JP2012031236A - Method for producing ironmaking coke - Google Patents

Method for producing ironmaking coke Download PDF

Info

Publication number
JP2012031236A
JP2012031236A JP2010169686A JP2010169686A JP2012031236A JP 2012031236 A JP2012031236 A JP 2012031236A JP 2010169686 A JP2010169686 A JP 2010169686A JP 2010169686 A JP2010169686 A JP 2010169686A JP 2012031236 A JP2012031236 A JP 2012031236A
Authority
JP
Japan
Prior art keywords
solvent
coal
coke
extracted
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010169686A
Other languages
Japanese (ja)
Other versions
JP5559628B2 (en
Inventor
Takahiro Shishido
貴洋 宍戸
Noriyuki Okuyama
憲幸 奥山
Koji Sakai
康爾 堺
Maki Hamaguchi
眞基 濱口
Nobuyuki Komatsu
信行 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Sumitomo Metal Industries Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd, Nippon Steel Corp, Sumitomo Metal Industries Ltd, Nisshin Steel Co Ltd filed Critical JFE Steel Corp
Priority to JP2010169686A priority Critical patent/JP5559628B2/en
Publication of JP2012031236A publication Critical patent/JP2012031236A/en
Application granted granted Critical
Publication of JP5559628B2 publication Critical patent/JP5559628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing ironmaking coke having high reducing performance and high reactivity.SOLUTION: The method includes: sequentially carrying out an extracting step of extracting a soluble component from coal with a solvent, and affording a mixture slurry of a solvent-soluble component and a solvent-insoluble component; a solid-liquid separating step of separating the mixture slurry into the solvent-soluble component and the solvent-insoluble component using a solid-liquid separating means; a solvent-removing step of removing the solvent from the solvent-insoluble component, and affording non-solvent extracted coal; a mixing step of mixing the non-solvent extracted coal with the raw material coal, and affording a mixture; and a carbonizing step of carbonizing the mixture, and affording the highly reactive coke.

Description

本発明は、高炉等の製鉄に用いられる高反応性コークスの製造方法に関するものである。   The present invention relates to a method for producing a highly reactive coke used for iron making such as a blast furnace.

製鉄用コークスは、通常、原料炭を1000℃前後に加熱乾留して製造される。このコークスは、高炉内に、コークス(還元材)層と鉄鉱石層が層状に重なるように装入され、羽口から高温の空気を吹き込んでコークスを燃焼させ、このとき発生した還元性ガスで鉄鉱石中の酸化鉄を還元することで銑鉄が製造できる。   Iron-making coke is usually produced by heat-drying raw coal at around 1000 ° C. This coke is introduced into the blast furnace so that the coke (reducing material) layer and the iron ore layer overlap each other, and hot air is blown from the tuyere to burn the coke. Pig iron can be produced by reducing iron oxide in iron ore.

高炉用のコークスは高炉に投入して使用されるため、高炉内で圧潰しない強度が求められると共に、高炉内の通気性を確保するためのスペーサーとしての機能が求められ、十分な強度を備えている必要がある。一方で、反応性(還元性)の高いコークスを用いれば、還元材比を低減でき、高炉の操業効率を向上できることが知られている。特に還元材比を低下させることは、温室効果ガスの排出量の低減に寄与できるため、還元材の使用を低減できるような反応性の高いコークスも求められている。   Coke for blast furnace is used by being put into the blast furnace, so it is required to have strength that does not crush in the blast furnace, and also functions as a spacer to ensure air permeability in the blast furnace, and has sufficient strength. Need to be. On the other hand, it is known that if coke having high reactivity (reducibility) is used, the reducing material ratio can be reduced and the operation efficiency of the blast furnace can be improved. In particular, reducing the reducing material ratio can contribute to the reduction of greenhouse gas emissions, and therefore, there is a demand for highly reactive coke that can reduce the use of reducing materials.

高反応性と強度を兼備した高炉用コークスの製造方法としては、例えば特許文献1において、原料炭にアルカリ土類金属または遷移金属(以下「アルカリ土類金属等」という)を相当量混合してコークス炉で乾留してコークスを製造する方法が提案されている。   As a method for producing blast furnace coke having both high reactivity and strength, for example, in Patent Document 1, a considerable amount of alkaline earth metal or transition metal (hereinafter referred to as “alkaline earth metal etc.”) is mixed with raw coal. A method for producing coke by dry distillation in a coke oven has been proposed.

また特許文献2では、石炭を乾留して得られるコークスにアルカリ土類金属等を含む水溶液を散布することが提案されている。具体的にはシリカやアルミナを主成分とする粘土鉱物が10%程度存在する石炭に、所定のアルカリ土類金属等を相当量混合することによって、触媒活性を発現させて、反応性を向上させる技術が開示されている。   Patent Document 2 proposes to spray an aqueous solution containing an alkaline earth metal or the like on coke obtained by carbonizing coal. Specifically, a certain amount of a predetermined alkaline earth metal or the like is mixed with coal containing about 10% of clay mineral mainly composed of silica or alumina, thereby improving the reactivity. Technology is disclosed.

しかしながら、上記特許文献1のように乾留する際に、粘土鉱物とアルカリ土類金属とが共存していると、触媒活性が著しく低下する。また、特許文献2のように乾留して得られるコークスにアルカリ土類金属等を混合しても、添加したアルカリ土類金属等が高炉内で石炭中の粘土鉱物と反応して触媒活性が低下してしまう。そのため、これら技術では所期の触媒活性を維持するために多量のアルカリ土類金属等を添加する必要があるが、多量のアルカリ土類金属等の添加は、高炉から排出されるスラグ量の増加やスラグ閉塞といった問題を誘発する可能性があり、さらに、高炉内壁の耐熱煉瓦に悪影響を及ぼすおそれがある。   However, when the clay mineral and the alkaline earth metal coexist during the dry distillation as in Patent Document 1, the catalytic activity is remarkably reduced. Moreover, even if alkaline earth metal etc. are mixed with coke obtained by dry distillation like patent document 2, the added alkaline earth metal etc. react with the clay mineral in coal in a blast furnace, and catalyst activity falls. Resulting in. Therefore, in these technologies, it is necessary to add a large amount of alkaline earth metal etc. in order to maintain the desired catalytic activity, but the addition of a large amount of alkaline earth metal etc. increases the amount of slag discharged from the blast furnace. And may cause problems such as slag blockage, and may adversely affect the heat-resistant bricks on the inner wall of the blast furnace.

また石炭中に含まれる灰分は、燃焼炉におけるファウリング、スラッギング、また溶鉱炉内でのスラグ閉塞などのトラブル原因となり、石炭の更なる高効率利用を阻んでいる。   Also, the ash contained in the coal causes troubles such as fouling and slagging in the combustion furnace, and slag clogging in the blast furnace, preventing further efficient use of the coal.

そこで本発明者らは、非微粘結炭などの低品位の石炭から灰分を除去し、コークス用原料として利用する技術として、石炭と溶剤とを混合してスラリー化し、石炭に含まれる溶剤可溶成分を抽出した後、重力沈降槽などの固液分離手段を用いて溶剤可溶成分(抽出分)と溶剤不溶成分(灰分などの無機分や溶剤不溶な有機成分などの抽出残分)に固液分離し、その後、溶剤可溶成分から溶剤を除去して得られた溶剤抽出炭(灰分濃度が0.1質量%以下の無灰炭:HPC)をコークス用原料として用いることを提案している(特許文献3、非特許文献1)。   Accordingly, the present inventors have developed a technology for removing ash from low-grade coal such as non-slightly caking coal and using it as a raw material for coke to make a slurry by mixing coal and a solvent. After extracting the soluble components, using solid-liquid separation means such as a gravity sedimentation tank, solvent soluble components (extracted components) and solvent insoluble components (extracted residues such as inorganic components such as ash and organic components insoluble in solvents) It was proposed to use solvent-extracted coal (ashless coal with an ash concentration of 0.1% by mass or less: HPC) obtained as a coke raw material by solid-liquid separation and then removing the solvent from the solvent-soluble component. (Patent Document 3, Non-Patent Document 1).

また本発明者らは、上記溶剤抽出炭にイオン交換によりアルカリ土類金属等を添加することによって、反応性を向上させる技術を開示している(特許文献4)。   In addition, the present inventors have disclosed a technique for improving the reactivity by adding an alkaline earth metal or the like by ion exchange to the solvent-extracted coal (Patent Document 4).

特開2003−306681号公報JP 2003-306681 A 特開2006−206684号公報JP 2006-206684 A 特開2005−120185号公報Japanese Patent Laid-Open No. 2005-120185 特開2009−227730号公報JP 2009-227730 A

宍戸貴洋 他、「ハイパーコール利用のコークス製造技術」、神戸製鋼技報、2010年4月、p.62〜66Takahiro Shishido et al., “Coke production technology using hypercall”, Kobe Steel Technical Report, April 2010, p. 62-66

上記本発明者らが提案している技術(特許文献4)は優れた反応性を有しているものの、イオン交換工程や添加剤としてアルカリ土類金属等が必要であったため、これらが製造コスト増加要因となっていた。特に近年は、より低コストで高反応性を有する製鉄用コークスを提供することが求められていた。   Although the technique proposed by the present inventors (Patent Document 4) has excellent reactivity, an alkaline earth metal or the like is required as an ion exchange step or additive, and these are the production costs. It was an increase factor. In particular, in recent years, it has been required to provide ironmaking coke having a low cost and high reactivity.

本発明は上記の様な事情に着目してなされたものであって、その目的は、高い還元性能を有し、高反応性の製鉄用コークスの製造方法を提供することにある。   The present invention has been made paying attention to the above-described circumstances, and an object of the present invention is to provide a method for producing coke for iron making having high reduction performance and high reactivity.

上記課題を達成し得た本発明の製造方法は、溶剤で石炭から可溶成分を抽出し、溶剤可溶成分と溶剤不溶成分の混合物スラリーを得る抽出工程と、前記混合物スラリーを、固液分離手段を用いて溶剤可溶成分と溶剤不溶成分に分離する固液分離工程と、前記溶剤不溶成分から溶剤を除去し、非溶剤抽出炭を得る溶剤除去工程と、前記非溶剤抽出炭と、原料炭とを混合して混合物とする混合工程と、前記混合物を乾留し、高反応性コークスを得る乾留工程と、を順次、含むことに要旨を有する。   The production method of the present invention that has achieved the above-described problems includes an extraction step of extracting a soluble component from coal with a solvent to obtain a mixture slurry of a solvent-soluble component and a solvent-insoluble component, and solid-liquid separation of the mixture slurry. A solid-liquid separation step for separating the solvent-soluble component and the solvent-insoluble component using a means, a solvent removal step for removing the solvent from the solvent-insoluble component to obtain a non-solvent extracted coal, the non-solvent extracted coal, and a raw material The gist is to sequentially include a mixing step of mixing charcoal into a mixture and a dry distillation step of carbonizing the mixture to obtain highly reactive coke.

前記非溶剤抽出炭は、前記固液分離工程によって得られる前記溶剤可溶成分を含まないものであることも好ましい実施態様である。   It is also a preferred embodiment that the non-solvent extracted coal does not contain the solvent-soluble component obtained by the solid-liquid separation step.

また前記混合物における前記非溶剤抽出炭と前記原料炭との質量比率は1:99〜30:70であることも好ましい実施態様である。   Moreover, it is also a preferable embodiment that the mass ratio of the non-solvent extracted coal and the raw coal in the mixture is 1:99 to 30:70.

更に前記原料炭は、強粘結炭、準強粘結炭、及び微粘結炭よりなる群から選ばれる少なくとも1種であることも好ましい実施態様である。   Furthermore, it is also a preferred embodiment that the raw coal is at least one selected from the group consisting of strongly caking coal, semi-caking coal, and slightly caking coal.

本発明の製造方法によれば、高い反応性を有する製鉄用コークスを製造することができる。特に本発明の製造方法で使用する非溶剤抽出炭は、一般炭から溶剤抽出炭を製造する際に、副次的に製造されるものであるため、安価に供給することが可能であり、コークス用原料炭として資源拡大が図れるだけでなく、原料コストの低減を図ることができる。   According to the production method of the present invention, iron coke having high reactivity can be produced. In particular, the non-solvent extracted coal used in the production method of the present invention is produced secondarily when producing solvent extracted coal from general coal, and can be supplied at a low cost. In addition to being able to expand resources as a raw coal, it is possible to reduce raw material costs.

図1は、本発明に係る製鉄用コークスの製造工程を示すフローチャートである。FIG. 1 is a flowchart showing a manufacturing process of iron-making coke according to the present invention. 図2は、高反応性コークスで用いる非溶剤抽出炭の製造工程を示すプロセスの概略フロー図である。FIG. 2 is a schematic flow diagram of a process showing a production process of non-solvent extracted coal used in highly reactive coke. 図3は、原料石炭、非溶剤抽出炭、溶剤抽出炭の細孔容積を示すグラフである。FIG. 3 is a graph showing pore volumes of raw coal, non-solvent extracted coal, and solvent extracted coal.

本発明者らは、既に、溶剤抽出後の抽出スラリーを固液分離し、溶剤可溶成分から溶剤を除去して得られる溶剤抽出炭(HPC)にイオン交換によりアルカリ土類金属等を添加することによって、反応性を向上させる技術を開示しているが(上記特許文献3)、更に検討を進めた結果、上記固液分離した際に副次的に得られる溶剤不溶成分から溶剤を除去して得られる非溶剤抽出炭を原料炭の一部として用いると、コークスの反応性を向上できることを見出し、本発明に至った。   The present inventors already add alkaline earth metal or the like by ion exchange to solvent-extracted charcoal (HPC) obtained by solid-liquid separation of the extraction slurry after solvent extraction and removing the solvent from the solvent-soluble component. Although the technology for improving the reactivity is disclosed (Patent Document 3), as a result of further investigation, the solvent is removed from the solvent-insoluble component obtained as a secondary component upon solid-liquid separation. When the non-solvent extracted coal obtained in this way is used as part of the raw coal, it has been found that the reactivity of coke can be improved, and the present invention has been achieved.

本発明者らは、後記する実施例で示すように、溶剤抽出に使用する原料である原料石炭(Coal−A)、固液分離後に溶剤を除去して得られる溶剤抽出炭(HPC)と非溶剤抽出炭について分析した。溶剤抽出炭については、溶剤に溶融した成分で構成されており灰分が殆ど含まれておらず、軟化溶融性が高いことが報告されている。一方、非溶剤抽出炭は殆ど軟化溶融性を示さないが、抽出前の石炭に含まれていた灰分(Ash)や、溶剤に溶融しなかった成分が濃縮されており、また濃縮した灰分による触媒作用も期待できることが判明した。   As shown in the examples described later, the present inventors have introduced a raw material coal (Coal-A) that is a raw material used for solvent extraction, a solvent extracted coal (HPC) obtained by removing the solvent after solid-liquid separation, and non- Solvent extracted coal was analyzed. It has been reported that solvent-extracted charcoal is composed of components melted in a solvent, contains almost no ash, and has high softening and melting properties. On the other hand, non-solvent extracted coal shows almost no softening and melting property, but ash (Ash) contained in the coal before extraction and components not melted in the solvent are concentrated, and the catalyst based on the concentrated ash It was found that the effect can be expected.

また原料石炭(Coal−A)、溶剤抽出炭、非溶剤抽出炭の細孔容積を水銀圧入法にて測定した結果、図3に示すように原料石炭(Coal−A)と溶剤抽出炭の細孔容積はほぼ同じであったが、非溶剤抽出炭の細孔容積は原料石炭(Coal−A)や溶剤抽出炭と比較すると2倍程度の細孔容積を有していることがわかった。これは溶剤によって原料石炭から溶剤可溶分が溶出したためであると考えられる。   As a result of measuring the pore volume of raw coal (Coal-A), solvent-extracted coal, and non-solvent-extracted coal by the mercury intrusion method, as shown in FIG. The pore volume was almost the same, but the pore volume of the non-solvent extracted coal was found to be about twice that of the raw material coal (Coal-A) or solvent extracted coal. This is presumably because the solvent-soluble component was eluted from the raw coal by the solvent.

そして非溶剤抽出炭を他の原料炭と共にコークス用の炭材として使用すると、細孔容積が大きく、また濃縮した灰分の触媒作用により、反応性が向上することがわかった。   And when non-solvent extraction coal was used as a carbonaceous material for coke with other raw coal, it turned out that the pore volume is large and the reactivity improves by the catalytic action of the concentrated ash.

本発明では、コークスの原料炭として非溶剤抽出炭を他の原料炭と共に用いることで、反応性を向上でき、また十分な強度も有するコークスを製造できる。非溶剤抽出炭は、後述するように、溶剤で石炭から可溶成分を除去した残渣であるが、石炭に含有されていた溶剤未溶解成分(無機分や有機分)が濃縮した炭素分80%以上の石炭である。なお、可溶成分とは、石炭から無機物を取り除いた有機物のみからなる成分であり、無灰炭(ハイパーコール:HPC)と呼ばれることがある。   In the present invention, by using non-solvent extracted coal together with other raw coal as coke raw coal, the coke having sufficient strength can be produced. The non-solvent extracted coal is a residue obtained by removing soluble components from coal with a solvent, as will be described later, but the carbon content is 80% of the concentration of solvent undissolved components (inorganic and organic components) contained in the coal. It is the above coal. In addition, a soluble component is a component which consists only of the organic substance which remove | eliminated the inorganic substance from coal, and may be called ashless coal (hyper coal: HPC).

このように本発明の製造方法は、これまでに提案されているハイパーコール利用技術とは異なり、ハイパーコールを用いず、灰分が濃縮された非溶剤抽出炭(副生炭)をコークス原料として用いたところに特徴がある。本発明で用いられる非溶剤抽出炭は、溶剤で石炭から可溶成分を抽出し、溶剤可溶成分と溶剤付与成分の混合物スラリーとし(抽出工程)、得られた混合物スラリーを固液分離手段を用いて溶剤可溶成分と溶剤不溶成分に分離し(固液分離工程)、溶剤不溶成分から溶剤を除去することによって(溶剤除去工程)、得ることができる。そして非溶剤抽出炭と、原料炭(好ましくは強粘結炭、準強粘結炭、微粘結炭よりなる群から選択される少なくとも一種)を混合して混合物とし(混合工程)、この混合物を乾留することによって(乾留工程)、高反応性コークスを得ることができる。   As described above, the production method of the present invention is different from the hypercoal utilization technology that has been proposed so far, and uses non-solvent extracted coal (by-product coal) in which ash is concentrated without using hypercoal as a coke raw material. There is a feature in the place. The non-solvent-extracted coal used in the present invention extracts a soluble component from coal with a solvent to form a mixture slurry of a solvent-soluble component and a solvent-imparting component (extraction step), and the obtained mixture slurry is subjected to solid-liquid separation means. It can be obtained by separating into a solvent-soluble component and a solvent-insoluble component (solid-liquid separation step) and removing the solvent from the solvent-insoluble component (solvent removal step). Then, non-solvent extracted coal and raw coal (preferably at least one selected from the group consisting of strongly caking coal, semi-caking coal, and slightly caking coal) are mixed to form a mixture (mixing step), and this mixture Is subjected to dry distillation (dry distillation step), whereby highly reactive coke can be obtained.

以下、本発明の製造方法の実施形態について、図面を参照しながら説明する。図1は、本発明に係る製鉄用コークスの製造工程を示すフローチャートである。また図2は、高反応性コークスで用いる非溶剤抽出炭の製造工程を示すプロセスの概略フロー図である。   Hereinafter, embodiments of the manufacturing method of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing a manufacturing process of iron-making coke according to the present invention. FIG. 2 is a schematic flow diagram of a process showing a production process of non-solvent extracted coal used in highly reactive coke.

図1に示すように、本発明の高反応性コークスの製造方法は、溶剤抽出工程(S1)と、固液分離工程(S2)と、溶剤除去工程(S3)と、混合工程(S4)と、乾留工程(S5)と、を有する。以下、各工程について説明する。   As shown in FIG. 1, the highly reactive coke production method of the present invention includes a solvent extraction step (S1), a solid-liquid separation step (S2), a solvent removal step (S3), and a mixing step (S4). And carbonization step (S5). Hereinafter, each step will be described.

<溶剤抽出工程(S1)>
抽出工程は、石炭(原料石炭)と溶剤を接触させて、原料石炭から可溶成分を溶剤中に抽出し、溶剤可溶成分と溶剤不溶成分の混合物スラリーを得る工程である。
<Solvent extraction step (S1)>
The extraction step is a step in which coal (raw coal) is brought into contact with a solvent to extract a soluble component from the raw coal into a solvent to obtain a mixture slurry of the solvent soluble component and the solvent insoluble component.

図2では、石炭供給槽から供給される原料石炭と溶剤供給槽から供給される溶剤とをスラリー調製槽で混合してスラリー化し、抽出槽にて、原料石炭に含まれている溶剤に溶解する成分(溶質)を抽出し、溶剤可溶成分と溶剤不溶成分の混合物スラリーとしている(抽出工程)。   In FIG. 2, the raw material coal supplied from the coal supply tank and the solvent supplied from the solvent supply tank are mixed and slurried in the slurry preparation tank, and dissolved in the solvent contained in the raw material coal in the extraction tank. A component (solute) is extracted to form a mixture slurry of a solvent-soluble component and a solvent-insoluble component (extraction step).

石炭に含まれる可溶成分の抽出に用いる溶剤としては、極性溶剤や芳香族溶剤を使用できる。極性溶剤としては、例えば、N-メチルピロリドンやピリジン等が用いられる。芳香族溶剤としては、一般的には、ベンゼン、トルエン、キシレン等の1環芳香族化合物や、ナフタレン、メチルナフタレン、ジメチルナフタレン、トリメチルナフタレン、テトラヒドロナフタレン(テトラリン;登録商標)等の2環芳香族化合物、アントラセン等の3環以上の芳香族化合物等が用いられる。また、2環芳香族化合物には、その他脂肪族側鎖をもつナフタレン類、また、これにビフェニルや長鎖脂肪族側鎖をもつアルキルベンゼンが含まれる。   As a solvent used for extraction of a soluble component contained in coal, a polar solvent or an aromatic solvent can be used. For example, N-methylpyrrolidone or pyridine is used as the polar solvent. The aromatic solvent is generally a one-ring aromatic compound such as benzene, toluene or xylene, or a two-ring aromatic compound such as naphthalene, methylnaphthalene, dimethylnaphthalene, trimethylnaphthalene or tetrahydronaphthalene (tetralin; registered trademark). An aromatic compound having three or more rings such as a compound and anthracene is used. The bicyclic aromatic compound includes other naphthalenes having an aliphatic side chain, and biphenyl and alkylbenzene having a long aliphatic side chain.

本発明では、上記極性溶剤や芳香族溶剤のなかでも、水素非供与性の溶剤を用いることが好ましい。水素非供与性溶剤としては、主に石炭の乾留生成物から精製した2環芳香族化合物を主とする石炭誘導体を挙げることができる。この水素非供与性溶剤は、加熱状態でも安定であり、石炭との親和性に優れているため、溶剤に抽出される可溶成分の割合が高く、また、蒸留等の方法で容易に回収可能な溶剤である。回収した溶剤は、経済性の向上を図るため、循環使用できる。水素非供与性溶剤としては、例えば、ナフタレン、メチルナフタレン、タール軽油などが挙げられ、これらから選択される1種を主成分とする溶剤や、2種以上を含む溶剤を用いることができる。   In the present invention, it is preferable to use a hydrogen non-donating solvent among the polar solvents and aromatic solvents. Examples of the non-hydrogen donating solvent include coal derivatives mainly composed of a bicyclic aromatic compound purified from a coal carbonization product. This non-hydrogen-donating solvent is stable even when heated and has excellent affinity with coal, so the percentage of soluble components extracted into the solvent is high, and it can be easily recovered by methods such as distillation. Is a good solvent. The recovered solvent can be recycled to improve economy. Examples of the hydrogen non-donating solvent include naphthalene, methylnaphthalene, tar light oil, and the like, and a solvent mainly composed of one kind selected from these and a solvent containing two or more kinds can be used.

また可溶成分の抽出に用いる溶剤は、沸点が180〜330℃(特に、200〜250℃)のものが好ましい。沸点が低過ぎると、抽出工程での可溶成分の抽出率が低下する。また、抽出工程や、後述する固液分離工程での必要圧力が高くなる。更に、溶剤を回収するときに揮発による損失が大きくなり、溶剤の回収率が低下する。一方、沸点が高過ぎると、後述する固液分離工程で分離される溶剤可溶成分や溶剤不溶成分からの溶剤の除去や、石炭に付着している溶剤を除去することが困難となり、溶剤の回収率が低下する。   Moreover, the solvent used for extraction of a soluble component has a preferable boiling point of 180-330 degreeC (especially 200-250 degreeC). When the boiling point is too low, the extraction rate of soluble components in the extraction process is lowered. Moreover, the required pressure in an extraction process and the solid-liquid separation process mentioned later becomes high. Further, when recovering the solvent, loss due to volatilization increases, and the solvent recovery rate decreases. On the other hand, if the boiling point is too high, it becomes difficult to remove the solvent from the solvent-soluble component or the solvent-insoluble component separated in the solid-liquid separation step described later, or to remove the solvent adhering to the coal. The recovery rate decreases.

可溶成分の抽出に用いる石炭の種類は特に限定されないが、主に一般炭、或いは軟化溶融性をほとんど持たない非微粘炭などの安価な石炭を使用することにより、経済性の向上を図ることができる。もちろん非微粘炭に限定されず、微粘結炭、準微粘結炭、強粘結炭などを使用しても良い。   The type of coal used for extraction of soluble components is not particularly limited, but mainly by using cheap coal such as steam coal or non-thin coal with almost no softening and melting property, the economy is improved. be able to. Of course, the present invention is not limited to non-slightly caking coal, and slightly caking coal, semi-slightly caking coal, strongly caking coal, or the like may be used.

前記抽出工程では、石炭から可溶成分を抽出し易くするために、石炭を、例えば、直径5mm程度以下(好ましくは3mm以下)に粉砕しておくことが好ましい。   In the extraction step, it is preferable to pulverize the coal to a diameter of about 5 mm or less (preferably 3 mm or less) in order to facilitate extraction of soluble components from the coal.

また、前記抽出工程では、石炭から可溶成分を抽出するときの抽出率を高めるために石炭と溶剤とをスラリー状に混合することが好ましい。この混合物を攪拌しつつ加熱すれば、石炭に含まれる溶剤に可溶な可溶成分が溶剤中に抽出される。   Moreover, in the said extraction process, in order to improve the extraction rate when extracting a soluble component from coal, it is preferable to mix coal and a solvent in a slurry form. If this mixture is heated with stirring, soluble components soluble in the solvent contained in the coal are extracted into the solvent.

抽出温度は、例えば、300〜420℃程度(特に、330〜400℃程度)に設定することが好ましい。抽出温度が低過ぎると、石炭に含まれる易ガス化成分を除去できない上に、石炭を構成する成分の分子間結合力を弱めることが不十分となって、石炭に含まれる可溶成分の抽出率が低くなる。一方、抽出温度が高過ぎると、石炭が熱分解して生成したラジカルの再結合が起こるため、石炭から可溶成分を抽出するときの抽出率が低くなる。   For example, the extraction temperature is preferably set to about 300 to 420 ° C. (particularly about 330 to 400 ° C.). If the extraction temperature is too low, the easy gasification component contained in the coal cannot be removed, and it becomes insufficient to weaken the intermolecular bonding force of the component constituting the coal, so that the soluble component contained in the coal is extracted. The rate is lowered. On the other hand, if the extraction temperature is too high, recombination of radicals generated by thermal decomposition of coal occurs, so that the extraction rate when extracting soluble components from coal becomes low.

抽出時間は、例えば、10〜120分程度(特に、30〜60分程度)とすればよい。抽出時間が長過ぎると、抽出した可溶成分の熱分解反応が進行し、ラジカル重合反応が進むため可溶成分の抽出率が低下する。   The extraction time may be, for example, about 10 to 120 minutes (particularly about 30 to 60 minutes). If the extraction time is too long, the thermal decomposition reaction of the extracted soluble component proceeds and the radical polymerization reaction proceeds, so the extraction rate of the soluble component decreases.

抽出工程は、例えば、不活性ガス(例えば、窒素)の存在の下で行なえばよい。なお、抽出工程では、溶剤が沸騰しないように加圧する必要があり、圧力は、通常、0.8〜2.5MPa程度(特に、1〜2MPa)の範囲に調整すればよい。   What is necessary is just to perform an extraction process in presence of inert gas (for example, nitrogen), for example. In addition, it is necessary to pressurize so that a solvent may not boil in an extraction process, and what is necessary is just to adjust a pressure to the range of about 0.8-2.5 MPa (especially 1-2 MPa) normally.

<固液分離工程S2>
固液分離工程は、上記溶剤抽出工程(S1)で処理されたスラリーを溶剤可溶成分と溶剤不溶成分とに分離する工程である。溶剤可溶成分とは、主に石炭から溶剤に抽出した可溶成分(抽出分)と抽出に用いた溶剤で構成されている。また溶剤不溶成分とは、主に溶剤に不溶な灰分と不溶石炭で構成されており、抽出に用いた溶剤も含まれている抽出残分をいう。
<Solid-liquid separation step S2>
The solid-liquid separation step is a step of separating the slurry treated in the solvent extraction step (S1) into a solvent soluble component and a solvent insoluble component. The solvent-soluble component is mainly composed of a soluble component (extracted component) extracted from coal into a solvent and a solvent used for extraction. The solvent-insoluble component is an extraction residue that is mainly composed of ash and insoluble coal that are insoluble in the solvent, and also includes the solvent used for extraction.

固液分離手段は特に限定されず、公知の方法を採用すればよく、例えば、各種の濾過法、遠心分離法、重力沈降法が挙げられる。なお、濾過法では、濾過フィルターの濾過量が制限されることから、大量の未溶解石炭を分離できない場合がある。また遠心分離法では、未溶解石炭による閉塞が起こり易く、工業的に実施することが困難な場合がある。一方、重力沈降法によれば、重力沈降槽の上部からは主に液体である抽出分を、下部からは主に固形分濃縮液である抽出残分を得ることができ、流体の連続操作が可能であり、低コストで大量の処理にも適しているため好ましい。   The solid-liquid separation means is not particularly limited, and a known method may be employed. Examples thereof include various filtration methods, centrifugal separation methods, and gravity sedimentation methods. In the filtration method, since the filtration amount of the filtration filter is limited, a large amount of undissolved coal may not be separated. In the centrifugal separation method, clogging with undissolved coal is likely to occur, and it may be difficult to implement industrially. On the other hand, according to the gravitational sedimentation method, an extract that is mainly liquid can be obtained from the upper part of the gravity sedimentation tank, and an extraction residue that is mainly a solid concentrate can be obtained from the lower part. This is preferable because it is possible and is suitable for a large amount of processing at a low cost.

なお、固液分離工程における溶剤の温度と固液分離時の圧力は、上記抽出工程で設定した温度および圧力と同じ範囲に設定することが好ましい。原料の石炭から溶出した溶質の再析出を防ぐためである。   In addition, it is preferable to set the temperature of the solvent in a solid-liquid separation process, and the pressure at the time of solid-liquid separation to the same range as the temperature and pressure which were set at the said extraction process. This is to prevent reprecipitation of the solute eluted from the raw material coal.

図2では、上記抽出工程から溶剤可溶成分と溶剤不溶成分の混合物スラリーが重力浮沈槽へ供給される。重力浮沈槽では溶剤可溶成分と溶剤不溶成分とに分離される。重力沈降槽の下部に沈降した溶剤不溶成分は、非抽出炭濃縮液受器へ排出され、上部の溶剤可溶成分は必要に応じてフィルターユニット(図示せず)を介して溶剤可溶成分に含まれる溶剤不溶成分を除去した後に、抽出炭溶液受器へ排出される。   In FIG. 2, a mixture slurry of a solvent-soluble component and a solvent-insoluble component is supplied from the extraction step to a gravity floatation tank. In the gravity floatation tank, it is separated into a solvent soluble component and a solvent insoluble component. The solvent-insoluble component settled in the lower part of the gravity settling tank is discharged to the non-extracted charcoal concentrate receiver, and the solvent-soluble component in the upper part is converted into a solvent-soluble component via a filter unit (not shown) as necessary. After removing the solvent-insoluble component contained, it is discharged to the extracted charcoal solution receiver.

<溶剤除去工程S3>
溶剤除去工程は、上記溶剤不溶成分から溶剤を除去して非溶剤抽出炭を得る工程である。溶剤不溶成分から溶剤を除去することにより、灰分や未溶解石炭などの抽出残分が濃縮された非溶剤抽出炭を得ることができる。
<Solvent removal step S3>
A solvent removal process is a process of removing a solvent from the said solvent insoluble component, and obtaining non-solvent extraction charcoal. By removing the solvent from the solvent-insoluble component, it is possible to obtain non-solvent extracted coal in which extraction residues such as ash and undissolved coal are concentrated.

なお、灰分とは、815℃で灰化したときの残留無機物(ケイ酸、アルミナ、酸化鉄、石灰、マグネシア、アルカリ金属など)をいう。本発明では、非溶剤抽出炭に含まれる灰分の含有率は、質量基準で、15〜25%程度であることが好ましい。   The ash content means residual inorganic substances (silicic acid, alumina, iron oxide, lime, magnesia, alkali metal, etc.) when incinerated at 815 ° C. In this invention, it is preferable that the content rate of the ash content contained in non-solvent extraction charcoal is about 15-25% on a mass basis.

溶剤を分離する方法としては、一般的な蒸留法や蒸発法(スプレードライ法等)を用いることができる。なお、本発明では、分離して回収した溶剤を抽出工程で用いる溶剤の一部として再利用することが好ましい。   As a method for separating the solvent, a general distillation method or evaporation method (spray drying method or the like) can be used. In the present invention, it is preferable to reuse the separated and recovered solvent as a part of the solvent used in the extraction step.

なお、溶剤可溶成分についても同様に蒸留法等を用いて溶剤を除去することによって、灰分濃度が極めて低い無灰炭(HPC)を得ることができる。無灰炭とは、石炭中に含まれる無機物を殆ど含まず(灰分含有率5000ppm以下)、有機物で構成されている。ただし、本発明ではHPCを用いない。   Similarly, ashless charcoal (HPC) having an extremely low ash content can be obtained by removing the solvent-soluble component using a distillation method or the like. Ashless coal contains almost no inorganic matter contained in the coal (ash content 5000 ppm or less) and is composed of organic matter. However, HPC is not used in the present invention.

<混合工程S4>
混合工程は、上記溶剤除去工程(S3)で溶剤不溶成分から溶剤を除去して得られる非溶剤抽出炭と、原料炭とを混合して混合物とする工程である。
<Mixing step S4>
A mixing process is a process which mixes the non-solvent extraction charcoal obtained by removing a solvent from a solvent insoluble component at the said solvent removal process (S3), and raw material charcoal.

非溶剤抽出炭と原料炭との混合方法は、特に限定されず、均一な混合が得られる公知の方法を採用すればよく、例えばミキサー、ニーダー、単軸の混合機、二軸の混合機などを用いることができる。   The mixing method of the non-solvent extracted coal and the raw coal is not particularly limited, and a known method that can obtain uniform mixing may be employed. For example, a mixer, a kneader, a single screw mixer, a twin screw mixer, etc. Can be used.

上記非溶剤抽出炭と混合する原料炭として使用できる石炭の種類は特に限定されないが、特に強粘結炭、準粘結炭、微粘結炭よりなる群から選ばれる少なくとも1種を用いることが望ましい。これらを原料炭として用いると、非溶剤抽出炭と混合しても、強度の低下を抑制しつつ、反応性を向上できるからである。   The type of coal that can be used as the raw coal to be mixed with the non-solvent extracted coal is not particularly limited, but in particular, at least one selected from the group consisting of strongly caking coal, semi-caking coal, and slightly caking coal may be used. desirable. This is because, when these are used as raw coal, reactivity can be improved while suppressing a decrease in strength even when mixed with non-solvent extracted coal.

本発明において強粘結炭とは、平均最大反射率(Ro)が1.1超〜1.5、ギーセラー流動度(logMF)が0.5〜3.5の石炭、準粘結炭とは、Roが0.7〜1.1以下、logMFが2.5超〜3.5の石炭、微粘結炭とは、Roが0.7〜1.1以下、logMFが0.5〜2.5以下の石炭をいう。   In the present invention, the strongly caking coal is a coal having an average maximum reflectance (Ro) of more than 1.1 to 1.5 and a Gieseller fluidity (log MF) of 0.5 to 3.5, and semi-caking coal. , Ro is 0.7 to 1.1 or less, log MF is more than 2.5 to 3.5 coal, slightly caking coal, Ro is 0.7 to 1.1 or less, log MF is 0.5 to 2 .5 or less coal.

強粘結炭、準強粘結炭、及び微粘結炭は、複数種組み合わせて用いることもでき、要求されるコークスの特性に応じて適宜組み合わせればよい。   Strongly caking coal, semi-strongly caking coal, and slightly caking coal can also be used in combination of multiple types, and may be combined as appropriate according to the required coke characteristics.

一般的に強粘結炭は粘結性が高く、強粘結炭の配合量を増加させると、得られるコークスの強度が向上する。また準強粘結炭は強粘結炭に次ぐ粘性を持ち、また高流動性、高膨張性という特性を有するため、これら石炭を適宜組み合わせることで、配合炭の性状を制御することができる。また微粘結炭は安価であるが溶融性、膨張性が乏しいため、微粘結炭の配合量を増加させると、得られるコークスの強度が低下する。   In general, strong caking coal has high caking properties, and increasing the blending amount of the strong caking coal improves the strength of the resulting coke. Moreover, since semi-strongly caking coal has the viscosity next to strongly caking coal, and has the characteristics of high fluidity and high expansibility, the properties of the blended coal can be controlled by appropriately combining these coals. In addition, although slightly caking coal is inexpensive but has poor meltability and expandability, increasing the blending amount of the slightly caking coal decreases the strength of the coke obtained.

本発明では高反応性を有し、またスペーサーとしての十分な強度を兼備したコークスを得るために、(強粘結炭と準強粘結炭):微粘結炭の割合を85:15〜40:60とすることが好ましく、より好ましくは80:20〜50:50とすることが望ましい。   In the present invention, in order to obtain coke having high reactivity and sufficient strength as a spacer, the ratio of (strongly caking coal and semi-caking coal): slightly caking coal is set to 85:15. The ratio is preferably 40:60, more preferably 80:20 to 50:50.

原料炭の粒径は、その70質量%以上(より好ましくは80質量%以上、更に好ましくは90質量%以上)が3mm以下であることが好ましい。粒径3mmを超える石炭が30質量%を超えて存在すると、得られるコークスの強度が低下することがある。なお、本発明において上記「粒径」とは、ふるい分け法によって求められる値であって、具体的には、粒度試験法(JIS M8801)によって求められる値である。   The particle size of the raw coal is preferably 70% by mass or more (more preferably 80% by mass or more, and still more preferably 90% by mass or more) of 3 mm or less. If the coal having a particle size exceeding 3 mm exceeds 30% by mass, the strength of the obtained coke may be lowered. In the present invention, the “particle size” is a value obtained by a sieving method, and specifically, a value obtained by a particle size test method (JIS M8801).

非溶剤抽出炭は上記工程を経て得られるものであって、非溶剤抽出炭は、石炭に含有されていた溶剤未溶解成分(灰分、有機分)が濃縮した炭素分80%以上の石炭である。さらに、ギーセラー流動度(logMF)では、非溶剤抽出炭が溶融しないため測定できない性質のものである。   The non-solvent extracted coal is obtained through the above-described process, and the non-solvent extracted coal is a coal having a carbon content of 80% or more which is concentrated by solvent-insoluble components (ash and organic components) contained in the coal. . Further, the Gieseller fluidity (log MF) has a property that cannot be measured because the non-solvent extracted coal does not melt.

非溶剤抽出炭の粒径については特に限定されないが、非溶剤抽出炭の粒径が大きい場合、コークスに亀裂が生じる原因となることがある。したがって非溶剤抽出炭の粒径は、原料石炭の粒径が上記範囲にある場合、1mm以下(より好ましくは0.5mm以下)であることが好ましい。非溶剤抽出炭の粒径の下限については特に限定されないが、粒径が小さすぎると装置内に付着することがあり、また粉砕のためのコストが生じることから、0.01mm以上(より好ましくは0.10mm以上)であることが好ましい。   The particle size of the non-solvent extracted coal is not particularly limited, but when the particle size of the non-solvent extracted coal is large, it may cause cracks in the coke. Therefore, the particle size of the non-solvent extracted coal is preferably 1 mm or less (more preferably 0.5 mm or less) when the particle size of the raw coal is in the above range. The lower limit of the particle size of the non-solvent extracted coal is not particularly limited. However, if the particle size is too small, it may adhere to the apparatus, and costs for pulverization occur. 0.10 mm or more).

なお、非溶剤抽出炭の粒径は上記製造方法における条件を変更することによっても調節することができるが、上記工程で得られた非溶剤抽出炭を篩い分けしたり、あるいは別途、粉砕する工程を設けて、非溶剤抽出炭の粒径を制御することができる。   The particle size of the non-solvent extracted coal can also be adjusted by changing the conditions in the above production method, but the non-solvent extracted coal obtained in the above step is sieved or separately pulverized. The particle size of the non-solvent extracted coal can be controlled.

また非溶剤抽出炭の細孔容積は、溶剤抽出炭や原料炭よりも大きいことが望ましい。細孔容積が大きい方がコークスの反応性が向上するからである。   The pore volume of the non-solvent extracted coal is desirably larger than that of the solvent extracted coal or the raw coal. This is because the larger the pore volume, the better the coke reactivity.

非溶剤抽出炭と原料炭の混合比率は特に限定されないが、非溶剤抽出炭の混合比率が高くなりすぎるとコークスの強度が低下して高炉内で圧潰するなど、取扱い性が悪くなる。一方、非溶剤抽出炭の混合比率が低くなりすぎると、上記非溶剤抽出炭による反応性向上効果を十分に得ることができない。したがって非溶剤抽出炭と原料炭の混合比率(非溶剤抽出炭:原料炭)は、質量基準で、1:99〜30:70(より好ましい下限は5:95以上、より好ましい上限は15:85以下、更に好ましい上限は10:90以下)とすることが好ましい。   The mixing ratio of the non-solvent extracted coal and the raw coal is not particularly limited. However, if the mixing ratio of the non-solvent extracted coal is too high, the handling property is deteriorated, for example, the strength of the coke is reduced and the coke is crushed in the blast furnace. On the other hand, when the mixing ratio of the non-solvent extracted coal becomes too low, the reactivity improvement effect by the non-solvent extracted coal cannot be sufficiently obtained. Therefore, the mixing ratio of non-solvent extracted coal and raw coal (non-solvent extracted coal: coking coal) is 1:99 to 30:70 (more preferable lower limit is 5:95 or more and more preferable upper limit is 15:85 on a mass basis). Hereinafter, a more preferable upper limit is preferably 10:90 or less.

混合物の製造にあたっては、公知の添加剤などを必要に応じて含有させてもよいが、混合物は、固液分離後の溶剤可溶成分から溶剤を除去して得られる溶剤抽出炭を炭材として含まない。溶剤抽出炭は上記の通り、軟化溶融性が高く、粘結材として作用し、強度が向上するため、逆に反応性が低下する可能性がある。   In the production of the mixture, known additives and the like may be included as necessary, but the mixture is obtained by using solvent-extracted charcoal obtained by removing the solvent from the solvent-soluble component after solid-liquid separation as a carbon material. Not included. As described above, the solvent-extracted charcoal has a high softening and melting property, acts as a binder, and improves the strength, so that the reactivity may be reduced.

なお、本発明では上記混合物を所望の形状に成形して塊状体にしてもよい。塊状体を成形するための方法は特に限定されるものではなく、例えば、平ロールによるダブルロール(双ロール)型成形機や、アーモンド型ポケットを有するダブルロール型成形機を用いる方法の他、単軸プレスやローラータイプの成形機、押し出し成形機を用いる方法等、いずれの方法も採用できる。   In the present invention, the above mixture may be formed into a desired shape into a lump. The method for forming the lump is not particularly limited. For example, in addition to a method using a double roll type molding machine using flat rolls, a double roll type molding machine having an almond type pocket, Any method such as a method using a shaft press, a roller type molding machine, or an extrusion molding machine can be adopted.

塊状体の成形は、室温前後で行なう冷間成形でもよいし、加熱して行う熱間成形でもよい。熱間成形は、室温を超えて400℃程度以下で行うのがよい。成形温度が400℃を超えると石炭が熱分解し、タールが発生して石炭成分を失うことになる。好ましくは250〜350℃程度で熱間成形するのがよい。成形圧力は特に限定されず、公知の条件を採用すればよい。   The forming of the lump may be cold forming performed at around room temperature or hot forming performed by heating. The hot forming is preferably performed at a temperature exceeding room temperature and not higher than about 400 ° C. When the molding temperature exceeds 400 ° C., coal is thermally decomposed, tar is generated, and the coal components are lost. Preferably, hot forming is performed at about 250 to 350 ° C. The molding pressure is not particularly limited, and known conditions may be adopted.

例えば、ダブルロール型の成型機を用いて、200〜400℃(より好ましく250〜350℃)下で加熱加圧成形すればよい。   For example, using a double-roll type molding machine, heat-press molding may be performed at 200 to 400 ° C. (more preferably 250 to 350 ° C.).

上記のような成形を経て得られる塊状体(成形物)の大きさは、原料鉄鉱石や石炭の種類、製造条件、或いは高炉での運用条件によって異なるが、おおむね10〜30mm前後である。   The size of the lump (molded product) obtained through the molding as described above is approximately 10 to 30 mm, although it varies depending on the type of raw iron ore and coal, production conditions, or operating conditions in a blast furnace.

<乾留工程S5>
乾留工程は、上記混合工程(S4)で得られた混合物を乾留する工程である。乾留することによって石炭部分がコークス化され、高反応性コークスを製造できる。
<Dry distillation process S5>
The dry distillation step is a step of dry distillation of the mixture obtained in the mixing step (S4). The coal portion is coked by dry distillation, and highly reactive coke can be produced.

乾留工程は、既存のコークス炉を用いて行うことができる。乾留するときに用いる炉の形状も特に限定されず、室炉を用いてバッチ式で乾留してもよいし、縦型シャフト炉を用いて連続式で乾留してもよい。縦型シャフト炉を用いた場合には、炉の上方から上記成形体を装入し、炉内を上から下に向かって移動する間に乾留され、炉の下方から乾留された鉄鉱石含有コークスが排出される。   The carbonization process can be performed using an existing coke oven. The shape of the furnace used for dry distillation is not particularly limited, and batch distillation may be performed using a chamber furnace, or continuous distillation may be performed using a vertical shaft furnace. When a vertical shaft furnace is used, the iron ore-containing coke is charged from above the furnace, dry-distilled while moving in the furnace from top to bottom, and dry-distilled from the bottom of the furnace. Is discharged.

乾留条件も公知の条件を採用でき、乾留温度は、650〜1200℃程度(特に、700〜1100℃程度)、乾留時間は、5分間〜24時間程度(特に、10分間〜16時間程度)とすればよい。乾留雰囲気は、特に非酸化性ガスを流す必要はなく、炉内が密閉されていれば酸素は消費され、石炭の揮発雰囲気になるが、必要であれば、石炭の酸化による劣化を防止するため、非酸化性ガス雰囲気とすればよい。   As the carbonization conditions, known conditions can be adopted, the carbonization temperature is about 650 to 1200 ° C. (particularly about 700 to 1100 ° C.), and the carbonization time is about 5 minutes to 24 hours (particularly about 10 minutes to 16 hours). do it. In the dry distillation atmosphere, it is not necessary to flow a non-oxidizing gas in particular. If the furnace is sealed, oxygen is consumed and the coal becomes a volatilizing atmosphere. If necessary, in order to prevent deterioration due to oxidation of coal. A non-oxidizing gas atmosphere may be used.

このようにして得られた製鉄用コークスは、十分な強度を有しており、また反応性も従来のコークスに比べて高くなっている。   The iron coke thus obtained has a sufficient strength and has a higher reactivity than conventional coke.

以上の通り、本発明に係る製鉄用コークスの製造方法について説明したが、各工程に悪影響を与えない範囲において、各工程の間あるいは前後に新たな工程を設けてもよい。例えば、原料石炭を粉砕する石炭粉砕工程、加熱処理によって軟化溶融性を調整する工程、ごみ等の不要物を除去する除去工程及び得られた非溶剤抽出物を乾燥させる乾燥工程等を行ってもよい。   As mentioned above, although the manufacturing method of the coke for steel manufacture which concerns on this invention was demonstrated, you may provide a new process between each process, or before and behind in the range which does not have a bad influence on each process. For example, a coal pulverization step for pulverizing raw coal, a step for adjusting softening and melting properties by heat treatment, a removal step for removing unnecessary substances such as dust, a drying step for drying the obtained non-solvent extract, etc. Good.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

本発明に係る高反応性コークスの製造方法について、実施例を挙げて具体的に説明する。   The production method of the highly reactive coke according to the present invention will be specifically described with reference to examples.

<非抽出炭の製造>
原料石炭として一般炭であるCoal−A(5kg)、溶剤としてメチルナフタレン(20kg)を用いて、スラリーを調製した。このスラリーを1.2MPaの窒素で加圧して、内容積30L(リットル)のオートクレーブ中、370℃、1時間の条件で加熱処理した(抽出工程)。次いで、このスラリーを同一温度、圧力に維持された重力沈降槽へ移し、溶剤可溶成分と溶剤不溶成分とに分離し(固液分離工程)、重力沈降槽下部から溶剤不溶成分を抜き出した後、蒸留して溶剤を分離・除去して(溶剤除去工程)、非溶剤抽出炭を得た。また同様に重力沈降槽上部から溶剤可溶成分を抜き出した後、蒸留によって溶剤を分離・除去して、溶剤抽出炭を得た。
<Manufacture of non-extracted coal>
A slurry was prepared using Coal-A (5 kg), which is a general coal as a raw material coal, and methylnaphthalene (20 kg) as a solvent. This slurry was pressurized with 1.2 MPa of nitrogen and heat-treated in an autoclave with an internal volume of 30 L (liter) at 370 ° C. for 1 hour (extraction process). Next, the slurry is transferred to a gravity sedimentation tank maintained at the same temperature and pressure, separated into a solvent-soluble component and a solvent-insoluble component (solid-liquid separation process), and after extracting the solvent-insoluble component from the lower part of the gravity sedimentation tank The solvent was separated and removed by distillation (solvent removal step) to obtain non-solvent extracted charcoal. Similarly, after extracting the solvent-soluble component from the upper part of the gravity settling tank, the solvent was separated and removed by distillation to obtain solvent-extracted charcoal.

<原料石炭、非溶剤抽出炭、溶剤抽出炭の性質>
原料石炭(Coal−A)、非溶剤抽出炭、溶剤抽出炭について、表1および表2に示す成分を分析した。
<Properties of raw coal, non-solvent extracted coal, solvent extracted coal>
Components shown in Tables 1 and 2 were analyzed for raw coal (Coal-A), non-solvent extracted coal, and solvent extracted coal.

詳細には、これらの灰分濃度を工業分析(JIS M8812)にしたがって測定した。また、金属元素濃度について、Na,Kは、揮発しない温度(700℃)で灰化し、塩酸抽出後、原子吸光法にて定量した。Siは、815℃で灰化し、炭酸ナトリウムもしくは合剤(炭酸ナトリウム+四ほう酸ナトリウム)で溶解し、塩酸抽出後、濃度により吸光光度法またはICP発光分光分析法にて定量した。その他の金属(Al,Fe,Mg,Ca,Ti)は、815℃で灰化し、前記合剤で溶解し、塩酸抽出後、濃度により原子吸光法またはICP発光分光分析法にて定量した。また、C、H、N、S、N、およびClは、JIS M8813の方法によって測定した。水分は、JIS M8811の方法によって測定した。発熱量は、JIS M8814の方法によって測定した。   Specifically, these ash concentrations were measured according to industrial analysis (JIS M8812). Further, regarding the metal element concentration, Na and K were incinerated at a temperature at which volatilization did not occur (700 ° C.), extracted with hydrochloric acid, and then quantified by an atomic absorption method. Si was incinerated at 815 ° C., dissolved with sodium carbonate or a mixture (sodium carbonate + sodium tetraborate), extracted with hydrochloric acid, and quantified by absorptiometry or ICP emission spectroscopic analysis depending on the concentration. Other metals (Al, Fe, Mg, Ca, Ti) were incinerated at 815 ° C., dissolved in the above mixture, extracted with hydrochloric acid, and quantified by atomic absorption or ICP emission spectroscopic analysis depending on the concentration. C, H, N, S, N, and Cl were measured by the method of JIS M8813. The moisture was measured by the method of JIS M8811. The calorific value was measured by the method of JIS M8814.

これらの結果を表1、2に示す。   These results are shown in Tables 1 and 2.

Figure 2012031236
Figure 2012031236

Figure 2012031236
Figure 2012031236

表1および表2の結果より、非溶剤抽出炭は、原料石炭(Coal−A)や溶剤抽出炭に比べ、灰分が多く含まれており、且つ、Fe、Caなどの元素も多く含まれることが分った。   From the results in Tables 1 and 2, the non-solvent extracted coal is rich in ash and contains many elements such as Fe and Ca, compared to raw coal (Coal-A) and solvent extracted coal. I found out.

また、原料石炭(Coal−A)、非溶剤抽出炭、溶剤抽出炭の細孔容積について、水銀法によって測定した。結果を図3に示す。   Moreover, it measured by the mercury method about the pore volume of raw material coal (Coal-A), non-solvent extraction coal, and solvent extraction coal. The results are shown in FIG.

図3より、原料石炭(Coal−A)と溶剤抽出炭の細孔容積はほぼ同じであったが、非溶剤抽出炭の細孔容積は原料石炭(Coal−A)や溶剤抽出炭と比較すると2倍程度の細孔容積を有していることがわかった。   From FIG. 3, although the pore volume of raw material coal (Coal-A) and solvent extraction coal was substantially the same, the pore volume of non-solvent extraction coal compared with raw material coal (Coal-A) and solvent extraction coal. It was found that the pore volume was about twice.

<コークスの製造>
(混合工程)
表3に記載の種々の原料炭(強粘結炭A、強粘結炭B、準強粘結炭C、微粘結炭D)と、上記のようにして得られた非溶剤抽出炭を下記表4に示す割合で、常温でよく混合し、充填密度800kg/m、水分7.8%となるように調整して混合物を得た(混合工程)。原料炭には、粒径が3mm以下のものが80質量%以上となるように粉砕したものを用いた。また非溶剤抽出炭には、粒径が1mm以下のものが100質量%となるように粉砕したものを用いた。なお、各原料炭と非溶剤抽出炭の成分について調べた結果を表3に示す。
<Manufacture of coke>
(Mixing process)
Various raw coals listed in Table 3 (strongly caking coal A, strong caking coal B, semi-caking coal C, and slightly caking coal D) and non-solvent extracted coal obtained as described above In the ratio shown in Table 4 below, the mixture was mixed well at room temperature, and adjusted to a packing density of 800 kg / m 3 and a moisture content of 7.8% to obtain a mixture (mixing step). The raw coal used was pulverized so that the particle size of 3 mm or less was 80% by mass or more. The non-solvent extracted coal used was pulverized so that the particle size of 1 mm or less was 100% by mass. Table 3 shows the results of examining the components of each raw coal and non-solvent extracted coal.

揮発分(VM)は、JIS M8812に基づいて測定した。
灰分(Ash)は、JIS M8812に基づいて測定した。
反射率(Ro)は、JIS M8816に基づいて測定した。
Volatile content (VM) was measured based on JIS M8812.
Ash content (Ash) was measured based on JIS M8812.
The reflectance (Ro) was measured based on JIS M8816.

軟化溶融性(logMF)は、JIS M8801に規定されたギーセラープラストメータ法によって測定した。   The softening and melting property (log MF) was measured by the Gieseler plastometer method defined in JIS M8801.

(乾留工程)
300kg規模試験炉による缶焼き試験でコークスを製造した。具体的には上記工程で得られた混合物を3℃/分の昇温速度で室温から1050℃まで昇温した後、1050℃〜1060℃に制御した炉内で約16時間保持して乾留し(乾留工程)、実施例1および比較例1のコークスを製造した。
(Dry distillation process)
Coke was produced in a can baking test using a 300 kg scale test furnace. Specifically, the mixture obtained in the above step was heated from room temperature to 1050 ° C. at a rate of temperature increase of 3 ° C./min, and then kept in a furnace controlled at 1050 ° C. to 1060 ° C. for about 16 hours and dry-distilled. (Crying process), coke of Example 1 and Comparative Example 1 was produced.

<コークスの特性評価>
(強度)
乾留して得られたコークスの強度は、JIS K2151に基づいてドラム指数DI150 15を測定した。その結果、実施例1、比較例1のコークスのいずれも80以上のドラム指数(DI150 15)を示し、十分な強度を有していた。
<Characteristic evaluation of coke>
(Strength)
The strength of the coke obtained by dry distillation was measured with a drum index DI 150 15 based on JIS K2151. As a result, both the coke of Example 1 and Comparative Example 1 exhibited a drum index (DI 150 15 ) of 80 or more and had sufficient strength.

(熱間反応性:CRI)
熱間反応性は、二酸化炭素雰囲気下で1100℃の条件で2時間反応させ、反応後の重量変化から反応率を計算した。
(Hot reactivity: CRI)
For the hot reactivity, the reaction was performed for 2 hours at 1100 ° C. in a carbon dioxide atmosphere, and the reaction rate was calculated from the change in weight after the reaction.

(反応後強度:CSR)
反応後強度は、熱間反応性試験後のサンプルをI型強度試験機にて600回転(毎分20回転)の衝撃を加えた後、9.5mm篩上の重量にて評価した。各試験配合率とその結果を表4に示す。なお、反応後強度は低下するが、このコークスは高反応性コークスとして、高強度コークスと使用形態を区別してすれば、使用上問題はない。
(Strength after reaction: CSR)
The strength after the reaction was evaluated based on the weight on a 9.5 mm sieve after applying an impact of 600 revolutions (20 revolutions per minute) to the sample after the hot reactivity test with a type I strength tester. Table 4 shows the test blend ratios and the results. Although the strength decreases after the reaction, this coke is a highly reactive coke, and there is no problem in use if the high strength coke is distinguished from the form of use.

Figure 2012031236
Figure 2012031236

Figure 2012031236
Figure 2012031236

実施例1は、本発明の要件を満足する製造方法で得られた製鉄用コークスであって、非溶剤抽出炭を配合した例であるが、高い熱間反応性(41.3)を示した。一方、比較例1は、非溶剤抽出炭の代わりに微粘結炭Dを配合したコークスであるが、熱間反応性は実施例1よりも劣っていた。なお、実施例1の反応後強度は比較例1よりも低下しているが、このコークスは高反応性コークスとして、高強度コークスと使用形態を区別してすれば、使用上問題はない。   Example 1 is a coke for iron making obtained by a production method that satisfies the requirements of the present invention, in which non-solvent extracted coal was blended, and showed high hot reactivity (41.3). . On the other hand, although the comparative example 1 is the coke which mix | blended the slightly caking coal D instead of the non-solvent extraction charcoal, hot reactivity was inferior to Example 1. FIG. In addition, although the post-reaction strength of Example 1 is lower than that of Comparative Example 1, there is no problem in use if this coke is a highly reactive coke and the high-strength coke is distinguished from the form of use.

本実施例では、微粘結炭の一部を非溶剤抽出炭に代替させたコークスの結果を記載したが、良質の原料炭(粘結炭)と代替すれば、更に反応性の向上が期待できる。本発明の適用により、安価な原料で反応性の高いコークスを得ることができ、また高反応性コークスの製造方法として有用であることがわかった。   In this example, the result of coke in which a part of slightly caking coal was replaced with non-solvent extracted coal was described, but if it is replaced with good quality coal (caking coal), further improvement in reactivity is expected. it can. It has been found that application of the present invention makes it possible to obtain highly reactive coke with an inexpensive raw material and is useful as a method for producing highly reactive coke.

Claims (4)

溶剤で石炭から可溶成分を抽出し、溶剤可溶成分と溶剤不溶成分の混合物スラリーを得る抽出工程と、
前記混合物スラリーを、固液分離手段を用いて溶剤可溶成分と溶剤不溶成分に分離する固液分離工程と、
前記溶剤不溶成分から溶剤を除去し、非溶剤抽出炭を得る溶剤除去工程と、
前記非溶剤抽出炭と、原料炭とを混合して混合物とする混合工程と、
前記混合物を乾留し、高反応性コークスを得る乾留工程と、
を順次、含むことを特徴とする製鉄用コークスの製造方法。
An extraction step of extracting a soluble component from coal with a solvent to obtain a mixture slurry of the solvent-soluble component and the solvent-insoluble component;
A solid-liquid separation step of separating the mixture slurry into a solvent-soluble component and a solvent-insoluble component using solid-liquid separation means;
Removing the solvent from the solvent-insoluble component to obtain a non-solvent extracted charcoal; and
A mixing step in which the non-solvent extracted coal and raw coal are mixed to form a mixture;
A carbonization step of carbonizing the mixture to obtain highly reactive coke;
A method for producing coke for iron making, comprising:
前記非溶剤抽出炭は、前記固液分離工程によって得られる前記溶剤可溶成分を含まないものである請求項1に記載の製鉄用コークスの製造方法。   The method for producing coke for iron making according to claim 1, wherein the non-solvent extracted coal does not contain the solvent-soluble component obtained by the solid-liquid separation step. 前記混合物における前記非溶剤抽出炭と前記原料炭との質量比率は1:99〜30:70である請求項1または2に記載の製鉄用コークスの製造方法。   The method for producing coke for iron making according to claim 1 or 2, wherein a mass ratio of the non-solvent extracted coal and the raw coal in the mixture is 1:99 to 30:70. 前記原料炭は、強粘結炭、準強粘結炭、及び微粘結炭よりなる群から選ばれる少なくとも1種である請求項1〜3のいずれかに記載の製鉄用コークスの製造方法。   The method for producing coke for iron making according to any one of claims 1 to 3, wherein the raw coal is at least one selected from the group consisting of strongly caking coal, semi-caking coal, and slightly caking coal.
JP2010169686A 2010-07-28 2010-07-28 Manufacturing method of coke for steel making Active JP5559628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010169686A JP5559628B2 (en) 2010-07-28 2010-07-28 Manufacturing method of coke for steel making

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010169686A JP5559628B2 (en) 2010-07-28 2010-07-28 Manufacturing method of coke for steel making

Publications (2)

Publication Number Publication Date
JP2012031236A true JP2012031236A (en) 2012-02-16
JP5559628B2 JP5559628B2 (en) 2014-07-23

Family

ID=45845036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169686A Active JP5559628B2 (en) 2010-07-28 2010-07-28 Manufacturing method of coke for steel making

Country Status (1)

Country Link
JP (1) JP5559628B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003054A1 (en) * 2012-06-29 2014-01-03 株式会社神戸製鋼所 Coke composed mainly of by-product coal
WO2014007243A1 (en) * 2012-07-05 2014-01-09 株式会社神戸製鋼所 Method for producing iron-containing coke, and iron-containing coke

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070182A (en) * 2004-09-02 2006-03-16 Kobe Steel Ltd Method for producing coal as raw material of coke
JP2008115369A (en) * 2006-10-12 2008-05-22 Kobe Steel Ltd Method of manufacturing ashless coal
JP2009215402A (en) * 2008-03-10 2009-09-24 Kobe Steel Ltd Method for producing ashless coal
JP2009227718A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd Manufacturing method for ashless coal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070182A (en) * 2004-09-02 2006-03-16 Kobe Steel Ltd Method for producing coal as raw material of coke
JP2008115369A (en) * 2006-10-12 2008-05-22 Kobe Steel Ltd Method of manufacturing ashless coal
JP2009215402A (en) * 2008-03-10 2009-09-24 Kobe Steel Ltd Method for producing ashless coal
JP2009227718A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd Manufacturing method for ashless coal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003054A1 (en) * 2012-06-29 2014-01-03 株式会社神戸製鋼所 Coke composed mainly of by-product coal
JP2014009284A (en) * 2012-06-29 2014-01-20 Kobe Steel Ltd Coke produced from byproduct coal as main raw material
KR20150021534A (en) * 2012-06-29 2015-03-02 가부시키가이샤 고베 세이코쇼 Coke composed mainly of by-product coal
CN104395431A (en) * 2012-06-29 2015-03-04 株式会社神户制钢所 Coke composed mainly of by-product coal
TWI510610B (en) * 2012-06-29 2015-12-01 Kobe Steel Ltd The coke is the main raw material
KR101629601B1 (en) * 2012-06-29 2016-06-13 가부시키가이샤 고베 세이코쇼 Manufacturing method for coke composed mainly of by-product coal
CN104395431B (en) * 2012-06-29 2017-03-08 株式会社神户制钢所 Coke with extract residue as main material
WO2014007243A1 (en) * 2012-07-05 2014-01-09 株式会社神戸製鋼所 Method for producing iron-containing coke, and iron-containing coke
JP2014012789A (en) * 2012-07-05 2014-01-23 Kobe Steel Ltd Method for producing iron-containing coke and iron-containing coke

Also Published As

Publication number Publication date
JP5559628B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5280072B2 (en) Coke production method
JP5334433B2 (en) Production method of ashless coal
JP5342794B2 (en) Carbon material manufacturing method
JP5241105B2 (en) Coke manufacturing method and pig iron manufacturing method
WO2012118151A1 (en) Method for producing carbon material
AU2013226908B2 (en) Coal blend briquette and process for producing same, and coke and process for producing same
JP5530292B2 (en) Manufacturing method of coke for steel making
JP6607366B2 (en) High strength and highly reactive coke production method from non-slightly caking coal
JP5466106B2 (en) Method for producing iron ore-containing coke
JP5336971B2 (en) Method for producing iron ore-containing coke
JP5559628B2 (en) Manufacturing method of coke for steel making
RU2404271C1 (en) Processing method of unconditioned iron- and zinc-containing metallurgical wastes
JP5390977B2 (en) Iron ore-containing coke and method for producing the iron ore-containing coke
JP5247193B2 (en) Coke manufacturing method and pig iron manufacturing method
JP6014012B2 (en) Coke production method and coke
JP5803860B2 (en) Biomass reforming method, biomass and lignite reforming method, coke and sintered ore manufacturing method, and blast furnace operating method
JP6719342B2 (en) Method for producing coke for iron making and method for producing pig iron
JP5449685B2 (en) Method for producing highly reactive coke
JP5438423B2 (en) Method for producing iron ore-containing coke
JP4218426B2 (en) Manufacturing method of high strength ferro-coke
JP5776654B2 (en) Method for reforming object to be reformed, method for producing coke and sintered ore, and method for operating blast furnace
JP2011032369A (en) Method for producing bulk molding for raw material for iron manufacture and iron ore-containing coke

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140606

R150 Certificate of patent or registration of utility model

Ref document number: 5559628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250