JP2012033652A - Ceramic capacitor - Google Patents

Ceramic capacitor Download PDF

Info

Publication number
JP2012033652A
JP2012033652A JP2010171083A JP2010171083A JP2012033652A JP 2012033652 A JP2012033652 A JP 2012033652A JP 2010171083 A JP2010171083 A JP 2010171083A JP 2010171083 A JP2010171083 A JP 2010171083A JP 2012033652 A JP2012033652 A JP 2012033652A
Authority
JP
Japan
Prior art keywords
ceramic capacitor
coil spring
substrate
capacitor element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010171083A
Other languages
Japanese (ja)
Inventor
Takashi Komatsu
敬 小松
Katsuhiko Igarashi
克彦 五十嵐
Emi Nimiya
恵美 仁宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010171083A priority Critical patent/JP2012033652A/en
Publication of JP2012033652A publication Critical patent/JP2012033652A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic capacitor capable of suitably reducing the level of vibration sound (noise) generated in a circuit board.SOLUTION: A ceramic capacitor comprises: a ceramic capacitor element 11 having external electrodes 22; and connection terminals 12 connecting substrate electrodes 14 of a circuit board 13 to the respective external electrodes 22. The connection terminals 12 each have coil springs 25 with one end connected to the external electrode 22 side and the other end connected to the circuit board 13 side. The connection terminals 12 each have an electrode plate 26 arranged between the other end of the coil springs 25 and the substrate electrode 14.

Description

本発明は、回路基板に実装されるセラミックコンデンサに関する。   The present invention relates to a ceramic capacitor mounted on a circuit board.

ノート型パーソナルコンピュータやPDA(Personal Digital Assistant)、携帯電話等各種携帯型の情報処理装置においては、電子部品として、コンデンサ、インダクタ、バリスタ又これらを複合した複合部品を回路基板に表面実装することにより、高密度に電子部品を搭載して回路基板全体の大きさの小型化が図られている。このような回路基板に搭載されるコンデンサとして、積層型のセラミックコンデンサが用いられている。   In various types of portable information processing devices such as notebook personal computers, PDAs (Personal Digital Assistants), and cellular phones, capacitors, inductors, varistors, or composite components that combine these are mounted on the circuit board as electronic components. The size of the entire circuit board is reduced by mounting electronic components at high density. A multilayer ceramic capacitor is used as a capacitor mounted on such a circuit board.

積層型のセラミックコンデンサは、誘電体と内部電極とが交互に積層されている。誘電体を形成するセラミック材料には、誘電率が比較的高いチタン酸バリウム等の強誘電体材料が一般的に用いられている。このような積層型のセラミックコンデンサに電圧を印加すると、誘電体を形成するセラミック材料は、電歪現象を伴うため、セラミックコンデンサは、印加電圧の大きさに応じた機械的歪みを生じる。このため、セラミックコンデンサに交流電圧を印加すると、電歪現象によりセラミックコンデンサが振動する。   In the multilayer ceramic capacitor, dielectrics and internal electrodes are alternately stacked. Ferroelectric materials such as barium titanate having a relatively high dielectric constant are generally used for the ceramic material forming the dielectric. When a voltage is applied to such a multilayer ceramic capacitor, the ceramic material forming the dielectric is accompanied by an electrostriction phenomenon, so that the ceramic capacitor generates a mechanical strain corresponding to the magnitude of the applied voltage. For this reason, when an AC voltage is applied to the ceramic capacitor, the ceramic capacitor vibrates due to an electrostriction phenomenon.

この電歪現象によるセラミックコンデンサの振動は、セラミックコンデンサが実装されている基板に伝播する。この基板に伝わった振動により、基板において振動音(音鳴り)が発生する。特に、より大きな静電容量を得るために、複数のコンデンサを基板上に並列に接続した場合には、複数のコンデンサが同じ周期で振動するため、基板に伝わる振動が共振によって増幅され、この結果、振動音が増大する虞がある。   The vibration of the ceramic capacitor due to the electrostriction phenomenon propagates to the substrate on which the ceramic capacitor is mounted. Due to the vibration transmitted to the substrate, a vibration sound (sound) is generated in the substrate. In particular, when a plurality of capacitors are connected in parallel on the substrate in order to obtain a larger capacitance, the plurality of capacitors vibrate at the same period, so that the vibration transmitted to the substrate is amplified by resonance. There is a possibility that vibration noise increases.

そこで、従来のセラミックコンデンサとして、基板の振動音を低減すべく、側面に一対の端子電極(外部電極)を有するセラミックコンデンサ素子と、一対の端子電極に接続される一対の金属端子とを備えたものが知られている(例えば、特許文献1参照)。このセラミックコンデンサにおいて、一対の金属端子は、端子電極に接続される電極接続部と、回路基板に接続される外部接続部とを有し、電極接続部が、セラミックコンデンサ素子の幅方向の一方の側面に接続されている。このため、金属端子は、そのばね性により、セラミックコンデンサ素子の振動を吸収していると推測され、これにより、基板から発生する振動音を低減することができる。   Therefore, as a conventional ceramic capacitor, in order to reduce vibration noise of the substrate, a ceramic capacitor element having a pair of terminal electrodes (external electrodes) on a side surface and a pair of metal terminals connected to the pair of terminal electrodes are provided. Those are known (for example, see Patent Document 1). In this ceramic capacitor, the pair of metal terminals have an electrode connection portion connected to the terminal electrode and an external connection portion connected to the circuit board, and the electrode connection portion is one of the width directions of the ceramic capacitor element. Connected to the side. For this reason, it is presumed that the metal terminal absorbs the vibration of the ceramic capacitor element due to its spring property, thereby reducing the vibration sound generated from the substrate.

特開2004−335963号公報JP 2004-335963 A

ここで、金属端子のばね性を向上させることで、振動音をより低減できることが見出された。しかしながら、従来のセラミックコンデンサでは、金属端子は平板の金属部材を成型して得られたものであるため、セラミックコンデンサの高さを変えずに、金属端子のばね性を向上させることは難しかった。そのため、セラミックコンデンサ素子の振動をさらに吸収するべく、金属端子のばね性を高めることは困難であった。   Here, it has been found that the vibration noise can be further reduced by improving the spring property of the metal terminal. However, in the conventional ceramic capacitor, since the metal terminal is obtained by molding a flat metal member, it is difficult to improve the spring property of the metal terminal without changing the height of the ceramic capacitor. Therefore, it has been difficult to improve the spring property of the metal terminal in order to further absorb the vibration of the ceramic capacitor element.

そこで、本発明は、上記に鑑みてなされたものであって、基板において発生する振動音の大きさを更に低減することができるセラミックコンデンサを提供することを課題とする。   Therefore, the present invention has been made in view of the above, and an object of the present invention is to provide a ceramic capacitor capable of further reducing the magnitude of vibration noise generated in a substrate.

上述した課題を解決し、目的を達成するために、本発明者らはセラミックコンデンサについて鋭意研究をした。その結果、セラミックコンデンサ素子の外部電極と基板とを接続する接続端子としてコイルバネを用いることにより、セラミックコンデンサ素子の振動の吸収効率が向上し、セラミックコンデンサ素子の振動が基板に伝播するのを抑制することで、基板において発生する振動音の大きさを低減できることを見出した。本発明は、かかる知見に基づいて完成されたものである。   In order to solve the above-described problems and achieve the object, the present inventors have intensively studied ceramic capacitors. As a result, by using a coil spring as a connection terminal for connecting the external electrode of the ceramic capacitor element and the substrate, the vibration absorption efficiency of the ceramic capacitor element is improved and the vibration of the ceramic capacitor element is prevented from propagating to the substrate. Thus, it has been found that the magnitude of vibration sound generated in the substrate can be reduced. The present invention has been completed based on such findings.

本発明のセラミックコンデンサは、外部電極を有するセラミックコンデンサ素子と、外部電極と基板とを接続する接続端子と、を備え、接続端子は、一端が外部電極側に接続されると共に他端が基板側に接続されたコイルバネを有していることを特徴とする。   The ceramic capacitor of the present invention includes a ceramic capacitor element having an external electrode, and a connection terminal for connecting the external electrode and the substrate. The connection terminal has one end connected to the external electrode side and the other end to the substrate side. It has the coil spring connected to.

この構成によれば、接続端子が、コイルバネを有することにより、コイルバネは、セラミックコンデンサ素子の振動を吸収することができる。よって、コイルバネは、セラミックコンデンサ素子から基板へ向けて伝播される振動を吸収でき、これにより、基板において発生する振動音の大きさを好適に低減することができる。   According to this configuration, since the connection terminal has the coil spring, the coil spring can absorb the vibration of the ceramic capacitor element. Therefore, the coil spring can absorb the vibration propagated from the ceramic capacitor element toward the substrate, and thus the magnitude of vibration sound generated in the substrate can be suitably reduced.

本発明の好ましい態様として、接続端子は、コイルバネの一端と外部電極との間、およびコイルバネの他端と基板との間の少なくともいずれか一方に設けられた電極板を、さらに有している。   As a preferred aspect of the present invention, the connection terminal further includes an electrode plate provided at least one of the one end of the coil spring and the external electrode and the other end of the coil spring and the substrate.

この構成によれば、電極板と外部電極との間および電極板と基板との間を、面接触させることができるため、電極板と外部電極との接合および電極板と基板との接合を強固なものとすることができる。   According to this configuration, it is possible to make surface contact between the electrode plate and the external electrode and between the electrode plate and the substrate, so that the bonding between the electrode plate and the external electrode and the bonding between the electrode plate and the substrate are strong. Can be.

本発明の好ましい態様として、セラミックコンデンサ素子は、基板と対向する対向面を有し、外部電極は、対向面を挟んでセラミックコンデンサ素子の両端側に一対設けられ、コイルバネは、一端が外部電極の対向面側に接続されて、セラミックコンデンサ素子と基板との間隙部分に設けられている。   As a preferred embodiment of the present invention, the ceramic capacitor element has a facing surface facing the substrate, a pair of external electrodes are provided on both ends of the ceramic capacitor element across the facing surface, and one end of the coil spring is an external electrode. It is connected to the opposite surface side and is provided in a gap portion between the ceramic capacitor element and the substrate.

この構成によれば、コイルバネは、その一端が、外部電極の対向面側に接続されると共に、セラミックコンデンサ素子と基板との間隙部分に設けられるため、セラミックコンデンサ素子が基板と対向する方向に振動した場合、この振動を好適に吸収することができる。   According to this configuration, one end of the coil spring is connected to the opposing surface side of the external electrode and is provided in the gap portion between the ceramic capacitor element and the substrate, so that the ceramic capacitor element vibrates in the direction facing the substrate. In this case, this vibration can be suitably absorbed.

本発明の好ましい態様として、セラミックコンデンサ素子は、基板と対向する対向面と、対向面を挟んで両端側にある両端面とを有し、外部電極は、セラミックコンデンサ素子の両端側にそれぞれ設けられ、コイルバネは、一端が外部電極の端面側に接続されて、セラミックコンデンサ素子の端面の外側に設けられている。   As a preferred aspect of the present invention, the ceramic capacitor element has a facing surface facing the substrate, and both end faces on both sides across the facing surface, and the external electrodes are provided on both ends of the ceramic capacitor element, respectively. The coil spring has one end connected to the end face side of the external electrode and is provided outside the end face of the ceramic capacitor element.

この構成によれば、コイルバネは、その一端が、外部電極の端面側に接続されると共に、セラミックコンデンサ素子の端面の外側に設けられるため、セラミックコンデンサ素子が、その両端面を結ぶ方向に振動した場合、この振動を好適に吸収することができる。   According to this configuration, one end of the coil spring is connected to the end face side of the external electrode and is provided outside the end face of the ceramic capacitor element, so that the ceramic capacitor element vibrates in the direction connecting the both end faces. In this case, this vibration can be suitably absorbed.

本発明の好ましい態様として、コイルバネは、その材質が、ステンレス鋼またはリン青銅である。   As a preferred embodiment of the present invention, the material of the coil spring is stainless steel or phosphor bronze.

この構成によれば、コイルバネのばね性を優れたものとすることができ、セラミックコンデンサ素子の振動を好適に吸収することができる。また、コイルバネを腐食に対して強くすることができる。   According to this configuration, the spring property of the coil spring can be made excellent, and vibrations of the ceramic capacitor element can be suitably absorbed. In addition, the coil spring can be made strong against corrosion.

本発明のセラミックコンデンサによれば、基板において発生する振動音の大きさを更に低減することができる。   According to the ceramic capacitor of the present invention, it is possible to further reduce the magnitude of vibration sound generated in the substrate.

図1は、第1実施形態に係るセラミックコンデンサを模式的に表した斜視図である。FIG. 1 is a perspective view schematically showing the ceramic capacitor according to the first embodiment. 図2は、第1実施形態に係るセラミックコンデンサを幅方向に直交する面で切断した断面図である。FIG. 2 is a cross-sectional view of the ceramic capacitor according to the first embodiment cut along a plane orthogonal to the width direction. 図3は、第1実施形態に係るセラミックコンデンサを長さ方向から見た側面図である。FIG. 3 is a side view of the ceramic capacitor according to the first embodiment viewed from the length direction. 図4は、接続端子の寸法を示す説明図である。FIG. 4 is an explanatory diagram showing dimensions of the connection terminals. 図5は、第2実施形態に係るセラミックコンデンサを幅方向に直交する面で切断した断面図である。FIG. 5 is a cross-sectional view of the ceramic capacitor according to the second embodiment cut along a plane orthogonal to the width direction. 図6は、第2実施形態に係るセラミックコンデンサを長さ方向から見た側面図である。FIG. 6 is a side view of the ceramic capacitor according to the second embodiment viewed from the length direction. 図7は、第3実施形態に係るセラミックコンデンサを幅方向に直交する面で切断した断面図である。FIG. 7 is a cross-sectional view of the ceramic capacitor according to the third embodiment cut along a plane orthogonal to the width direction. 図8は、第3実施形態に係るセラミックコンデンサを長さ方向から見た側面図である。FIG. 8 is a side view of the ceramic capacitor according to the third embodiment as viewed from the length direction. 図9は、第4実施形態に係るセラミックコンデンサを幅方向に直交する面で切断した断面図である。FIG. 9 is a cross-sectional view of the ceramic capacitor according to the fourth embodiment cut along a plane orthogonal to the width direction. 図10は、従来のセラミックコンデンサを幅方向に直交する面で切断した断面図である。FIG. 10 is a cross-sectional view of a conventional ceramic capacitor cut along a plane orthogonal to the width direction. 図11は、音圧の測定を行なう際に用いた試験装置の構成を簡略に示す模式図である。FIG. 11 is a schematic diagram schematically showing the configuration of the test apparatus used when measuring the sound pressure.

以下、本発明を好適に実施するための形態(以下、実施形態という。)につき、詳細に説明する。なお、本発明は以下の実施形態及び実施例に記載した内容により限定されるものではない。また、以下に記載した実施形態及び実施例における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、以下に記載した実施形態及び実施例で開示した構成要素は適宜組み合わせても良いし、適宜選択して用いてもよい。   DESCRIPTION OF EMBODIMENTS Hereinafter, modes for suitably carrying out the present invention (hereinafter referred to as embodiments) will be described in detail. In addition, this invention is not limited by the content described in the following embodiment and an Example. In addition, constituent elements in the embodiments and examples described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments and examples described below may be appropriately combined or may be appropriately selected and used.

(第1実施形態)
図1は、第1実施形態に係るセラミックコンデンサを模式的に表した斜視図であり、図2は、第1実施形態に係るセラミックコンデンサを幅方向に直交する面で切断した断面図であり、図3は、第1実施形態に係るセラミックコンデンサを長さ方向から見た側面図である。図1から図3に示すように、セラミックコンデンサ10は、積層型のセラミックコンデンサであり、セラミックコンデンサ素子11と一対の接続端子(金属端子)12とを含む。尚、本実施形態では、セラミックコンデンサ素子11の長さ方向をX方向、幅方向をY方向、高さ方向をZ方向とする。
(First embodiment)
FIG. 1 is a perspective view schematically showing the ceramic capacitor according to the first embodiment. FIG. 2 is a cross-sectional view of the ceramic capacitor according to the first embodiment cut along a plane orthogonal to the width direction. FIG. 3 is a side view of the ceramic capacitor according to the first embodiment viewed from the length direction. As shown in FIGS. 1 to 3, the ceramic capacitor 10 is a multilayer ceramic capacitor, and includes a ceramic capacitor element 11 and a pair of connection terminals (metal terminals) 12. In the present embodiment, the length direction of the ceramic capacitor element 11 is the X direction, the width direction is the Y direction, and the height direction is the Z direction.

セラミックコンデンサ10は、回路基板13上に搭載されている。セラミックコンデンサ10は、1つのセラミックコンデンサ素子11により構成されているが、本実施形態はこれに限定されるものではなく、セラミックコンデンサ10は、セラミックコンデンサ素子11を複数組み合わせてもよい。回路基板13は、例えば、ノート型パーソナルコンピュータ、PDAや携帯電話等の小型の処理装置に用いられる。セラミックコンデンサ10が実装される回路基板13の表面には、一対の基板電極14が設けられており、一対の基板電極14からは、一対の配線15がそれぞれ延びている。一対の接続端子12は、はんだ16によって一対の基板電極14に各々はんだ付けされる。   The ceramic capacitor 10 is mounted on the circuit board 13. Although the ceramic capacitor 10 is configured by one ceramic capacitor element 11, the present embodiment is not limited to this, and the ceramic capacitor 10 may combine a plurality of ceramic capacitor elements 11. The circuit board 13 is used in a small processing device such as a notebook personal computer, a PDA, or a mobile phone. A pair of substrate electrodes 14 is provided on the surface of the circuit board 13 on which the ceramic capacitor 10 is mounted, and a pair of wirings 15 extend from the pair of substrate electrodes 14. The pair of connection terminals 12 are soldered to the pair of substrate electrodes 14 by solder 16.

セラミックコンデンサ素子11は、略直方体形状に形成され、例えば、幅Wが2.5mm、高さHが2.5mm、長さLが3.2mmに形成される。セラミックコンデンサ素子11は、その下面(高さ方向における一方の面)が、回路基板13と対向する対向面となるように配置されている。セラミックコンデンサ素子11は、誘電体素体21と、一対の外部電極(端子電極)22とを有する。一対の外部電極22は、誘電体素体21の長さ方向における両端面と、誘電体素体21の両端面の縁部から所定の長さ分だけ内側に向かって延びるように誘電体素体21の周囲を囲む部位とに設けられている。   The ceramic capacitor element 11 is formed in a substantially rectangular parallelepiped shape, for example, having a width W of 2.5 mm, a height H of 2.5 mm, and a length L of 3.2 mm. The ceramic capacitor element 11 is arranged such that its lower surface (one surface in the height direction) is a facing surface facing the circuit board 13. The ceramic capacitor element 11 includes a dielectric element body 21 and a pair of external electrodes (terminal electrodes) 22. The pair of external electrodes 22 extend from the both end faces in the length direction of the dielectric element body 21 and the edges of the both end faces of the dielectric element body 21 toward the inside by a predetermined length. 21 around the periphery of 21.

誘電体素体21は、上面、下面および四方側面を有する直方体形状に形成されており、複数の誘電体23と、複数(例えば100層程度)の内部電極24とを有している。誘電体素体21は、複数の誘電体23と複数の内部電極24とを交互に積層して形成されている。誘電体素体21は、セラミックグリーンシート(未焼成セラミックシート)を複数枚積層した積層体を加熱圧着して一体化して、切断し、脱脂し、焼成することにより得られた直方体状の焼結体である。誘電体23と内部電極24との積層方向は、セラミックコンデンサ素子11の高さ方向である。   The dielectric body 21 is formed in a rectangular parallelepiped shape having an upper surface, a lower surface, and four side surfaces, and includes a plurality of dielectrics 23 and a plurality (for example, about 100 layers) of internal electrodes 24. The dielectric body 21 is formed by alternately laminating a plurality of dielectrics 23 and a plurality of internal electrodes 24. The dielectric element body 21 is a rectangular parallelepiped sintered body obtained by thermocompression bonding and laminating a laminate in which a plurality of ceramic green sheets (unfired ceramic sheets) are laminated, cutting, degreasing, and firing. Is the body. The stacking direction of the dielectric 23 and the internal electrode 24 is the height direction of the ceramic capacitor element 11.

誘電体23は、例えば、誘電率の高い強誘電体材料としてチタン酸バリウム(BaTiO3)系セラミックス材料で構成され、層状に形成されている。誘電体23としてチタン酸バリウムを主成分として用いて構成された誘電体素体21は、誘電体23としての機能を有し、電圧が加えられると歪みが生じる。このため、セラミックコンデンサ素子11は、交流電圧が印加されると、交流電圧の大きさに応じた機械的歪みを生じ、この機械的歪みが振動となって回路基板13に伝播することで、回路基板13が振動し、可聴周波数帯域である場合、回路基板13の振動が、振動音として現れることになる。 The dielectric 23 is made of, for example, a barium titanate (BaTiO 3 ) ceramic material as a ferroelectric material having a high dielectric constant, and is formed in layers. The dielectric element body 21 constituted by using barium titanate as a main component as the dielectric substance 23 has a function as the dielectric substance 23 and is distorted when a voltage is applied. For this reason, when an AC voltage is applied to the ceramic capacitor element 11, a mechanical distortion corresponding to the magnitude of the AC voltage is generated, and this mechanical distortion becomes a vibration and propagates to the circuit board 13. When the board 13 vibrates and is in an audible frequency band, the vibration of the circuit board 13 appears as a vibration sound.

複数の内部電極24は、正極側の内部電極24と負極側の内部電極24とを有している。正極側の内部電極24は、その一端が一方(正極側)の外部電極22に接続され、その他端が開放端となっている。負極側の内部電極24は、その一端が他方(負極側)の外部電極22に接続され、その他端が開放端となっている。正極側の内部電極24と負極側の内部電極24とは、誘電体23を介して交互に対向し、所定間隔を持って複数積層されている。内部電極24を構成する材料としては、積層型の電気素子の内部電極として通常用いられる導電性材料であれば用いることができ、例えば、卑金属であるNiを主成分とする導電性材料として含んだものが用いられる。   The plurality of internal electrodes 24 include a positive-side internal electrode 24 and a negative-side internal electrode 24. One end of the positive electrode side internal electrode 24 is connected to one (positive electrode side) external electrode 22, and the other end is an open end. One end of the negative electrode side internal electrode 24 is connected to the other (negative electrode side) external electrode 22, and the other end is an open end. The internal electrode 24 on the positive electrode side and the internal electrode 24 on the negative electrode side alternately face each other with the dielectric 23 interposed therebetween, and a plurality of layers are laminated with a predetermined interval. As a material constituting the internal electrode 24, any conductive material that is usually used as an internal electrode of a multilayer electric element can be used. For example, the material includes Ni as a base metal as a conductive material. Things are used.

一対の外部電極22は、誘電体素体21の両端部にそれぞれ設けられ、内部電極24と接続している。外部電極22は、卑金属であるCuを主成分として含有するものが用いられ、Cu粉末を含有する導電性ペーストを誘電体素体21の外表面に塗布して焼き付けることによって形成されている。外部電極22は、複数の金属電極層で構成されていてもよく、例えば、外部電極22は、Cuを主成分とした下地電極に、Niめっき層、Snめっき層を形成するようにしてもよい。このように構成されたセラミックコンデンサ素子11の一対の外部電極22に電圧を印加すると、誘電体素体21には、電荷が蓄えられる。   The pair of external electrodes 22 are provided at both ends of the dielectric body 21 and are connected to the internal electrodes 24. The external electrode 22 includes a base metal containing Cu as a main component, and is formed by applying and baking a conductive paste containing Cu powder on the outer surface of the dielectric element body 21. The external electrode 22 may be composed of a plurality of metal electrode layers. For example, the external electrode 22 may be formed by forming a Ni plating layer and a Sn plating layer on a base electrode mainly composed of Cu. . When a voltage is applied to the pair of external electrodes 22 of the ceramic capacitor element 11 configured in this way, charges are stored in the dielectric element body 21.

図4は、接続端子の寸法を示す説明図である。図4に示す接続端子27は、一般的に用いられる従来のものである。接続端子27は、その厚さをtとし、その幅をbとし、回路基板13の基板面13aから接続部27Aとセラミックコンデンサ素子11の外部電極22とを接続するはんだ28の基板面13a側までの距離(接続端子取付長さ)をLとする。このとき、接続端子27のばね定数Kは、下記式(1)で表すことができる。下記式(1)中のEは、接続端子27のヤング率である。   FIG. 4 is an explanatory diagram showing dimensions of the connection terminals. The connection terminal 27 shown in FIG. 4 is a conventional one that is generally used. The connection terminal 27 has a thickness t, a width b, and the board surface 13a of the circuit board 13 to the board surface 13a side of the solder 28 that connects the connection portion 27A and the external electrode 22 of the ceramic capacitor element 11. The distance (connection terminal mounting length) is L. At this time, the spring constant K of the connection terminal 27 can be expressed by the following formula (1). E in the following formula (1) is the Young's modulus of the connection terminal 27.

Figure 2012033652
Figure 2012033652

接続端子27のばね定数Kが小さい程、セラミックコンデンサ素子11の電歪に起因する振動音を抑制する効果を高くすることができる。接続端子27は、セラミックコンデンサ素子11の外部電極22と回路基板13のランド(基板電極14)とを電気的に接続するものであるため、導電性が必要である。導電性を有する材料としては金属材料があるが、金属材料は一般にヤング率が高い。このため、平板の金属材料を用いて接続端子27を製造すると、接続端子27のばね定数Kを小さくすることには限界がある。そこで、本実施形態では、接続端子12として複数のコイルバネ25を含むものが用いられる。   The smaller the spring constant K of the connection terminal 27, the higher the effect of suppressing vibration noise caused by electrostriction of the ceramic capacitor element 11. Since the connection terminal 27 is for electrically connecting the external electrode 22 of the ceramic capacitor element 11 and the land (substrate electrode 14) of the circuit board 13, it needs to be conductive. Although there is a metal material as a material having conductivity, the metal material generally has a high Young's modulus. For this reason, when the connection terminal 27 is manufactured using a flat metal material, there is a limit in reducing the spring constant K of the connection terminal 27. Therefore, in the present embodiment, the connection terminal 12 including a plurality of coil springs 25 is used.

接続端子12は、一対の基板電極14と一対の外部電極22とをそれぞれ接続するように一対設けられている。各接続端子12は、各外部電極22に接続された複数のコイルバネ25と、複数のコイルバネ25に接続された電極板26とを有している。   A pair of connection terminals 12 are provided so as to connect the pair of substrate electrodes 14 and the pair of external electrodes 22, respectively. Each connection terminal 12 has a plurality of coil springs 25 connected to each external electrode 22 and an electrode plate 26 connected to the plurality of coil springs 25.

複数のコイルバネ25は、各外部電極22に対し3つ設けられており、その材質がステンレス鋼またはリン青銅で構成され、ニッケル(Ni)またはスズ(Sn)でめっき処理されている。また、各コイルバネ25は、コイルバネ25を構成するワイヤの直径が0.05mmから0.07mm程度であり、コイルバネ25の外径が0.5mmから0.6mmであり、その巻数が3巻から7巻程度となっており、その軸方向の長さ(高さ)が0.5mmから0.6mm程度となっている。このため、コイルバネ25は、そのワイヤの直径が、上記した接続端子27における厚さtおよび幅bに対応し、そのワイヤの長さが、接続端子取付長さLに対応していることから、ばね定数Kをより小さくできる。   The plurality of coil springs 25 are provided for each external electrode 22, and the material thereof is made of stainless steel or phosphor bronze and is plated with nickel (Ni) or tin (Sn). Each coil spring 25 has a diameter of a wire constituting the coil spring 25 of about 0.05 mm to 0.07 mm, an outer diameter of the coil spring 25 is 0.5 mm to 0.6 mm, and the number of turns is 3 to 7 The length is about winding, and the axial length (height) is about 0.5 mm to 0.6 mm. For this reason, the coil spring 25 has a wire diameter corresponding to the thickness t and width b of the connection terminal 27 described above, and a wire length corresponding to the connection terminal mounting length L. The spring constant K can be made smaller.

3つのコイルバネ25は、セラミックコンデンサ素子11の幅方向に並べて設けられており、セラミックコンデンサ素子11と回路基板13との間隙部分Dに設けられている。各コイルバネ25は、その一端が、はんだ16を介して、各外部電極22の下面側、すなわち外部電極22と回路基板13とが対向する対向面側に接合される。また、各コイルバネ25は、その他端が、電極板26の図示上面に接合される。   The three coil springs 25 are provided side by side in the width direction of the ceramic capacitor element 11, and are provided in the gap portion D between the ceramic capacitor element 11 and the circuit board 13. One end of each coil spring 25 is joined via the solder 16 to the lower surface side of each external electrode 22, that is, the opposite surface side where the external electrode 22 and the circuit board 13 face each other. The other ends of the coil springs 25 are joined to the upper surface of the electrode plate 26 in the drawing.

電極板26は、金属平板を方形状に形成しており、その材質がステンレス鋼またはリン青銅で構成され、ニッケル(Ni)またはスズ(Sn)でめっき処理されている。電極板26は、その長手方向がセラミックコンデンサ素子11の幅方向となっている。電極板26は、その下面が、はんだ16を介して、回路基板13の基板電極14に面接触させて接合される。   The electrode plate 26 is formed of a metal flat plate in a square shape, and the material thereof is made of stainless steel or phosphor bronze and is plated with nickel (Ni) or tin (Sn). The longitudinal direction of the electrode plate 26 is the width direction of the ceramic capacitor element 11. The lower surface of the electrode plate 26 is bonded to the substrate electrode 14 of the circuit board 13 through the solder 16 in surface contact.

よって、接続端子12が、コイルバネ25を有することにより、ばね定数Kを従来に比して小さくすることができる。このため、コイルバネ25は、セラミックコンデンサ素子11の振動を吸収することができ、セラミックコンデンサ素子11から回路基板13へ向けて伝播される振動を抑制できるため、回路基板13において発生する振動音の大きさを好適に低減することができる。なお、振動音の大きさは、後述する集音マイク52により音圧として測定される。   Therefore, since the connection terminal 12 includes the coil spring 25, the spring constant K can be reduced as compared with the related art. For this reason, the coil spring 25 can absorb the vibration of the ceramic capacitor element 11 and suppress the vibration propagated from the ceramic capacitor element 11 toward the circuit board 13, so that the vibration sound generated in the circuit board 13 is large. The thickness can be suitably reduced. The magnitude of the vibration sound is measured as a sound pressure by a sound collecting microphone 52 described later.

また、コイルバネ25の他端と回路基板13との間に電極板26を設けることで、電極板26と回路基板13との間を、はんだ16を介して面接触させることができるため、電極板26と回路基板13との接合を強固なものとすることができる。   In addition, since the electrode plate 26 is provided between the other end of the coil spring 25 and the circuit board 13, the electrode plate 26 and the circuit board 13 can be brought into surface contact via the solder 16. 26 and the circuit board 13 can be firmly joined.

また、コイルバネ25の一端を、外部電極22の下面に接合すると共に、コイルバネ25をセラミックコンデンサ素子11と回路基板13との間隙部分Dに設けることで、コイルバネ25は、高さ方向に伸縮可能に配設される。このため、セラミックコンデンサ素子11が高さ方向(セラミックコンデンサ素子11と回路基板13とが対向する方向)に振動した場合、コイルバネ25は、セラミックコンデンサ素子11の振動を好適に吸収することができる。   In addition, one end of the coil spring 25 is joined to the lower surface of the external electrode 22 and the coil spring 25 is provided in the gap portion D between the ceramic capacitor element 11 and the circuit board 13 so that the coil spring 25 can be expanded and contracted in the height direction. Arranged. For this reason, when the ceramic capacitor element 11 vibrates in the height direction (direction in which the ceramic capacitor element 11 and the circuit board 13 face each other), the coil spring 25 can suitably absorb the vibration of the ceramic capacitor element 11.

また、コイルバネ25の材質をステンレス鋼またはリン青銅とすることで、腐食に対して強くすることができ、また、ばね性の優れたものとすることができる。なお、コイルバネ25の材質は、ステンレス鋼に比してヤング率Eの低いリン青銅が好ましい。   Further, when the material of the coil spring 25 is stainless steel or phosphor bronze, it can be made strong against corrosion and can have excellent spring properties. The material of the coil spring 25 is preferably phosphor bronze having a Young's modulus E lower than that of stainless steel.

なお、第1実施形態のセラミックコンデンサ10では、各外部電極22に設けられるコイルバネ25の個数を3つとしたが、これに限らず、2つあるいは4つ等の任意の個数としてもよい。また、コイルバネ25の形状も、上記の構成に限定せず、任意の形状としてもよい。また、後述では、第1実施形態のセラミックコンデンサ10において、コイルバネ25の材質および形状を変化させた場合の振動音の大きさの変化を測定し、測定結果を比較している。   In the ceramic capacitor 10 of the first embodiment, the number of the coil springs 25 provided on each external electrode 22 is three. However, the number is not limited to this and may be any number such as two or four. Further, the shape of the coil spring 25 is not limited to the above configuration, and may be an arbitrary shape. Further, in the following description, in the ceramic capacitor 10 of the first embodiment, the change in the magnitude of vibration sound when the material and shape of the coil spring 25 are changed is measured, and the measurement results are compared.

(第2実施形態)
図5および図6を参照して、第2実施形態に係るセラミックコンデンサ31について説明する。図5は、第2実施形態に係るセラミックコンデンサを幅方向に直交する面で切断した断面図であり、図6は、第2実施形態に係るセラミックコンデンサを長さ方向から見た側面図である。なお、第2実施形態のセラミックコンデンサ31の説明では、第1実施形態のセラミックコンデンサ10と重複した記載を避けるべく、異なる部分についてのみ記載する。第2実施形態に係るセラミックコンデンサ31は、その接続端子32が、第1実施形態の接続端子12と異なっている。以下、第2実施形態のセラミックコンデンサ31に適用された接続端子32について説明する。
(Second Embodiment)
The ceramic capacitor 31 according to the second embodiment will be described with reference to FIGS. 5 and 6. FIG. 5 is a cross-sectional view of the ceramic capacitor according to the second embodiment cut along a plane orthogonal to the width direction, and FIG. 6 is a side view of the ceramic capacitor according to the second embodiment viewed from the length direction. . In the description of the ceramic capacitor 31 of the second embodiment, only different parts will be described in order to avoid overlapping with the ceramic capacitor 10 of the first embodiment. The connection terminal 32 of the ceramic capacitor 31 according to the second embodiment is different from the connection terminal 12 of the first embodiment. Hereinafter, the connection terminal 32 applied to the ceramic capacitor 31 of the second embodiment will be described.

接続端子32は、一対の基板電極14と一対の外部電極22とをそれぞれ接続するように一対設けられている。各接続端子32は、セラミックコンデンサ素子11に接続された上側電極板33と、回路基板13に接続された下側電極板34と、上側電極板33と下側電極板34との間に設けられた複数のコイルバネ35とを有している。   A pair of connection terminals 32 are provided so as to connect the pair of substrate electrodes 14 and the pair of external electrodes 22, respectively. Each connection terminal 32 is provided between the upper electrode plate 33 connected to the ceramic capacitor element 11, the lower electrode plate 34 connected to the circuit board 13, and the upper electrode plate 33 and the lower electrode plate 34. And a plurality of coil springs 35.

第2実施形態において、複数のコイルバネ35は、各外部電極22に対し3つ設けられている。3つのコイルバネ35は、セラミックコンデンサ素子11の幅方向に並べて設けられており、セラミックコンデンサ素子11と回路基板13との間隙部分Dに設けられている。なお、コイルバネ35の材質および形状は、第1実施形態のコイルバネ25と同様であるため説明を省略する。   In the second embodiment, three coil springs 35 are provided for each external electrode 22. The three coil springs 35 are provided side by side in the width direction of the ceramic capacitor element 11, and are provided in a gap portion D between the ceramic capacitor element 11 and the circuit board 13. Note that the material and shape of the coil spring 35 are the same as those of the coil spring 25 of the first embodiment, and a description thereof will be omitted.

上側電極板33および下側電極板34は、金属平板を方形状に形成したものである。なお、各電極板33,34の材質も、第1実施形態の電極板26と同様であるため説明を省略する。上側電極板33および下側電極板34は、その長手方向がセラミックコンデンサ素子11の幅方向となっており、上側電極板33の下面に3つのコイルバネ35の一端が接続され、下側電極板34の上面に3つのコイルバネ35の他端が接続される。   The upper electrode plate 33 and the lower electrode plate 34 are metal flat plates formed in a square shape. In addition, since the material of each electrode plate 33 and 34 is the same as that of the electrode plate 26 of 1st Embodiment, description is abbreviate | omitted. The upper electrode plate 33 and the lower electrode plate 34 have longitudinal directions in the width direction of the ceramic capacitor element 11, one end of three coil springs 35 is connected to the lower surface of the upper electrode plate 33, and the lower electrode plate 34. The other ends of the three coil springs 35 are connected to the upper surface of the.

上側電極板33は、その上面が、はんだ16を介して、各外部電極22の下面側、すなわち外部電極22と回路基板13とが対向する対向面側に面接触させて接合される。また、下側電極板34は、その下面が、はんだ16を介して、基板電極14に面接触させて接合される。   The upper electrode plate 33 is bonded to the upper surface of the upper electrode plate 33 through the solder 16 in surface contact with the lower surface side of each external electrode 22, that is, the opposite surface side where the external electrode 22 and the circuit board 13 face each other. Further, the lower electrode plate 34 is joined with the lower surface thereof in surface contact with the substrate electrode 14 via the solder 16.

以上の構成においても、接続端子32が、コイルバネ35を有することにより、ばね定数Kを従来に比して小さくすることができる。このため、コイルバネ35は、セラミックコンデンサ素子11の振動を吸収することができ、セラミックコンデンサ素子11から回路基板13へ向けて伝播される振動を抑制できるため、回路基板13において発生する振動音の大きさを好適に低減することができる。   Also in the above configuration, since the connection terminal 32 includes the coil spring 35, the spring constant K can be reduced as compared with the conventional case. For this reason, the coil spring 35 can absorb the vibration of the ceramic capacitor element 11 and can suppress the vibration propagated from the ceramic capacitor element 11 toward the circuit board 13, so that the vibration sound generated in the circuit board 13 is large. The thickness can be suitably reduced.

また、コイルバネ35の一端とセラミックコンデンサ素子11の外部電極22との間に上側電極板33を設け、コイルバネ35の他端と回路基板13の基板電極14との間に下側電極板34を設けることで、上側電極板33とセラミックコンデンサ素子11との間、および下側電極板34と回路基板13との間を、はんだ16を介して面接触させることができる。このため、セラミックコンデンサ素子11と接続端子32との接合、および回路基板13と接続端子32との接合を強固なものとすることができる。   An upper electrode plate 33 is provided between one end of the coil spring 35 and the external electrode 22 of the ceramic capacitor element 11, and a lower electrode plate 34 is provided between the other end of the coil spring 35 and the substrate electrode 14 of the circuit board 13. Thus, the upper electrode plate 33 and the ceramic capacitor element 11 and the lower electrode plate 34 and the circuit board 13 can be brought into surface contact via the solder 16. For this reason, the junction between the ceramic capacitor element 11 and the connection terminal 32 and the junction between the circuit board 13 and the connection terminal 32 can be strengthened.

なお、第2実施形態のセラミックコンデンサ31でも、コイルバネ35の個数を3つとしたが、これに限らず、2つあるいは4つ等の任意の個数としてもよい。また、コイルバネ35の形状も、上記の構成に限定せず、任意の形状としてもよい。後述では、第2実施形態のセラミックコンデンサ31において、コイルバネ35の材質および形状を変化させた場合の振動音の大きさの変化を測定し、測定結果を比較している。   In the ceramic capacitor 31 of the second embodiment, the number of the coil springs 35 is three. However, the number is not limited to this, and may be an arbitrary number such as two or four. Further, the shape of the coil spring 35 is not limited to the above configuration, and may be an arbitrary shape. In the following description, in the ceramic capacitor 31 of the second embodiment, the change in the magnitude of vibration sound when the material and shape of the coil spring 35 is changed is measured, and the measurement results are compared.

また、第1および第2実施形態のセラミックコンデンサ10,31では、電極板26,33,34を設けたが、これを排した構成であってもよい。   Moreover, in the ceramic capacitors 10 and 31 of the first and second embodiments, the electrode plates 26, 33, and 34 are provided, but a configuration in which these are omitted may be employed.

(第3実施形態)
図7および図8を参照して、第3実施形態に係るセラミックコンデンサ37について説明する。図7は、第3実施形態に係るセラミックコンデンサを幅方向に直交する面で切断した断面図であり、図8は、第3実施形態に係るセラミックコンデンサを長さ方向から見た側面図である。なお、第3実施形態のセラミックコンデンサ37の説明でも、第1実施形態のセラミックコンデンサ10と重複した記載を避けるべく、異なる部分についてのみ記載する。第3実施形態に係るセラミックコンデンサ37は、その接続端子38が、第1実施形態の接続端子12と異なっている。以下、第3実施形態のセラミックコンデンサ37に適用された接続端子38について説明する。
(Third embodiment)
A ceramic capacitor 37 according to the third embodiment will be described with reference to FIGS. FIG. 7 is a cross-sectional view of the ceramic capacitor according to the third embodiment cut along a plane orthogonal to the width direction, and FIG. 8 is a side view of the ceramic capacitor according to the third embodiment viewed from the length direction. . In the description of the ceramic capacitor 37 according to the third embodiment, only different parts are described in order to avoid overlapping with the ceramic capacitor 10 according to the first embodiment. The connection terminal 38 of the ceramic capacitor 37 according to the third embodiment is different from the connection terminal 12 of the first embodiment. Hereinafter, the connection terminal 38 applied to the ceramic capacitor 37 of the third embodiment will be described.

接続端子38は、一対の基板電極14と一対の外部電極22とをそれぞれ接続するように一対設けられている。各接続端子38は、回路基板13に接続された基板側電極板39と、セラミックコンデンサ素子11と基板側電極板39との間に設けられた複数のコイルバネ40とを有している。   A pair of connection terminals 38 are provided so as to connect the pair of substrate electrodes 14 and the pair of external electrodes 22, respectively. Each connection terminal 38 includes a substrate-side electrode plate 39 connected to the circuit board 13 and a plurality of coil springs 40 provided between the ceramic capacitor element 11 and the substrate-side electrode plate 39.

基板側電極板39は、帯状の金属平板をL字状に折り曲げて形成されている。なお、基板側電極板39の材質も、第1実施形態の電極板26と同様であるため説明を省略する。具体的に説明すると、基板側電極板39は、基板電極14に接続される短辺部41と、コイルバネ40を介して外部電極22に接続される長辺部42とを有している。短辺部41は、はんだ16を介して、基板電極14に面接触させて接合される。長辺部42は、その上部が外部電極22の端面と対向するように配設される。   The substrate side electrode plate 39 is formed by bending a belt-shaped metal flat plate into an L shape. In addition, since the material of the board | substrate side electrode plate 39 is the same as that of the electrode plate 26 of 1st Embodiment, description is abbreviate | omitted. More specifically, the substrate side electrode plate 39 has a short side portion 41 connected to the substrate electrode 14 and a long side portion 42 connected to the external electrode 22 via the coil spring 40. The short side portion 41 is bonded to the substrate electrode 14 through the solder 16 in surface contact. The long side portion 42 is disposed so that the upper portion thereof faces the end surface of the external electrode 22.

第3実施形態において、複数のコイルバネ40は、各外部電極22に対し4つ設けられている。4つのコイルバネ40は、基板側電極板39の長辺部42の上部と外部電極22の端面との間に設けられ、外部電極22の端面の外側に位置している。4つのコイルバネ40は、方形状の外部電極22の端面において、その上部および下部に2つずつ配置され、幅方向および高さ方向に揃えて四方に配置されている。各コイルバネ40は、その一端が、はんだ16を介して各外部電極22の端面に接合され、その他端が、基板側電極板39の長辺部42に接合される。   In the third embodiment, four coil springs 40 are provided for each external electrode 22. The four coil springs 40 are provided between the upper part of the long side portion 42 of the substrate-side electrode plate 39 and the end face of the external electrode 22, and are located outside the end face of the external electrode 22. The four coil springs 40 are arranged two at the upper and lower portions of the end face of the rectangular external electrode 22 and are arranged in four directions aligned in the width direction and the height direction. One end of each coil spring 40 is joined to the end face of each external electrode 22 via the solder 16, and the other end is joined to the long side portion 42 of the substrate-side electrode plate 39.

以上の構成においても、接続端子38が、コイルバネ40を有することにより、ばね定数Kを従来に比して小さくすることができる。このため、コイルバネ40は、セラミックコンデンサ素子11の振動を吸収することができ、セラミックコンデンサ素子11から回路基板13へ向けて伝播される振動を抑制できるため、回路基板13において発生する振動音の大きさを好適に低減することができる。   Also in the above configuration, since the connection terminal 38 includes the coil spring 40, the spring constant K can be reduced as compared with the related art. For this reason, the coil spring 40 can absorb the vibration of the ceramic capacitor element 11 and can suppress the vibration propagated from the ceramic capacitor element 11 to the circuit board 13. Therefore, the vibration sound generated in the circuit board 13 is large. The thickness can be suitably reduced.

また、コイルバネ40の一端を、外部電極22の端面に接続すると共に、コイルバネ40をセラミックコンデンサ素子11の外部電極22の端面の外側に設けることで、コイルバネ40は、長さ方向に伸縮可能に配設される。このため、セラミックコンデンサ素子11が長さ方向(セラミックコンデンサ素子11の両端部を結ぶ方向)に振動した場合、コイルバネ40は、セラミックコンデンサ素子11の振動を好適に吸収することができる。   In addition, one end of the coil spring 40 is connected to the end face of the external electrode 22, and the coil spring 40 is provided outside the end face of the external electrode 22 of the ceramic capacitor element 11, so that the coil spring 40 can be extended and contracted in the length direction. Established. For this reason, when the ceramic capacitor element 11 vibrates in the length direction (direction in which both ends of the ceramic capacitor element 11 are connected), the coil spring 40 can suitably absorb the vibration of the ceramic capacitor element 11.

また、コイルバネ40の他端と回路基板13の基板電極14との間に基板側電極板39を設けることで、基板側電極板39の短辺部41と回路基板13との間を、はんだ16を介して面接触させることができる。このため、回路基板13と接続端子38との接合を強固なものとすることができる。   Further, by providing the substrate side electrode plate 39 between the other end of the coil spring 40 and the substrate electrode 14 of the circuit board 13, the solder 16 is provided between the short side portion 41 of the substrate side electrode plate 39 and the circuit board 13. Can be brought into surface contact. For this reason, the junction between the circuit board 13 and the connection terminal 38 can be strengthened.

なお、第3実施形態のセラミックコンデンサ37では、コイルバネ40の個数を4つとしたが、これに限らず、3つあるいは5つ等の任意の個数としてもよい。また、コイルバネ40の形状も、上記の構成に限定せず、任意の形状としてもよい。後述では、第3実施形態のセラミックコンデンサ37において、コイルバネ40の材質および形状を変化させた場合の振動音の大きさの変化を測定し、測定結果を比較している。   In the ceramic capacitor 37 according to the third embodiment, the number of the coil springs 40 is four. However, the number is not limited to this, and may be an arbitrary number such as three or five. Further, the shape of the coil spring 40 is not limited to the above configuration, and may be an arbitrary shape. In the following description, in the ceramic capacitor 37 of the third embodiment, the change in the magnitude of vibration sound when the material and shape of the coil spring 40 are changed is measured, and the measurement results are compared.

(第4実施形態)
図9を参照して、第4実施形態に係るセラミックコンデンサ43について説明する。図9は、第4実施形態に係るセラミックコンデンサを幅方向に直交する面で切断した断面図である。なお、第4実施形態のセラミックコンデンサ43の説明でも、第1実施形態のセラミックコンデンサ10と重複した記載を避けるべく、異なる部分についてのみ記載する。第4実施形態に係るセラミックコンデンサ43は、その接続端子44が、第1実施形態の接続端子12と異なっている。以下、第4実施形態のセラミックコンデンサ43に適用された接続端子44について説明する。
(Fourth embodiment)
With reference to FIG. 9, a ceramic capacitor 43 according to a fourth embodiment will be described. FIG. 9 is a cross-sectional view of the ceramic capacitor according to the fourth embodiment cut along a plane orthogonal to the width direction. In the description of the ceramic capacitor 43 according to the fourth embodiment, only different parts are described in order to avoid overlapping with the ceramic capacitor 10 according to the first embodiment. The connection terminal 44 of the ceramic capacitor 43 according to the fourth embodiment is different from the connection terminal 12 of the first embodiment. Hereinafter, the connection terminal 44 applied to the ceramic capacitor 43 of the fourth embodiment will be described.

接続端子44は、一対の基板電極14と一対の外部電極22とをそれぞれ接続するように一対設けられている。各接続端子44は、セラミックコンデンサ素子11に接続された素子側電極板45と、回路基板13に接続された基板側電極板46と、素子側電極板45と基板側電極板46との間に設けられた複数のコイルバネ47とを有している。   A pair of connection terminals 44 are provided so as to connect the pair of substrate electrodes 14 and the pair of external electrodes 22, respectively. Each connection terminal 44 includes an element side electrode plate 45 connected to the ceramic capacitor element 11, a substrate side electrode plate 46 connected to the circuit board 13, and between the element side electrode plate 45 and the substrate side electrode plate 46. And a plurality of coil springs 47 provided.

素子側電極板45は、金属平板を方形状に形成している。素子側電極板45は、はんだ16を介して、セラミックコンデンサ素子11の外部電極22の端面に接合される。基板側電極板46は、第3実施形態の基板側電極板39と同様に構成されているため説明を省略するが、帯状の金属平板をL字状に折り曲げて形成されて、短辺部48と長辺部49とを有している。なお、各電極板45,46の材質も、第1実施形態の電極板26と同様であるため説明を省略する。   The element side electrode plate 45 is a metal flat plate formed in a square shape. The element side electrode plate 45 is joined to the end face of the external electrode 22 of the ceramic capacitor element 11 via the solder 16. Since the substrate side electrode plate 46 is configured in the same manner as the substrate side electrode plate 39 of the third embodiment, the description thereof is omitted. However, the substrate side electrode plate 46 is formed by bending a band-shaped metal flat plate into an L shape, and a short side portion 48. And a long side portion 49. In addition, since the material of each electrode plate 45 and 46 is the same as that of the electrode plate 26 of 1st Embodiment, description is abbreviate | omitted.

第4実施形態において、複数のコイルバネ47は、各外部電極22に対し4つ設けられている。4つのコイルバネ47は、素子側電極板45と基板側電極板46の長辺部49の上部との間に設けられ、外部電極22の端面の外側に位置している。4つのコイルバネ47は、第3実施形態と同様に配設されているため図示を省略するが、方形状の外部電極22の端面において、その上部および下部に2つずつ配置され、幅方向および高さ方向に揃えて四方に配置されている。各コイルバネ47は、その一端が素子側電極板45に接続され、その他端が基板側電極板46の長辺部に接続される。   In the fourth embodiment, four coil springs 47 are provided for each external electrode 22. The four coil springs 47 are provided between the element side electrode plate 45 and the upper part of the long side portion 49 of the substrate side electrode plate 46, and are located outside the end face of the external electrode 22. Since the four coil springs 47 are disposed in the same manner as in the third embodiment, the illustration is omitted, but two end portions of the rectangular external electrode 22 are disposed at the upper and lower portions, and the width direction and the height It is arranged in all directions along the vertical direction. Each coil spring 47 has one end connected to the element side electrode plate 45 and the other end connected to the long side portion of the substrate side electrode plate 46.

以上の構成においても、接続端子44が、コイルバネ47を有することにより、コイルバネ47は、セラミックコンデンサ素子11の振動を吸収することができ、セラミックコンデンサ素子11から回路基板13へ向けて伝播される振動を抑制できるため、回路基板13において発生する振動音の大きさを好適に低減することができる。   Also in the above configuration, since the connection terminal 44 includes the coil spring 47, the coil spring 47 can absorb the vibration of the ceramic capacitor element 11, and the vibration propagated from the ceramic capacitor element 11 toward the circuit board 13. Therefore, the magnitude of vibration sound generated in the circuit board 13 can be suitably reduced.

また、コイルバネ47の一端を、素子側電極板45に接合すると共に、コイルバネ47をセラミックコンデンサ素子11の外部電極22の端面の外側に設けることで、コイルバネ47は、長さ方向に伸縮可能に配設される。このため、セラミックコンデンサ素子11が長さ方向に振動した場合、コイルバネ47は、セラミックコンデンサ素子11の振動を好適に吸収することができる。   In addition, one end of the coil spring 47 is joined to the element side electrode plate 45, and the coil spring 47 is provided outside the end face of the external electrode 22 of the ceramic capacitor element 11, so that the coil spring 47 can be extended and contracted in the length direction. Established. For this reason, when the ceramic capacitor element 11 vibrates in the length direction, the coil spring 47 can suitably absorb the vibration of the ceramic capacitor element 11.

また、コイルバネ47の一端とセラミックコンデンサ素子11の外部電極22との間に素子側電極板45を設け、コイルバネ47の他端と回路基板13の基板電極14との間に基板側電極板46を設けることで、素子側電極板45とセラミックコンデンサ素子11との間、および基板側電極板46の短辺部48と回路基板13との間を、はんだ16を介して面接触させることができる。このため、セラミックコンデンサ素子11と接続端子44との接合、および回路基板13と接続端子44との接合を強固なものとすることができる。   An element side electrode plate 45 is provided between one end of the coil spring 47 and the external electrode 22 of the ceramic capacitor element 11, and a substrate side electrode plate 46 is provided between the other end of the coil spring 47 and the substrate electrode 14 of the circuit board 13. By providing, it is possible to make surface contact between the element side electrode plate 45 and the ceramic capacitor element 11 and between the short side portion 48 of the substrate side electrode plate 46 and the circuit board 13 via the solder 16. Therefore, the bonding between the ceramic capacitor element 11 and the connection terminal 44 and the bonding between the circuit board 13 and the connection terminal 44 can be strengthened.

下記の表1から表3を参照して、第1実施形態のセラミックコンデンサ10における実施例の振動音の音圧と、第2実施形態のセラミックコンデンサ31における実施例の振動音の音圧と、第3実施形態のセラミックコンデンサ37における実施例の振動音の音圧と、第4実施形態のセラミックコンデンサ43における実施例の振動音の音圧とを比較する。なお、本発明のセラミックコンデンサ10,31,37,43は、以下の実施例に限定されるものではない。また、測定対象となるセラミックコンデンサ素子11は、幅Wが2.5mm、高さHが2.5mm、長さLが3.2mmに形成される。   With reference to Tables 1 to 3 below, the sound pressure of the vibration sound of the example in the ceramic capacitor 10 of the first embodiment, the sound pressure of the vibration sound of the example in the ceramic capacitor 31 of the second embodiment, The sound pressure of the vibration sound of the example in the ceramic capacitor 37 of the third embodiment is compared with the sound pressure of the vibration sound of the example in the ceramic capacitor 43 of the fourth embodiment. The ceramic capacitors 10, 31, 37, and 43 of the present invention are not limited to the following examples. The ceramic capacitor element 11 to be measured is formed with a width W of 2.5 mm, a height H of 2.5 mm, and a length L of 3.2 mm.

Figure 2012033652
Figure 2012033652

Figure 2012033652
Figure 2012033652

Figure 2012033652
Figure 2012033652

表1において、比較対象の基準となる従来のセラミックコンデンサの構成を、図10に示す。図10は、従来のセラミックコンデンサを幅方向に直交する面で切断した断面図である。図10に示すように、従来のセラミックコンデンサ61は、第3実施形態のセラミックコンデンサ37における接続端子38のコイルバネ40を排して、基板側電極板39をセラミックコンデンサ素子11に接合したものである。簡単に説明すると、従来のセラミックコンデンサ61は、その接続端子62が、帯状の金属平板をL字状に折り曲げて形成されている。接続端子62は、セラミックコンデンサ素子11の外部電極22の端面にはんだ16を介して接合される長辺部63と、回路基板13の基板電極14にはんだ16を介して接合される短辺部64とを有している。上記の従来のセラミックコンデンサ61は、比較例としており、比較例のセラミックコンデンサ61の振動音の音圧を基準音圧である「100%」としている。   In Table 1, FIG. 10 shows a configuration of a conventional ceramic capacitor serving as a reference for comparison. FIG. 10 is a cross-sectional view of a conventional ceramic capacitor cut along a plane orthogonal to the width direction. As shown in FIG. 10, the conventional ceramic capacitor 61 is obtained by removing the coil spring 40 of the connection terminal 38 in the ceramic capacitor 37 of the third embodiment and bonding the substrate side electrode plate 39 to the ceramic capacitor element 11. . Briefly, the conventional ceramic capacitor 61 has a connection terminal 62 formed by bending a band-shaped metal flat plate into an L shape. The connection terminal 62 includes a long side portion 63 joined to the end face of the external electrode 22 of the ceramic capacitor element 11 via the solder 16 and a short side portion 64 joined to the substrate electrode 14 of the circuit board 13 via the solder 16. And have. The above-described conventional ceramic capacitor 61 is used as a comparative example, and the sound pressure of the vibration sound of the ceramic capacitor 61 of the comparative example is set to “100%” which is a reference sound pressure.

ここで、第1実施形態のセラミックコンデンサ10において、各外部電極22に接合されるコイルバネ25の個数を3つとしたものを、実施例1としている。また、第2実施形態のセラミックコンデンサ31において、各外部電極22に接合されるコイルバネ35の個数を3つとしたものを、実施例2としている。また、第3実施形態のセラミックコンデンサ37において、各外部電極22に接合されるコイルバネ40の個数を4つとしたものを、実施例3としている。また、第4実施形態のセラミックコンデンサ43において、各外部電極22に接合されるコイルバネ47の個数を4つとしたものを、実施例4としている。   Here, in the ceramic capacitor 10 of the first embodiment, the number of the coil springs 25 joined to each external electrode 22 is three as Example 1. Further, in the ceramic capacitor 31 of the second embodiment, the number of coil springs 35 joined to each external electrode 22 is three as Example 2. Further, in the ceramic capacitor 37 of the third embodiment, the number of the coil springs 40 joined to each external electrode 22 is four as Example 3. Further, in the ceramic capacitor 43 of the fourth embodiment, the number of the coil springs 47 bonded to each external electrode 22 is four as Example 4.

また、第2実施形態のセラミックコンデンサ31において、各外部電極22に接合されるコイルバネ35の個数を3つとしたものを、実施例5としており、実施例2のセラミックコンデンサ31とは、コイルバネ35および各電極板33,34の仕様が異なっている。また、第4実施形態のセラミックコンデンサ43において、各外部電極22に接合されるコイルバネ47の個数を4つとしたものを、実施例6としており、実施例4のセラミックコンデンサ43とは、コイルバネ47および各電極板45,46の仕様が異なっている。また、第2実施形態のセラミックコンデンサ31において、各外部電極22に接合されるコイルバネ35の個数を3つとしたものを、実施例7としており、実施例2および5のセラミックコンデンサ31とは、コイルバネ35および各電極板33,34の仕様が異なっている。また、第4実施形態のセラミックコンデンサ43において、各外部電極22に接合されるコイルバネ47の個数を4つとしたものを、実施例8としており、実施例4および6のセラミックコンデンサ43とは、コイルバネ47および各電極板45,46の仕様が異なっている。   Further, in the ceramic capacitor 31 of the second embodiment, the number of coil springs 35 joined to each external electrode 22 is three as Example 5, and the ceramic capacitor 31 of Example 2 is different from the coil spring 35 and The specifications of the electrode plates 33 and 34 are different. Further, in the ceramic capacitor 43 of the fourth embodiment, the number of coil springs 47 joined to each external electrode 22 is four as Example 6, and the ceramic capacitor 43 of Example 4 is different from the coil spring 47 and The specifications of the electrode plates 45 and 46 are different. Further, in the ceramic capacitor 31 of the second embodiment, the number of coil springs 35 joined to each external electrode 22 is three as Example 7, and the ceramic capacitor 31 of Examples 2 and 5 is a coil spring. 35 and the specifications of the electrode plates 33 and 34 are different. Further, in the ceramic capacitor 43 of the fourth embodiment, the number of coil springs 47 joined to each external electrode 22 is four as Example 8, and the ceramic capacitor 43 of Examples 4 and 6 is a coil spring. 47 and the specifications of the electrode plates 45 and 46 are different.

なお、実施例1から8におけるコイルバネ25,35,40,47の仕様は、表2に示すとおりである。また、実施例1から8における各電極板26,33,34,39,45,46の仕様は、表3に示すとおりである。   The specifications of the coil springs 25, 35, 40, and 47 in Examples 1 to 8 are as shown in Table 2. The specifications of the electrode plates 26, 33, 34, 39, 45, and 46 in Examples 1 to 8 are as shown in Table 3.

(振動音の測定)
各セラミックコンデンサ10,31,37,43,61を回路基板13に搭載して交流電圧を印加した際に、回路基板13から発生する振動音の大きさ(音圧)を測定した。図11は、音圧の測定を行なう際に用いた試験装置の構成を簡略に示す模式図である。図11に示すように、試験装置50は、無響箱51と、集音マイク(商品名;MI−1233、小野測器社製)52と、電源装置53と、FFTアナライザ(商品名:DS2100、小野測器社製)54とを備えている。そして、測定対象となるセラミックコンデンサ55は、回路基板56に設置された状態で、無響箱51内に設置される。なお、セラミックコンデンサ55は、第1実施形態から第4実施形態までのセラミックコンデンサ10,31,37,43、および従来のセラミックコンデンサ61に相当するものであり、回路基板56は、回路基板13に相当するものである。セラミックコンデンサ55を設置した回路基板56は、その両端に正負一対の電極がそれぞれ設けられる。
(Measurement of vibration sound)
When each ceramic capacitor 10, 31, 37, 43, 61 was mounted on the circuit board 13 and an AC voltage was applied, the magnitude (sound pressure) of vibration sound generated from the circuit board 13 was measured. FIG. 11 is a schematic diagram schematically showing the configuration of the test apparatus used when measuring the sound pressure. As shown in FIG. 11, the test apparatus 50 includes an anechoic box 51, a sound collecting microphone (trade name: MI-1233, manufactured by Ono Sokki Co., Ltd.) 52, a power supply device 53, and an FFT analyzer (trade name: DS2100). , Manufactured by Ono Sokki Co., Ltd.). The ceramic capacitor 55 to be measured is installed in the anechoic box 51 in a state of being installed on the circuit board 56. The ceramic capacitor 55 corresponds to the ceramic capacitors 10, 31, 37, 43 from the first embodiment to the fourth embodiment and the conventional ceramic capacitor 61, and the circuit board 56 is connected to the circuit board 13. It is equivalent. The circuit board 56 provided with the ceramic capacitor 55 is provided with a pair of positive and negative electrodes at both ends thereof.

無響箱51は、箱状に形成され、その内壁に吸音材57が設けられている。吸音材57は、グラスウール等を用いており、その表面を波型などに形成することで、音波の接触面積を拡大させ、吸音効果を高めている。   The anechoic box 51 is formed in a box shape, and a sound absorbing material 57 is provided on the inner wall thereof. The sound absorbing material 57 uses glass wool or the like, and the surface of the sound absorbing material 57 is formed in a corrugated shape, thereby expanding the contact area of the sound wave and enhancing the sound absorbing effect.

電源装置53は、一対の配線58を介して、基板56の正負一対の電極にそれぞれ接続されており、回路基板56は、配線58に吊り下げられた状態で、セラミックコンデンサ55が無響箱51内の底面に対向するように、無響箱51の中央部分に配置される。電源装置53は、セラミックコンデンサ55へ向けて、周波数を1kHz〜10kHzとし、DCバイアス20Vとして、3Vp−pの交流電圧を印加した。   The power supply device 53 is connected to a pair of positive and negative electrodes of the substrate 56 via a pair of wires 58, and the circuit board 56 is suspended from the wires 58 and the ceramic capacitor 55 is connected to the anechoic box 51. It arrange | positions in the center part of the anechoic box 51 so that the inner bottom face may be opposed. The power supply unit 53 applied an AC voltage of 3 Vp-p to the ceramic capacitor 55 with a frequency of 1 kHz to 10 kHz and a DC bias of 20 V.

集音マイク52は、無響箱51内の底面に設けられ、無響箱51の中央部分に設置されたセラミックコンデンサ55と所定距離を保つようにして配置される。FFTアナライザ54は、集音マイク52により集音された振動音の大きさ(音圧)を解析した。   The sound collecting microphone 52 is provided on the bottom surface in the anechoic box 51 and is arranged so as to maintain a predetermined distance from the ceramic capacitor 55 installed in the central portion of the anechoic box 51. The FFT analyzer 54 analyzed the magnitude (sound pressure) of the vibration sound collected by the sound collection microphone 52.

従って、試験装置50において、電源装置53が回路基板56へ向けて所定の交流電圧を印加すると、セラミックコンデンサ55で振動が発生し、セラミックコンデンサ55の振動が回路基板56に伝達され、回路基板56から振動音が発生する。この振動音を、集音マイク52を用いて集音し、集音した振動音を、FFTアナライザ54で解析することで、回路基板56から発生する振動音の大きさ(音圧)を測定した。なお、音圧は、比較例のセラミックコンデンサ61を用いた場合に生じた振動音の音圧の80%以下に低下させられれば音圧の抑制効果が良好であると判断した。   Accordingly, in the test apparatus 50, when the power supply device 53 applies a predetermined AC voltage toward the circuit board 56, vibration is generated in the ceramic capacitor 55, and the vibration of the ceramic capacitor 55 is transmitted to the circuit board 56. Generates vibration noise. The vibration sound was collected using the sound collecting microphone 52, and the collected vibration sound was analyzed by the FFT analyzer 54, whereby the magnitude (sound pressure) of the vibration sound generated from the circuit board 56 was measured. . In addition, if the sound pressure was lowered to 80% or less of the sound pressure of the vibration sound generated when the ceramic capacitor 61 of the comparative example was used, it was determined that the sound pressure suppressing effect was good.

表1に示すように、実施例1のセラミックコンデンサ10は、その音圧が58%であり、実施例2のセラミックコンデンサ31は、その音圧が59%であり、実施例3のセラミックコンデンサ37は、その音圧が54%であり、実施例4のセラミックコンデンサ43は、その音圧が56%である。以上から、第1から第4実施形態のセラミックコンデンサ10,31,37,43は、振動音を大きく低減できることが分かった。   As shown in Table 1, the ceramic capacitor 10 of the first embodiment has a sound pressure of 58%, the ceramic capacitor 31 of the second embodiment has a sound pressure of 59%, and the ceramic capacitor 37 of the third embodiment. Has a sound pressure of 54%, and the ceramic capacitor 43 of Example 4 has a sound pressure of 56%. From the above, it was found that the ceramic capacitors 10, 31, 37, 43 of the first to fourth embodiments can greatly reduce the vibration noise.

実施例5のセラミックコンデンサ31は、その音圧が49%であり、実施例6のセラミックコンデンサ43は、その音圧が48%である。以上から、実施例5および6のセラミックコンデンサ31,43は、実施例1から4のセラミックコンデンサ10,31,37,43に比して、振動音を低減できることが分かった。つまり、コイルバネ35,47および各電極板33,34,45,46の材質を、ステンレス鋼からリン青銅とすることで、振動音を低減できることが分かった。なお、ステンレス鋼に比べ、リン青銅の方が、ヤング率が低いことから、よりヤング率の低い金属を用いることが好ましい。   The ceramic capacitor 31 of Example 5 has a sound pressure of 49%, and the ceramic capacitor 43 of Example 6 has a sound pressure of 48%. From the above, it was found that the ceramic capacitors 31 and 43 of Examples 5 and 6 can reduce vibration noise as compared with the ceramic capacitors 10, 31, 37, and 43 of Examples 1 to 4. That is, it was found that the vibration noise can be reduced by changing the material of the coil springs 35, 47 and the electrode plates 33, 34, 45, 46 from stainless steel to phosphor bronze. Since phosphor bronze has a lower Young's modulus than stainless steel, it is preferable to use a metal having a lower Young's modulus.

実施例7のセラミックコンデンサ31は、その音圧が46%であり、実施例8のセラミックコンデンサ43は、その音圧が45%である。以上から、実施例7および8のセラミックコンデンサ31,43は、実施例1から6のセラミックコンデンサ10,31,37,43に比して、振動音を低減できることが分かった。つまり、コイルバネ35,47の形状において、ワイヤの直径を細くし、巻き数を増やすことで、振動音を低減できることが分かった。   The ceramic capacitor 31 of the seventh embodiment has a sound pressure of 46%, and the ceramic capacitor 43 of the eighth embodiment has a sound pressure of 45%. From the above, it was found that the ceramic capacitors 31 and 43 of Examples 7 and 8 can reduce vibration noise compared to the ceramic capacitors 10, 31, 37, and 43 of Examples 1 to 6. That is, it was found that the vibration noise can be reduced by reducing the diameter of the wire and increasing the number of turns in the shapes of the coil springs 35 and 47.

以上の比較結果から、第1から第4実施形態のセラミックコンデンサ10,31,37,43において、接続端子12,32,38,44にコイルバネ25,35,40,47を設けた構成であれば、振動音の大きさを好適に低減できることが判明した。これにより、第1から第4実施形態のセラミックコンデンサ10,31,37,43を、回路基板13に搭載すれば、回路基板13から発生する振動音の大きさを低減できる。また、複数のセラミックコンデンサ10,31,37,43を回路基板13に搭載したときに発生する共振による振動音の増大も抑制することが可能となる。   From the above comparison results, in the ceramic capacitors 10, 31, 37, 43 of the first to fourth embodiments, the connection terminals 12, 32, 38, 44 are provided with the coil springs 25, 35, 40, 47. It has been found that the loudness of the vibration sound can be suitably reduced. Thereby, if the ceramic capacitors 10, 31, 37, 43 of the first to fourth embodiments are mounted on the circuit board 13, the magnitude of the vibration sound generated from the circuit board 13 can be reduced. It is also possible to suppress an increase in vibration noise due to resonance that occurs when the plurality of ceramic capacitors 10, 31, 37, 43 are mounted on the circuit board 13.

以上のように、本発明に係るセラミックコンデンサは、積層セラミックコンデンサを用いる場合において有用であり、特に、セラミックコンデンサが回路基板に実装される場合に適している。   As described above, the ceramic capacitor according to the present invention is useful when a multilayer ceramic capacitor is used, and is particularly suitable when the ceramic capacitor is mounted on a circuit board.

10 セラミックコンデンサ
11 セラミックコンデンサ素子
12 接続端子
13 回路基板
14 基板電極
15 配線
16 はんだ
21 誘電体素体
22 外部電極
23 誘電体
24 内部電極
25 コイルバネ
26 電極板
31 セラミックコンデンサ(第2実施形態)
32 接続端子(第2実施形態)
33 上側電極板
34 下側電極板
35 コイルバネ(第2実施形態)
37 セラミックコンデンサ(第3実施形態)
38 接続端子(第3実施形態)
39 基板側電極板
40 コイルバネ(第3実施形態)
43 セラミックコンデンサ(第4実施形態)
44 接続端子(第4実施形態)
45 素子側電極板
46 基板側電極板
47 コイルバネ(第4実施形態)
D 間隙部分
DESCRIPTION OF SYMBOLS 10 Ceramic capacitor 11 Ceramic capacitor element 12 Connection terminal 13 Circuit board 14 Board electrode 15 Wiring 16 Solder 21 Dielectric body 22 External electrode 23 Dielectric 24 Internal electrode 25 Coil spring 26 Electrode plate 31 Ceramic capacitor (2nd Embodiment)
32 connection terminal (second embodiment)
33 Upper electrode plate 34 Lower electrode plate 35 Coil spring (second embodiment)
37 Ceramic Capacitor (Third Embodiment)
38 Connection terminal (third embodiment)
39 Substrate side electrode plate 40 Coil spring (third embodiment)
43 Ceramic Capacitor (Fourth Embodiment)
44 Connection terminal (fourth embodiment)
45 Element side electrode plate 46 Substrate side electrode plate 47 Coil spring (fourth embodiment)
D Gap part

Claims (5)

外部電極を有するセラミックコンデンサ素子と、
前記外部電極と基板とを接続する接続端子と、を備え、
前記接続端子は、一端が前記外部電極側に接続され、かつ他端が前記基板側に接続されたコイルバネを有していることを特徴とするセラミックコンデンサ。
A ceramic capacitor element having an external electrode;
A connection terminal for connecting the external electrode and the substrate,
The connection terminal includes a coil spring having one end connected to the external electrode side and the other end connected to the substrate side.
前記接続端子は、前記コイルバネの一端と前記外部電極との間、および前記コイルバネの他端と前記基板との間の少なくともいずれか一方に設けられた電極板を、さらに有している請求項1に記載のセラミックコンデンサ。   The connection terminal further includes an electrode plate provided between at least one of the coil spring and the external electrode and at least one of the other end of the coil spring and the substrate. The ceramic capacitor described in 1. 前記セラミックコンデンサ素子は、前記基板と対向する対向面を有し、前記外部電極は、前記対向面を挟んで前記セラミックコンデンサ素子の両端側に一対設けられ、
前記コイルバネは、一端が前記外部電極の前記対向面側に接続されて、前記セラミックコンデンサ素子と前記基板との間隙部分に設けられている請求項1または2に記載のセラミックコンデンサ。
The ceramic capacitor element has a facing surface facing the substrate, and a pair of the external electrodes are provided on both ends of the ceramic capacitor element across the facing surface,
3. The ceramic capacitor according to claim 1, wherein one end of the coil spring is connected to the opposite surface side of the external electrode and is provided in a gap portion between the ceramic capacitor element and the substrate.
前記セラミックコンデンサ素子は、前記基板と対向する対向面と、前記対向面を挟んで両端側にある両端面とを有し、前記外部電極は、前記セラミックコンデンサ素子の両端側にそれぞれ設けられ、
前記コイルバネは、一端が前記外部電極の前記端面側に接続されて、前記セラミックコンデンサ素子の端面の外側に設けられている請求項1または2に記載のセラミックコンデンサ。
The ceramic capacitor element has a facing surface facing the substrate, and both end faces on both ends across the facing surface, and the external electrodes are provided on both end sides of the ceramic capacitor element, respectively.
3. The ceramic capacitor according to claim 1, wherein one end of the coil spring is connected to the end face side of the external electrode and provided outside the end face of the ceramic capacitor element.
前記コイルバネは、その材質が、ステンレス鋼またはリン青銅である請求項1から4のいずれか1項に記載のセラミックコンデンサ。   The ceramic capacitor according to any one of claims 1 to 4, wherein a material of the coil spring is stainless steel or phosphor bronze.
JP2010171083A 2010-07-29 2010-07-29 Ceramic capacitor Withdrawn JP2012033652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010171083A JP2012033652A (en) 2010-07-29 2010-07-29 Ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010171083A JP2012033652A (en) 2010-07-29 2010-07-29 Ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2012033652A true JP2012033652A (en) 2012-02-16

Family

ID=45846732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171083A Withdrawn JP2012033652A (en) 2010-07-29 2010-07-29 Ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2012033652A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207428A (en) * 2013-03-19 2014-10-30 株式会社村田製作所 Laminated electronic component and mounting structure thereof
CN104979096A (en) * 2014-04-14 2015-10-14 三星电机株式会社 Multilayer ceramic capacitor, manufacturing method thereof, and plate with the same
JP2015204453A (en) * 2014-04-14 2015-11-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic capacitor and mounting board thereof
JP2017063166A (en) * 2015-09-26 2017-03-30 京セラ株式会社 Multilayer capacitor and mounting structure therefor
JP2017529680A (en) * 2015-07-01 2017-10-05 アモテック シーオー,エルティーディー Contactor for electric shock protection and portable electronic device having the same
DE102019110374A1 (en) * 2019-04-18 2020-10-22 Tdk Electronics Ag Component
US11521799B2 (en) 2019-10-28 2022-12-06 Murata Manufacturing Co., Ltd. Supporting-terminal-equipped capacitor chip and mounted structure thereof
US11570896B2 (en) 2019-10-28 2023-01-31 Murata Manufacturing Co., Ltd. Supporting-terminal-equipped capacitor chip and mounted structure thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207428A (en) * 2013-03-19 2014-10-30 株式会社村田製作所 Laminated electronic component and mounting structure thereof
CN104979096A (en) * 2014-04-14 2015-10-14 三星电机株式会社 Multilayer ceramic capacitor, manufacturing method thereof, and plate with the same
JP2015204453A (en) * 2014-04-14 2015-11-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic capacitor and mounting board thereof
JP2017529680A (en) * 2015-07-01 2017-10-05 アモテック シーオー,エルティーディー Contactor for electric shock protection and portable electronic device having the same
JP2017063166A (en) * 2015-09-26 2017-03-30 京セラ株式会社 Multilayer capacitor and mounting structure therefor
DE102019110374A1 (en) * 2019-04-18 2020-10-22 Tdk Electronics Ag Component
US11875925B2 (en) 2019-04-18 2024-01-16 Tdk Electronics Ag Thermistor, varistor or capacitor component with a fusible connecting element between the main body of the component
US11521799B2 (en) 2019-10-28 2022-12-06 Murata Manufacturing Co., Ltd. Supporting-terminal-equipped capacitor chip and mounted structure thereof
US11570896B2 (en) 2019-10-28 2023-01-31 Murata Manufacturing Co., Ltd. Supporting-terminal-equipped capacitor chip and mounted structure thereof

Similar Documents

Publication Publication Date Title
JP6395002B2 (en) Circuit board mounting structure of multilayer ceramic capacitor
KR101058697B1 (en) Mounting structure of ciruit board having thereon multi-layered ceramic capacitor, method thereof, land pattern of circuit board for the same, packing unit for multi-layered ceramic capacitor taped horizontally and aligning method thereof
KR102139760B1 (en) Electronic part and board for mouting the same
JP2012033652A (en) Ceramic capacitor
JP5458821B2 (en) Multilayer ceramic capacitor
KR101444540B1 (en) Multi-layered ceramic capacitor, mounting structure of circuit having thereon multi-layered ceramic capacitor and packing unit for multi-layered ceramic capacitor
US9659710B2 (en) Multilayer ceramic component and board having the same
KR101548793B1 (en) Multi-layered ceramic capacitor, mounting circuit thereof and manufacturing method of the same
US9775232B2 (en) Multilayer ceramic capacitor and board having the same
JP2012033651A (en) Ceramic capacitor
US9024201B2 (en) Multilayer ceramic capacitor and mounting circuit board therefor
KR101462746B1 (en) Multi-layered ceramic capacitor and mounting circuit having thereon multi-layered ceramic capacitor
JP2012033650A (en) Ceramic capacitor
JP2015037193A (en) Multilayer ceramic capacitor and mounting substrate thereof
US9607769B2 (en) Multilayer ceramic capacitor having terminal electrodes and board having the same
JP6032212B2 (en) Multilayer electronic component and its mounting structure
JP2012033654A (en) Ceramic capacitor
JP2012099538A (en) Electronic component
JP2018011090A (en) Multi-layered capacitor, and circuit board with multi-layered capacitor mounted thereon
KR20140038911A (en) Multi-layered ceramic capacitor and board for mounting the same
JP2012248846A (en) Mounting structure of circuit board of multilayer ceramic capacitor
CN108155007A (en) Cascade capacitor built-in substrate
JP2012094671A (en) Electronic component
JP2012033655A (en) Ceramic capacitor
KR102057909B1 (en) Multi-layered ceramic capacitor and mounting circuit of multi-layered ceramic capacitor

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130614

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131001