the filter holes 131 and 410 and is filtered. 130, 400 are separated to the outside of the side walls. At this time, since there is a flow 7A of air 1 that passes from the inside to the outside of the side walls of the filters 130 and 400 through the filter holes 131 and 410, the pellet 2 and the fine powder 4 can be easily separated.

フィルタ130、400の側壁の外側、すなわち、環状空間150Aに分離した微粉4は、そこで螺旋状に流れる空気1の流れ8Aにより、旋回しながら下降して環状空間150A下部に達し、流出管190を通り、外筒150の下筒部152の側壁から接線方向に流出する。すなわち、外筒150外に流出する。外筒150外に流出した空気1に含まれる微粉4は集塵装置94により回収され、ブロア93の吐出口からはクリーンな空気1が大気中に放出される。   The fine powder 4 separated on the outside of the side walls of the filters 130 and 400, that is, in the annular space 150A, descends while swirling by the flow 8A of the air 1 flowing spirally there, and reaches the lower part of the annular space 150A. As a result, the outer cylinder 150 flows out from the side wall of the lower cylinder portion 152 in the tangential direction. That is, it flows out of the outer cylinder 150. The fine powder 4 contained in the air 1 flowing out of the outer cylinder 150 is collected by the dust collector 94, and clean air 1 is discharged into the atmosphere from the discharge port of the blower 93.

フィルタ130、400の内壁に沿って旋回しながらフィルタ130、400で滞留する間に、微粉4が除去されたペレット2は、ブロア93の駆動を停止することにより落下し、内筒140の下筒部143の下部開口である排出口143aから成形機90に排出される。勿論、フィルタ130、400の内壁に沿って旋回しながら滞留する間には、フィルタ孔131、410を通り抜ける塵やプラスチック樹脂の小片なども微粉4とともに異物として除去されている。こうして1単位の微粉除去処理が終了するとブロア93の駆動を開始し、次の1単位の微粉除去処理を行う。   While staying in the filters 130 and 400 while turning along the inner walls of the filters 130 and 400, the pellet 2 from which the fine powder 4 has been removed falls by stopping the drive of the blower 93, and the lower cylinder of the inner cylinder 140 It is discharged to the molding machine 90 from a discharge port 143 a that is a lower opening of the portion 143. Of course, while staying while swirling along the inner walls of the filters 130 and 400, dust passing through the filter holes 131 and 410, small pieces of plastic resin, and the like are removed together with the fine powder 4 as foreign matter. When one unit of fine powder removal processing is completed, the blower 93 starts to be driven, and the next one unit of fine powder removal processing is performed.

こうして、本実施例の微粉除去装置と参考例の微粉除去装置は、両方ともに、バッチ処理で、ある単位のペレット2毎に処理し、そのペレット2から微粉4などの異物を除去する。   Thus, both the fine powder removing apparatus of the present embodiment and the fine powder removing apparatus of the reference example are processed for each pellet 2 in a unit by batch processing, and foreign matters such as the fine powder 4 are removed from the pellet 2.

次に、本実施例におけるフィルタ孔131の作用について説明する。   Next, the operation of the filter hole 131 in this embodiment will be described.

図22に示すように、フィルタ130の側壁に設けるフィルタ孔131は、長さ方向が内筒140の中心軸141と直角の方向である長孔である。一方、フィルタ130の内壁に沿って螺旋状に流れる混合気3には遠心力が働いている。このため、フィルタ孔131は、混合気3中のペレット2をフィルタ孔131の長さ方向の上下辺に沿って移動させ、フィルタ130の内壁に沿って螺旋状に流れる混合気3の自由流れ5Aを、フィルタ孔131の長さ方向である内筒140の中心軸141と直角の方向に案内し、図22、図24からも明らかなように、フィルタ130内での混合気3の自由流れ5Aをそれよりもリード角の小さい制御流れ6Aに変換する。   As shown in FIG. 22, the filter hole 131 provided in the side wall of the filter 130 is a long hole whose length direction is a direction perpendicular to the central axis 141 of the inner cylinder 140. On the other hand, centrifugal force is acting on the air-fuel mixture 3 that flows spirally along the inner wall of the filter 130. For this reason, the filter hole 131 moves the pellet 2 in the air-fuel mixture 3 along the upper and lower sides in the length direction of the filter hole 131, and the free flow 5 </ b> A of the air-fuel mixture 3 that flows spirally along the inner wall of the filter 130. Is guided in a direction perpendicular to the central axis 141 of the inner cylinder 140, which is the length direction of the filter hole 131, and as is clear from FIGS. 22 and 24, the free flow 5A of the air-fuel mixture 3 in the filter 130 is obtained. Is converted to a control flow 6A having a smaller lead angle.

バッチ処理ではブロア93の駆動時間(吸引時間)によりペレット2のフィルタ130、400の内壁での滞留時間が決まるので、本実施例の微粉除去装置と参考例の微粉除去装置でフィルタ孔131、410の違いによる滞留時間の差はない。しかしペレット2はフィルタ130、400内で旋回するとき、ある定まった軌道で移動しているのではなく、上下したり、フィルタ130、400の内壁からの距離を変えたりしつつ移動する(上下するからペレット2同士がぶつかり、その反作用でフィルタ130、400の内壁からの距離が変動する)。このとき本実施例におけるフィルタ孔131は長孔であり、ペレット2の上下の変動を抑えることができる。上下の変動を抑制できることは、ペレット2同士のぶつかり合いを抑えることである。ぶつからないことによって(またはぶつかる力を弱めることで)、遠心力を受けているペレット2が安定してフィルタ130の内壁で軌道旋回する。このように長孔であるフィルタ孔131はペレット2のフィルタ面に接触する時間を長くできる。そのため、微粉の除去効率を上げることができる。「フィルタ面での滞留時間を長くする」という作用は、別の表現をすれば、「フィルタ面に接触する時間を長くする」である。ところで、本実施例の微粉除去装置は、処理対象のペレット2を装置下部から入れて、処理済みのペレット2を装置下部から抜くタイプであるが、装置上部に処理済みのペレット2を排出する排出口を設けることで、処理対象のペレット2を装置下部から入れて、処理済みのペレット2を装置上部から抜くタイプ(連続処理タイプ)にできる。このタイプの場合、混合気3のフィルタ面での滞留時間が長くなることで、微粉4の除去効率を上げることができる。   In the batch processing, the residence time of the pellets 2 on the inner walls of the filters 130 and 400 is determined by the driving time (suction time) of the blower 93. Therefore, the filter holes 131 and 410 are used in the fine powder removing apparatus of this embodiment and the fine powder removing apparatus of the reference example. There is no difference in the residence time due to the difference. However, when the pellet 2 turns in the filters 130 and 400, the pellet 2 does not move in a certain orbit, but moves while moving up and down or changing the distance from the inner wall of the filters 130 and 400 (up and down). The pellets 2 collide with each other, and the distance from the inner walls of the filters 130 and 400 varies due to the reaction). At this time, the filter hole 131 in the present embodiment is a long hole, and the vertical fluctuation of the pellet 2 can be suppressed. The ability to suppress the vertical fluctuation is to suppress the collision between the pellets 2. By not colliding (or weakening the colliding force), the pellet 2 receiving the centrifugal force stably orbits on the inner wall of the filter 130. Thus, the filter hole 131 which is a long hole can lengthen the time which contacts the filter surface of the pellet 2. FIG. Therefore, the fine powder removal efficiency can be increased. In other words, the action of “increasing the residence time on the filter surface” is “increasing the time for contacting the filter surface”. By the way, the fine powder removing apparatus of the present embodiment is a type in which the pellets 2 to be processed are inserted from the lower part of the apparatus and the processed pellets 2 are extracted from the lower part of the apparatus, but the discharged pellets 2 are discharged to the upper part of the apparatus. By providing the outlet, it is possible to make a type (continuous processing type) in which the pellets 2 to be processed are inserted from the lower part of the apparatus and the processed pellets 2 are extracted from the upper part of the apparatus. In the case of this type, the removal time of the fine powder 4 can be increased by increasing the residence time of the air-fuel mixture 3 on the filter surface.

ここで、フィルタ130の側壁に設けるフィルタ孔131は、長さ方向がフィルタ130の内壁に沿って螺旋状に流れる混合気3の自由流れ5Aの流れ方向よりも僅かでも内筒130の中心軸11と直角の方向に近い方向の長孔であれば、フィルタ130内での混合気3の自由流れ5Aをそれよりもリード角の小さい螺旋状の制御流れ6Aに変換し、混合気3のフィルタ面での滞留時間を自由流れ5Aのものよりも長くできるが、フィルタ30の側壁に設けたフィルタ孔131は、長さ方向が内筒140の中心軸141と直角の方向である長孔であるため、フィルタ130内での混合気3の自由流れ5Aをそれよりもリード角のより小さい螺旋状の制御流れ6Aに変換でき、混合気3のフィルタ面での滞留時間を自由流れ6Aのものよりもさらに長くできる。   Here, the filter hole 131 provided in the side wall of the filter 130 has a length direction slightly longer than the flow direction of the free flow 5 </ b> A of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 130. The free flow 5A of the air-fuel mixture 3 in the filter 130 is converted into a spiral control flow 6A having a smaller lead angle, and a filter surface of the air-fuel mixture 3 is obtained. However, the filter hole 131 provided in the side wall of the filter 30 is a long hole whose length direction is a direction perpendicular to the central axis 141 of the inner cylinder 140. The free flow 5A of the air-fuel mixture 3 in the filter 130 can be converted into a spiral control flow 6A having a smaller lead angle, and the residence time of the air-fuel mixture 3 on the filter surface can be made longer than that of the free flow 6A. The It can be extended to.

また、フィルタ130の側壁は、内筒140の中心軸141が鉛直線のときに、鉛直下方に向かって窄まり形状となる円錐台形に形成しており、このフィルタ130の側壁に設けたフィルタ孔131では、長さ方向の下辺が上辺よりも内筒140の中心軸141に近くなり、ペレット2がフィルタ孔131の下辺に当たる確実性が増し、フィルタ孔131によるガイド機能を効果的に発揮できる。   Further, the side wall of the filter 130 is formed in a truncated cone shape that narrows downward in the vertical direction when the central axis 141 of the inner cylinder 140 is a vertical line, and a filter hole provided in the side wall of the filter 130. In 131, the lower side in the length direction is closer to the central axis 141 of the inner cylinder 140 than the upper side, and the certainty that the pellet 2 hits the lower side of the filter hole 131 is increased, and the guide function by the filter hole 131 can be effectively exhibited.

本実施例の微粉除去装置でも、フィルタ130に設けるガイドであって、フィルタ130の内壁に沿って螺旋状に流れる混合気3の自由流れ5Aを、その自由流れ方向よりも内筒140の中心軸141と直角の方向に近い方向から内筒140の中心軸141と直角の方向までの角度領域θの1方向に案内するガイドとして、フィルタ孔131に代えて、図11に示した第1の長孔501と第2の長孔502、図10に示した突起物32、その他溝も利用することができる。   In the fine powder removing apparatus of the present embodiment as well, it is a guide provided on the filter 130, and the free flow 5 </ b> A of the air-fuel mixture 3 that flows spirally along the inner wall of the filter 130 is more central than the free flow direction. As a guide for guiding in one direction of an angle region θ from a direction close to a direction perpendicular to 141 to a direction perpendicular to the central axis 141 of the inner cylinder 140, the first length shown in FIG. The hole 501 and the second long hole 502, the protrusion 32 shown in FIG. 10, and other grooves can also be used.

ところで、フィルタ130の側壁が内筒140の中心軸141の軸方向において流出管190と重なる位置にまで延びていると、フィルタ130の側壁のうち、内筒140の中心軸141の軸方向において流出管190と重なっている部分にあるフィルタ孔131を通り抜ける空気1によって、環状空間150Aで螺旋状に流れる空気1の流れ8Aが弱くなり、フィルタ130の内壁に沿って螺旋状に流れる混合気3の流6Aれも弱くなり、微粉4の除去効率が低下するが、本実施例の微粉除去装置では、図19、図22、図23Bに示すように、内筒140の側壁のうち、内筒140の中心軸141の軸方向において少なくとも流出管190と重なる部分には、通気遮断のため無孔の通気止め部(中筒部142の側壁)を設けているため、フィルタ130の内壁に沿って螺旋状に流れる混合気3の流れ6Aが強いものになり、微粉4の除去効率を上げることができる。   By the way, when the side wall of the filter 130 extends to a position overlapping the outflow pipe 190 in the axial direction of the central axis 141 of the inner cylinder 140, outflow in the axial direction of the central axis 141 of the inner cylinder 140 out of the side walls of the filter 130. The air 1 passing through the filter hole 131 in the portion overlapping with the pipe 190 weakens the flow 8A of the air 1 flowing spirally in the annular space 150A, and the mixture 3 flowing spirally along the inner wall of the filter 130 Although the flow 6A also becomes weak and the removal efficiency of the fine powder 4 decreases, in the fine powder removing apparatus of the present embodiment, as shown in FIGS. 19, 22, and 23B, the inner cylinder 140 is out of the side walls of the inner cylinder 140. In the axial direction of the central shaft 141, at least a portion overlapping the outflow pipe 190 is provided with a non-porous ventilation stopper (side wall of the middle cylinder 142) for blocking ventilation. Flow 6A of the mixture 3 flowing helically along the inner wall of the filter 130 becomes stronger, it is possible to increase the removal efficiency of fine powder 4.

また、流出管190の入口191が流入管180の出口182と同様に内筒140の側壁に沿って開口されていると、環状空間150Aで螺旋状に流れている空気1の流れ8Aの旋回方向と逆向きの空気1の吸い込みが少なからずあるため、環状空間150Aで螺旋状に流れている空気1の流れ8Aが弱くなり、ひいてはフィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6も弱くなり、微粉4の除去効率が低下するが、本実施例の微粉除去装置では、図23Bに示すように、流出管190は内筒140の側壁と外筒150の側壁との間の環状空間150Aに入り込んだ管側壁183を有しているため、環状空間150Aで螺旋状に流れている空気1の流れ8Aが強いものとなり、ひいてはフィルタ130の内壁に沿って螺旋状に流れる混合気3の流れ6Aも強いものとなり、微粉4の除去効率を上げることができる。   When the inlet 191 of the outflow pipe 190 is opened along the side wall of the inner cylinder 140 in the same manner as the outlet 182 of the inflow pipe 180, the swirl direction of the flow 8A of the air 1 flowing spirally in the annular space 150A Therefore, the flow 8A of the air 1 flowing spirally in the annular space 150A becomes weak, and consequently the flow of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 6 is also weakened, and the removal efficiency of the fine powder 4 is lowered. However, in the fine powder removing apparatus of the present embodiment, as shown in FIG. 23B, the outflow pipe 190 is located between the side wall of the inner cylinder 140 and the side wall of the outer cylinder 150. Since the pipe side wall 183 enters the annular space 150A, the flow 8A of the air 1 flowing spirally in the annular space 150A becomes strong, and consequently flows spirally along the inner wall of the filter 130. That flow 6A of the mixture 3 also becomes stronger, it is possible to increase the removal efficiency of fine powder 4.

以上、本実施例によっても、実施例1と同じ効果を奏する。   As described above, the present embodiment has the same effects as the first embodiment.

また、本実施例の微粉除去装置においても、実施例2の微粉除去装置で付加した中心筒100とフィルタカバー110と第2の流入管(第2の流入口)120を付加できる。   Also in the fine powder removing apparatus of the present embodiment, the center tube 100, the filter cover 110, and the second inflow pipe (second inlet) 120 added by the fine powder removing apparatus of the second embodiment can be added.

以上、実施例1ないし3では粉粒体の周知の吸引式管路輸送に適用した微粉除去装置で本発明(第1ないし第4の発明)を説明したが、本発明はそれに限定されることなく、その要旨を逸脱しない範囲内で種々変形実施することができる。たとえば粉粒体の周知の圧送式管路輸送に適用でき、窒素ガスや炭酸ガスを輸送気体として用いる管路輸送にも適用できるものである。また、実施例1ないし3では一種類の粉粒体を管路輸送し、微粉を除去する装置で本発明を説明したが、複数種類の粉粒体を管路輸送すると共に、混合し、微粉を除去する装置にも適用できるものである。   As mentioned above, although Example 1 thru | or 3 demonstrated this invention (1st thru | or 4th invention) by the fine powder removal apparatus applied to the well-known suction type pipe transportation of a granular material, this invention is limited to it. However, various modifications can be made without departing from the scope of the invention. For example, the present invention can be applied to the well-known pressure-feed type pipe transportation of granular materials, and can also be applied to pipe transportation using nitrogen gas or carbon dioxide gas as a transport gas. In addition, in Examples 1 to 3, the present invention has been described with an apparatus that transports one type of granular material and removes fine powder. However, a plurality of types of granular material are transported and mixed to form fine powder. It is applicable also to the apparatus which removes.

また、フィルタの側壁の内外に螺旋流を形成するには、混合気の流入管と微粉混じりの空気の流出管の接続方向に関して、その両方を接線方向で筒側壁に設ける必要はなくいずれか一方で足り、混合気の流入管と微粉混じりの空気の流出管の内筒の中心軸の軸方向の位置に関して、それが相違していればよく、この場合、両者が内筒の中心軸の軸方向において全く重ならなくても、一部が重なっていてもよい。なお、実施例3の場合は混合気の流入管と微粉混じりの空気の流出管の内筒の中心軸の軸方向の位置は同一であってもよい。   Further, in order to form a spiral flow inside and outside the filter side wall, it is not necessary to provide both of them on the cylinder side wall in the tangential direction with respect to the connection direction of the air-flow tube of the air-fuel mixture and the air out-flow tube mixed with fine powder. It suffices if the inflow pipe of the air-fuel mixture and the outflow pipe of air mixed with fine powder are different in the axial position of the central axis of the inner cylinder. Even if they do not overlap at all in the direction, they may overlap. In the case of Example 3, the axial position of the central axis of the inner cylinder of the inflow pipe for the air-fuel mixture and the outflow pipe for the air mixed with fine powder may be the same.

1 空気(輸送気体)
2 ペレット(粉粒体)
3 混合気
4 微粉
10,140 内筒
11、141 中心軸
20 150 外筒
30、130、300、500 フィルタ
31、131、501、502 フィルタ孔(ガイド)
32 突起物(ガイド)
60、180 流入管(流入口)
70、190 流出管(流出口)
1 Air (transport gas)
2 Pellet (powder)
3 Gas mixture 4 Fine powder 10,140 Inner cylinder 11, 141 Central axis 20 150 Outer cylinder 30, 130, 300, 500 Filter 31, 131, 501, 502 Filter hole (guide)
32 Projection (Guide)
60, 180 Inflow pipe (inlet)
70, 190 Outflow pipe (outlet)

Claims (4)

内筒および該内筒の外側に配置する外筒を備え、前記内筒の側壁のうち、前記内筒の中心軸の軸方向において前記外筒の側壁と重なる部分の少なくとも一部分を多孔のフィルタとし、前記内筒内に粉粒体の輸送気体と前記粉粒体との混合気を流入させる流入口を設けるとともに、前記内筒内に流入した前記混合気に含まれる微粉とともに前記フィルタ孔を通過する前記輸送気体を前記外筒外に流出させる流出口を設ける微粉除去装置において、前記フィルタに、前記フィルタの内壁に沿って螺旋状に流れる前記混合気の自由流れを、該自由流れ方向よりも前記内筒の中心軸と直角の方向に近い方向から前記内筒の中心軸と直角の方向までの1方向に案内するガイドを設けたことを特徴とする微粉除去装置。   An inner cylinder and an outer cylinder arranged outside the inner cylinder, and at least a portion of the side wall of the inner cylinder that overlaps the side wall of the outer cylinder in the axial direction of the central axis of the inner cylinder is a porous filter. In addition, an inlet is provided in the inner cylinder for allowing a mixture of the particulate transport gas and the particulate to flow in, and passes through the filter hole together with the fine powder contained in the mixture flowing into the inner cylinder. In the fine powder removing device provided with an outlet for allowing the transported gas to flow out of the outer cylinder, the free flow of the air-fuel mixture flowing spirally along the inner wall of the filter is made to flow in the filter from the direction of the free flow. A fine powder removing apparatus comprising a guide for guiding in one direction from a direction close to a direction perpendicular to the central axis of the inner cylinder to a direction perpendicular to the central axis of the inner cylinder. 前記ガイドは、前記フィルタの内壁に沿って螺旋状に流れる前記混合気の自由流れを、前記内筒の中心軸と直角の方向に案内することを特徴とする請求項1に記載の微粉除去装置。   The fine powder removing device according to claim 1, wherein the guide guides the free flow of the air-fuel mixture flowing spirally along the inner wall of the filter in a direction perpendicular to the central axis of the inner cylinder. . 内筒および該内筒の外側に配置する外筒を備え、前記内筒の側壁のうち、前記内筒の中心軸の軸方向において前記外筒の側壁と重なる部分の少なくとも一部分を多孔のフィルタとし、前記内筒内に粉粒体の輸送気体と前記粉粒体との混合気を流入させる流入口を設けるとともに、前記内筒内に流入した前記混合気に含まれる微粉とともに前記フィルタ孔を通過する前記輸送気体を前記外筒外に流出させる流出口を設ける微粉除去装置において、前記フィルタ孔は、長さ方向が前記内筒の中心軸と直角の方向である長孔に形成したことを特徴とする微粉除去装置。   An inner cylinder and an outer cylinder arranged outside the inner cylinder, and at least a portion of the side wall of the inner cylinder that overlaps the side wall of the outer cylinder in the axial direction of the central axis of the inner cylinder is a porous filter. In addition, an inlet is provided in the inner cylinder for allowing a mixture of the particulate transport gas and the particulate to flow in, and passes through the filter hole together with the fine powder contained in the mixture flowing into the inner cylinder. In the fine powder removing apparatus provided with an outlet for allowing the transport gas to flow out of the outer cylinder, the filter hole is formed in a long hole whose length direction is a direction perpendicular to the central axis of the inner cylinder. A fine powder removing device. 前記フィルタは、前記内筒の中心軸が鉛直線のときに、鉛直下方に向かって窄まり形状に形成することを特徴とする請求項1ないし3のいずれか1項に記載の微粉除去装置。   4. The fine powder removing apparatus according to claim 1, wherein the filter is formed in a shape narrowed vertically downward when a central axis of the inner cylinder is a vertical line. 5.
JP2010229275A 2010-10-12 2010-10-12 Fine powder removal device Active JP5736142B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010229275A JP5736142B2 (en) 2010-10-12 2010-10-12 Fine powder removal device
CN201110315508.7A CN102441529B (en) 2010-10-12 2011-10-10 Micropowder removal device
TW100136925A TWI566844B (en) 2010-10-12 2011-10-12 Micro powder removal apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010229275A JP5736142B2 (en) 2010-10-12 2010-10-12 Fine powder removal device

Publications (2)

Publication Number Publication Date
JP2012081642A true JP2012081642A (en) 2012-04-26
JP5736142B2 JP5736142B2 (en) 2015-06-17

Family

ID=46004752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010229275A Active JP5736142B2 (en) 2010-10-12 2010-10-12 Fine powder removal device

Country Status (3)

Country Link
JP (1) JP5736142B2 (en)
CN (1) CN102441529B (en)
TW (1) TWI566844B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139754A (en) * 2014-01-29 2015-08-03 株式会社渡部製鋼所 filter unit
JP2015167888A (en) * 2014-03-05 2015-09-28 株式会社カワタ Processing device for granular powder
JP6212609B1 (en) * 2016-08-19 2017-10-11 Towa株式会社 Resin molding apparatus and resin molded product manufacturing method
CN108355964A (en) * 2018-01-29 2018-08-03 浙江理工大学 A kind of classification tea core for fresh tea leaves winnowing machine
JP2018150091A (en) * 2017-03-10 2018-09-27 精研工業株式会社 Grain separation unit and grain air transportation method
CN112265842A (en) * 2020-09-24 2021-01-26 安徽华宇机械制造有限公司 Integrated closed grain conveyor with dust removal and impurity removal functions
JP7190223B1 (en) 2021-06-24 2022-12-15 株式会社シュトルツ duster
JP7207773B1 (en) 2021-06-24 2023-01-18 株式会社シュトルツ powder remover

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157394B (en) * 2013-03-22 2014-09-17 湖南盛锦新材料有限公司 Homogenization system with granule powder removal system
CN105817413B (en) * 2016-05-24 2020-07-07 安徽杨柳青钙业科技股份有限公司 Powder screening device
CN114988155A (en) * 2022-05-24 2022-09-02 铜陵有色兴铜机电制造有限公司 Dust suppression cooling humidifying device
CN115228737B (en) * 2022-07-25 2023-12-05 安徽满园春科技有限责任公司 Wind energy screening equipment for seed washing of snakegourd fruits

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139153A (en) * 1980-04-01 1981-10-30 Takata Kogyosho:Kk Cyclone without secondary scattering
JPS59145010A (en) * 1982-09-25 1984-08-20 ボル・ウント・キルヒ・フイルテルバオ・ゲ−エムベ−ハ− Backwashing filter
JP2001121037A (en) * 1999-10-26 2001-05-08 Ishikawajima Harima Heavy Ind Co Ltd Solid-separation apparatus
JP2001121038A (en) * 1999-10-28 2001-05-08 Ishikawajima Harima Heavy Ind Co Ltd Solid separation apparatus
JP2009273969A (en) * 2008-05-12 2009-11-26 Semco Co Powder extraction apparatus and granule separation system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87205753U (en) * 1987-04-03 1987-10-14 哈尔滨建筑工程学院 Externally spiralling type cyclone collector
CN1084105A (en) * 1992-09-12 1994-03-23 黄普 Lining cyclone gas-solid separating method and device
CN2203190Y (en) * 1994-05-20 1995-07-12 北京矿冶研究总院 Screen cage type rotational flow fine screen
JPH11290724A (en) * 1998-04-09 1999-10-26 Yoji Nagano Cyclone separation device and strainer for the same
JP2002192017A (en) * 2000-12-26 2002-07-10 Dainippon Ink & Chem Inc Separator
JP2007050354A (en) * 2005-08-18 2007-03-01 Sangyo Kiden Kk Powder extraction apparatus
CN200987936Y (en) * 2006-12-29 2007-12-12 中国石油大学(华东) Novel cyclone filter combined separator
CN101314089B (en) * 2007-05-29 2011-06-08 崔卫华 Whirling current filtering and separating machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139153A (en) * 1980-04-01 1981-10-30 Takata Kogyosho:Kk Cyclone without secondary scattering
JPS59145010A (en) * 1982-09-25 1984-08-20 ボル・ウント・キルヒ・フイルテルバオ・ゲ−エムベ−ハ− Backwashing filter
JP2001121037A (en) * 1999-10-26 2001-05-08 Ishikawajima Harima Heavy Ind Co Ltd Solid-separation apparatus
JP2001121038A (en) * 1999-10-28 2001-05-08 Ishikawajima Harima Heavy Ind Co Ltd Solid separation apparatus
JP2009273969A (en) * 2008-05-12 2009-11-26 Semco Co Powder extraction apparatus and granule separation system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139754A (en) * 2014-01-29 2015-08-03 株式会社渡部製鋼所 filter unit
JP2015167888A (en) * 2014-03-05 2015-09-28 株式会社カワタ Processing device for granular powder
JP6212609B1 (en) * 2016-08-19 2017-10-11 Towa株式会社 Resin molding apparatus and resin molded product manufacturing method
JP2018027670A (en) * 2016-08-19 2018-02-22 Towa株式会社 Resin molding device and resin molded article production method
KR20180020884A (en) * 2016-08-19 2018-02-28 토와 가부시기가이샤 Resin molding apparatus and resin molding product manufacturing method
KR102053968B1 (en) * 2016-08-19 2019-12-10 토와 가부시기가이샤 Resin molding apparatus and resin molding product manufacturing method
JP2018150091A (en) * 2017-03-10 2018-09-27 精研工業株式会社 Grain separation unit and grain air transportation method
CN108355964A (en) * 2018-01-29 2018-08-03 浙江理工大学 A kind of classification tea core for fresh tea leaves winnowing machine
CN108355964B (en) * 2018-01-29 2021-01-29 浙江理工大学 A hierarchical tea core for bright leaf air separator of tea
CN112265842A (en) * 2020-09-24 2021-01-26 安徽华宇机械制造有限公司 Integrated closed grain conveyor with dust removal and impurity removal functions
JP7190223B1 (en) 2021-06-24 2022-12-15 株式会社シュトルツ duster
JP2023004990A (en) * 2021-06-24 2023-01-17 株式会社シュトルツ Powder remover
JP7207773B1 (en) 2021-06-24 2023-01-18 株式会社シュトルツ powder remover
JP2023012560A (en) * 2021-06-24 2023-01-26 株式会社シュトルツ Powder removal machine

Also Published As

Publication number Publication date
CN102441529A (en) 2012-05-09
JP5736142B2 (en) 2015-06-17
CN102441529B (en) 2016-09-28
TWI566844B (en) 2017-01-21
TW201215460A (en) 2012-04-16

Similar Documents

Publication Publication Date Title
JP5736142B2 (en) Fine powder removal device
JP4344730B2 (en) Particulate matter removal device
JP5039074B2 (en) Cyclone equipment
UA127498C2 (en) Hydrocyclone separator
JP2012081643A (en) Fine powder removing apparatus
JP2006346538A (en) Cyclone type solid-gas separator
CN105765664A (en) Series-coupled fluidized bed reactor units including cyclonic plenum assemblies and related methods of hydrofluorination
JP2006088064A (en) Cyclone device
JP5401392B2 (en) Fine powder removal device
JP5695874B2 (en) Fine powder removal device
US20210275950A1 (en) Separator for a gaseous fluid
KR101149772B1 (en) Cyclone
RU2380166C1 (en) Device for wet cleaning of gases
JP2006142261A (en) Filter unit
JP2012081407A (en) Fine powder removing apparatus
US7832664B2 (en) Jet mill
US3440806A (en) Separator tube cap
US11007542B2 (en) Cyclone separator and methods of using same
RU2644610C2 (en) Gas vortex separator
JP2019084478A (en) Air separator
JP6656696B2 (en) Cyclone classifier
CN218516290U (en) Spiral speed dust remover
US11007540B2 (en) Hydrocyclone
RU2231396C2 (en) Apparatus for purifying gaseous media from suspended particles
KR20120033067A (en) An apparatus for removing the powder in a activated carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5736142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250