JP2012072022A - Method for producing optical fiber - Google Patents

Method for producing optical fiber Download PDF

Info

Publication number
JP2012072022A
JP2012072022A JP2010218487A JP2010218487A JP2012072022A JP 2012072022 A JP2012072022 A JP 2012072022A JP 2010218487 A JP2010218487 A JP 2010218487A JP 2010218487 A JP2010218487 A JP 2010218487A JP 2012072022 A JP2012072022 A JP 2012072022A
Authority
JP
Japan
Prior art keywords
refractive index
optical fiber
index distribution
distribution measurement
measurement results
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010218487A
Other languages
Japanese (ja)
Inventor
Kazuyasu Yonezawa
和泰 米沢
Sumio Hoshino
寿美夫 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010218487A priority Critical patent/JP2012072022A/en
Publication of JP2012072022A publication Critical patent/JP2012072022A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an optical fiber having a desired optical characteristic with excellent yield, even when drawing a glass preform in which a specific refractive index of a core center part is larger than that of a clad part by ≥0.5%.SOLUTION: This method for producing an optical fiber including a solidification process for producing a solid glass preform by heating a transparent glass tube material is a method for producing the optical fiber by drawing the glass preform in which the specific refractive index of the core center part is larger than that of the clad part by ≥0.5%. In the method, a refractive index distribution of the glass preform is measured from each mutually-different N-direction which is vertical to a center axis of the glass preform by a preform analyzer, to thereby acquire refractive index distribution measurement results to the number of N (where N is an integer of ≥4), and the optical characteristic of the optical fiber after drawing is predicted based on the refractive index distribution measurement results to the number of N, and a succeeding production condition is determined based on an optical characteristic prediction value acquired by the prediction, to thereby produce the optical fiber based on the determined production condition.

Description

本発明は、光ファイバ製造方法に関するものである。   The present invention relates to an optical fiber manufacturing method.

光ファイバ製造方法として、透明ガラス管材を加熱して中実のガラス母材を作製する中実化工程を含み、ガラス母材を線引して光ファイバを製造する方法が知られている。特許文献1,2に開示された光ファイバ製造方法は、出発ロッドの外周にガラス微粒子を堆積させてガラス微粒子堆積体を作製する堆積工程、堆積工程の後に出発ロッドをガラス微粒子堆積体から引き抜く引抜工程、引抜工程の後にガラス微粒子堆積体を加熱して透明ガラス管材を作製する透明化工程、および、透明化工程の後に透明ガラス管材の内部を減圧するとともに透明ガラス管材を加熱して中実のガラス母材を作製する中実化工程を経て、光ファイバ用母材を製造し、この光ファイバ用母材を線引することで光ファイバを製造する。   As an optical fiber manufacturing method, there is known a method of manufacturing an optical fiber by drawing a glass base material, including a solidification step of heating a transparent glass tube material to produce a solid glass base material. The optical fiber manufacturing methods disclosed in Patent Documents 1 and 2 are a deposition process in which glass particulates are deposited on the outer periphery of the starting rod to produce a glass particulate deposit, and the starting rod is pulled out of the glass particulate deposit after the deposition process. A transparent process for producing a transparent glass tube by heating the glass particulate deposit after the process and the drawing process; and a solid pressure by depressurizing the inside of the transparent glass tube and heating the transparent glass tube after the transparent process. An optical fiber preform is manufactured through a solidification process for producing a glass preform, and an optical fiber is manufactured by drawing the preform for the optical fiber.

また、このような光ファイバ製造方法において、特許文献3に開示されているようにガラス母材の屈折率分布をプリフォームアナライザにより測定し、この屈折率分布測定結果に基づいて線引後の光ファイバの光学的特性を予測し、この予測により得られた光学的特性予測値に基づいて以降の製造条件を決定し、この決定した製造条件に基づいて光ファイバを製造することが行われている。このようにすることで、所望の光学的特性を有する光ファイバを歩留りよく製造することができるとされている。   Further, in such an optical fiber manufacturing method, as disclosed in Patent Document 3, the refractive index distribution of the glass base material is measured by a preform analyzer, and the light after drawing is drawn based on the measurement result of the refractive index distribution. The optical characteristics of the fiber are predicted, the subsequent manufacturing conditions are determined based on the predicted optical characteristics obtained by the prediction, and the optical fiber is manufactured based on the determined manufacturing conditions. . By doing in this way, it is supposed that the optical fiber which has a desired optical characteristic can be manufactured with a sufficient yield.

米国特許第4233052号明細書US Pat. No. 4,233,052 米国特許第4204850号明細書U.S. Pat. No. 4,204,850 特開平6−43068号公報JP-A-6-43068

ところで、中実化(コラプス)工程を経て製造されるガラス母材において、透明ガラス管材の中心孔が閉塞された後のコラプス部の周辺は、非円形状となることがあり、コラプス部周辺領域の屈折率分布を完全な軸対称形状とすることは困難である。特に、コラプス部周辺領域の比屈折率差が大きい(凡そ0.5%以上)ガラス母材では、コラプス部周辺領域での屈折率分布の軸対称性が大きく崩れるため、コラプス部周辺領域が非円形状となった場合、プリフォームアナライザでの測定方向がその測定値に与える影響は大きい。   By the way, in the glass base material manufactured through the solidification (collapsing) process, the periphery of the collapsed portion after the central hole of the transparent glass tube material is blocked may be non-circular, and the collapsed portion peripheral region It is difficult to make the refractive index distribution of the complete axisymmetric shape. In particular, in a glass base material having a large relative refractive index difference (approximately 0.5% or more) in the surrounding area of the collapsed portion, the axial symmetry of the refractive index distribution in the surrounding area of the collapsed portion is greatly collapsed. In the case of a circular shape, the measurement direction by the preform analyzer has a great influence on the measurement value.

図1は、透明ガラス管材1の断面およびガラス母材2A〜2Cそれぞれの断面を模式的に示す図である。この図は中心軸に垂直な断面を示している。同図(a)に示される透明ガラス管材1は、透明化工程により得られるものであって、中央に円形断面の中心孔を有している。このような透明ガラス管材1が中実化工程において中実化されると、同図(b)〜(d)に示されるようなガラス母材2A〜2Cとなる。ガラス母材2Aでは中心孔の閉塞跡は直線状になっており、ガラス母材2Bでは中心孔の閉塞跡は曲線状になっており、また、ガラス母材2Cでは中心孔の閉塞跡はY字状になっている。ガラス母材において、中心孔の閉塞跡の形状は様々であり、それ故、コラプス部周辺領域に発生する屈折率分布の歪みも様々である。   FIG. 1 is a diagram schematically showing a cross section of a transparent glass tube 1 and cross sections of glass base materials 2A to 2C. This figure shows a cross section perpendicular to the central axis. A transparent glass tube 1 shown in FIG. 1A is obtained by a transparentizing process and has a central hole with a circular cross section in the center. When such a transparent glass tube material 1 is solidified in the solidification step, glass base materials 2A to 2C as shown in FIGS. In the glass base material 2A, the clog of the central hole is linear, in the glass base material 2B, the clog of the central hole is curved, and in the glass base material 2C, the clog of the central hole is Y. It has a letter shape. In the glass base material, the shape of the clog of the central hole is various, and therefore, the refractive index distribution distortion generated in the peripheral region of the collapse portion is also various.

したがって、同一のガラス母材であっても、上記した非円、閉塞跡の影響などにより、プリフォームアナライザの測定光の入射方向によって屈折率分布測定結果が異なる場合がある。このようなガラス母材の屈折率分布測定結果に基づいて線引後の光学的特性を予測し、以降の製造条件を決定して光ファイバを製造したとしても、光学的特性の予測値の誤差が大きいため、所望の光学的特性を有する光ファイバを歩留りよく製造することができない場合がある。つまり、線引後の光ファイバが、光学的特性の予測値通りにならない場合がある。このような現象は、中心部の比屈折率差が0.5%以上であるガラス母材において顕著である。   Therefore, even with the same glass base material, the refractive index distribution measurement result may differ depending on the incident direction of the measurement light of the preform analyzer due to the influence of the non-circularity and the blockage mark described above. Even if the optical properties after drawing are predicted based on the refractive index distribution measurement result of such a glass base material and the subsequent manufacturing conditions are determined and the optical fiber is manufactured, there is an error in the predicted optical properties. Therefore, an optical fiber having desired optical characteristics may not be manufactured with a high yield. That is, the optical fiber after drawing may not meet the predicted value of the optical characteristics. Such a phenomenon is remarkable in a glass base material having a relative refractive index difference of 0.5% or more at the center.

本発明は、上記問題点を解消する為になされたものであり、クラッド部に比べコア中心部の比屈折率が0.5%以上大きいガラス母材を線引する場合であっても、所望の光学的特性を有する光ファイバを歩留りよく製造することができる方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and even when a glass base material having a relative refractive index of 0.5% or more larger at the core central portion than that of the cladding portion is drawn, it is desired. It is an object of the present invention to provide a method capable of producing an optical fiber having the following optical characteristics with high yield.

本発明の光ファイバ製造方法は、透明ガラス管材を加熱して中実のガラス母材を作製する中実化工程を含み、クラッド部に比べコア中心部の比屈折率が0.5%以上大きいガラス母材を線引して光ファイバを製造する方法であって、ガラス母材の中心軸に垂直であって互いに異なるN方向それぞれからプリフォームアナライザによりガラス母材の屈折率分布を測定することでN個の屈折率分布測定結果を取得し(ただし、Nは4以上の整数)、これらN個の屈折率分布測定結果に基づいて線引後の光ファイバの光学的特性を予測し、この予測により得られた光学的特性予測値に基づいて以降の製造条件を決定し、この決定した製造条件に基づいて光ファイバを製造することを特徴とする。   The optical fiber manufacturing method of the present invention includes a solidification step in which a transparent glass tube material is heated to produce a solid glass preform, and the relative refractive index of the core center portion is 0.5% or more larger than that of the clad portion. A method of manufacturing an optical fiber by drawing a glass preform, and measuring a refractive index distribution of the glass preform with a preform analyzer from each of N directions which are perpendicular to the central axis of the glass preform and are different from each other. To obtain N refractive index distribution measurement results (where N is an integer of 4 or more), predict optical characteristics of the optical fiber after drawing based on these N refractive index distribution measurement results, A subsequent manufacturing condition is determined based on the predicted optical characteristic value obtained by the prediction, and an optical fiber is manufactured based on the determined manufacturing condition.

N個の屈折率分布測定結果それぞれに基づいて線引後の光ファイバの光学的特性を予測することでN個の光学的特性予測値を取得し、これらN個の光学的特性予測値を平均化することで得られた平均光学的特性予測値に基づいて以降の製造条件を決定してもよい。   N optical characteristic prediction values are obtained by predicting optical characteristics of the optical fiber after drawing based on the N refractive index distribution measurement results, and the N optical characteristic prediction values are averaged. Subsequent manufacturing conditions may be determined based on the average optical characteristic prediction value obtained by converting to the above.

N個の屈折率分布測定結果を平均化することで得られた平均屈折率分布測定結果に基づいて線引後の光ファイバの光学的特性を予測し、この予測により得られた光学的特性予測値に基づいて以降の製造条件を決定してもよい。   Based on the average refractive index distribution measurement result obtained by averaging the N refractive index distribution measurement results, the optical characteristic of the optical fiber after drawing is predicted, and the optical characteristic prediction obtained by this prediction is predicted. Subsequent manufacturing conditions may be determined based on the value.

N個の屈折率分布測定結果を取得する際にプリフォームアナライザによる測定方向を360°/Nずつ異ならせるのが好ましい。   When obtaining N refractive index distribution measurement results, it is preferable to vary the measurement direction by the preform analyzer by 360 ° / N.

クラッド部に比べコア中心部の比屈折率が0.9%以上大きいガラス母材を線引して光ファイバを製造する場合に大きな効果が得られる。   A great effect can be obtained when an optical fiber is manufactured by drawing a glass preform having a relative refractive index of 0.9% or more larger than that of the clad at the core center.

本発明によれば、クラッド部に比べコア中心部の比屈折率が0.5%以上大きいガラス母材を線引する場合であっても、所望の光学的特性を有する光ファイバを歩留りよく製造することができる。   According to the present invention, an optical fiber having a desired optical characteristic can be manufactured with a high yield even when a glass preform having a relative refractive index of 0.5% or more larger than that of a clad portion is drawn. can do.

透明ガラス管材1の断面およびガラス母材2A〜2Cそれぞれの断面を模式的に示す図である。It is a figure which shows typically the section of transparent glass tube material 1, and each section of glass base materials 2A-2C. 本実施形態の光ファイバ製造方法におけるプリフォームアナライザによるガラス母材2の屈折率分布測定について説明する図である。It is a figure explaining the refractive index distribution measurement of the glass base material 2 by the preform analyzer in the optical fiber manufacturing method of this embodiment. 実施例1で得られた4個の屈折率分布測定結果それぞれを個別に示すグラフである。4 is a graph showing each of four refractive index distribution measurement results obtained in Example 1 individually. 実施例1で得られた4個の屈折率分布測定結果を重ねて示すグラフである。4 is a graph showing four refractive index distribution measurement results obtained in Example 1 in an overlapping manner. 実施例1で得られた4個の屈折率分布測定結果の比屈折率差ピーク値および各屈折率分布から求めた波長1550nmでの波長分散値を纏めた図表である。4 is a table summarizing relative refractive index difference peak values of four refractive index distribution measurement results obtained in Example 1 and wavelength dispersion values at a wavelength of 1550 nm obtained from the respective refractive index distributions. 実施例1で得られた4個の屈折率分布測定結果を平均化することで得られた平均屈折率分布測定結果を示すグラフである。It is a graph which shows the average refractive index distribution measurement result obtained by averaging the four refractive index distribution measurement results obtained in Example 1. 実施例2で得られた4個の屈折率分布測定結果それぞれを個別に示すグラフである。It is a graph which shows each of four refractive index distribution measurement results obtained in Example 2 individually. 実施例2で得られた4個の屈折率分布測定結果を重ねて示すグラフである。4 is a graph showing four refractive index distribution measurement results obtained in Example 2 in an overlapping manner. 実施例2で得られた4個の屈折率分布測定結果の比屈折率差ピーク値および各屈折率分布から求めた波長1550nmでの波長分散値を纏めた図表である。6 is a table summarizing relative refractive index difference peak values of four refractive index distribution measurement results obtained in Example 2 and wavelength dispersion values at a wavelength of 1550 nm obtained from each refractive index distribution. 実施例2で得られた4個の屈折率分布測定結果を平均化することで得られた平均屈折率分布測定結果を示すグラフである。It is a graph which shows the average refractive index distribution measurement result obtained by averaging the four refractive index distribution measurement results obtained in Example 2.

以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

本実施形態の光ファイバ製造方法は、透明ガラス管材を加熱して中実のガラス母材を作製する中実化工程を含み、ガラス母材を線引して光ファイバを製造する方法である。このガラス母材の中心部の比屈折率差は0.5%以上である。このガラス母材の中心部の比屈折率差が0.9%以上である場合に特に大きな効果が得られる。また、ガラス母材の外径非円率をコラプス部周辺の非対称性の目安とし、この外径非円率が0.03%以上程度と大きい場合に特に本実施形態の光ファイバ製造方法が有効である。   The optical fiber manufacturing method of this embodiment is a method of manufacturing an optical fiber by drawing a glass base material, including a solidification step of heating a transparent glass tube material to produce a solid glass base material. The relative refractive index difference at the center of the glass base material is 0.5% or more. A particularly large effect is obtained when the relative refractive index difference at the center of the glass base material is 0.9% or more. The optical fiber manufacturing method of the present embodiment is particularly effective when the outer diameter non-circularity of the glass base material is used as a measure of asymmetry around the collapsed portion and the outer diameter non-circularity is as large as about 0.03% or more. It is.

図2は、本実施形態の光ファイバ製造方法におけるプリフォームアナライザによるガラス母材2の屈折率分布測定について説明する図である。この図は中心軸に垂直な断面を示している。本実施形態では、プリフォームアナライザによるガラス母材2の屈折率分布測定に際して、ガラス母材2の中心軸に垂直であって互いに異なるN方向それぞれからガラス母材2に対して測定光を入射させることで屈折率分布を測定して、N個の屈折率分布測定結果を取得する。ここで、Nは4以上の整数である。同図にはN=4 の場合が示されている。   FIG. 2 is a diagram for explaining the refractive index distribution measurement of the glass base material 2 by the preform analyzer in the optical fiber manufacturing method of the present embodiment. This figure shows a cross section perpendicular to the central axis. In the present embodiment, when the refractive index distribution measurement of the glass base material 2 is performed by the preform analyzer, measurement light is incident on the glass base material 2 from N directions that are perpendicular to the central axis of the glass base material 2 and are different from each other. Thus, the refractive index distribution is measured, and N refractive index distribution measurement results are obtained. Here, N is an integer of 4 or more. In the figure, the case of N = 4 is shown.

そして、本実施形態では、これらN個の屈折率分布測定結果に基づいて線引後の光ファイバの光学的特性を予測し、この予測により得られた光学的特性予測値に基づいて以降の製造条件を決定し、この決定した製造条件に基づいて光ファイバを製造する。このようにすることにより、クラッド部に比べコア中心部の比屈折率が0.5%以上大きいガラス母材を線引する場合であっても、光学的特性の予測の精度が向上するため、所望の光学的特性を有する光ファイバを歩留りよく製造することができる。   In this embodiment, the optical characteristics of the optical fiber after drawing are predicted based on these N refractive index distribution measurement results, and the subsequent manufacturing is performed based on the predicted optical characteristics obtained by this prediction. Conditions are determined, and an optical fiber is manufactured based on the determined manufacturing conditions. By doing so, even when a glass base material having a relative refractive index of 0.5% or more larger than that of the clad portion is drawn, the accuracy of prediction of optical characteristics is improved. An optical fiber having desired optical characteristics can be manufactured with a high yield.

このとき、N個の屈折率分布測定結果それぞれに基づいて線引後の光ファイバの光学的特性を予測することでN個の光学的特性予測値を取得し、これらN個の光学的特性予測値を平均化することで得られた平均光学的特性予測値に基づいて以降の製造条件を決定してもよい。或いは、N個の屈折率分布測定結果を平均化することで得られた平均屈折率分布測定結果に基づいて線引後の光ファイバの光学的特性を予測し、この予測により得られた光学的特性予測値に基づいて以降の製造条件を決定してもよい。   At this time, N optical characteristic prediction values are obtained by predicting the optical characteristics of the optical fiber after drawing based on each of the N refractive index distribution measurement results, and these N optical characteristic prediction values are obtained. Subsequent manufacturing conditions may be determined based on the average optical property prediction value obtained by averaging the values. Alternatively, based on the average refractive index distribution measurement result obtained by averaging the N refractive index distribution measurement results, the optical characteristics of the optical fiber after drawing are predicted, and the optical characteristics obtained by this prediction are calculated. Subsequent manufacturing conditions may be determined based on the characteristic prediction value.

図1(c),(d)に示されるように中心孔の閉塞跡が複雑な形状である場合や、非円形状がいびつな場合は、図2に示されるように、N個の屈折率分布測定結果を取得する際にプリフォームアナライザによる測定方向を360°/Nずつ異ならせるのが好ましい。なお、図1(b)に示されるように中心孔の閉塞跡が単純な形状である場合には、プリフォームアナライザの測定を180°半周に渡り実施することでも効果が期待できる。   In the case where the clogging of the central hole has a complicated shape as shown in FIGS. 1C and 1D, or when the noncircular shape is irregular, as shown in FIG. When obtaining the distribution measurement result, it is preferable to change the measurement direction by the preform analyzer by 360 ° / N. In addition, as shown in FIG.1 (b), when the obstruction | occlusion trace of a center hole is a simple shape, an effect can be anticipated also by implementing a measurement of a preform analyzer over 180 degree half circles.

次に、図3〜図10を用いて実施例1,2について説明する。実施例1,2では N=4 とした。実施例1では、中心部の比屈折率差のピークが0.58%となるように製造したガラス母材の屈折率分布をプリフォームアナライザにより測定した。また、実施例2では、中心部の比屈折率差のピークが0.93%となるように製造したガラス母材の屈折率分布をプリフォームアナライザにより測定した。   Next, Embodiments 1 and 2 will be described with reference to FIGS. In Examples 1 and 2, N = 4. In Example 1, the refractive index distribution of a glass base material manufactured so that the peak of the relative refractive index difference at the center was 0.58% was measured with a preform analyzer. In Example 2, the refractive index distribution of the glass base material produced so that the peak of the relative refractive index difference at the center was 0.93% was measured with a preform analyzer.

図3〜図6は、実施例1の場合の測定結果を示す。図3は、実施例1で得られた4個の屈折率分布測定結果それぞれを個別に示すグラフである。同図(a)は角度0°方向からの屈折率分布測定結果を示し、同図(b)は角度90°方向からの屈折率分布測定結果を示し、同図(c)は角度180°方向からの屈折率分布測定結果を示し、また、同図(d)は角度270°方向からの屈折率分布測定結果を示す。図4は、実施例1で得られた4個の屈折率分布測定結果を重ねて示したグラフである。なお、図中グラフの横軸に用いている「a.u.」は、「arbitrary unit (任意のスケール)」の略である。   3 to 6 show the measurement results in the case of Example 1. FIG. FIG. 3 is a graph showing each of the four refractive index distribution measurement results obtained in Example 1 individually. FIG. 6A shows the refractive index distribution measurement result from the angle 0 ° direction, FIG. 10B shows the refractive index distribution measurement result from the angle 90 ° direction, and FIG. 10C shows the angle 180 ° direction. (D) shows the refractive index distribution measurement result from the angle 270 ° direction. FIG. 4 is a graph in which the four refractive index distribution measurement results obtained in Example 1 are superimposed. In the figure, “a.u.” used for the horizontal axis of the graph is an abbreviation for “arbitrary unit (arbitrary scale)”.

図5は、実施例1で得られた4個の屈折率分布測定結果の比屈折率差ピーク値、および各屈折率分布から光学的特性の一つである波長1550nmにおける波長分散値の予測値を求め、これらを纏めた図表である。4個の屈折率分布測定結果それぞれの比屈折率差ピーク値の平均値は0.577%であり、標準偏差(ばらつき)は0.009%であった。また、4個の屈折率分布測定結果それぞれの比屈折率差ピーク値のうち最大値と最小値との差は0.20%であり、測定方向によって比屈折率差ピーク値が大きく異なっていた。これら各屈折率分布から求めた波長1550nmにおける波長分散値の予測値は、それぞれ図表のようになり、その平均値は14.23ps/nm/kmであり、標準偏差は0.11ps/nm/kmであった。つまりこのことは、一方向からの屈折率分布の測定結果から求めた予測値では、最大2%程度の誤差を生じることを意味している。   FIG. 5 shows the relative refractive index difference peak values of the four refractive index distribution measurement results obtained in Example 1, and the predicted value of the chromatic dispersion value at a wavelength of 1550 nm, which is one of the optical characteristics from each refractive index distribution. Is a chart summarizing these. The average value of the relative refractive index difference peak values of the four refractive index distribution measurement results was 0.577%, and the standard deviation (variation) was 0.009%. Moreover, the difference between the maximum value and the minimum value among the relative refractive index difference peak values of the four refractive index distribution measurement results was 0.20%, and the relative refractive index difference peak value was greatly different depending on the measurement direction. . The predicted values of chromatic dispersion values at a wavelength of 1550 nm obtained from these refractive index distributions are as shown in the chart, the average value is 14.23 ps / nm / km, and the standard deviation is 0.11 ps / nm / km. Met. That is, this means that an error of about 2% at maximum is generated in the predicted value obtained from the measurement result of the refractive index distribution from one direction.

図6は、実施例1で得られた4個の屈折率分布測定結果を平均化することで得られた平均屈折率分布測定結果を示すグラフである。この平均屈折率分布測定結果における比屈折率差ピーク値は0.577%となっており、4個の屈折率分布測定結果それぞれの比屈折率差ピーク値の平均値と一致する。また、図6の屈折率分布から光学的特性の一つである波長1550nmでの波長分散値の予測値を求めると、14.22ps/nm/kmとなり、図5の平均値とほぼ一致する。また、このときの線引後の光ファイバの波長1550nmでの波長分散は14.24ps/nm/kmとなり、前記した図5の平均値、及び図6から求めた予測値とほぼ一致した。   FIG. 6 is a graph showing an average refractive index distribution measurement result obtained by averaging the four refractive index distribution measurement results obtained in Example 1. The relative refractive index difference peak value in the average refractive index distribution measurement result is 0.577%, which coincides with the average value of the relative refractive index difference peak values of the four refractive index distribution measurement results. Further, when the predicted value of the chromatic dispersion value at the wavelength of 1550 nm, which is one of the optical characteristics, is obtained from the refractive index distribution of FIG. 6, it is 14.22 ps / nm / km, which is almost the same as the average value of FIG. Further, the chromatic dispersion at the wavelength of 1550 nm of the optical fiber after drawing at this time was 14.24 ps / nm / km, which substantially coincided with the average value of FIG. 5 and the predicted value obtained from FIG.

図7〜図10は、実施例2の場合の測定結果を示す。図7は、実施例2で得られた4個の屈折率分布測定結果それぞれを個別に示すグラフである。同図(a)は角度0°方向からの屈折率分布測定結果を示し、同図(b)は角度90°方向からの屈折率分布測定結果を示し、同図(c)は角度180°方向からの屈折率分布測定結果を示し、また、同図(d)は角度270°方向からの屈折率分布測定結果を示す。図8は、実施例2で得られた4個の屈折率分布測定結果を重ねて示すグラフである。   7 to 10 show measurement results in the case of Example 2. FIG. FIG. 7 is a graph showing each of the four refractive index distribution measurement results obtained in Example 2 individually. FIG. 6A shows the refractive index distribution measurement result from the angle 0 ° direction, FIG. 10B shows the refractive index distribution measurement result from the angle 90 ° direction, and FIG. 10C shows the angle 180 ° direction. (D) shows the refractive index distribution measurement result from the angle 270 ° direction. FIG. 8 is a graph showing four refractive index distribution measurement results obtained in Example 2 in an overlapping manner.

図9は、実施例2で得られた4個の屈折率分布測定結果の比屈折率差ピーク値、および各屈折率分布から光学的特性の一つである波長1550nmにおける波長分散値の予測値を求め、これらを纏めた図表である。4個の屈折率分布測定結果それぞれの比屈折率差ピーク値の平均値は0.929%であり、標準偏差(ばらつき)は0.019%であった。また、4個の屈折率分布測定結果それぞれの比屈折率差ピーク値のうち最大値と最小値との差は0.44%であり、測定方向によって比屈折率差ピーク値が大きく異なっていた。4個の屈折率分布測定結果それぞれの比屈折率差ピーク値のバラツキは、実施例1の場合より実施例2の場合の方が大きかった。これら各屈折率分布から求めた波長1550nmにおける波長分散値の予測値は、それぞれ図表のようになり、その平均値は16.07ps/nm/kmであり、標準偏差は0.24ps/nm/kmであった。   9 shows the relative refractive index difference peak values of the four refractive index distribution measurement results obtained in Example 2, and the predicted value of the chromatic dispersion value at a wavelength of 1550 nm, which is one of the optical characteristics from each refractive index distribution. Is a chart summarizing these. The average value of the relative refractive index difference peak values of each of the four refractive index distribution measurement results was 0.929%, and the standard deviation (variation) was 0.019%. Moreover, the difference between the maximum value and the minimum value among the relative refractive index difference peak values of the four refractive index distribution measurement results was 0.44%, and the relative refractive index difference peak value was greatly different depending on the measurement direction. . The variation of the relative refractive index difference peak value of each of the four refractive index distribution measurement results was larger in the case of Example 2 than in the case of Example 1. Predicted values of chromatic dispersion values at a wavelength of 1550 nm obtained from these refractive index distributions are as shown in the chart, the average value is 16.07 ps / nm / km, and the standard deviation is 0.24 ps / nm / km. Met.

図10は、実施例2で得られた4個の屈折率分布測定結果を平均化することで得られた平均屈折率分布測定結果を示すグラフである。この平均屈折率分布測定結果における比屈折率差ピーク値は0.929%となっており、4個の屈折率分布測定結果それぞれの比屈折率差ピーク値の平均値と一致する。また、図10の屈折率分布から光学的特性の一つである波長1550nmでの波長分散値の予測値を求めると、16.07ps/nm/kmとなり、図9の平均値とほぼ一致する。また、このときの線引後の光ファイバの波長1550nmでの波長分散は16.09ps/nm/kmとなり、前記した図9の平均値、及び図10から求めた予測値とほぼ一致した。   FIG. 10 is a graph showing an average refractive index distribution measurement result obtained by averaging the four refractive index distribution measurement results obtained in Example 2. The relative refractive index difference peak value in the average refractive index distribution measurement result is 0.929%, which matches the average value of the relative refractive index difference peak values of the four refractive index distribution measurement results. Further, when the predicted value of the chromatic dispersion value at the wavelength of 1550 nm, which is one of the optical characteristics, is obtained from the refractive index distribution of FIG. 10, it is 16.07 ps / nm / km, which is almost the same as the average value of FIG. Further, the chromatic dispersion at the wavelength of 1550 nm of the optical fiber after drawing at this time was 16.09 ps / nm / km, which substantially coincided with the average value of FIG. 9 and the predicted value obtained from FIG.

1…透明ガラス管材、2,2A〜2C…ガラス母材。   DESCRIPTION OF SYMBOLS 1 ... Transparent glass tube material, 2, 2A-2C ... Glass base material.

Claims (5)

透明ガラス管材を加熱して中実のガラス母材を作製する中実化工程を含み、クラッド部に比べコア中心部の比屈折率が0.5%以上大きいガラス母材を線引して光ファイバを製造する方法であって、
前記ガラス母材の中心軸に垂直であって互いに異なるN方向それぞれからプリフォームアナライザにより前記ガラス母材の屈折率分布を測定することでN個の屈折率分布測定結果を取得し(ただし、Nは4以上の整数)、
これらN個の屈折率分布測定結果に基づいて線引後の光ファイバの光学的特性を予測し、この予測により得られた光学的特性予測値に基づいて以降の製造条件を決定し、この決定した製造条件に基づいて光ファイバを製造する、
ことを特徴とする光ファイバ製造方法。
It includes a solidification process in which a transparent glass tube is heated to produce a solid glass preform, and a glass preform having a relative refractive index of 0.5% or more larger at the core central portion than that of the cladding portion is drawn to produce light. A method of manufacturing a fiber comprising:
N refractive index distribution measurement results are obtained by measuring the refractive index distribution of the glass base material with a preform analyzer from different N directions perpendicular to the central axis of the glass base material. Is an integer of 4 or more),
The optical characteristics of the optical fiber after drawing are predicted based on these N refractive index distribution measurement results, and subsequent manufacturing conditions are determined based on the predicted optical characteristic values obtained by this prediction. Manufacturing optical fiber based on the manufacturing conditions
An optical fiber manufacturing method.
前記N個の屈折率分布測定結果それぞれに基づいて線引後の光ファイバの光学的特性を予測することでN個の光学的特性予測値を取得し、これらN個の前記光学的特性予測値を平均化することで得られた平均光学的特性予測値に基づいて以降の製造条件を決定する、ことを特徴とする請求項1に記載の光ファイバ製造方法。   N optical characteristic prediction values are obtained by predicting optical characteristics of the optical fiber after drawing based on each of the N refractive index distribution measurement results, and these N optical characteristic prediction values are obtained. 2. The optical fiber manufacturing method according to claim 1, wherein subsequent manufacturing conditions are determined based on an average optical characteristic prediction value obtained by averaging. 前記N個の屈折率分布測定結果を平均化することで得られた平均屈折率分布測定結果に基づいて線引後の光ファイバの光学的特性を予測し、この予測により得られた光学的特性予測値に基づいて以降の製造条件を決定する、ことを特徴とする請求項1に記載の光ファイバ製造方法。   Based on the average refractive index distribution measurement result obtained by averaging the N refractive index distribution measurement results, the optical characteristics of the optical fiber after drawing are predicted, and the optical characteristics obtained by this prediction are calculated. 2. The optical fiber manufacturing method according to claim 1, wherein subsequent manufacturing conditions are determined based on the predicted value. 前記N個の屈折率分布測定結果を取得する際にプリフォームアナライザによる測定方向を360°/Nずつ異ならせる、ことを特徴とする請求項1〜3の何れか1項に記載の光ファイバ製造方法。   The optical fiber manufacturing according to any one of claims 1 to 3, wherein when the N refractive index distribution measurement results are acquired, a measurement direction by the preform analyzer is varied by 360 ° / N. Method. クラッド部に比べコア中心部の比屈折率が0.9%以上大きいガラス母材を線引して光ファイバを製造する、ことを特徴とする請求項1〜4の何れか1項に記載の光ファイバ製造方法。   5. The optical fiber is manufactured by drawing a glass base material having a relative refractive index of 0.9% or more larger than that of the clad portion in the core center portion. 6. Optical fiber manufacturing method.
JP2010218487A 2010-09-29 2010-09-29 Method for producing optical fiber Pending JP2012072022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010218487A JP2012072022A (en) 2010-09-29 2010-09-29 Method for producing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010218487A JP2012072022A (en) 2010-09-29 2010-09-29 Method for producing optical fiber

Publications (1)

Publication Number Publication Date
JP2012072022A true JP2012072022A (en) 2012-04-12

Family

ID=46168602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010218487A Pending JP2012072022A (en) 2010-09-29 2010-09-29 Method for producing optical fiber

Country Status (1)

Country Link
JP (1) JP2012072022A (en)

Similar Documents

Publication Publication Date Title
JP5670164B2 (en) Multimode optical fiber with low bending loss and reduced cladding effect
CN102854563B (en) Multimode fibre
JP4142723B2 (en) Multimode optical fiber manufacturing method
JP6129270B2 (en) Bending resistant multimode optical fiber
JP2008058967A (en) Multi-wavelength, multimode optical fiber
JP2011118392A (en) High-bandwidth multimode optical fiber reduced in bending loss
CN105556353B (en) Optical fiber and its manufacturing method
JP6268758B2 (en) Optical fiber
US7836728B2 (en) Increasing the cladding-to-core ratio (D/d) of low D/d ratio core rods in optical fiber performs
JP2013235264A (en) Multimode optical fiber
JP6079114B2 (en) Multimode optical fiber
JP2023184594A (en) Single-mode optical fiber and manufacturing method for single-mode optical fiber
Demidov et al. Methods and technique of manufacturing silica graded-index fibers with a large central defect of the refractive index profile for fiber-optic sensors based on few-mode effects
JP2012072022A (en) Method for producing optical fiber
JP5744070B2 (en) Method for manufacturing optical fiber and tubular semi-finished product
JP2006309034A (en) Multi-mode optical fiber
JP6825104B2 (en) Optical fiber and its manufacturing method
JP2013056787A (en) Method for manufacturing optical fiber preform
Dambul et al. Fabrication and characterization of flat fibers
JP2010163339A (en) Method for producing optical fiber
JP6136164B2 (en) Optical fiber and manufacturing method thereof
JP6136467B2 (en) Manufacturing method of glass base material for optical fiber, glass base material for optical fiber, optical fiber, and calculation method of optical characteristics of optical fiber
JP2010169965A (en) Photonic crystal fiber and manufacturing method of the same
JP6431349B2 (en) Optical fiber preform manufacturing method
JP2014222269A (en) Optical fiber and optical fiber manufacturing method