JP2012030210A - Phosphorus recovery agent and method for purifying wastewater using the same - Google Patents

Phosphorus recovery agent and method for purifying wastewater using the same Download PDF

Info

Publication number
JP2012030210A
JP2012030210A JP2010174259A JP2010174259A JP2012030210A JP 2012030210 A JP2012030210 A JP 2012030210A JP 2010174259 A JP2010174259 A JP 2010174259A JP 2010174259 A JP2010174259 A JP 2010174259A JP 2012030210 A JP2012030210 A JP 2012030210A
Authority
JP
Japan
Prior art keywords
phosphorus
recovery agent
monohydrocalcite
aragonite
calcite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010174259A
Other languages
Japanese (ja)
Other versions
JP5618064B2 (en
Inventor
Keisuke Fukushi
圭介 福士
Shintaro Yagi
新大朗 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2010174259A priority Critical patent/JP5618064B2/en
Publication of JP2012030210A publication Critical patent/JP2012030210A/en
Application granted granted Critical
Publication of JP5618064B2 publication Critical patent/JP5618064B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Treatment By Sorption (AREA)
  • Removal Of Specific Substances (AREA)
  • Fertilizers (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a phosphorus recovery agent capable of recovering phosphorus from wastewater effectively, and reusable as a phosphatic fertilizer under acid soil, and to provide a method for purifying wastewater using the same.SOLUTION: The phosphorus recovery agent is monohydrocalcite obtained by precipitation formation by mixing soluble carbonate or an aqueous solution of carbonate with an aqueous solution containing Mgion and Caion in a ratio satisfying Mg/Ca=0.3 or more.

Description

本発明は排水中からリンを回収し、リン酸肥料として再利用できるリン回収剤に関する。   The present invention relates to a phosphorus recovery agent that recovers phosphorus from wastewater and can be reused as phosphate fertilizer.

リン(リン酸)は富栄養化を引き起こす原因物質の1つであり、排水からの除去が必要である。
その一方で近年、リン資源の枯渇が懸念されており、リンは生物にとって必須栄養素であることからリン酸肥料の必要性も増大している。
これまでに、リン酸はAl酸化物やゲーサイト(α−FeOOH)等のFe酸化物の表面に吸着されることが報告されている(非特許文献1)。
また、カルシウム炭酸塩鉱物であるアラゴナイト、カルサイトを吸着剤として用いるリン酸の除去方法も報告されている(非特許文献2)。
カルシウム炭酸塩には、前記のカルサイト(CaCO)とアラゴナイト(CaCO)とが存在する。
カルサイトは、日本語名が方解石あるいは石灰石と称され、アラゴナイトは日本語名が霰石と称され、これらカルサイトとアラゴナイトは結晶構造が異なるため鉱物としては区分されている。
一方、水和カルシウム炭酸塩としては、モノハイドロカルサイト(CaCO・HO),イカイト(CaCO・6HO)及びアモルファスカルサイトの3つの形態が知られている。
モノハイドロカルサイトは、本願発明者のこれまでの研究により、準閉塞湖であり、人為的な撹乱が少ないモンゴルのフブスグル湖の20万年前堆積物コア(2004年,Hovsgol Drilling Project)に存在していることを明らかにし(発表文献:Fukushi K. Fukumoto H. Munemoto T. Ochiai S and Kashiwaya K.「Records of water quality in Lake Hovsgol printed in carbonate minerals in the sediments」 Abstract volume 6th international symposium on terrestrial environmental changes in East Eurasia and Adjacent Areas, (2007) 24-25)、実験室においてモノハイドロカルサイトを合成し、その変質挙動を研究した(発表文献: Munemoto T. and Fukushi K. 「Transformation kinetics of monohydrocalcite to aragonite in aqueous solutions」 Journal of Mineralogical and Petrological Sciences, 103, (2008) 345-349)。
また、モノハイドロカルサイトは海水に炭酸ナトリウムを添加することで得られることも知られる。
Kinsmannらはやや低温条件(16℃)でろ過したニュージャージー州の海水に炭酸ナトリウムを8mMとなるように添加することでモノハイドロカルサイトの単一相が海水から沈殿することを示している(非特許文献:Kinsman J. J. David., and Holland H.D. 「The co-precipitation of cations with CaCO3. The co-precipitation of Sr2+ with aragonite between 16℃ and 96℃」v, Geochimica et Cosmochimica Acta 33 (1969) 1-17)。
モノハイドロカルサイト(Monohydrocalcite:CaCO・HO)は、結晶構造がTrigonal,a=10.5547Å,c=7.5644Åであり、液中のMg/Ca=0.3以上で、過飽和CO下で沈殿生成し、乾燥状態では安定であるが、水中において一度溶解し、その後アラゴナイト又はカルサイトに再結晶する。
従って、相対的に準安定相であるモノハイドロカルサイトの方が、カルサイトやアラゴナイトのような安定相よりも比表面積が大きく反応性が高いことが想定され、リンの取り込み能力を実験検討した結果、本発明に至った。
Phosphorus (phosphoric acid) is one of the causative substances that cause eutrophication and needs to be removed from waste water.
On the other hand, in recent years, there is a concern about depletion of phosphorus resources, and since phosphorus is an essential nutrient for living organisms, the need for phosphate fertilizer is also increasing.
So far, phosphoric acid has been reported to be adsorbed on the surface of Fe oxides such as Al oxide and goethite (α-FeOOH) (Non-patent Document 1).
Moreover, the removal method of the phosphoric acid which uses aragonite and calcite which are calcium carbonate minerals as an adsorbent is also reported (nonpatent literature 2).
Calcium carbonate contains the above-mentioned calcite (CaCO 3 ) and aragonite (CaCO 3 ).
Calcite is called Japanese calcite or limestone, Aragonite is called Japanese garnet, and calcite and aragonite are classified as minerals because of their different crystal structures.
On the other hand, as hydrated calcium carbonate, three forms of monohydrocalcite (CaCO 3 .H 2 O), squid (CaCO 3 .6H 2 O) and amorphous calcite are known.
Monohydrocalcite is a semi-occluded lake according to the present inventor's previous research and exists in the 200,000-year-old sediment core of Lake Khuvsgul in Mongolia with little human disturbance (2004, Hovsgol Drilling Project) (Publications: Fukushi K. Fukumoto H. Munemoto T. Ochiai S and Kashiwaya K. “Records of water quality in Lake Hovsgol printed in carbonate minerals in the sediments” Abstract volume 6 th international symposium on terrestrial environmental changes in East Eurasia and Adjacent Areas, (2007) 24-25), synthesized monohydrocalcite in the laboratory and studied its alteration behavior (Munemoto T. and Fukushi K. "Transformation kinetics of monohydrocalcite to aragonite in aqueous solutions "Journal of Mineralogical and Petrological Sciences, 103, (2008) 345-349).
It is also known that monohydrocalcite can be obtained by adding sodium carbonate to seawater.
Kinsmann et al. Have shown that a single phase of monohydrocalcite precipitates from seawater by adding sodium carbonate to 8 mM to seawater in New Jersey that has been filtered at slightly low temperature (16 ° C) (non- Patent Literature: Kinsman JJ David., And Holland HD “The co-precipitation of cations with CaCO 3. The co-precipitation of Sr 2+ with aragonite between 16 ℃ and 96 ℃” v, Geochimica et Cosmochimica Acta 33 (1969) 1 -17).
Monohydrocalcite (CaCO 3 · H 2 O) has a crystal structure of Trigonal, a = 10.5547 Å, c = 7.5644 、, Mg / Ca in the liquid is 0.3 or more, and supersaturated CO 2 precipitates and is stable in the dry state but dissolves once in water and then recrystallizes to aragonite or calcite.
Therefore, it is assumed that monohydrocalcite, which is a relatively metastable phase, has a higher specific surface area and higher reactivity than stable phases such as calcite and aragonite, and the phosphorus uptake ability was experimentally examined. As a result, the present invention has been achieved.

Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface,Antelo, J; Avena, M; Fiol, S; Lopez, R; Arce, F,JOURNAL OF COLLOID AND INTERFACE SCIENCE 巻: 285 号: 2 ページ: 476-486 発行: MAY 15 2005Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface, Antelo, J; Avena, M; Fiol, S; Lopez, R; Arce, F, JOURNAL OF COLLOID AND INTERFACE SCIENCE Volume: No. 285 : 2 pages: 476-486 Published: MAY 15 2005 Adsorption and desorption of phosphate on calcite and aragonite in seawater, Millero, F; Huang, F; Zhu, XR; Liu X; Zhang, JL, AQUATIC GEOCHEMISTRY 巻: 7 号: 1 ページ: 33-56 発行: 2001Adsorption and desorption of phosphate on calcite and aragonite in seawater, Millero, F; Huang, F; Zhu, XR; Liu X; Zhang, JL, AQUATIC GEOCHEMISTRY Volume: 7 Issue: 1 Page: 33-56 Publication: 2001

本発明は、排水中から効果的にリンの回収ができ、酸性土壌下でのリン酸肥料として再利用可能なリン回収剤及びそれを用いた排水の浄化方法の提供を目的とする。   An object of this invention is to provide the phosphorus collection | recovery agent which can collect | recover phosphorus effectively from waste_water | drain, and can be reused as phosphate fertilizer under acidic soil, and the purification | cleaning method of waste_water | drain using the same.

本発明に係るリンの回収剤は、Mg2+イオンとCa2+イオンとがMg/Ca=0.3以上の割合で含有する水溶液に、可溶性炭酸塩又は炭酸塩の水溶液を混合することで沈殿生成したモノハイドロカルサイトであることを特徴とする。 The phosphorus recovery agent according to the present invention precipitates by mixing an aqueous solution of soluble carbonate or carbonate with an aqueous solution containing Mg 2+ ions and Ca 2+ ions at a ratio of Mg / Ca = 0.3 or more. It is characterized by being a monohydrocalcite.

モノハイドロカルサイト(以下、必要に応じてMHCと表現する。)の合成時には、Mg2+イオンとCa2+イオンとがMg/Ca=0.3以上の割合にて含有する水溶液に例えばNaCO水溶液を混合することで、MHCを沈殿生成させるものであるから沈殿生成したままのMHCにはMgが含有することが想定される。
そこで、本発明者らはMgの影響を調査すると共に、MHCは不安定であり、水中ではカルサイトやアラゴナイトへ変化すると推定されたのに対して、このMHCは多量のリンを取り込むことによって安定化することも明らかにすることで、本発明に至った。
When synthesizing monohydrocalcite (hereinafter referred to as MHC as necessary), an aqueous solution containing Mg 2+ ions and Ca 2+ ions at a ratio of Mg / Ca = 0.3 or more, for example, Na 2 CO Since the MHC is precipitated by mixing the three aqueous solutions, it is assumed that Mg is contained in the MHC that has been precipitated.
Therefore, the present inventors investigated the influence of Mg, and it was estimated that MHC was unstable and changed to calcite and aragonite in water, whereas this MHC was stabilized by taking in a large amount of phosphorus. The present invention was also clarified by clarifying the conversion.

このようにして得られたリン回収剤は、リンが含まれる排水に接触させることで排水中のリンを吸着あるいはリン酸カルシウムとして取り込む。
リンが吸着あるいは表面にリン酸カルシウムとして沈殿取り込みが行われたリン回収剤は、モノハイドロカルサイトが酸性条件下で比較的溶解度の低い炭酸塩であることから、酸性の溶液と接すると溶解するので、酸性土壌下にてリン酸肥料として再利用できる。
本発明に係るリン回収剤はモノハイドロカルサイトを主成分とするものであれば適宜、他の成分を加えてもよい。
The phosphorus recovery agent obtained in this manner is brought into contact with waste water containing phosphorus to adsorb or take up phosphorus in the waste water as calcium phosphate.
Phosphorus recovery agent in which phosphorus is adsorbed or precipitated as calcium phosphate on the surface is a carbonate with relatively low solubility under acidic conditions, so it dissolves when in contact with an acidic solution. It can be reused as phosphate fertilizer under acidic soil.
If the phosphorus collection | recovery agent which concerns on this invention has a monohydro calcite as a main component, you may add another component suitably.

本発明に係るリン回収剤にあっては、モノハイドロカルサイトを主な成分とし、排水中からリンを効果的に回収でき、回収後はリン酸肥料として再利用できるので湖沼の富栄養化抑制に寄与できるとともに、リン資源の枯渇問題の対策にも貢献できる。   In the phosphorus recovery agent according to the present invention, monohydrocalcite is the main component, phosphorus can be effectively recovered from the wastewater, and can be reused as phosphate fertilizer after recovery, thus suppressing eutrophication of lakes and marshes It can also contribute to countermeasures against the problem of depletion of phosphorus resources.

本発明に係るモノハイドロカルサイトは、リン酸濃度が20μmol/l以下の環境下では、このモノハイドロカルサイトがカルサイトやアラゴナイトに変質するが、リン濃度が低いため、存在するほとんどのリンはカルサイトやアラゴナイトに取り込まれる。
リン酸濃度が20μmol/lを超え、例えば、モノハイドロカルサイト中のMg量が0.38mmol/gの場合には、リン酸濃度約60μmol/lあたりまでモノハイドロカルサイト中のMg量が0.26mmol/gの場合には、リン酸濃度約100μmol/lあたりまでは表面吸着によりリン酸を取り込む。
また、このようなリン酸濃度条件ではモノハイドロカルサイトはリンを取り込むことによって安定化し、カルサイトやアラゴナイトへ変質しないことが明らかになった。
さらに、それ以上のリン酸濃度の場合には、表面にリン酸カルシウムの沈殿物としてリン酸を取り込むことが明らかになった。
従って、本発明に係るモノハイドロカルサイトはアラゴナイトやカルサイトよりもリンの取り込み量が多い。
また、従来のゲーサイトは、取り込んだリンを容易に脱離しないことから資源としての再利用に劣るのに対して本発明に係るモノハイドロカルサイトは酸性土壌下でのリン酸肥料として再利用できる。
The monohydrocalcite according to the present invention is transformed into calcite and aragonite in an environment where the phosphoric acid concentration is 20 μmol / l or less. However, since the phosphorus concentration is low, most of the phosphorus present is Incorporated into calcite and aragonite.
When the phosphoric acid concentration exceeds 20 μmol / l, for example, the amount of Mg in monohydrocalcite is 0.38 mmol / g, the amount of Mg in monohydrocalcite is 0 until the phosphoric acid concentration is about 60 μmol / l. In the case of .26 mmol / g, phosphoric acid is taken up by surface adsorption up to about a phosphoric acid concentration of about 100 μmol / l.
Moreover, it became clear that monohydrocalcite is stabilized by taking in phosphorus under such phosphoric acid concentration conditions and does not change to calcite or aragonite.
Furthermore, when the concentration of phosphoric acid is higher than that, phosphoric acid is taken up as a calcium phosphate precipitate on the surface.
Therefore, the monohydrocalcite according to the present invention has a higher phosphorus uptake than aragonite or calcite.
In addition, the conventional goethite is inferior in reuse as a resource because the incorporated phosphorus does not easily desorb, whereas the monohydrocalcite according to the present invention is reused as a phosphate fertilizer under acidic soil. it can.

本発明に係るリン回収剤とアラゴナイト及びカルサイトとのリン取り込み量を比較した結果を示す。The result of having compared the phosphorus uptake | capture amount with the phosphorus collection | recovery agent which concerns on this invention, and aragonite and calcite is shown. リン回収剤の合成例を示す。The synthesis example of a phosphorus collection | recovery agent is shown. サンプル<MHC1>,<MHC2>の化学組成分析結果を示す。The chemical composition analysis result of sample <MHC1> and <MHC2> is shown. サンプル<MHC1>,<MHC2>のXRDチャートを示す。The XRD chart of sample <MHC1> and <MHC2> is shown. リン取り込み試験後のpHの測定結果を示す。The measurement result of pH after a phosphorus uptake test is shown. リン取り込み試験後のCa、Mgの溶存濃度を示す。The dissolved concentrations of Ca and Mg after the phosphorus uptake test are shown. リン取り込み試験後のXRDチャートを示す。The XRD chart after a phosphorus uptake | capture test is shown. 吸着等温式の曲線と比較したグラフを示す。The graph compared with the adsorption isotherm type curve is shown. Mgを加えた後の溶存濃度を示す。The dissolved concentration after adding Mg is shown. リン酸の取り込み試験結果を示す。The uptake test result of phosphoric acid is shown.

本発明に係るリン回収剤の合成例及びリンの取り込み実験結果について以下説明する。   Synthesis examples of the phosphorus recovery agent according to the present invention and results of phosphorus uptake experiments will be described below.

<リン回収剤の合成例>
図2にモノハイドロカルサイトの合成例のステップフローを示す。
0.06mol/lのCaCl水溶液、0.06mol/lのMgCl水溶液の混合液に0.08mol/lのNaCO水溶液を加え、25℃×48時間撹拌した。
次に、沈殿生成したモノハイドロカルサイト中の不純物Mgを除去すべく、上記合成固形分を透析膜に入れ、5℃、脱イオン水にて洗浄する工程を1日当たり1回交換×2週間繰り返し、0.2μmフィルターにて固液分離した後に固相分を自然乾燥させた。
ここで、サンプル<MHC1>と<MHC2>とは洗浄水の量に差をつけ、<MHC1>の方が洗浄量が大きい。
このようにして得られたサンプル<MHC1>,<MHC2>の化学組成を図3に示し、XRDチャートを図4に示す。
化学組成におけるCa、Mgの値はイオンクロマトグラフィー(HPLC,東ソー8020シリーズ)を用いて分析し、CO,HOの値は熱重量示差分析計(TGーDTA.TG8120)にて測定した。
また、XRDはRigaku RINT1200を用いてCuKα,40KV30mAの条件下で分析した。
さらに「Quantachrome社製 Quantasorb Model QS-11」を用いて比表面積を測定したところ、<MHC1>:11.6m/g,<MHC2>:10.3m/gであった。
<Synthesis example of phosphorus recovery agent>
FIG. 2 shows a step flow of a synthesis example of monohydrocalcite.
To a mixed solution of 0.06 mol / l CaCl 2 aqueous solution and 0.06 mol / l MgCl 2 aqueous solution, 0.08 mol / l Na 2 CO 3 aqueous solution was added and stirred at 25 ° C. for 48 hours.
Next, in order to remove impurities Mg in the monohydrocalcite formed by precipitation, the above-mentioned synthetic solid content is placed in a dialysis membrane and washed with deionized water at 5 ° C. once a day for 2 weeks. After solid-liquid separation with a 0.2 μm filter, the solid phase was naturally dried.
Here, samples <MHC1> and <MHC2> differ in the amount of washing water, and <MHC1> has a larger washing amount.
The chemical compositions of the samples <MHC1> and <MHC2> thus obtained are shown in FIG. 3, and the XRD chart is shown in FIG.
The values of Ca and Mg in the chemical composition were analyzed using ion chromatography (HPLC, Tosoh 8020 series), and the values of CO 3 and H 2 O were measured with a thermogravimetric differential analyzer (TG-DTA.TG8120). .
Further, XRD was analyzed using a Rigaku RINT1200 under the conditions of CuKα, 40 KV 30 mA.
In addition Measurement of the specific surface area by using the "manufactured by Quantachrome Quantasorb Model QS-11", <MHC1>: 11.6m was 2 /g,<MHC2>:10.3m 2 / g.

<リンの取り込み実験例>
上記にて得られたリン回収剤サンプル<MHC1>,<MHC2>を用いてリンの取り込み実験をした。
試験液は基質0.01mol/l NaCl水溶液50mlに対して、リン酸濃度0〜210μmol/lになるように0.02mol NaHPO・12HOを滴下調整した。
それぞれの試験後に<MHC1>又は<MHC2>を100mg加え、大気開放系25℃×24時間撹拌し、その後にpH測定、孔径0.2μmフィルターにて固液分離した。
濾液はイオンクロマトグラフィーによるCa、Mgの溶存濃度測定と、分光光度計(島津UV−1200 660nm)によるリン酸濃度測定に供した。
固相はスライドガラスに塗布し、自然乾燥後にXRD分析に供した。
pH測定結果を図5、Ca,Mgの溶存濃度の測定結果を図6に示す。
XRD測定結果を図7に示す。
また、図8のグラフに溶液中に残ったリン濃度に対する固体に取り込まれたリン濃度の関係をプロットしたものを示す。
なお、図8のグラフ中に示した曲線は、表面における単層吸着を仮定したLangmuir吸着等温式により求めた曲線を示し、実線は<MHC1>、点線は<MHC2>に対応するものである。
<Examples of phosphorus uptake experiment>
Using the phosphorus recovery agent samples <MHC1> and <MHC2> obtained above, a phosphorus uptake experiment was performed.
The test solution was prepared by dropping 0.02 mol Na 2 HPO 4 · 12H 2 O so that the phosphoric acid concentration was 0 to 210 μmol / l with respect to 50 ml of the substrate 0.01 mol / l NaCl aqueous solution.
After each test, 100 mg of <MHC1> or <MHC2> was added and stirred in an open air system at 25 ° C. for 24 hours, followed by pH measurement and solid-liquid separation with a 0.2 μm pore size filter.
The filtrate was subjected to measurement of dissolved concentrations of Ca and Mg by ion chromatography and measurement of phosphoric acid concentration by a spectrophotometer (Shimadzu UV-1200 660 nm).
The solid phase was applied to a slide glass and subjected to XRD analysis after natural drying.
FIG. 5 shows the pH measurement results, and FIG. 6 shows the measurement results of the dissolved concentrations of Ca and Mg.
The XRD measurement results are shown in FIG.
The graph of FIG. 8 shows a plot of the relationship between the phosphorus concentration remaining in the solution and the concentration of phosphorus incorporated into the solid.
In addition, the curve shown in the graph of FIG. 8 shows the curve calculated | required by the Langmuir adsorption isotherm assuming the monolayer adsorption | suction on the surface, and a continuous line corresponds to <MHC1> and a dotted line corresponds to <MHC2>.

図6の溶存Mg濃度の測定結果から、<MHC1>の方が<MHC2>よりもMg溶存濃度が少なく、その値は概ね1/3であった。
図7のXRD測定結果から、初期のリン酸濃度0μmol/lの場合には、<MHC1>にてアラゴナイトとカルサイトが検出され<MHC2>にてアラゴナイトが検出された。
初期のリン酸濃度が10μmol/lの場合には<MHC1>にてカルサイトとアラゴナイトが検出され<MHC2>にてはMHC(モノハイドロカルサイト)のみが検出された。
初期のリン酸濃度が20μmol/lを超えるといずれもMHCのみが検出された。
図8のグラフからは、リン酸濃度が低い領域ではLangmuir吸着等温式に相応した吸着によるリン取り込みが確認され、相対的にリン酸濃度が高くなると線形的に増加していることが分かる。
この線形的にリンを取り込むステップはMHCの表面にリン酸カルシウムが沈殿し、取り込まれたものと推定される。
また、<MHC1>と<MHC2>とを比較するとMgの含有量が少ない<MHC1>の方がリンの取り込み量が多い。
From the measurement result of the dissolved Mg concentration in FIG. 6, <MHC1> had a lower Mg dissolved concentration than <MHC2>, and the value thereof was approximately 1/3.
From the XRD measurement results in FIG. 7, when the initial phosphoric acid concentration was 0 μmol / l, aragonite and calcite were detected in <MHC1>, and aragonite was detected in <MHC2>.
When the initial phosphoric acid concentration was 10 μmol / l, calcite and aragonite were detected in <MHC1>, and only MHC (monohydrocalcite) was detected in <MHC2>.
When the initial phosphoric acid concentration exceeded 20 μmol / l, only MHC was detected.
From the graph of FIG. 8, it can be seen that phosphorus uptake by adsorption corresponding to the Langmuir adsorption isotherm is confirmed in the region where the phosphoric acid concentration is low, and increases linearly when the phosphoric acid concentration is relatively high.
This step of linearly taking in phosphorus is presumed to be that calcium phosphate was precipitated and taken up on the surface of MHC.
Further, when <MHC1> and <MHC2> are compared, <MHC1> having a lower Mg content has a higher phosphorus uptake.

そこでMgの影響を確認すべく、サンプル<MHC1>にサンプル<MHC2>の濾液に認められたMg濃度と等しくなるようにMgCl・6HOを加えて、リンの取り込み実験とした。
そのときのMgの溶存濃度のグラフを図9に示し、リンの取り込み結果を図10のグラフに□印でプロットした。
その結果、サンプル<MHC2>の取り込み量に概ね一致した。
これらの結果から、リンの取り込み量にはモノハイドロカルサイト中の不純物として存在するMgが影響することが明らかになった。
以上のことから、吸着によるリンの取り込み関しては、モノハイドロカルサイト中のMgの含有量の影響を受け、モノハイドロカルサイト中のMg不純物は、0.5mmol/g以下、好ましくは0.4mmol/g以下がよい。
図1にアラゴナイト、カルサイトによるリンの取り込み量と本発明に係るリン回収剤によるリンの取り込み量の結果を比較したグラフを示す。
この比較グラフから、本発明に係るモノハイドロカルサイトからなるリンの回収剤は、Mgの含有量の影響が認められるものの従来のアラゴナイト、カルサイトよりもリンの取り込み量が多いことが分かる。
Therefore, in order to confirm the influence of Mg, MgCl 2 .6H 2 O was added to the sample <MHC1> so as to be equal to the Mg concentration found in the filtrate of the sample <MHC2>, and a phosphorus uptake experiment was performed.
A graph of the dissolved concentration of Mg at that time is shown in FIG. 9, and the phosphorus uptake results are plotted with a square in the graph of FIG.
As a result, it almost coincided with the amount of sample <MHC2> incorporated.
From these results, it has been clarified that Mg present as an impurity in monohydrocalcite has an influence on the amount of phosphorus uptake.
From the above, the phosphorus uptake by adsorption is affected by the content of Mg in the monohydrocalcite, and the Mg impurity in the monohydrocalcite is 0.5 mmol / g or less, preferably 0.8. 4 mmol / g or less is good.
FIG. 1 shows a graph comparing the results of phosphorus uptake by aragonite and calcite and phosphorus uptake by the phosphorus recovery agent according to the present invention.
From this comparison graph, it can be seen that the phosphorus recovery agent composed of monohydrocalcite according to the present invention has a higher phosphorus uptake than the conventional aragonite and calcite, although the influence of the Mg content is recognized.

Claims (3)

Mg2+イオンとCa2+イオンとがMg/Ca=0.3以上の割合で含有する水溶液に、可溶性炭酸塩又は炭酸塩の水溶液を混合することで沈殿生成したモノハイドロカルサイトであることを特徴とするリン回収剤。 It is a monohydrocalcite precipitated by mixing a soluble carbonate or an aqueous solution of carbonate with an aqueous solution containing Mg 2+ ions and Ca 2+ ions at a ratio of Mg / Ca = 0.3 or more. A phosphorus recovery agent. 請求項1記載のリン回収剤を用いて排水中からリンを回収して得られたことを特徴とするリン酸肥料。   A phosphate fertilizer obtained by recovering phosphorus from waste water using the phosphorus recovery agent according to claim 1. 請求項1記載のリン回収剤をリン含有排水に接触させることで排水中のリンを吸着又は/及びリン酸カルシウムとして取り込むことを特徴とする排水の浄化方法。   A method for purifying waste water, wherein the phosphorus recovery agent according to claim 1 is brought into contact with phosphorus-containing waste water to adsorb or / or take in phosphorus as waste water as calcium phosphate.
JP2010174259A 2010-08-03 2010-08-03 Phosphorus recovery agent and drainage purification method using the same Expired - Fee Related JP5618064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010174259A JP5618064B2 (en) 2010-08-03 2010-08-03 Phosphorus recovery agent and drainage purification method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010174259A JP5618064B2 (en) 2010-08-03 2010-08-03 Phosphorus recovery agent and drainage purification method using the same

Publications (2)

Publication Number Publication Date
JP2012030210A true JP2012030210A (en) 2012-02-16
JP5618064B2 JP5618064B2 (en) 2014-11-05

Family

ID=45844288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010174259A Expired - Fee Related JP5618064B2 (en) 2010-08-03 2010-08-03 Phosphorus recovery agent and drainage purification method using the same

Country Status (1)

Country Link
JP (1) JP5618064B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537970A (en) * 1976-07-09 1978-01-24 Goyou Sangiyou Kk Removing of phosphate ion in water
JPS5328957A (en) * 1976-08-30 1978-03-17 Ohira Tsunejirou Waste water purifying method
JPS6182841A (en) * 1984-09-29 1986-04-26 Agency Of Ind Science & Technol Phosphorus removing agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537970A (en) * 1976-07-09 1978-01-24 Goyou Sangiyou Kk Removing of phosphate ion in water
JPS5328957A (en) * 1976-08-30 1978-03-17 Ohira Tsunejirou Waste water purifying method
JPS6182841A (en) * 1984-09-29 1986-04-26 Agency Of Ind Science & Technol Phosphorus removing agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014014868; 福士圭介、他: 'モノハイドロカルサイトによるヒ酸の取り込み' 日本地球化学会年会講演要旨集 Vol.56, 20090915, p.108 *

Also Published As

Publication number Publication date
JP5618064B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
Wajima et al. Adsorption behavior of fluoride ions using a titanium hydroxide-derived adsorbent
EA014285B1 (en) Sorbent for removing heavy metal ions from water
JP5463525B2 (en) Selective adsorbent and method for producing the same
JP5878278B2 (en) Boron removal water treatment agent and water treatment method
US9174196B2 (en) Synthesis method for magnetite and birnessite aggregate-form mixture
Guan et al. Phosphate removal in marine electrolytes by zeolite synthesized from coal fly ash
US11577215B2 (en) Method for producing absorbent
Samaraweera et al. Lignite, thermally-modified and Ca/Mg-modified lignite for phosphate remediation
JP4693128B2 (en) Phosphorus recovery method and phosphorus recovery system
CA3066212C (en) Method of adsorbing an anion of interest from an aqueous solution
US8227378B2 (en) Arsenic sorbent for remediating arsenic-contaminated material
JP5618064B2 (en) Phosphorus recovery agent and drainage purification method using the same
JP2006239482A (en) Desalination method for seawater, mixed adsorbent and desalination device for seawater using the adsorbent
WO2004096433A1 (en) Adsorbent and process for producing the same
JP2012213673A (en) Condensed water laminar hydroxide like absorbent produced from acid wastewater and method for making the same
JP2008023401A (en) Phosphorus adsorbent
Kabayama et al. Characteristics of phosphate ion adsorption–desorption onto aluminum oxide hydroxide for preventing eutrophication
JP2010075805A (en) Water purification material and water purification method
JP6591343B2 (en) Method for producing amorphous ettringite
KR101421114B1 (en) Ca-Fe monosulfate arsenic absorbent and the method for preparing the same
CN114700058B (en) Preparation method of porous magnetic composite adsorbent and application of porous magnetic composite adsorbent in adsorption of dimethyl arsonic acid
JP2005000871A (en) Arsenic adsorbing substance having excellent stability and method for decontaminating contaminated water by using the same
JP5754695B2 (en) Phosphorus removal material
JP2014021104A (en) METHOD FOR PROCESSING RADIOACTIVE Cs CONTAMINATED WATER
JP2004089924A (en) Water-soluble selenium removing agent and process for removal of water-soluble selenium using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140902

R150 Certificate of patent or registration of utility model

Ref document number: 5618064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees